Predicting auditory tone-in-noise detection performance: the effects of neural variability

Collecting and analyzing psychophysical data is a fundamental mechanism for the study of auditory processing. However, because this approach relies on human listening experiments, it can be costly in terms of time and money spent gathering the data. The development of a theoretical, model-based proc...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on biomedical engineering Vol. 51; no. 2; pp. 282 - 293
Main Authors Huettel, L.G., Collins, L.M.
Format Journal Article
LanguageEnglish
Published United States IEEE 01.02.2004
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9294
1558-2531
DOI10.1109/TBME.2003.820395

Cover

More Information
Summary:Collecting and analyzing psychophysical data is a fundamental mechanism for the study of auditory processing. However, because this approach relies on human listening experiments, it can be costly in terms of time and money spent gathering the data. The development of a theoretical, model-based procedure capable of accurately predicting psychophysical behavior could alleviate these issues by enabling researchers to rapidly evaluate hypotheses prior to conducting experiments. This approach may also provide additional insight into auditory processing by establishing a link between psychophysical behavior and physiology. Signal detection theory has previously been combined with an auditory model to generate theoretical predictions of psychophysical behavior. Commonly, the ideal processor outperforms human subjects. In order for this model-based technique to enhance the study of auditory processing, discrepancies must be eliminated or explained. In this paper, we investigate the possibility that neural variability, which results from the randomness inherent in auditory nerve fiber responses, may explain some of the previously observed discrepancies. In addition, we study the impact of combining information across nerve fibers and investigate several models of multiple-fiber signal processing. Our findings suggest that neural variability can account for much, but not all, of the discrepancy between theoretical and experimental data.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ISSN:0018-9294
1558-2531
DOI:10.1109/TBME.2003.820395