An improved simulated annealing algorithm based on residual network for permutation flow shop scheduling

The permutation flow shop scheduling problem (PFSP), which is one of the most important scheduling types, is widespread in the modern industries. With the increase of scheduling scale, the difficulty and computation time of solving the problem will increase exponentially. Adding the knowledge to int...

Full description

Saved in:
Bibliographic Details
Published inComplex & intelligent systems Vol. 7; no. 3; pp. 1173 - 1183
Main Authors Li, Yang, Wang, Cuiyu, Gao, Liang, Song, Yiguo, Li, Xinyu
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.06.2021
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN2199-4536
2198-6053
2198-6053
DOI10.1007/s40747-020-00205-9

Cover

Abstract The permutation flow shop scheduling problem (PFSP), which is one of the most important scheduling types, is widespread in the modern industries. With the increase of scheduling scale, the difficulty and computation time of solving the problem will increase exponentially. Adding the knowledge to intelligent algorithms is a good way to solve the complex and difficult scheduling problems in reasonable time. To deal with the complex PFSPs, this paper proposes an improved simulated annealing (SA) algorithm based on residual network (SARes). First, this paper defines the neighborhood of the PFSP and divides its key blocks. Second, the Residual Network (ResNet) is used to extract and train the features of key blocks. And, the trained parameters are stored in the SA algorithm to improve its performance. Afterwards, some key operators, including the initial temperature setting and temperature attenuation function of SA algorithm, are also modified. After every new solution is generated, the parameters trained by the ResNet are used for fast ergodic search until the local optimal solution found in the current neighborhood. Finally, the most famous benchmarks including part of TA benchmark are selected to verify the performance of the proposed SARes algorithm, and the comparisons with the-state-of-art methods are also conducted. The experimental results show that the proposed method has achieved good results by comparing with other algorithms. This paper also conducts experiments on network structure design, algorithm parameter selection, CPU time and other problems, and verifies the advantages of SARes algorithm from the aspects of stability and efficiency.
AbstractList The permutation flow shop scheduling problem (PFSP), which is one of the most important scheduling types, is widespread in the modern industries. With the increase of scheduling scale, the difficulty and computation time of solving the problem will increase exponentially. Adding the knowledge to intelligent algorithms is a good way to solve the complex and difficult scheduling problems in reasonable time. To deal with the complex PFSPs, this paper proposes an improved simulated annealing (SA) algorithm based on residual network (SARes). First, this paper defines the neighborhood of the PFSP and divides its key blocks. Second, the Residual Network (ResNet) is used to extract and train the features of key blocks. And, the trained parameters are stored in the SA algorithm to improve its performance. Afterwards, some key operators, including the initial temperature setting and temperature attenuation function of SA algorithm, are also modified. After every new solution is generated, the parameters trained by the ResNet are used for fast ergodic search until the local optimal solution found in the current neighborhood. Finally, the most famous benchmarks including part of TA benchmark are selected to verify the performance of the proposed SARes algorithm, and the comparisons with the-state-of-art methods are also conducted. The experimental results show that the proposed method has achieved good results by comparing with other algorithms. This paper also conducts experiments on network structure design, algorithm parameter selection, CPU time and other problems, and verifies the advantages of SARes algorithm from the aspects of stability and efficiency.
Author Gao, Liang
Li, Yang
Song, Yiguo
Li, Xinyu
Wang, Cuiyu
Author_xml – sequence: 1
  givenname: Yang
  surname: Li
  fullname: Li, Yang
  organization: The State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology
– sequence: 2
  givenname: Cuiyu
  surname: Wang
  fullname: Wang, Cuiyu
  organization: The State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology
– sequence: 3
  givenname: Liang
  surname: Gao
  fullname: Gao, Liang
  organization: The State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology
– sequence: 4
  givenname: Yiguo
  surname: Song
  fullname: Song, Yiguo
  organization: The State Key Laboratory of CAD&CG, Zhejiang University
– sequence: 5
  givenname: Xinyu
  surname: Li
  fullname: Li, Xinyu
  email: lixinyu@mail.hust.edu.cn
  organization: The State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology
BookMark eNqNkEtLxDAUhYMoqOP8AVcB19W82rRLEV8guNF1SDs3MxnTpCatg__eaAXBhbhJLrnnnNz7HaN9HzwgdErJOSVEXiRBpJAFYaQg-SiLZg8dMdrURUVKvv9VN4UoeXWIliltCSFUypoTdoQ2lx7bfojhDVY42X5yesyV9h60s36NtVuHaMdNj1udcid4HCHZ1aQd9jDuQnzBJkQ8QOynUY82C4wLO5w2YcCp28Bq-gw6QQdGuwTL73uBnm-un67uiofH2_ury4eiE7waC0alKbkkQnadqNoSeCtEVbVANKwq01FWlxy0qXgtQbataFh-arSh0LamJnyB-Jw7-UG_77Rzaoi21_FdUaI-eamZl8qo1Bcv1WTX2ezKJF4nSKPahin6PKhiJWeCiYbTrGKzqoshpQjmf9H1L1NnZ05j1Nb9bf3eJeV__Briz1R_uD4ASIWfHQ
CitedBy_id crossref_primary_10_1016_j_aime_2024_100144
crossref_primary_10_3390_machines12040218
crossref_primary_10_1007_s10845_023_02227_9
crossref_primary_10_1007_s40747_021_00528_1
crossref_primary_10_1016_j_cie_2022_108205
crossref_primary_10_1007_s40747_022_00933_0
crossref_primary_10_3390_systems11050221
crossref_primary_10_1109_TSMC_2022_3187082
crossref_primary_10_1038_s41598_025_86054_3
crossref_primary_10_3390_a17110472
crossref_primary_10_3390_pr11030693
crossref_primary_10_1109_ACCESS_2023_3275533
crossref_primary_10_3390_math11204390
crossref_primary_10_1007_s00500_022_06909_z
crossref_primary_10_1016_j_seta_2022_102649
crossref_primary_10_1016_j_jmsy_2022_04_005
crossref_primary_10_1016_j_cie_2021_107809
crossref_primary_10_3934_mbe_2022410
crossref_primary_10_1109_TIM_2021_3096284
crossref_primary_10_1007_s11227_024_06046_4
crossref_primary_10_3390_math10162888
crossref_primary_10_1007_s40747_023_01335_6
crossref_primary_10_1007_s40747_023_00984_x
crossref_primary_10_1051_ro_2021173
Cites_doi 10.1016/j.advengsoft.2012.09.003
10.1186/S10033-020-00462-2
10.1007/s10898-007-9138-0
10.1109/TSMC.2016.2616347
10.1007/s40747-020-00166-z
10.1109/TII.2018.2843441
10.1007/s40747-020-00138-3
10.1016/j.swevo.2020.100716
10.1016/j.advengsoft.2014.07.006
10.1016/j.cor.2011.08.016
10.1016/j.ejor.2020.07.063
10.1109/TGRS.2017.2755542
10.1080/00207543.2012.711968
10.1109/TSMC.2015.2416127
10.1002/nav.3800010110
10.1109/JAS.2016.7508797
10.1016/j.eswa.2015.12.001
10.1016/j.jpdc.2018.02.009
10.1016/j.asoc.2015.02.006
10.1016/j.amc.2014.09.010
10.1016/j.ejor.2005.12.009
10.1126/science.220.4598.671
10.1109/TSMC.2017.2788879
10.1016/j.ijpe.2016.01.016
10.1109/CVPR.2016.90
10.1007/978-3-030-26969-2_4
10.1007/978-3-319-19324-3_35
10.1007/978-981-15-3242-9_14
ContentType Journal Article
Copyright The Author(s) 2020
The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2020
– notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ADTOC
UNPAY
DOI 10.1007/s40747-020-00205-9
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection (Proquest)
Advanced Technologies & Aerospace Collection
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database (Proquest)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature Open Access Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 2198-6053
EndPage 1183
ExternalDocumentID 10.1007/s40747-020-00205-9
10_1007_s40747_020_00205_9
GrantInformation_xml – fundername: Key Technologies Research and Development Program (CN)
  grantid: No. 2019YFB1704600
– fundername: National Natural Science Foundation of China
  grantid: No. 51775216
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: Program for HUST Academic Frontier Youth Team
  grantid: No. 2017QYTD04
GroupedDBID 0R~
8FE
8FG
AAJSJ
AAKKN
ABEEZ
ABFTD
ACACY
ACGFS
ACULB
ADINQ
ADMLS
AFGXO
AFKRA
AHBYD
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
ARAPS
ASPBG
AVWKF
BAPOH
BENPR
BGLVJ
C24
C6C
CCPQU
EBLON
EBS
EJD
GROUPED_DOAJ
HCIFZ
IAO
ISR
ITC
M~E
OK1
P62
PIMPY
PROAC
RSV
SOJ
AASML
AAYXX
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
UNPAY
ID FETCH-LOGICAL-c436t-217f537047cc46b5e3b4466be0aed6fc12853eaf6387e7bb4921289af1ebbf803
IEDL.DBID C6C
ISSN 2199-4536
2198-6053
IngestDate Tue Aug 19 23:20:22 EDT 2025
Wed Oct 08 14:21:39 EDT 2025
Wed Oct 01 04:22:14 EDT 2025
Thu Apr 24 23:10:30 EDT 2025
Fri Feb 21 02:49:22 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Residual networks
Improved simulated annealing algorithm
Permutation flow shop scheduling
TA benchmark
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c436t-217f537047cc46b5e3b4466be0aed6fc12853eaf6387e7bb4921289af1ebbf803
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://doi.org/10.1007/s40747-020-00205-9
PQID 2532424931
PQPubID 2044308
PageCount 11
ParticipantIDs unpaywall_primary_10_1007_s40747_020_00205_9
proquest_journals_2532424931
crossref_primary_10_1007_s40747_020_00205_9
crossref_citationtrail_10_1007_s40747_020_00205_9
springer_journals_10_1007_s40747_020_00205_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210600
2021-06-00
20210601
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 6
  year: 2021
  text: 20210600
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Heidelberg
PublicationTitle Complex & intelligent systems
PublicationTitleAbbrev Complex Intell. Syst
PublicationYear 2021
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References Yin, Li, Gao, Lu, Zhang (CR36) 2017; 13
Yuan (CR38) 2019; 16
Rahman, Sarker, Essam (CR20) 2017; 57
Suresh, Anima (CR25) 2016; 2
Davendra, Bialic-Davendra (CR3) 2013; 51
Kirkpatrick, Gelatt, Vecchi (CR10) 1983; 220
CR19
Valeryi, Stanislav, Liudmyla (CR26) 2020; 48
Chen, Chang, Cheng, Zhang (CR2) 2012; 39
Johnson (CR9) 1954; 1
Zheng, Wang (CR39) 2018; 48
CR14
Zhong (CR40) 2017; 56
CR33
CR31
Li, Yin (CR12) 2013; 55
Gao, Huang, Sadollah, Wang (CR5) 2020; 6
Wu, Wang (CR32) 2018; 117
Lin, Yuan, Guo (CR15) 2018; 10956
Yenisey, Yagmahan (CR35) 2014; 45
Liu, Cao, Li (CR16) 2020
Wang, Wang (CR30) 2016; 46
Gui, Gao, Li (CR7) 2020
Xie, Zhang, Shao, Lin, Zhu (CR34) 2014; 77
Ding, Song, Gupta, Zhang, Chiong, Wu (CR4) 2015; 30
Liu, Yin, Gu (CR17) 2014; 248
Gomez, Ren, Urtasun, Grosse (CR6) 2017; 30
Wang, Gao, Li, Li, Tasgetiren (CR27) 2020; 57
CR8
Ruiz, Stützle (CR21) 2007; 177
Yoshua, Andrea, Antoine (CR37) 2020
Li, Gao (CR11) 2016; 174
Wang, Wang (CR28) 2020; 50
Liu, Yan, Cheng, Yang, Sun, Xue (CR18) 2020; 119071
Li, Lu, Gao, Xiao, Wen (CR13) 2018; 14
Wang, Wang, Zheng (CR29) 2016; 3
Sayed, Hassanien (CR22) 2018; 4
Shao, Pi (CR23) 2016; 51
Chen, Lee, Hand, Mendes (CR1) 2007; 39
Sun, Wang (CR24) 2020
C Wu (205_CR32) 2018; 117
AN Gomez (205_CR6) 2017; 30
MB Valeryi (205_CR26) 2020; 48
JY Ding (205_CR4) 2015; 30
X Li (205_CR11) 2016; 174
GC Wang (205_CR27) 2020; 57
X Li (205_CR12) 2013; 55
L Wang (205_CR29) 2016; 3
L Lin (205_CR15) 2018; 10956
LJ Yin (205_CR36) 2017; 13
SY Wang (205_CR30) 2016; 46
JJ Wang (205_CR28) 2020; 50
Z Xie (205_CR34) 2014; 77
D Davendra (205_CR3) 2013; 51
Y Liu (205_CR17) 2014; 248
ZL Zhong (205_CR40) 2017; 56
XY Li (205_CR13) 2018; 14
205_CR8
B Yoshua (205_CR37) 2020
H Yuan (205_CR38) 2019; 16
S Kirkpatrick (205_CR10) 1983; 220
MM Yenisey (205_CR35) 2014; 45
XL Zheng (205_CR39) 2018; 48
205_CR31
205_CR33
YH Liu (205_CR16) 2020
S Suresh (205_CR25) 2016; 2
205_CR14
W Shao (205_CR23) 2016; 51
BQ Sun (205_CR24) 2020
SH Chen (205_CR2) 2012; 39
L Gui (205_CR7) 2020
205_CR19
GI Sayed (205_CR22) 2018; 4
R Ruiz (205_CR21) 2007; 177
HF Rahman (205_CR20) 2017; 57
DJ Chen (205_CR1) 2007; 39
ZF Liu (205_CR18) 2020; 119071
K Gao (205_CR5) 2020; 6
SM Johnson (205_CR9) 1954; 1
References_xml – volume: 6
  start-page: 237
  year: 2020
  end-page: 249
  ident: CR5
  article-title: A review of energy-efficient scheduling in intelligent production systems
  publication-title: Comput IntellSyst
– volume: 55
  start-page: 10
  year: 2013
  end-page: 31
  ident: CR12
  article-title: An opposition-based differential evolution algorithm for permutation flow shop scheduling based on diversity measure
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2012.09.003
– volume: 57
  start-page: 345
  issue: 4
  year: 2017
  end-page: 347
  ident: CR20
  article-title: A real-time order acceptance and scheduling approach for permutation flow shop problems
  publication-title: Oper Res
– year: 2020
  ident: CR7
  article-title: Anomalies in special permutation flow shop scheduling problems
  publication-title: Chin J Mech Eng-En
  doi: 10.1186/S10033-020-00462-2
– volume: 119071
  start-page: 1
  year: 2020
  end-page: 17
  ident: CR18
  article-title: The mixed production mode considering continuous and intermittent processing for an energy-efficient hybrid flow shop scheduling
  publication-title: J Clean Prod
– volume: 39
  start-page: 261
  issue: 2
  year: 2007
  end-page: 289
  ident: CR1
  article-title: Parallelizing simulated annealing algorithms based on high-performance computer
  publication-title: J Glob Optim
  doi: 10.1007/s10898-007-9138-0
– ident: CR14
– volume: 48
  start-page: 790
  issue: 5
  year: 2018
  end-page: 800
  ident: CR39
  article-title: A collaborative multiobjective fruit fly optimization algorithm for the resource constrained unrelated parallel machine green scheduling problem
  publication-title: IEEE Trans Syst Man CybernSyst
  doi: 10.1109/TSMC.2016.2616347
– year: 2020
  ident: CR24
  article-title: An estimation of distribution algorithm with branch-and-bound based knowledge for robotic assembly line balancing
  publication-title: Comput IntellSyst
  doi: 10.1007/s40747-020-00166-z
– volume: 14
  start-page: 5400
  issue: 12
  year: 2018
  end-page: 5409
  ident: CR13
  article-title: An effective multi-objective algorithm for energy efficient scheduling in a real-life welding shop
  publication-title: IEEE Trans Ind Inform
  doi: 10.1109/TII.2018.2843441
– year: 2020
  ident: CR16
  article-title: Improving ant colony optimization algorithm with epsilon greedy and Levy flight
  publication-title: Comput IntellSyst
  doi: 10.1007/s40747-020-00138-3
– volume: 57
  start-page: 100716
  year: 2020
  ident: CR27
  article-title: Energy-efficient distributed permutation flow shop scheduling problem using a multi-objective whale swarm algorithm
  publication-title: Swarm Evol Comput
  doi: 10.1016/j.swevo.2020.100716
– volume: 77
  start-page: 35
  year: 2014
  end-page: 47
  ident: CR34
  article-title: An effective hybrid teaching–learning-based optimization algorithm for permutation flow shop scheduling problem
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2014.07.006
– ident: CR33
– volume: 39
  start-page: 1450
  issue: 7
  year: 2012
  end-page: 1457
  ident: CR2
  article-title: A self-guided genetic algorithm for permutation flowshop scheduling problems
  publication-title: Comput Oper Res
  doi: 10.1016/j.cor.2011.08.016
– ident: CR8
– volume: 30
  start-page: 2214
  year: 2017
  end-page: 2224
  ident: CR6
  article-title: The reversible residual network: backpropagation without storing activations
  publication-title: Adv Neural Inf Process Syst
– year: 2020
  ident: CR37
  article-title: Machine learning for combinatorial optimization: a methodological Tour d’Horizon
  publication-title: Eur J Oper Res
  doi: 10.1016/j.ejor.2020.07.063
– volume: 56
  start-page: 847
  issue: 2
  year: 2017
  end-page: 858
  ident: CR40
  article-title: Spectral–spatial residual network for hyperspectral image classification: a 3-D deep learning framework
  publication-title: IEEE Trans Geosci Remote Sens
  doi: 10.1109/TGRS.2017.2755542
– volume: 51
  start-page: 2200
  issue: 8
  year: 2013
  end-page: 2218
  ident: CR3
  article-title: Scheduling flow shops with blocking using a discrete self-organising migrating algorithm
  publication-title: Int J Prod Res
  doi: 10.1080/00207543.2012.711968
– volume: 46
  start-page: 139
  issue: 1
  year: 2016
  end-page: 149
  ident: CR30
  article-title: An estimation of distribution algorithm-based memetic algorithm for the distributed assembly permutation flow-shop scheduling problem
  publication-title: IEEE Trans Syst Man CybernSyst
  doi: 10.1109/TSMC.2015.2416127
– volume: 1
  start-page: 61
  issue: 1
  year: 1954
  end-page: 68
  ident: CR9
  article-title: Optimal two- and three-stage production schedules with setup times included
  publication-title: Nav Res Logist Q
  doi: 10.1002/nav.3800010110
– volume: 3
  start-page: 235
  issue: 3
  year: 2016
  end-page: 246
  ident: CR29
  article-title: A hybrid estimation of distribution algorithm for unrelated parallel machine scheduling with sequence-dependent setup times
  publication-title: IEEE/CAA J AutomSinica
  doi: 10.1109/JAS.2016.7508797
– ident: CR19
– volume: 4
  start-page: 195
  year: 2018
  end-page: 212
  ident: CR22
  article-title: A hybrid SA-MFO algorithm for function optimization and engineering design problems
  publication-title: Comput IntellSyst
– volume: 51
  start-page: 161
  year: 2016
  end-page: 176
  ident: CR23
  article-title: A self-guided differential evolution with neighborhood search for permutation flow shop scheduling
  publication-title: Expert SystAppl
  doi: 10.1016/j.eswa.2015.12.001
– volume: 117
  start-page: 63
  year: 2018
  end-page: 72
  ident: CR32
  article-title: A multi-model estimation of distribution algorithm for energy efficient scheduling under cloud computing system
  publication-title: J Parallel Distr Com
  doi: 10.1016/j.jpdc.2018.02.009
– volume: 30
  start-page: 604
  year: 2015
  end-page: 613
  ident: CR4
  article-title: An improved iterated greedy algorithm with a Tabu-based reconstruction strategy for the no-wait flowshop scheduling problem
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2015.02.006
– volume: 10956
  start-page: 212
  year: 2018
  end-page: 222
  ident: CR15
  article-title: Optimization method of residual networks of residual networks for image classification
  publication-title: Int Conf Int Comput
– volume: 248
  start-page: 143
  year: 2014
  end-page: 159
  ident: CR17
  article-title: An effective differential evolution algorithm for permutation flow shop scheduling problem
  publication-title: Appl Math Comput
  doi: 10.1016/j.amc.2014.09.010
– volume: 177
  start-page: 2033
  issue: 3
  year: 2007
  end-page: 2049
  ident: CR21
  article-title: A simple and effective iterated greedy algorithm for the permutation flowshop scheduling problem
  publication-title: Eur J Oper Res
  doi: 10.1016/j.ejor.2005.12.009
– ident: CR31
– volume: 220
  start-page: 671
  issue: 4598
  year: 1983
  end-page: 680
  ident: CR10
  article-title: Optimization by simulated annealing
  publication-title: Science
  doi: 10.1126/science.220.4598.671
– volume: 50
  start-page: 1805
  issue: 5
  year: 2020
  end-page: 1819
  ident: CR28
  article-title: A knowledge-based cooperative algorithm for energy-efficient scheduling of distributed flow-shop
  publication-title: IEEE Trans Syst Man CybernSyst
  doi: 10.1109/TSMC.2017.2788879
– volume: 48
  start-page: 339
  year: 2020
  end-page: 369
  ident: CR26
  article-title: Galois field augmentation model for training of artificial neural network in dentistry data-Ce
  publication-title: Bus Appl
– volume: 174
  start-page: 93
  year: 2016
  end-page: 110
  ident: CR11
  article-title: An effective hybrid genetic algorithm and tabu search for flexible job shop scheduling problem
  publication-title: Int J Prod Econ
  doi: 10.1016/j.ijpe.2016.01.016
– volume: 45
  start-page: 119
  year: 2014
  end-page: 135
  ident: CR35
  article-title: Multi-objective permutation flow shop scheduling problem: literature review, classification and current trends
  publication-title: Comput Hum Behav
– volume: 2
  start-page: 173
  year: 2016
  end-page: 203
  ident: CR25
  article-title: Social group optimization (SGO): a new population evolutionary optimization technique
  publication-title: Comput IntellSyst
– volume: 13
  start-page: 15
  year: 2017
  end-page: 30
  ident: CR36
  article-title: A novel mathematical model and multi-objective method for the low-carbon flexible job shop scheduling problem, considering productivity, energy efficiency and noise reduction
  publication-title: Sustain Comput Inf
– volume: 16
  start-page: 1686
  issue: 4
  year: 2019
  end-page: 1697
  ident: CR38
  article-title: Spatiotemporal task scheduling for heterogeneous delay-tolerant applications in distributed green data centers
  publication-title: IEEE/CAA J Autom Sin
– volume: 1
  start-page: 61
  issue: 1
  year: 1954
  ident: 205_CR9
  publication-title: Nav Res Logist Q
  doi: 10.1002/nav.3800010110
– volume: 3
  start-page: 235
  issue: 3
  year: 2016
  ident: 205_CR29
  publication-title: IEEE/CAA J AutomSinica
  doi: 10.1109/JAS.2016.7508797
– ident: 205_CR8
  doi: 10.1109/CVPR.2016.90
– year: 2020
  ident: 205_CR16
  publication-title: Comput IntellSyst
  doi: 10.1007/s40747-020-00138-3
– volume: 30
  start-page: 2214
  year: 2017
  ident: 205_CR6
  publication-title: Adv Neural Inf Process Syst
– volume: 119071
  start-page: 1
  year: 2020
  ident: 205_CR18
  publication-title: J Clean Prod
– volume: 14
  start-page: 5400
  issue: 12
  year: 2018
  ident: 205_CR13
  publication-title: IEEE Trans Ind Inform
  doi: 10.1109/TII.2018.2843441
– volume: 45
  start-page: 119
  year: 2014
  ident: 205_CR35
  publication-title: Comput Hum Behav
– volume: 13
  start-page: 15
  year: 2017
  ident: 205_CR36
  publication-title: Sustain Comput Inf
– volume: 39
  start-page: 261
  issue: 2
  year: 2007
  ident: 205_CR1
  publication-title: J Glob Optim
  doi: 10.1007/s10898-007-9138-0
– volume: 55
  start-page: 10
  year: 2013
  ident: 205_CR12
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2012.09.003
– year: 2020
  ident: 205_CR7
  publication-title: Chin J Mech Eng-En
  doi: 10.1186/S10033-020-00462-2
– volume: 30
  start-page: 604
  year: 2015
  ident: 205_CR4
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2015.02.006
– year: 2020
  ident: 205_CR24
  publication-title: Comput IntellSyst
  doi: 10.1007/s40747-020-00166-z
– volume: 16
  start-page: 1686
  issue: 4
  year: 2019
  ident: 205_CR38
  publication-title: IEEE/CAA J Autom Sin
– volume: 4
  start-page: 195
  year: 2018
  ident: 205_CR22
  publication-title: Comput IntellSyst
– volume: 50
  start-page: 1805
  issue: 5
  year: 2020
  ident: 205_CR28
  publication-title: IEEE Trans Syst Man CybernSyst
  doi: 10.1109/TSMC.2017.2788879
– volume: 6
  start-page: 237
  year: 2020
  ident: 205_CR5
  publication-title: Comput IntellSyst
– volume: 177
  start-page: 2033
  issue: 3
  year: 2007
  ident: 205_CR21
  publication-title: Eur J Oper Res
  doi: 10.1016/j.ejor.2005.12.009
– volume: 48
  start-page: 790
  issue: 5
  year: 2018
  ident: 205_CR39
  publication-title: IEEE Trans Syst Man CybernSyst
  doi: 10.1109/TSMC.2016.2616347
– ident: 205_CR31
  doi: 10.1007/978-3-030-26969-2_4
– ident: 205_CR33
  doi: 10.1007/978-3-319-19324-3_35
– volume: 51
  start-page: 2200
  issue: 8
  year: 2013
  ident: 205_CR3
  publication-title: Int J Prod Res
  doi: 10.1080/00207543.2012.711968
– volume: 10956
  start-page: 212
  year: 2018
  ident: 205_CR15
  publication-title: Int Conf Int Comput
– volume: 220
  start-page: 671
  issue: 4598
  year: 1983
  ident: 205_CR10
  publication-title: Science
  doi: 10.1126/science.220.4598.671
– volume: 2
  start-page: 173
  year: 2016
  ident: 205_CR25
  publication-title: Comput IntellSyst
– volume: 39
  start-page: 1450
  issue: 7
  year: 2012
  ident: 205_CR2
  publication-title: Comput Oper Res
  doi: 10.1016/j.cor.2011.08.016
– year: 2020
  ident: 205_CR37
  publication-title: Eur J Oper Res
  doi: 10.1016/j.ejor.2020.07.063
– volume: 48
  start-page: 339
  year: 2020
  ident: 205_CR26
  publication-title: Bus Appl
– volume: 57
  start-page: 100716
  year: 2020
  ident: 205_CR27
  publication-title: Swarm Evol Comput
  doi: 10.1016/j.swevo.2020.100716
– ident: 205_CR19
  doi: 10.1007/978-981-15-3242-9_14
– volume: 57
  start-page: 345
  issue: 4
  year: 2017
  ident: 205_CR20
  publication-title: Oper Res
– volume: 77
  start-page: 35
  year: 2014
  ident: 205_CR34
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2014.07.006
– volume: 56
  start-page: 847
  issue: 2
  year: 2017
  ident: 205_CR40
  publication-title: IEEE Trans Geosci Remote Sens
  doi: 10.1109/TGRS.2017.2755542
– volume: 174
  start-page: 93
  year: 2016
  ident: 205_CR11
  publication-title: Int J Prod Econ
  doi: 10.1016/j.ijpe.2016.01.016
– volume: 117
  start-page: 63
  year: 2018
  ident: 205_CR32
  publication-title: J Parallel Distr Com
  doi: 10.1016/j.jpdc.2018.02.009
– volume: 51
  start-page: 161
  year: 2016
  ident: 205_CR23
  publication-title: Expert SystAppl
  doi: 10.1016/j.eswa.2015.12.001
– volume: 46
  start-page: 139
  issue: 1
  year: 2016
  ident: 205_CR30
  publication-title: IEEE Trans Syst Man CybernSyst
  doi: 10.1109/TSMC.2015.2416127
– ident: 205_CR14
– volume: 248
  start-page: 143
  year: 2014
  ident: 205_CR17
  publication-title: Appl Math Comput
  doi: 10.1016/j.amc.2014.09.010
SSID ssj0001778302
ssib044733412
ssib045327741
Score 2.3539672
Snippet The permutation flow shop scheduling problem (PFSP), which is one of the most important scheduling types, is widespread in the modern industries. With the...
SourceID unpaywall
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1173
SubjectTerms Algorithms
Attenuation
Benchmarks
Complexity
Computational Intelligence
Data Structures and Information Theory
Design parameters
Engineering
Feature extraction
Job shop scheduling
Job shops
Original Article
Parameter modification
Permutations
Scheduling
Simulated annealing
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS9xAEB_s-dD6INoqnl_sQ990aZLdZG8fRGxRRPAoUsG3sJtsvIOYpL07pP99Z_aSXH05fAsk2YWZ2fnNx84MwFcdWIPKMeRxIi06KE5zi44QD3JhbIEIYSVVI9-Pk9tHefcUP23AuKuFoWuVnU70ijqvM4qRf4tign6pRXjZ_OY0NYqyq90IDdOOVsgvfIuxD7AZUWesAWx-vx7_fOgkTEolhFwBusRFVTd7xkdllKKGWDSRLtSaS5_bPOzr7SS1m-fkcZGZFXP9Fs1WJmqfVd2Cj4uqMX9fTVn-B1w3O7DdWpzsaikiu7Dhqs-wdd-3a519gclVxaY-uuByNpu-0EgvfDKogw2VqzNTPiMt5pMXRqiXs7pi6Kb7Oi5WLS-SM7R-WYN6frFM7rOirF_ZbFI3DB1oBDRaaA8eb65__bjl7QgGnkmRzDk6LEUsVCBVlsnExk5YSgBbFxiXJ0WG6BYLZwo8xcopa6VGuo-0KUJnkdWB2IdBVVfuAFgRCZ2FJgoKKv6NR9ZYZJGRoygfqSjJhxB2pEyztj85jcko076zsid_ipRPPflTPYSz_p9m2Z1j7dfHHYfS9qTO0pVcDeG849rq9brVznvOvmPzw_WbH8GniG7L-PjOMQzmfxbuBM2duT1tZfgfHbL15Q
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS-QwFH-442HxsLpf7IhKDt40Y9sk7eQ4-IEIyh4ccE8laZOdYTttcTqI_vW-9MtdQVnxVkiakuQlv9_r-wLYl55WeDn6VIRco4JiJNWoCFEvZUpbRAjNXTTy5VV4PuUXN-JmDU66WJja270zSTYxDS5LU14dlak96gPfuMv7Tp3q4_iOoHKEzR9gPRTIyAewPr36Ofnl6sqhTk2RsbPmWVJeWyu3Xx7oX3x6Ip29nXQDPq7yUt3fqSz7C4rONsF0k2g8UP6MVpUeJQ_P8ju-d5Zb8KnlqmTSCNdnWDP5F9i47BO9Lr_CbJKTef1fwqRkOV-4YmD4pPD2Vi7Qnajsd3E7r2YL4vAyJUVOUMGvI8BI3rigE-TNpESEWDVuAcRmxR1ZzoqSoOqNUOgG-gbTs9Pr43PaFm-gCWdhRVHVsYJFHo-ShIdaGKad6VgbT5k0tAniomBGWTz_kYm05hJBdCyV9Y1GIfHYdxjkRW5-ALEBk4mvAs-6sGEx1kr7ga_4OEjHURCmQ_C7LYuTNrO5K7CRxX1O5nolY1zEuF7JWA7hoH-nbPJ6vNp7p5OEuD3jyzgQjoxyyfwhHHab-dT82miHvQT9x8e339Z9BwbV7crsIleq9F57FB4BpKYK_g
  priority: 102
  providerName: Unpaywall
Title An improved simulated annealing algorithm based on residual network for permutation flow shop scheduling
URI https://link.springer.com/article/10.1007/s40747-020-00205-9
https://www.proquest.com/docview/2532424931
https://link.springer.com/content/pdf/10.1007/s40747-020-00205-9.pdf
UnpaywallVersion publishedVersion
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2198-6053
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001778302
  issn: 2198-6053
  databaseCode: DOA
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2198-6053
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001778302
  issn: 2198-6053
  databaseCode: ADMLS
  dateStart: 20151201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2198-6053
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssib044733412
  issn: 2199-4536
  databaseCode: M~E
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2198-6053
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001778302
  issn: 2198-6053
  databaseCode: BENPR
  dateStart: 20151201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2198-6053
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001778302
  issn: 2198-6053
  databaseCode: 8FG
  dateStart: 20180601
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer Nature HAS Fully OA
  customDbUrl:
  eissn: 2198-6053
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001778302
  issn: 2198-6053
  databaseCode: AAJSJ
  dateStart: 20151201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature Open Access Journals
  customDbUrl:
  eissn: 2198-6053
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001778302
  issn: 2198-6053
  databaseCode: C6C
  dateStart: 20151201
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerOpen
  customDbUrl:
  eissn: 2198-6053
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001778302
  issn: 2198-6053
  databaseCode: C24
  dateStart: 20151201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwEB4tcFg4IBYWUR6VD3sDa5PYefgYKgqqRIUWKsEpshNnWykkFWmF-PeM3TQ8JBCc8nAykTK2v3l4PgP8EY6SODm61A-4QgdFC6rQEaJOxqTKESEUN9XIl8PgYsQHt_5tQ5NjamHe5e__1twwvFPj5BjLxqdiBdYQpAKbmA16y77DecgYb6DaxlfC0FBbmb3lXCEot1nK_Y_FvsWlF2OzzY9uwM95OZVPj7IoXkFQfws2G9uRxAtl_4IfutyGjVeMgnh12dKw1jswjksysVEDnZF6cm-26sIziXOrNGXoRBb_q4fJbHxPDJplpCoJut-2PouUiwXiBK1aMsX5e75I2pO8qB5JPa6mBB1jBCoj6DeM-mc3vQvabK1AU86CGUVHJPdZ6PAwTXmgfM2USewq7UidBXmKqOUzLXMcnaEOleICIS4SMne1QhU6bBdWy6rUe0Byj4nUlZ6Tm6JeP1JSuZ4reeRlUegFWQfc5Y9N0oZ33Gx_USQtY7JVRoJ6SKwyEtGB4_ad6YJ149OnD5f6SpoRWCeeb0xFLpjbgZOlDl-aP5N20ur5Cx_f_570A1j3zKoYG8c5hNXZw1wfoVkzU11YifrnXViL48H1AI-nZ8Orf3i35_Gu7etdGzDAltHwKr57Bpgq8Jk
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V9lB6QDzVLQV8gBO1SGInXh8qVKDVlnZXCLVSb8FOHLZSmoRmV6v-OX4bM9kkC5cVl94iJbGVmck8PfMBvNWeNagcfR5G0mKA4jS3GAhxLxXGZmghrKRu5PEkGl3Kr1fh1Qb87nph6FhlpxMbRZ2WCeXIPwQhmX6phf-x-sUJNYqqqx2EhmmhFdLDZsRY29hx5u4WGMLVh6dfkN_vguDk-OLziLcoAzyRIppx9MmzUChPqiSRkQ2dsFTjtM4zLo2yBBV4KJzJUFCVU9ZKjdp-qE3mO4tf4wlc9wFsSSE1Bn9bn44n3753Ei2lEkKuHAiJH6E6rJsmC6QUDeAiBDxfay6bWupe398nabw9pwiP3LqQ63-t58ol7qu4O7A9LypztzB5_pehPHkMj1oPlx0tRfIJbLjiKeyM-_Gw9TOYHhXsuslmuJTV1zcEIYZXBnW-ofZ4ZvKfSPvZ9IaRlU1ZWbBbVzd9Y6xYHlxn6G2zCu3KfHmYgGV5uWD1tKwYBuxoQGmh53B5L8x4AZtFWbhdYFkgdOKbwMuo2TgcWmP9wDdyGKRDFUTpAPyOlHHSzkMnWI487ic5N-SPkfJxQ_5YD-B9_061nAay9un9jkNxqxnqeCXHAzjouLa6vW61g56z_7H53vrN38D26GJ8Hp-fTs5ewsOATuo0uaV92Jzdzt0rdLVm9nUrzwx-3Pcv9AcVfzMa
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb5wwEB61qdQ2h6pPdfNofeitsQLYwPoYbbNKH4l6aKTckA12diUCKMsq6r_PjHlke2iU3EDAIPEZfzMezzcAX1RgNE6OIY8TaTBAsYobDIR4UAhtHDKEkVSNfHqWnJzLHxfxxUYVv9_tPqQku5oGUmmq2sOmcIdj4Zsk3XdOoQ_5OzFXT-GZRHajHgazZDaMKClTIWRP4H7VJU1J8Io6zoVKcelzlzv_N_svW925oGPWdBterKtG_73RZblBTPPX8Kr3KNlRNwTewBNbvYXtDZ1BPDsdxVlX72BxVLGlX0uwBVstr6iBFx5pnHE1FaczXV7W18t2ccWI4wpWVwyDcl-1xapu2zhDX5c1OKuvu1Q-c2V9w1aLumEYLiN9kaH3cD4__jM74X3DBZ5LkbQcwxMXizSQaZ7LxMRWGEr3GhtoWyQuRy6LhdUO_9nUpsZIhcQ3VdqF1iCwgfgAW1Vd2Y_AXCRUHuoocFTqG0-NNmEUajmNimkaJcUEwuHDZnmvRk5NMcps1FH2YGSIQ-bByNQEvo7PNJ0Wx7137w14Zf1_ucqimBxIqUQ4gYMBw7vL91k7GHF-wMt3Hmf9Mzz__W2e_fp-9nMXXka0bcYv9OzBVnu9tvvo97Tmkx_at-jZ9FQ
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS-QwFH-442HxsLpf7IhKDt40Y9sk7eQ4-IEIyh4ccE8laZOdYTttcTqI_vW-9MtdQVnxVkiakuQlv9_r-wLYl55WeDn6VIRco4JiJNWoCFEvZUpbRAjNXTTy5VV4PuUXN-JmDU66WJja270zSTYxDS5LU14dlak96gPfuMv7Tp3q4_iOoHKEzR9gPRTIyAewPr36Ofnl6sqhTk2RsbPmWVJeWyu3Xx7oX3x6Ip29nXQDPq7yUt3fqSz7C4rONsF0k2g8UP6MVpUeJQ_P8ju-d5Zb8KnlqmTSCNdnWDP5F9i47BO9Lr_CbJKTef1fwqRkOV-4YmD4pPD2Vi7Qnajsd3E7r2YL4vAyJUVOUMGvI8BI3rigE-TNpESEWDVuAcRmxR1ZzoqSoOqNUOgG-gbTs9Pr43PaFm-gCWdhRVHVsYJFHo-ShIdaGKad6VgbT5k0tAniomBGWTz_kYm05hJBdCyV9Y1GIfHYdxjkRW5-ALEBk4mvAs-6sGEx1kr7ga_4OEjHURCmQ_C7LYuTNrO5K7CRxX1O5nolY1zEuF7JWA7hoH-nbPJ6vNp7p5OEuD3jyzgQjoxyyfwhHHab-dT82miHvQT9x8e339Z9BwbV7crsIleq9F57FB4BpKYK_g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+improved+simulated+annealing+algorithm+based+on+residual+network+for+permutation+flow+shop+scheduling&rft.jtitle=Complex+%26+intelligent+systems&rft.au=Li%2C+Yang&rft.au=Wang%2C+Cuiyu&rft.au=Gao%2C+Liang&rft.au=Song%2C+Yiguo&rft.date=2021-06-01&rft.pub=Springer+International+Publishing&rft.issn=2199-4536&rft.eissn=2198-6053&rft.volume=7&rft.issue=3&rft.spage=1173&rft.epage=1183&rft_id=info:doi/10.1007%2Fs40747-020-00205-9&rft.externalDocID=10_1007_s40747_020_00205_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2199-4536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2199-4536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2199-4536&client=summon