An improved simulated annealing algorithm based on residual network for permutation flow shop scheduling
The permutation flow shop scheduling problem (PFSP), which is one of the most important scheduling types, is widespread in the modern industries. With the increase of scheduling scale, the difficulty and computation time of solving the problem will increase exponentially. Adding the knowledge to int...
        Saved in:
      
    
          | Published in | Complex & intelligent systems Vol. 7; no. 3; pp. 1173 - 1183 | 
|---|---|
| Main Authors | , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Cham
          Springer International Publishing
    
        01.06.2021
     Springer Nature B.V  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2199-4536 2198-6053 2198-6053  | 
| DOI | 10.1007/s40747-020-00205-9 | 
Cover
| Abstract | The permutation flow shop scheduling problem (PFSP), which is one of the most important scheduling types, is widespread in the modern industries. With the increase of scheduling scale, the difficulty and computation time of solving the problem will increase exponentially. Adding the knowledge to intelligent algorithms is a good way to solve the complex and difficult scheduling problems in reasonable time. To deal with the complex PFSPs, this paper proposes an improved simulated annealing (SA) algorithm based on residual network (SARes). First, this paper defines the neighborhood of the PFSP and divides its key blocks. Second, the Residual Network (ResNet) is used to extract and train the features of key blocks. And, the trained parameters are stored in the SA algorithm to improve its performance. Afterwards, some key operators, including the initial temperature setting and temperature attenuation function of SA algorithm, are also modified. After every new solution is generated, the parameters trained by the ResNet are used for fast ergodic search until the local optimal solution found in the current neighborhood. Finally, the most famous benchmarks including part of TA benchmark are selected to verify the performance of the proposed SARes algorithm, and the comparisons with the-state-of-art methods are also conducted. The experimental results show that the proposed method has achieved good results by comparing with other algorithms. This paper also conducts experiments on network structure design, algorithm parameter selection, CPU time and other problems, and verifies the advantages of SARes algorithm from the aspects of stability and efficiency. | 
    
|---|---|
| AbstractList | The permutation flow shop scheduling problem (PFSP), which is one of the most important scheduling types, is widespread in the modern industries. With the increase of scheduling scale, the difficulty and computation time of solving the problem will increase exponentially. Adding the knowledge to intelligent algorithms is a good way to solve the complex and difficult scheduling problems in reasonable time. To deal with the complex PFSPs, this paper proposes an improved simulated annealing (SA) algorithm based on residual network (SARes). First, this paper defines the neighborhood of the PFSP and divides its key blocks. Second, the Residual Network (ResNet) is used to extract and train the features of key blocks. And, the trained parameters are stored in the SA algorithm to improve its performance. Afterwards, some key operators, including the initial temperature setting and temperature attenuation function of SA algorithm, are also modified. After every new solution is generated, the parameters trained by the ResNet are used for fast ergodic search until the local optimal solution found in the current neighborhood. Finally, the most famous benchmarks including part of TA benchmark are selected to verify the performance of the proposed SARes algorithm, and the comparisons with the-state-of-art methods are also conducted. The experimental results show that the proposed method has achieved good results by comparing with other algorithms. This paper also conducts experiments on network structure design, algorithm parameter selection, CPU time and other problems, and verifies the advantages of SARes algorithm from the aspects of stability and efficiency. | 
    
| Author | Gao, Liang Li, Yang Song, Yiguo Li, Xinyu Wang, Cuiyu  | 
    
| Author_xml | – sequence: 1 givenname: Yang surname: Li fullname: Li, Yang organization: The State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology – sequence: 2 givenname: Cuiyu surname: Wang fullname: Wang, Cuiyu organization: The State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology – sequence: 3 givenname: Liang surname: Gao fullname: Gao, Liang organization: The State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology – sequence: 4 givenname: Yiguo surname: Song fullname: Song, Yiguo organization: The State Key Laboratory of CAD&CG, Zhejiang University – sequence: 5 givenname: Xinyu surname: Li fullname: Li, Xinyu email: lixinyu@mail.hust.edu.cn organization: The State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology  | 
    
| BookMark | eNqNkEtLxDAUhYMoqOP8AVcB19W82rRLEV8guNF1SDs3MxnTpCatg__eaAXBhbhJLrnnnNz7HaN9HzwgdErJOSVEXiRBpJAFYaQg-SiLZg8dMdrURUVKvv9VN4UoeXWIliltCSFUypoTdoQ2lx7bfojhDVY42X5yesyV9h60s36NtVuHaMdNj1udcid4HCHZ1aQd9jDuQnzBJkQ8QOynUY82C4wLO5w2YcCp28Bq-gw6QQdGuwTL73uBnm-un67uiofH2_ury4eiE7waC0alKbkkQnadqNoSeCtEVbVANKwq01FWlxy0qXgtQbataFh-arSh0LamJnyB-Jw7-UG_77Rzaoi21_FdUaI-eamZl8qo1Bcv1WTX2ezKJF4nSKPahin6PKhiJWeCiYbTrGKzqoshpQjmf9H1L1NnZ05j1Nb9bf3eJeV__Briz1R_uD4ASIWfHQ | 
    
| CitedBy_id | crossref_primary_10_1016_j_aime_2024_100144 crossref_primary_10_3390_machines12040218 crossref_primary_10_1007_s10845_023_02227_9 crossref_primary_10_1007_s40747_021_00528_1 crossref_primary_10_1016_j_cie_2022_108205 crossref_primary_10_1007_s40747_022_00933_0 crossref_primary_10_3390_systems11050221 crossref_primary_10_1109_TSMC_2022_3187082 crossref_primary_10_1038_s41598_025_86054_3 crossref_primary_10_3390_a17110472 crossref_primary_10_3390_pr11030693 crossref_primary_10_1109_ACCESS_2023_3275533 crossref_primary_10_3390_math11204390 crossref_primary_10_1007_s00500_022_06909_z crossref_primary_10_1016_j_seta_2022_102649 crossref_primary_10_1016_j_jmsy_2022_04_005 crossref_primary_10_1016_j_cie_2021_107809 crossref_primary_10_3934_mbe_2022410 crossref_primary_10_1109_TIM_2021_3096284 crossref_primary_10_1007_s11227_024_06046_4 crossref_primary_10_3390_math10162888 crossref_primary_10_1007_s40747_023_01335_6 crossref_primary_10_1007_s40747_023_00984_x crossref_primary_10_1051_ro_2021173  | 
    
| Cites_doi | 10.1016/j.advengsoft.2012.09.003 10.1186/S10033-020-00462-2 10.1007/s10898-007-9138-0 10.1109/TSMC.2016.2616347 10.1007/s40747-020-00166-z 10.1109/TII.2018.2843441 10.1007/s40747-020-00138-3 10.1016/j.swevo.2020.100716 10.1016/j.advengsoft.2014.07.006 10.1016/j.cor.2011.08.016 10.1016/j.ejor.2020.07.063 10.1109/TGRS.2017.2755542 10.1080/00207543.2012.711968 10.1109/TSMC.2015.2416127 10.1002/nav.3800010110 10.1109/JAS.2016.7508797 10.1016/j.eswa.2015.12.001 10.1016/j.jpdc.2018.02.009 10.1016/j.asoc.2015.02.006 10.1016/j.amc.2014.09.010 10.1016/j.ejor.2005.12.009 10.1126/science.220.4598.671 10.1109/TSMC.2017.2788879 10.1016/j.ijpe.2016.01.016 10.1109/CVPR.2016.90 10.1007/978-3-030-26969-2_4 10.1007/978-3-319-19324-3_35 10.1007/978-981-15-3242-9_14  | 
    
| ContentType | Journal Article | 
    
| Copyright | The Author(s) 2020 The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| Copyright_xml | – notice: The Author(s) 2020 – notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| DBID | C6C AAYXX CITATION 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS ADTOC UNPAY  | 
    
| DOI | 10.1007/s40747-020-00205-9 | 
    
| DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central ProQuest Technology Collection ProQuest One Community College ProQuest Central SciTech Premium Collection (Proquest) Advanced Technologies & Aerospace Collection ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database (Proquest) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New)  | 
    
| DatabaseTitleList | CrossRef Publicly Available Content Database  | 
    
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature Open Access Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering Mathematics  | 
    
| EISSN | 2198-6053 | 
    
| EndPage | 1183 | 
    
| ExternalDocumentID | 10.1007/s40747-020-00205-9 10_1007_s40747_020_00205_9  | 
    
| GrantInformation_xml | – fundername: Key Technologies Research and Development Program (CN) grantid: No. 2019YFB1704600 – fundername: National Natural Science Foundation of China grantid: No. 51775216 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: Program for HUST Academic Frontier Youth Team grantid: No. 2017QYTD04  | 
    
| GroupedDBID | 0R~ 8FE 8FG AAJSJ AAKKN ABEEZ ABFTD ACACY ACGFS ACULB ADINQ ADMLS AFGXO AFKRA AHBYD AHSBF AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP ARAPS ASPBG AVWKF BAPOH BENPR BGLVJ C24 C6C CCPQU EBLON EBS EJD GROUPED_DOAJ HCIFZ IAO ISR ITC M~E OK1 P62 PIMPY PROAC RSV SOJ AASML AAYXX CITATION PHGZM PHGZT PQGLB PUEGO ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c436t-217f537047cc46b5e3b4466be0aed6fc12853eaf6387e7bb4921289af1ebbf803 | 
    
| IEDL.DBID | C6C | 
    
| ISSN | 2199-4536 2198-6053  | 
    
| IngestDate | Tue Aug 19 23:20:22 EDT 2025 Wed Oct 08 14:21:39 EDT 2025 Wed Oct 01 04:22:14 EDT 2025 Thu Apr 24 23:10:30 EDT 2025 Fri Feb 21 02:49:22 EST 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 3 | 
    
| Keywords | Residual networks Improved simulated annealing algorithm Permutation flow shop scheduling TA benchmark  | 
    
| Language | English | 
    
| License | cc-by | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c436t-217f537047cc46b5e3b4466be0aed6fc12853eaf6387e7bb4921289af1ebbf803 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| OpenAccessLink | https://doi.org/10.1007/s40747-020-00205-9 | 
    
| PQID | 2532424931 | 
    
| PQPubID | 2044308 | 
    
| PageCount | 11 | 
    
| ParticipantIDs | unpaywall_primary_10_1007_s40747_020_00205_9 proquest_journals_2532424931 crossref_primary_10_1007_s40747_020_00205_9 crossref_citationtrail_10_1007_s40747_020_00205_9 springer_journals_10_1007_s40747_020_00205_9  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20210600 2021-06-00 20210601  | 
    
| PublicationDateYYYYMMDD | 2021-06-01 | 
    
| PublicationDate_xml | – month: 6 year: 2021 text: 20210600  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Cham | 
    
| PublicationPlace_xml | – name: Cham – name: Heidelberg  | 
    
| PublicationTitle | Complex & intelligent systems | 
    
| PublicationTitleAbbrev | Complex Intell. Syst | 
    
| PublicationYear | 2021 | 
    
| Publisher | Springer International Publishing Springer Nature B.V  | 
    
| Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V  | 
    
| References | Yin, Li, Gao, Lu, Zhang (CR36) 2017; 13 Yuan (CR38) 2019; 16 Rahman, Sarker, Essam (CR20) 2017; 57 Suresh, Anima (CR25) 2016; 2 Davendra, Bialic-Davendra (CR3) 2013; 51 Kirkpatrick, Gelatt, Vecchi (CR10) 1983; 220 CR19 Valeryi, Stanislav, Liudmyla (CR26) 2020; 48 Chen, Chang, Cheng, Zhang (CR2) 2012; 39 Johnson (CR9) 1954; 1 Zheng, Wang (CR39) 2018; 48 CR14 Zhong (CR40) 2017; 56 CR33 CR31 Li, Yin (CR12) 2013; 55 Gao, Huang, Sadollah, Wang (CR5) 2020; 6 Wu, Wang (CR32) 2018; 117 Lin, Yuan, Guo (CR15) 2018; 10956 Yenisey, Yagmahan (CR35) 2014; 45 Liu, Cao, Li (CR16) 2020 Wang, Wang (CR30) 2016; 46 Gui, Gao, Li (CR7) 2020 Xie, Zhang, Shao, Lin, Zhu (CR34) 2014; 77 Ding, Song, Gupta, Zhang, Chiong, Wu (CR4) 2015; 30 Liu, Yin, Gu (CR17) 2014; 248 Gomez, Ren, Urtasun, Grosse (CR6) 2017; 30 Wang, Gao, Li, Li, Tasgetiren (CR27) 2020; 57 CR8 Ruiz, Stützle (CR21) 2007; 177 Yoshua, Andrea, Antoine (CR37) 2020 Li, Gao (CR11) 2016; 174 Wang, Wang (CR28) 2020; 50 Liu, Yan, Cheng, Yang, Sun, Xue (CR18) 2020; 119071 Li, Lu, Gao, Xiao, Wen (CR13) 2018; 14 Wang, Wang, Zheng (CR29) 2016; 3 Sayed, Hassanien (CR22) 2018; 4 Shao, Pi (CR23) 2016; 51 Chen, Lee, Hand, Mendes (CR1) 2007; 39 Sun, Wang (CR24) 2020 C Wu (205_CR32) 2018; 117 AN Gomez (205_CR6) 2017; 30 MB Valeryi (205_CR26) 2020; 48 JY Ding (205_CR4) 2015; 30 X Li (205_CR11) 2016; 174 GC Wang (205_CR27) 2020; 57 X Li (205_CR12) 2013; 55 L Wang (205_CR29) 2016; 3 L Lin (205_CR15) 2018; 10956 LJ Yin (205_CR36) 2017; 13 SY Wang (205_CR30) 2016; 46 JJ Wang (205_CR28) 2020; 50 Z Xie (205_CR34) 2014; 77 D Davendra (205_CR3) 2013; 51 Y Liu (205_CR17) 2014; 248 ZL Zhong (205_CR40) 2017; 56 XY Li (205_CR13) 2018; 14 205_CR8 B Yoshua (205_CR37) 2020 H Yuan (205_CR38) 2019; 16 S Kirkpatrick (205_CR10) 1983; 220 MM Yenisey (205_CR35) 2014; 45 XL Zheng (205_CR39) 2018; 48 205_CR31 205_CR33 YH Liu (205_CR16) 2020 S Suresh (205_CR25) 2016; 2 205_CR14 W Shao (205_CR23) 2016; 51 BQ Sun (205_CR24) 2020 SH Chen (205_CR2) 2012; 39 L Gui (205_CR7) 2020 205_CR19 GI Sayed (205_CR22) 2018; 4 R Ruiz (205_CR21) 2007; 177 HF Rahman (205_CR20) 2017; 57 DJ Chen (205_CR1) 2007; 39 ZF Liu (205_CR18) 2020; 119071 K Gao (205_CR5) 2020; 6 SM Johnson (205_CR9) 1954; 1  | 
    
| References_xml | – volume: 6 start-page: 237 year: 2020 end-page: 249 ident: CR5 article-title: A review of energy-efficient scheduling in intelligent production systems publication-title: Comput IntellSyst – volume: 55 start-page: 10 year: 2013 end-page: 31 ident: CR12 article-title: An opposition-based differential evolution algorithm for permutation flow shop scheduling based on diversity measure publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2012.09.003 – volume: 57 start-page: 345 issue: 4 year: 2017 end-page: 347 ident: CR20 article-title: A real-time order acceptance and scheduling approach for permutation flow shop problems publication-title: Oper Res – year: 2020 ident: CR7 article-title: Anomalies in special permutation flow shop scheduling problems publication-title: Chin J Mech Eng-En doi: 10.1186/S10033-020-00462-2 – volume: 119071 start-page: 1 year: 2020 end-page: 17 ident: CR18 article-title: The mixed production mode considering continuous and intermittent processing for an energy-efficient hybrid flow shop scheduling publication-title: J Clean Prod – volume: 39 start-page: 261 issue: 2 year: 2007 end-page: 289 ident: CR1 article-title: Parallelizing simulated annealing algorithms based on high-performance computer publication-title: J Glob Optim doi: 10.1007/s10898-007-9138-0 – ident: CR14 – volume: 48 start-page: 790 issue: 5 year: 2018 end-page: 800 ident: CR39 article-title: A collaborative multiobjective fruit fly optimization algorithm for the resource constrained unrelated parallel machine green scheduling problem publication-title: IEEE Trans Syst Man CybernSyst doi: 10.1109/TSMC.2016.2616347 – year: 2020 ident: CR24 article-title: An estimation of distribution algorithm with branch-and-bound based knowledge for robotic assembly line balancing publication-title: Comput IntellSyst doi: 10.1007/s40747-020-00166-z – volume: 14 start-page: 5400 issue: 12 year: 2018 end-page: 5409 ident: CR13 article-title: An effective multi-objective algorithm for energy efficient scheduling in a real-life welding shop publication-title: IEEE Trans Ind Inform doi: 10.1109/TII.2018.2843441 – year: 2020 ident: CR16 article-title: Improving ant colony optimization algorithm with epsilon greedy and Levy flight publication-title: Comput IntellSyst doi: 10.1007/s40747-020-00138-3 – volume: 57 start-page: 100716 year: 2020 ident: CR27 article-title: Energy-efficient distributed permutation flow shop scheduling problem using a multi-objective whale swarm algorithm publication-title: Swarm Evol Comput doi: 10.1016/j.swevo.2020.100716 – volume: 77 start-page: 35 year: 2014 end-page: 47 ident: CR34 article-title: An effective hybrid teaching–learning-based optimization algorithm for permutation flow shop scheduling problem publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2014.07.006 – ident: CR33 – volume: 39 start-page: 1450 issue: 7 year: 2012 end-page: 1457 ident: CR2 article-title: A self-guided genetic algorithm for permutation flowshop scheduling problems publication-title: Comput Oper Res doi: 10.1016/j.cor.2011.08.016 – ident: CR8 – volume: 30 start-page: 2214 year: 2017 end-page: 2224 ident: CR6 article-title: The reversible residual network: backpropagation without storing activations publication-title: Adv Neural Inf Process Syst – year: 2020 ident: CR37 article-title: Machine learning for combinatorial optimization: a methodological Tour d’Horizon publication-title: Eur J Oper Res doi: 10.1016/j.ejor.2020.07.063 – volume: 56 start-page: 847 issue: 2 year: 2017 end-page: 858 ident: CR40 article-title: Spectral–spatial residual network for hyperspectral image classification: a 3-D deep learning framework publication-title: IEEE Trans Geosci Remote Sens doi: 10.1109/TGRS.2017.2755542 – volume: 51 start-page: 2200 issue: 8 year: 2013 end-page: 2218 ident: CR3 article-title: Scheduling flow shops with blocking using a discrete self-organising migrating algorithm publication-title: Int J Prod Res doi: 10.1080/00207543.2012.711968 – volume: 46 start-page: 139 issue: 1 year: 2016 end-page: 149 ident: CR30 article-title: An estimation of distribution algorithm-based memetic algorithm for the distributed assembly permutation flow-shop scheduling problem publication-title: IEEE Trans Syst Man CybernSyst doi: 10.1109/TSMC.2015.2416127 – volume: 1 start-page: 61 issue: 1 year: 1954 end-page: 68 ident: CR9 article-title: Optimal two- and three-stage production schedules with setup times included publication-title: Nav Res Logist Q doi: 10.1002/nav.3800010110 – volume: 3 start-page: 235 issue: 3 year: 2016 end-page: 246 ident: CR29 article-title: A hybrid estimation of distribution algorithm for unrelated parallel machine scheduling with sequence-dependent setup times publication-title: IEEE/CAA J AutomSinica doi: 10.1109/JAS.2016.7508797 – ident: CR19 – volume: 4 start-page: 195 year: 2018 end-page: 212 ident: CR22 article-title: A hybrid SA-MFO algorithm for function optimization and engineering design problems publication-title: Comput IntellSyst – volume: 51 start-page: 161 year: 2016 end-page: 176 ident: CR23 article-title: A self-guided differential evolution with neighborhood search for permutation flow shop scheduling publication-title: Expert SystAppl doi: 10.1016/j.eswa.2015.12.001 – volume: 117 start-page: 63 year: 2018 end-page: 72 ident: CR32 article-title: A multi-model estimation of distribution algorithm for energy efficient scheduling under cloud computing system publication-title: J Parallel Distr Com doi: 10.1016/j.jpdc.2018.02.009 – volume: 30 start-page: 604 year: 2015 end-page: 613 ident: CR4 article-title: An improved iterated greedy algorithm with a Tabu-based reconstruction strategy for the no-wait flowshop scheduling problem publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2015.02.006 – volume: 10956 start-page: 212 year: 2018 end-page: 222 ident: CR15 article-title: Optimization method of residual networks of residual networks for image classification publication-title: Int Conf Int Comput – volume: 248 start-page: 143 year: 2014 end-page: 159 ident: CR17 article-title: An effective differential evolution algorithm for permutation flow shop scheduling problem publication-title: Appl Math Comput doi: 10.1016/j.amc.2014.09.010 – volume: 177 start-page: 2033 issue: 3 year: 2007 end-page: 2049 ident: CR21 article-title: A simple and effective iterated greedy algorithm for the permutation flowshop scheduling problem publication-title: Eur J Oper Res doi: 10.1016/j.ejor.2005.12.009 – ident: CR31 – volume: 220 start-page: 671 issue: 4598 year: 1983 end-page: 680 ident: CR10 article-title: Optimization by simulated annealing publication-title: Science doi: 10.1126/science.220.4598.671 – volume: 50 start-page: 1805 issue: 5 year: 2020 end-page: 1819 ident: CR28 article-title: A knowledge-based cooperative algorithm for energy-efficient scheduling of distributed flow-shop publication-title: IEEE Trans Syst Man CybernSyst doi: 10.1109/TSMC.2017.2788879 – volume: 48 start-page: 339 year: 2020 end-page: 369 ident: CR26 article-title: Galois field augmentation model for training of artificial neural network in dentistry data-Ce publication-title: Bus Appl – volume: 174 start-page: 93 year: 2016 end-page: 110 ident: CR11 article-title: An effective hybrid genetic algorithm and tabu search for flexible job shop scheduling problem publication-title: Int J Prod Econ doi: 10.1016/j.ijpe.2016.01.016 – volume: 45 start-page: 119 year: 2014 end-page: 135 ident: CR35 article-title: Multi-objective permutation flow shop scheduling problem: literature review, classification and current trends publication-title: Comput Hum Behav – volume: 2 start-page: 173 year: 2016 end-page: 203 ident: CR25 article-title: Social group optimization (SGO): a new population evolutionary optimization technique publication-title: Comput IntellSyst – volume: 13 start-page: 15 year: 2017 end-page: 30 ident: CR36 article-title: A novel mathematical model and multi-objective method for the low-carbon flexible job shop scheduling problem, considering productivity, energy efficiency and noise reduction publication-title: Sustain Comput Inf – volume: 16 start-page: 1686 issue: 4 year: 2019 end-page: 1697 ident: CR38 article-title: Spatiotemporal task scheduling for heterogeneous delay-tolerant applications in distributed green data centers publication-title: IEEE/CAA J Autom Sin – volume: 1 start-page: 61 issue: 1 year: 1954 ident: 205_CR9 publication-title: Nav Res Logist Q doi: 10.1002/nav.3800010110 – volume: 3 start-page: 235 issue: 3 year: 2016 ident: 205_CR29 publication-title: IEEE/CAA J AutomSinica doi: 10.1109/JAS.2016.7508797 – ident: 205_CR8 doi: 10.1109/CVPR.2016.90 – year: 2020 ident: 205_CR16 publication-title: Comput IntellSyst doi: 10.1007/s40747-020-00138-3 – volume: 30 start-page: 2214 year: 2017 ident: 205_CR6 publication-title: Adv Neural Inf Process Syst – volume: 119071 start-page: 1 year: 2020 ident: 205_CR18 publication-title: J Clean Prod – volume: 14 start-page: 5400 issue: 12 year: 2018 ident: 205_CR13 publication-title: IEEE Trans Ind Inform doi: 10.1109/TII.2018.2843441 – volume: 45 start-page: 119 year: 2014 ident: 205_CR35 publication-title: Comput Hum Behav – volume: 13 start-page: 15 year: 2017 ident: 205_CR36 publication-title: Sustain Comput Inf – volume: 39 start-page: 261 issue: 2 year: 2007 ident: 205_CR1 publication-title: J Glob Optim doi: 10.1007/s10898-007-9138-0 – volume: 55 start-page: 10 year: 2013 ident: 205_CR12 publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2012.09.003 – year: 2020 ident: 205_CR7 publication-title: Chin J Mech Eng-En doi: 10.1186/S10033-020-00462-2 – volume: 30 start-page: 604 year: 2015 ident: 205_CR4 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2015.02.006 – year: 2020 ident: 205_CR24 publication-title: Comput IntellSyst doi: 10.1007/s40747-020-00166-z – volume: 16 start-page: 1686 issue: 4 year: 2019 ident: 205_CR38 publication-title: IEEE/CAA J Autom Sin – volume: 4 start-page: 195 year: 2018 ident: 205_CR22 publication-title: Comput IntellSyst – volume: 50 start-page: 1805 issue: 5 year: 2020 ident: 205_CR28 publication-title: IEEE Trans Syst Man CybernSyst doi: 10.1109/TSMC.2017.2788879 – volume: 6 start-page: 237 year: 2020 ident: 205_CR5 publication-title: Comput IntellSyst – volume: 177 start-page: 2033 issue: 3 year: 2007 ident: 205_CR21 publication-title: Eur J Oper Res doi: 10.1016/j.ejor.2005.12.009 – volume: 48 start-page: 790 issue: 5 year: 2018 ident: 205_CR39 publication-title: IEEE Trans Syst Man CybernSyst doi: 10.1109/TSMC.2016.2616347 – ident: 205_CR31 doi: 10.1007/978-3-030-26969-2_4 – ident: 205_CR33 doi: 10.1007/978-3-319-19324-3_35 – volume: 51 start-page: 2200 issue: 8 year: 2013 ident: 205_CR3 publication-title: Int J Prod Res doi: 10.1080/00207543.2012.711968 – volume: 10956 start-page: 212 year: 2018 ident: 205_CR15 publication-title: Int Conf Int Comput – volume: 220 start-page: 671 issue: 4598 year: 1983 ident: 205_CR10 publication-title: Science doi: 10.1126/science.220.4598.671 – volume: 2 start-page: 173 year: 2016 ident: 205_CR25 publication-title: Comput IntellSyst – volume: 39 start-page: 1450 issue: 7 year: 2012 ident: 205_CR2 publication-title: Comput Oper Res doi: 10.1016/j.cor.2011.08.016 – year: 2020 ident: 205_CR37 publication-title: Eur J Oper Res doi: 10.1016/j.ejor.2020.07.063 – volume: 48 start-page: 339 year: 2020 ident: 205_CR26 publication-title: Bus Appl – volume: 57 start-page: 100716 year: 2020 ident: 205_CR27 publication-title: Swarm Evol Comput doi: 10.1016/j.swevo.2020.100716 – ident: 205_CR19 doi: 10.1007/978-981-15-3242-9_14 – volume: 57 start-page: 345 issue: 4 year: 2017 ident: 205_CR20 publication-title: Oper Res – volume: 77 start-page: 35 year: 2014 ident: 205_CR34 publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2014.07.006 – volume: 56 start-page: 847 issue: 2 year: 2017 ident: 205_CR40 publication-title: IEEE Trans Geosci Remote Sens doi: 10.1109/TGRS.2017.2755542 – volume: 174 start-page: 93 year: 2016 ident: 205_CR11 publication-title: Int J Prod Econ doi: 10.1016/j.ijpe.2016.01.016 – volume: 117 start-page: 63 year: 2018 ident: 205_CR32 publication-title: J Parallel Distr Com doi: 10.1016/j.jpdc.2018.02.009 – volume: 51 start-page: 161 year: 2016 ident: 205_CR23 publication-title: Expert SystAppl doi: 10.1016/j.eswa.2015.12.001 – volume: 46 start-page: 139 issue: 1 year: 2016 ident: 205_CR30 publication-title: IEEE Trans Syst Man CybernSyst doi: 10.1109/TSMC.2015.2416127 – ident: 205_CR14 – volume: 248 start-page: 143 year: 2014 ident: 205_CR17 publication-title: Appl Math Comput doi: 10.1016/j.amc.2014.09.010  | 
    
| SSID | ssj0001778302 ssib044733412 ssib045327741  | 
    
| Score | 2.3539672 | 
    
| Snippet | The permutation flow shop scheduling problem (PFSP), which is one of the most important scheduling types, is widespread in the modern industries. With the... | 
    
| SourceID | unpaywall proquest crossref springer  | 
    
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 1173 | 
    
| SubjectTerms | Algorithms Attenuation Benchmarks Complexity Computational Intelligence Data Structures and Information Theory Design parameters Engineering Feature extraction Job shop scheduling Job shops Original Article Parameter modification Permutations Scheduling Simulated annealing  | 
    
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS9xAEB_s-dD6INoqnl_sQ990aZLdZG8fRGxRRPAoUsG3sJtsvIOYpL07pP99Z_aSXH05fAsk2YWZ2fnNx84MwFcdWIPKMeRxIi06KE5zi44QD3JhbIEIYSVVI9-Pk9tHefcUP23AuKuFoWuVnU70ijqvM4qRf4tign6pRXjZ_OY0NYqyq90IDdOOVsgvfIuxD7AZUWesAWx-vx7_fOgkTEolhFwBusRFVTd7xkdllKKGWDSRLtSaS5_bPOzr7SS1m-fkcZGZFXP9Fs1WJmqfVd2Cj4uqMX9fTVn-B1w3O7DdWpzsaikiu7Dhqs-wdd-3a519gclVxaY-uuByNpu-0EgvfDKogw2VqzNTPiMt5pMXRqiXs7pi6Kb7Oi5WLS-SM7R-WYN6frFM7rOirF_ZbFI3DB1oBDRaaA8eb65__bjl7QgGnkmRzDk6LEUsVCBVlsnExk5YSgBbFxiXJ0WG6BYLZwo8xcopa6VGuo-0KUJnkdWB2IdBVVfuAFgRCZ2FJgoKKv6NR9ZYZJGRoygfqSjJhxB2pEyztj85jcko076zsid_ipRPPflTPYSz_p9m2Z1j7dfHHYfS9qTO0pVcDeG849rq9brVznvOvmPzw_WbH8GniG7L-PjOMQzmfxbuBM2duT1tZfgfHbL15Q priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS-QwFH-442HxsLpf7IhKDt40Y9sk7eQ4-IEIyh4ccE8laZOdYTttcTqI_vW-9MtdQVnxVkiakuQlv9_r-wLYl55WeDn6VIRco4JiJNWoCFEvZUpbRAjNXTTy5VV4PuUXN-JmDU66WJja270zSTYxDS5LU14dlak96gPfuMv7Tp3q4_iOoHKEzR9gPRTIyAewPr36Ofnl6sqhTk2RsbPmWVJeWyu3Xx7oX3x6Ip29nXQDPq7yUt3fqSz7C4rONsF0k2g8UP6MVpUeJQ_P8ju-d5Zb8KnlqmTSCNdnWDP5F9i47BO9Lr_CbJKTef1fwqRkOV-4YmD4pPD2Vi7Qnajsd3E7r2YL4vAyJUVOUMGvI8BI3rigE-TNpESEWDVuAcRmxR1ZzoqSoOqNUOgG-gbTs9Pr43PaFm-gCWdhRVHVsYJFHo-ShIdaGKad6VgbT5k0tAniomBGWTz_kYm05hJBdCyV9Y1GIfHYdxjkRW5-ALEBk4mvAs-6sGEx1kr7ga_4OEjHURCmQ_C7LYuTNrO5K7CRxX1O5nolY1zEuF7JWA7hoH-nbPJ6vNp7p5OEuD3jyzgQjoxyyfwhHHab-dT82miHvQT9x8e339Z9BwbV7crsIleq9F57FB4BpKYK_g priority: 102 providerName: Unpaywall  | 
    
| Title | An improved simulated annealing algorithm based on residual network for permutation flow shop scheduling | 
    
| URI | https://link.springer.com/article/10.1007/s40747-020-00205-9 https://www.proquest.com/docview/2532424931 https://link.springer.com/content/pdf/10.1007/s40747-020-00205-9.pdf  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 7 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2198-6053 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001778302 issn: 2198-6053 databaseCode: DOA dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2198-6053 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001778302 issn: 2198-6053 databaseCode: ADMLS dateStart: 20151201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2198-6053 dateEnd: 99991231 omitProxy: true ssIdentifier: ssib044733412 issn: 2199-4536 databaseCode: M~E dateStart: 20150101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2198-6053 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001778302 issn: 2198-6053 databaseCode: BENPR dateStart: 20151201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2198-6053 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001778302 issn: 2198-6053 databaseCode: 8FG dateStart: 20180601 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: Springer Nature HAS Fully OA customDbUrl: eissn: 2198-6053 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001778302 issn: 2198-6053 databaseCode: AAJSJ dateStart: 20151201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature Open Access Journals customDbUrl: eissn: 2198-6053 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001778302 issn: 2198-6053 databaseCode: C6C dateStart: 20151201 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerOpen customDbUrl: eissn: 2198-6053 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001778302 issn: 2198-6053 databaseCode: C24 dateStart: 20151201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwEB4tcFg4IBYWUR6VD3sDa5PYefgYKgqqRIUWKsEpshNnWykkFWmF-PeM3TQ8JBCc8nAykTK2v3l4PgP8EY6SODm61A-4QgdFC6rQEaJOxqTKESEUN9XIl8PgYsQHt_5tQ5NjamHe5e__1twwvFPj5BjLxqdiBdYQpAKbmA16y77DecgYb6DaxlfC0FBbmb3lXCEot1nK_Y_FvsWlF2OzzY9uwM95OZVPj7IoXkFQfws2G9uRxAtl_4IfutyGjVeMgnh12dKw1jswjksysVEDnZF6cm-26sIziXOrNGXoRBb_q4fJbHxPDJplpCoJut-2PouUiwXiBK1aMsX5e75I2pO8qB5JPa6mBB1jBCoj6DeM-mc3vQvabK1AU86CGUVHJPdZ6PAwTXmgfM2USewq7UidBXmKqOUzLXMcnaEOleICIS4SMne1QhU6bBdWy6rUe0Byj4nUlZ6Tm6JeP1JSuZ4reeRlUegFWQfc5Y9N0oZ33Gx_USQtY7JVRoJ6SKwyEtGB4_ad6YJ149OnD5f6SpoRWCeeb0xFLpjbgZOlDl-aP5N20ur5Cx_f_570A1j3zKoYG8c5hNXZw1wfoVkzU11YifrnXViL48H1AI-nZ8Orf3i35_Gu7etdGzDAltHwKr57Bpgq8Jk | 
    
| linkProvider | Springer Nature | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V9lB6QDzVLQV8gBO1SGInXh8qVKDVlnZXCLVSb8FOHLZSmoRmV6v-OX4bM9kkC5cVl94iJbGVmck8PfMBvNWeNagcfR5G0mKA4jS3GAhxLxXGZmghrKRu5PEkGl3Kr1fh1Qb87nph6FhlpxMbRZ2WCeXIPwQhmX6phf-x-sUJNYqqqx2EhmmhFdLDZsRY29hx5u4WGMLVh6dfkN_vguDk-OLziLcoAzyRIppx9MmzUChPqiSRkQ2dsFTjtM4zLo2yBBV4KJzJUFCVU9ZKjdp-qE3mO4tf4wlc9wFsSSE1Bn9bn44n3753Ei2lEkKuHAiJH6E6rJsmC6QUDeAiBDxfay6bWupe398nabw9pwiP3LqQ63-t58ol7qu4O7A9LypztzB5_pehPHkMj1oPlx0tRfIJbLjiKeyM-_Gw9TOYHhXsuslmuJTV1zcEIYZXBnW-ofZ4ZvKfSPvZ9IaRlU1ZWbBbVzd9Y6xYHlxn6G2zCu3KfHmYgGV5uWD1tKwYBuxoQGmh53B5L8x4AZtFWbhdYFkgdOKbwMuo2TgcWmP9wDdyGKRDFUTpAPyOlHHSzkMnWI487ic5N-SPkfJxQ_5YD-B9_061nAay9un9jkNxqxnqeCXHAzjouLa6vW61g56z_7H53vrN38D26GJ8Hp-fTs5ewsOATuo0uaV92Jzdzt0rdLVm9nUrzwx-3Pcv9AcVfzMa | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb5wwEB61qdQ2h6pPdfNofeitsQLYwPoYbbNKH4l6aKTckA12diUCKMsq6r_PjHlke2iU3EDAIPEZfzMezzcAX1RgNE6OIY8TaTBAsYobDIR4UAhtHDKEkVSNfHqWnJzLHxfxxUYVv9_tPqQku5oGUmmq2sOmcIdj4Zsk3XdOoQ_5OzFXT-GZRHajHgazZDaMKClTIWRP4H7VJU1J8Io6zoVKcelzlzv_N_svW925oGPWdBterKtG_73RZblBTPPX8Kr3KNlRNwTewBNbvYXtDZ1BPDsdxVlX72BxVLGlX0uwBVstr6iBFx5pnHE1FaczXV7W18t2ccWI4wpWVwyDcl-1xapu2zhDX5c1OKuvu1Q-c2V9w1aLumEYLiN9kaH3cD4__jM74X3DBZ5LkbQcwxMXizSQaZ7LxMRWGEr3GhtoWyQuRy6LhdUO_9nUpsZIhcQ3VdqF1iCwgfgAW1Vd2Y_AXCRUHuoocFTqG0-NNmEUajmNimkaJcUEwuHDZnmvRk5NMcps1FH2YGSIQ-bByNQEvo7PNJ0Wx7137w14Zf1_ucqimBxIqUQ4gYMBw7vL91k7GHF-wMt3Hmf9Mzz__W2e_fp-9nMXXka0bcYv9OzBVnu9tvvo97Tmkx_at-jZ9FQ | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS-QwFH-442HxsLpf7IhKDt40Y9sk7eQ4-IEIyh4ccE8laZOdYTttcTqI_vW-9MtdQVnxVkiakuQlv9_r-wLYl55WeDn6VIRco4JiJNWoCFEvZUpbRAjNXTTy5VV4PuUXN-JmDU66WJja270zSTYxDS5LU14dlak96gPfuMv7Tp3q4_iOoHKEzR9gPRTIyAewPr36Ofnl6sqhTk2RsbPmWVJeWyu3Xx7oX3x6Ip29nXQDPq7yUt3fqSz7C4rONsF0k2g8UP6MVpUeJQ_P8ju-d5Zb8KnlqmTSCNdnWDP5F9i47BO9Lr_CbJKTef1fwqRkOV-4YmD4pPD2Vi7Qnajsd3E7r2YL4vAyJUVOUMGvI8BI3rigE-TNpESEWDVuAcRmxR1ZzoqSoOqNUOgG-gbTs9Pr43PaFm-gCWdhRVHVsYJFHo-ShIdaGKad6VgbT5k0tAniomBGWTz_kYm05hJBdCyV9Y1GIfHYdxjkRW5-ALEBk4mvAs-6sGEx1kr7ga_4OEjHURCmQ_C7LYuTNrO5K7CRxX1O5nolY1zEuF7JWA7hoH-nbPJ6vNp7p5OEuD3jyzgQjoxyyfwhHHab-dT82miHvQT9x8e339Z9BwbV7crsIleq9F57FB4BpKYK_g | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+improved+simulated+annealing+algorithm+based+on+residual+network+for+permutation+flow+shop+scheduling&rft.jtitle=Complex+%26+intelligent+systems&rft.au=Li%2C+Yang&rft.au=Wang%2C+Cuiyu&rft.au=Gao%2C+Liang&rft.au=Song%2C+Yiguo&rft.date=2021-06-01&rft.pub=Springer+International+Publishing&rft.issn=2199-4536&rft.eissn=2198-6053&rft.volume=7&rft.issue=3&rft.spage=1173&rft.epage=1183&rft_id=info:doi/10.1007%2Fs40747-020-00205-9&rft.externalDocID=10_1007_s40747_020_00205_9 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2199-4536&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2199-4536&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2199-4536&client=summon |