Statistical Modeling of Craniofacial Shape and Texture

We present a fully-automatic statistical 3D shape modeling approach and apply it to a large dataset of 3D images, the Headspace dataset , thus generating the first public shape-and-texture 3D morphable model (3DMM) of the full human head. Our approach is the first to employ a template that adapts to...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of computer vision Vol. 128; no. 2; pp. 547 - 571
Main Authors Dai, Hang, Pears, Nick, Smith, William, Duncan, Christian
Format Journal Article
LanguageEnglish
Published New York Springer US 01.02.2020
Springer
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0920-5691
1573-1405
1573-1405
DOI10.1007/s11263-019-01260-7

Cover

Abstract We present a fully-automatic statistical 3D shape modeling approach and apply it to a large dataset of 3D images, the Headspace dataset , thus generating the first public shape-and-texture 3D morphable model (3DMM) of the full human head. Our approach is the first to employ a template that adapts to the dataset subject before dense morphing. This is fully automatic and achieved using 2D facial landmarking, projection to 3D shape, and mesh editing. In dense template morphing, we improve on the well-known Coherent Point Drift algorithm, by incorporating iterative data-sampling and alignment. Our evaluations demonstrate that our method has better performance in correspondence accuracy and modeling ability when compared with other competing algorithms. We propose a texture map refinement scheme to build high quality texture maps and texture model. We present several applications that include the first clinical use of craniofacial 3DMMs in the assessment of different types of surgical intervention applied to a craniosynostosis patient group.
AbstractList We present a fully-automatic statistical 3D shape modeling approach and apply it to a large dataset of 3D images, the Headspace dataset, thus generating the first public shape-and-texture 3D morphable model (3DMM) of the full human head. Our approach is the first to employ a template that adapts to the dataset subject before dense morphing. This is fully automatic and achieved using 2D facial landmarking, projection to 3D shape, and mesh editing. In dense template morphing, we improve on the well-known Coherent Point Drift algorithm, by incorporating iterative data-sampling and alignment. Our evaluations demonstrate that our method has better performance in correspondence accuracy and modeling ability when compared with other competing algorithms. We propose a texture map refinement scheme to build high quality texture maps and texture model. We present several applications that include the first clinical use of craniofacial 3DMMs in the assessment of different types of surgical intervention applied to a craniosynostosis patient group.
We present a fully-automatic statistical 3D shape modeling approach and apply it to a large dataset of 3D images, the Headspace dataset , thus generating the first public shape-and-texture 3D morphable model (3DMM) of the full human head. Our approach is the first to employ a template that adapts to the dataset subject before dense morphing. This is fully automatic and achieved using 2D facial landmarking, projection to 3D shape, and mesh editing. In dense template morphing, we improve on the well-known Coherent Point Drift algorithm, by incorporating iterative data-sampling and alignment. Our evaluations demonstrate that our method has better performance in correspondence accuracy and modeling ability when compared with other competing algorithms. We propose a texture map refinement scheme to build high quality texture maps and texture model. We present several applications that include the first clinical use of craniofacial 3DMMs in the assessment of different types of surgical intervention applied to a craniosynostosis patient group.
Audience Academic
Author Smith, William
Dai, Hang
Pears, Nick
Duncan, Christian
Author_xml – sequence: 1
  givenname: Hang
  surname: Dai
  fullname: Dai, Hang
  organization: Department of Computer Science, University of York, Inception Institute of AI
– sequence: 2
  givenname: Nick
  orcidid: 0000-0001-9513-5634
  surname: Pears
  fullname: Pears, Nick
  email: nick.pears@york.ac.uk
  organization: Department of Computer Science, University of York
– sequence: 3
  givenname: William
  surname: Smith
  fullname: Smith, William
  organization: Department of Computer Science, University of York
– sequence: 4
  givenname: Christian
  surname: Duncan
  fullname: Duncan, Christian
  organization: Alder Hey Hospital
BookMark eNqNkEtLxDAYRYMoOD7-gKuCKxfVvNssZfAxoAjOuA5p5ssYqemYtKj_3owVRBciIQSSe8J37h7aDl0AhI4IPiUYV2eJECpZiYnKm0pcVltoQkTFSsKx2EYTrCguhVRkF-2l9IQxpjVlEyTnvel96r01bXHbLaH1YVV0rphGE3znjPX5Yf5o1lCYsCwW8NYPEQ7QjjNtgsOvcx89XF4sptflzd3VbHp-U1rOZF8Si7EkgjdiiWvFKFVNY6AWjZQUQGHGOUheOcGZM5RzSxpgHETtuJKEE7aP2PjvENbm_dW0rV5H_2ziuyZYb9T1qK6zuv5U11WmjkdqHbuXAVKvn7ohhjyopkxQpqpaqZw6HVMr04L2wXV9NDavJTx7m_t1Pt-fb-YQlEuWgZMfQM70uY6VGVLSs_n9z2w9Zm3sUorgtPWbpjMSjW__np7-Qv-l_FVUyuGwgvit_Af1Aa2LpvU
CitedBy_id crossref_primary_10_3390_diagnostics12071516
crossref_primary_10_4103_jpn_JPN_48_22
crossref_primary_10_1016_j_cviu_2024_104227
crossref_primary_10_1016_j_culher_2021_09_004
crossref_primary_10_1007_s11263_022_01730_5
crossref_primary_10_1016_j_cad_2023_103483
crossref_primary_10_1016_j_compbiomed_2025_109652
crossref_primary_10_1016_j_imavis_2021_104119
crossref_primary_10_1109_ACCESS_2021_3129507
crossref_primary_10_1111_cgf_14793
crossref_primary_10_1016_j_cosrev_2021_100400
crossref_primary_10_1016_j_asoc_2024_112260
crossref_primary_10_3389_fmedt_2023_1254690
crossref_primary_10_1016_j_cmpb_2022_106893
crossref_primary_10_1109_TVCG_2023_3284500
crossref_primary_10_3390_ani13030385
crossref_primary_10_1007_s00371_022_02431_3
crossref_primary_10_1016_j_cag_2023_11_007
crossref_primary_10_1097_SCS_0000000000007379
crossref_primary_10_1097_SCS_0000000000009314
crossref_primary_10_1016_j_eswa_2023_119678
crossref_primary_10_1016_j_jcms_2021_02_020
crossref_primary_10_1002_aisy_202400159
crossref_primary_10_1002_ar_24582
crossref_primary_10_1109_TPAMI_2023_3307338
crossref_primary_10_1109_ACCESS_2024_3396632
crossref_primary_10_1080_10255842_2020_1849156
crossref_primary_10_3390_s24123737
crossref_primary_10_1109_TPAMI_2024_3480151
crossref_primary_10_1016_j_cviu_2022_103384
crossref_primary_10_1016_j_cmpb_2024_108395
crossref_primary_10_1145_3550454_3555475
crossref_primary_10_32604_cmes_2024_056753
crossref_primary_10_1145_3592093
crossref_primary_10_1016_j_jbi_2022_104121
crossref_primary_10_3390_ani13071179
crossref_primary_10_1155_2021_3346136
crossref_primary_10_1111_cgf_14945
crossref_primary_10_1109_TIP_2021_3096081
crossref_primary_10_1038_s41598_024_56956_9
Cites_doi 10.1109/CVPR.2016.598
10.1007/978-3-540-88693-8_48
10.1109/TIP.2003.819861
10.1145/1141911.1141988
10.1109/FG.2018.00067
10.1109/CVPR.2007.383165
10.1109/TPAMI.2017.2739743
10.1109/TVCG.2013.249
10.1109/TPAMI.2003.1227983
10.1007/s11263-017-1009-7
10.1007/s00138-013-0579-9
10.5962/bhl.title.11332
10.1007/978-3-540-45087-0_6
10.1109/3DV.2013.22
10.1145/2788539.2788561
10.1023/B:VISI.0000029664.99615.94
10.1109/34.927467
10.1112/blms/16.2.81
10.1109/AFGR.2008.4813324
10.1109/TPAMI.2010.46
10.1007/s11263-012-0605-9
10.1145/1073204.1073209
10.1145/2010324.1964955
10.1007/978-3-319-60964-5_64
10.1145/2601097.2601182
10.1109/CVPR.2018.00555
10.1109/CVPR.2012.6247759
10.1006/cviu.1995.1004
10.1016/0262-8856(92)90066-C
10.1109/ICCV.2015.411
10.1109/ICCV.2017.335
10.1109/TIP.2010.2092435
10.1109/FG.2018.00023
10.1109/CRV.2011.53
10.1145/311535.311556
10.1109/34.24792
10.1109/ACSSC.2003.1292216
10.1109/FG.2017.79
10.1007/s11263-018-1097-z
10.1109/AVSS.2009.58
10.1145/2890493
10.1016/0262-8856(95)99727-I
ContentType Journal Article
Copyright The Author(s) 2019
COPYRIGHT 2020 Springer
International Journal of Computer Vision is a copyright of Springer, (2019). All Rights Reserved. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2019
– notice: COPYRIGHT 2020 Springer
– notice: International Journal of Computer Vision is a copyright of Springer, (2019). All Rights Reserved. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
ISR
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8FD
8FE
8FG
8FK
8FL
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PYYUZ
Q9U
ADTOC
UNPAY
DOI 10.1007/s11263-019-01260-7
DatabaseName Springer Nature OA Free Journals
CrossRef
Gale In Context: Science
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection (ProQuest)
ProQuest One
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database (ProQuest)
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ABI/INFORM Collection China
ProQuest Central Basic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ABI/INFORM China
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
Business Premium Collection (Alumni)
DatabaseTitleList

CrossRef
ABI/INFORM Global (Corporate)
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISSN 1573-1405
EndPage 571
ExternalDocumentID 10.1007/s11263-019-01260-7
A614152463
10_1007_s11263_019_01260_7
GrantInformation_xml – fundername: Google
  grantid: 2017 Faculty Research Award: Headspace Online
  funderid: http://dx.doi.org/10.13039/100006785
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29J
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
7WY
8FE
8FG
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACIHN
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EAD
EAP
EAS
EBLON
EBS
EDO
EIOEI
EJD
EMK
EPL
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IAO
IHE
IJ-
IKXTQ
ISR
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Y
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
QF4
QM1
QN7
QO4
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TAE
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ICD
PHGZM
PHGZT
PQGLB
PUEGO
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
ADTOC
UNPAY
ID FETCH-LOGICAL-c436t-1c006154b5d0893229bbae85b662ee90344e647f543fa244c1be34e58f4961413
IEDL.DBID BENPR
ISSN 0920-5691
1573-1405
IngestDate Wed Oct 01 16:34:12 EDT 2025
Wed Aug 13 03:28:56 EDT 2025
Mon Oct 20 16:44:04 EDT 2025
Thu Oct 16 14:00:44 EDT 2025
Wed Oct 01 05:08:42 EDT 2025
Thu Apr 24 23:01:47 EDT 2025
Fri Feb 21 02:35:18 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Statistical shape model
3D morphable model
Craniofacial shape
Shape morphing
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c436t-1c006154b5d0893229bbae85b662ee90344e647f543fa244c1be34e58f4961413
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9513-5634
OpenAccessLink https://proxy.k.utb.cz/login?url=https://link.springer.com/content/pdf/10.1007/s11263-019-01260-7.pdf
PQID 2352397899
PQPubID 1456341
PageCount 25
ParticipantIDs unpaywall_primary_10_1007_s11263_019_01260_7
proquest_journals_2352397899
gale_infotracacademiconefile_A614152463
gale_incontextgauss_ISR_A614152463
crossref_citationtrail_10_1007_s11263_019_01260_7
crossref_primary_10_1007_s11263_019_01260_7
springer_journals_10_1007_s11263_019_01260_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200200
2020-02-00
20200201
PublicationDateYYYYMMDD 2020-02-01
PublicationDate_xml – month: 2
  year: 2020
  text: 20200200
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle International journal of computer vision
PublicationTitleAbbrev Int J Comput Vis
PublicationYear 2020
Publisher Springer US
Springer
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer
– name: Springer Nature B.V
References CaoCWengYZhouSTongYZhouKFacewarehouse: A 3D facial expression database for visual computingIEEE Transactions on Visualization and Computer Graphics201420341342510.1109/TVCG.2013.249
Bolkart, T., & Wuhrer, S. (2013). Statistical analysis of 3D faces in motion. In 2013 International conference on 3D vision-3DV 2013 (pp. 103–110). IEEE.
WangZBovikACSheikhHRSimoncelliEPImage quality assessment: From error visibility to structural similarityIEEE Transactions on Image Processing200413460061210.1109/TIP.2003.819861
SalazarAWuhrerSShuCPrietoFFully automatic expression-invariant face correspondenceMachine Vision and Applications201425485987910.1007/s00138-013-0579-9
Van Der MaatenLAccelerating t-SNE using tree-based algorithmsThe Journal of Machine Learning Research20141513221324532771691319.62134
VlasicDBrandMPfisterHPopovićJFace transfer with multilinear modelsACM Transactions on Graphics (TOG)20052442643310.1145/1073204.1073209
Brunton, A., Lang, J., Dubois, E., & Shu, C. (2011). Wavelet model-based stereo for fast, robust face reconstruction. In 2011 Canadian conference on computer and robot vision (CRV) (pp. 347–354).
BassoCVerriAHerderJFitting 3D morphable models using implicit representationsJournal of Virtual Reality and Broadcasting2007418110
Blanz, V., & Vetter, T. (1999). A morphable model for the synthesis of 3D faces. In Proceedings of the 26th annual conference on Computer graphics and interactive techniques (pp. 187–194).
GolovinskiyAMatusikWPfisterHRusinkiewiczSFunkhouserTA statistical model for synthesis of detailed facial geometryACM Transactions on Graphics (TOG)2006251025103410.1145/1141911.1141988
De Smet, M., & Van Gool, L. (2010). Optimal regions for linear model-based 3D face reconstruction. In Asian conference on computer vision (pp. 276–289).
Madsen, D., Lüthi, M., Schneider, A., & Vetter, T. (2018). Probabilistic joint face-skull modelling for facial reconstruction. In Proceedings of CVPR (pp. 5295–5303).
Tran, L., & Liu, X. (2018). Nonlinear 3D face morphable model. arXiv preprint arXiv:1804.03786.
CootesTFTaylorCJCooperDHGrahamJActive shape models-their training and applicationComputer vision and image understanding1995611385910.1006/cviu.1995.1004
BooksteinFLPrincipal warps: Thin-plate splines and the decomposition of deformationsIEEE Transactions on Pattern Analysis and Machine Intelligence198911656758510.1109/34.24792
Zhu, X., & Ramanan, D. (2012). Face detection, pose estimation, and landmark localization in the wild. In Proceedings of CVPR (pp. 2879–2886).
ChenYMedioniGObject modelling by registration of multiple range imagesImage and Vision Computing199210314515510.1016/0262-8856(92)90066-C
Saragih, J. M., Lucey, S., & Cohn, J. F. (2011). Real-time avatar animation from a single image. In IEEE international conference on automatic face and gesture recognition 2011 (pp. 213–220).
MyronenkoASongXPoint set registration: Coherent point driftIEEE Transactions on Pattern Analysis and Machine Intelligence201032122262227510.1109/TPAMI.2010.46
ter Haar, F. B., & Veltkamp, R. C. (2008) 3D face model fitting for recognition. In European conference on computer vision (pp. 652–664).
An, Z., Deng, W., Yuan, T., & Hu, J. (2018). Deep transfer network with 3D morphable models for face recognition. In 2018 13th IEEE international conference on automatic face gesture recognition (pp. 416–422).
CreusotCPearsNEAustinJA machine-learning approach to keypoint detection and landmarking on 3D meshesInternational Journal of Computer Vision2013102114617910.1007/s11263-012-0605-9
WuYJiQFacial landmark detection: A literature surveyInternational Journal of Computer Vision2019127211514210.1007/s11263-018-1097-z
LüthiMGerigTJudCVetterTGaussian process morphable modelsIEEE Transactions on Pattern Analysis and Machine Intelligence2017401860187310.1109/TPAMI.2017.2739743
CootesTFEdwardsGJTaylorCJActive appearance modelsIEEE Transactions on Pattern Analysis & Machine Intelligence2001668168510.1109/34.927467
Thompson, D. W. (1917). On growth and form. Cambridge University Press.
Harrison, C. R., & Robinette, K. M. (2006). Principles of fit to optimize helmet sizing. Technical report, Air Force Research Lab Wright-Patterson.
Bolkart, T., & Wuhrer, S. (2015). A groupwise multilinear correspondence optimization for 3D faces. In Proceedings of the IEEE international conference on computer vision (pp. 3604–3612).
Paysan, P., Knothe, R., Amberg, B., Romdhani, S., & Vetter, T. (2009). A 3D face model for pose and illumination invariant face recognition. In Sixth IEEE international conference on advanced video and signal based surveillance, 2009. AVSS’09 (pp. 296–301).
Gerig, T., Forster, A., Blumer, C., Egger, B., Lüthi, M., Schönborn, S., & Vetter, T. (2017). Morphable face models: An open framework. CoRR arXiv:1709.08398.
Dai, H., Pears, N., Smith, W., & Duncan, C. (2017b). A 3D morphable model of craniofacial shape and texture variation. In 2017 IEEE international conference on computer vision (ICCV) (pp. 3104–3112). IEEE.
CootesTFTaylorCJCombining point distribution models with shape models based on finite element analysisImage and Vision Computing199513540340910.1016/0262-8856(95)99727-I
Duncan, C., Armstrong, R., Pears, N. E., Dai, H., & Smith, W. (2018). The headspace dataset. https://www-users.cs.york.ac.uk/~nep/research/Headspace/. Accessed 5 Nov 2019.
Amberg, B., Romdhani, S., & Vetter, T. (2007). Optimal step nonrigid ICP algorithms for surface registration. In IEEE conference on computer vision and pattern recognition (pp. 1–7).
Zhou, Y., & Zaferiou, S. (2017). Deformable models of ears in-the-wild for alignment and recognition. In 2017 12th IEEE international conference on automatic face and gesture recognition (FG 2017) (pp. 626–633). IEEE.
Besl, P. J., & McKay, N. D. (1992). Method for registration of 3-D shapes. In Sensor fusion IV: Control paradigms and data structures (Vol. 1611, pp. 586–607). International Society for Optics and Photonics.
Dai, H., Pears, N., Smith, W., & Duncan, C. (2018b). Symmetric shape morphing for 3D face and head modelling. In 2018 13th IEEE international conference on automatic face gesture recognition (FG 2018) (pp. 91–97).
Booth, J., Roussos, A., Zafeiriou, S., Ponniah, A., & Dunaway, D. (2016). A 3D morphable model learnt from 10,000 faces. In Proceedings of CVPR (pp. 5543–5552).
BoothJRoussosAPonniahADunawayDZafeiriouSLarge scale 3D morphable modelsInternational Journal of Computer Vision20181262–4233254376661810.1007/s11263-017-1009-7
Yang, F., Bourdev, L., Shechtman, E., Wang, J., & Metaxas, D. (2012). Facial expression editing in video using a temporally-smooth factorization. In 2012 IEEE conference on computer vision and pattern recognition (CVPR) (pp. 861–868). IEEE.
Albrecht, T., Knothe, R., & Vetter, T. (2008). Modeling the remaining flexibility of partially fixed statistical shape models. In 2nd MICCAI workshop on mathematical foundations of computational anatomy (pp. 160–169).
LoweDGDistinctive image features from scale-invariant keypointsInternational Journal of Computer Vision20046029111010.1023/B:VISI.0000029664.99615.94
BlanzVVetterTFace recognition based on fitting a 3D morphable modelIEEE Transactions on Pattern Analysis and Machine Intelligence20032591063107410.1109/TPAMI.2003.1227983
Petr, M., & Ivana, K. (2015). Hairstyles modeling for police identikits. In Proceedings of the 31st Spring conference on computer graphics (pp. 151–158). ACM.
Yin, L., Chen, X., Sun, Y., Worm, T., & Reale, M. (2008). A high-resolution 3D dynamic facial expression database. In 8th IEEE international conference on automatic face and gesture recognition, 2008. FG’08 (pp. 1–6). IEEE.
GarridoPZollhöferMCasasDValgaertsLVaranasiKPérezPTheobaltCReconstruction of personalized 3D face rigs from monocular videoACM Transactions on Graphics201635328:128:1510.1145/2890493
DrydenILMardiaKVStatistical shape analysis1998ChichesterJohn Wiley and Sons0901.62072
WangZLiQInformation content weighting for perceptual image quality assessmentIEEE Transactions on Image Processing201120511851198283867110.1109/TIP.2010.2092435
KendallDGShape manifolds, procrustean metrics, and complex projective spacesBulletin of the London Mathematical Society19841628112173723710.1112/blms/16.2.81
Sorkine, O., & Alexa, M. (2007). As-rigid-as-possible surface modeling. In Proceedings of the fifth Eurographics symposium on geometry processing (pp. 109–116).
Dai, H., Pears, N., & Duncan, C. (2017a). A 2D morphable model of craniofacial profile and its application to craniosynostosis. In Medical image understanding and analysis, communications in computer and information science (Vol. 723).
Styner, M. A., Rajamani, K. T., Nolte, L. P., Zsemlye, G., Székely, G., Taylor, C. J., & Davies, R. H. (2003). Evaluation of 3D correspondence methods for model building. In Information processing in medical imaging (pp. 63–75).
Dai, H., Pears, N., Smith, W., & Duncan, C. (2018a). Symmetric shape morphing for 3D face and head modelling. In 2018 13th IEEE international conference on automatic face and gesture recognition (FG 2018) (pp. 91–97). IEEE.
Wang, Z., Simoncelli, E. P., & Bovik, A. C. (2003). Multiscale structural similarity for image quality assessment. In The thirty-seventh Asilomar conference on signals, systems and computers, 2003 (Vol. 2, pp. 1398–1402). IEEE.
Yang, F., Wang, J., Shechtman, E., Bourdev, L., & Metaxas, D. (2011). Expression flow for 3D-aware face component transfer. In ACM transactions on graphics (TOG) (vol. 30, p. 60).
BeelerTBradleyDRigid stabilization of facial expressionsACM Transactions on Graphics (TOG)20143344410.1145/2601097.2601182
IL Dryden (1260_CR26) 1998
1260_CR9
A Myronenko (1260_CR36) 2010; 32
1260_CR7
A Golovinskiy (1260_CR30) 2006; 25
L Van Der Maaten (1260_CR46) 2014; 15
Z Wang (1260_CR49) 2004; 13
1260_CR6
1260_CR3
1260_CR50
1260_CR14
1260_CR13
1260_CR56
1260_CR55
1260_CR10
1260_CR54
1260_CR53
1260_CR52
Y Wu (1260_CR51) 2019; 127
FL Bookstein (1260_CR11) 1989; 11
D Vlasic (1260_CR47) 2005; 24
1260_CR40
A Salazar (1260_CR39) 2014; 25
V Blanz (1260_CR8) 2003; 25
1260_CR45
1260_CR44
1260_CR43
1260_CR42
C Cao (1260_CR15) 2014; 20
1260_CR41
DG Kendall (1260_CR32) 1984; 16
C Basso (1260_CR4) 2007; 4
M Lüthi (1260_CR34) 2017; 40
TF Cootes (1260_CR19) 1995; 61
TF Cootes (1260_CR18) 1995; 13
1260_CR37
1260_CR35
T Beeler (1260_CR5) 2014; 33
Z Wang (1260_CR48) 2011; 20
1260_CR31
C Creusot (1260_CR20) 2013; 102
1260_CR38
Y Chen (1260_CR16) 1992; 10
TF Cootes (1260_CR17) 2001; 6
P Garrido (1260_CR28) 2016; 35
J Booth (1260_CR12) 2018; 126
1260_CR25
1260_CR24
1260_CR23
1260_CR22
1260_CR21
1260_CR2
DG Lowe (1260_CR33) 2004; 60
1260_CR1
1260_CR29
1260_CR27
References_xml – reference: Booth, J., Roussos, A., Zafeiriou, S., Ponniah, A., & Dunaway, D. (2016). A 3D morphable model learnt from 10,000 faces. In Proceedings of CVPR (pp. 5543–5552).
– reference: Bolkart, T., & Wuhrer, S. (2015). A groupwise multilinear correspondence optimization for 3D faces. In Proceedings of the IEEE international conference on computer vision (pp. 3604–3612).
– reference: MyronenkoASongXPoint set registration: Coherent point driftIEEE Transactions on Pattern Analysis and Machine Intelligence201032122262227510.1109/TPAMI.2010.46
– reference: Yang, F., Wang, J., Shechtman, E., Bourdev, L., & Metaxas, D. (2011). Expression flow for 3D-aware face component transfer. In ACM transactions on graphics (TOG) (vol. 30, p. 60).
– reference: Duncan, C., Armstrong, R., Pears, N. E., Dai, H., & Smith, W. (2018). The headspace dataset. https://www-users.cs.york.ac.uk/~nep/research/Headspace/. Accessed 5 Nov 2019.
– reference: Styner, M. A., Rajamani, K. T., Nolte, L. P., Zsemlye, G., Székely, G., Taylor, C. J., & Davies, R. H. (2003). Evaluation of 3D correspondence methods for model building. In Information processing in medical imaging (pp. 63–75).
– reference: CootesTFEdwardsGJTaylorCJActive appearance modelsIEEE Transactions on Pattern Analysis & Machine Intelligence2001668168510.1109/34.927467
– reference: DrydenILMardiaKVStatistical shape analysis1998ChichesterJohn Wiley and Sons0901.62072
– reference: Thompson, D. W. (1917). On growth and form. Cambridge University Press.
– reference: BoothJRoussosAPonniahADunawayDZafeiriouSLarge scale 3D morphable modelsInternational Journal of Computer Vision20181262–4233254376661810.1007/s11263-017-1009-7
– reference: Dai, H., Pears, N., & Duncan, C. (2017a). A 2D morphable model of craniofacial profile and its application to craniosynostosis. In Medical image understanding and analysis, communications in computer and information science (Vol. 723).
– reference: Dai, H., Pears, N., Smith, W., & Duncan, C. (2018a). Symmetric shape morphing for 3D face and head modelling. In 2018 13th IEEE international conference on automatic face and gesture recognition (FG 2018) (pp. 91–97). IEEE.
– reference: Zhu, X., & Ramanan, D. (2012). Face detection, pose estimation, and landmark localization in the wild. In Proceedings of CVPR (pp. 2879–2886).
– reference: KendallDGShape manifolds, procrustean metrics, and complex projective spacesBulletin of the London Mathematical Society19841628112173723710.1112/blms/16.2.81
– reference: Yin, L., Chen, X., Sun, Y., Worm, T., & Reale, M. (2008). A high-resolution 3D dynamic facial expression database. In 8th IEEE international conference on automatic face and gesture recognition, 2008. FG’08 (pp. 1–6). IEEE.
– reference: Gerig, T., Forster, A., Blumer, C., Egger, B., Lüthi, M., Schönborn, S., & Vetter, T. (2017). Morphable face models: An open framework. CoRR arXiv:1709.08398.
– reference: Van Der MaatenLAccelerating t-SNE using tree-based algorithmsThe Journal of Machine Learning Research20141513221324532771691319.62134
– reference: Saragih, J. M., Lucey, S., & Cohn, J. F. (2011). Real-time avatar animation from a single image. In IEEE international conference on automatic face and gesture recognition 2011 (pp. 213–220).
– reference: BlanzVVetterTFace recognition based on fitting a 3D morphable modelIEEE Transactions on Pattern Analysis and Machine Intelligence20032591063107410.1109/TPAMI.2003.1227983
– reference: LüthiMGerigTJudCVetterTGaussian process morphable modelsIEEE Transactions on Pattern Analysis and Machine Intelligence2017401860187310.1109/TPAMI.2017.2739743
– reference: Madsen, D., Lüthi, M., Schneider, A., & Vetter, T. (2018). Probabilistic joint face-skull modelling for facial reconstruction. In Proceedings of CVPR (pp. 5295–5303).
– reference: An, Z., Deng, W., Yuan, T., & Hu, J. (2018). Deep transfer network with 3D morphable models for face recognition. In 2018 13th IEEE international conference on automatic face gesture recognition (pp. 416–422).
– reference: CaoCWengYZhouSTongYZhouKFacewarehouse: A 3D facial expression database for visual computingIEEE Transactions on Visualization and Computer Graphics201420341342510.1109/TVCG.2013.249
– reference: WangZBovikACSheikhHRSimoncelliEPImage quality assessment: From error visibility to structural similarityIEEE Transactions on Image Processing200413460061210.1109/TIP.2003.819861
– reference: Bolkart, T., & Wuhrer, S. (2013). Statistical analysis of 3D faces in motion. In 2013 International conference on 3D vision-3DV 2013 (pp. 103–110). IEEE.
– reference: Dai, H., Pears, N., Smith, W., & Duncan, C. (2017b). A 3D morphable model of craniofacial shape and texture variation. In 2017 IEEE international conference on computer vision (ICCV) (pp. 3104–3112). IEEE.
– reference: WangZLiQInformation content weighting for perceptual image quality assessmentIEEE Transactions on Image Processing201120511851198283867110.1109/TIP.2010.2092435
– reference: WuYJiQFacial landmark detection: A literature surveyInternational Journal of Computer Vision2019127211514210.1007/s11263-018-1097-z
– reference: Blanz, V., & Vetter, T. (1999). A morphable model for the synthesis of 3D faces. In Proceedings of the 26th annual conference on Computer graphics and interactive techniques (pp. 187–194).
– reference: Dai, H., Pears, N., Smith, W., & Duncan, C. (2018b). Symmetric shape morphing for 3D face and head modelling. In 2018 13th IEEE international conference on automatic face gesture recognition (FG 2018) (pp. 91–97).
– reference: Amberg, B., Romdhani, S., & Vetter, T. (2007). Optimal step nonrigid ICP algorithms for surface registration. In IEEE conference on computer vision and pattern recognition (pp. 1–7).
– reference: Paysan, P., Knothe, R., Amberg, B., Romdhani, S., & Vetter, T. (2009). A 3D face model for pose and illumination invariant face recognition. In Sixth IEEE international conference on advanced video and signal based surveillance, 2009. AVSS’09 (pp. 296–301).
– reference: BassoCVerriAHerderJFitting 3D morphable models using implicit representationsJournal of Virtual Reality and Broadcasting2007418110
– reference: Tran, L., & Liu, X. (2018). Nonlinear 3D face morphable model. arXiv preprint arXiv:1804.03786.
– reference: Zhou, Y., & Zaferiou, S. (2017). Deformable models of ears in-the-wild for alignment and recognition. In 2017 12th IEEE international conference on automatic face and gesture recognition (FG 2017) (pp. 626–633). IEEE.
– reference: GolovinskiyAMatusikWPfisterHRusinkiewiczSFunkhouserTA statistical model for synthesis of detailed facial geometryACM Transactions on Graphics (TOG)2006251025103410.1145/1141911.1141988
– reference: Brunton, A., Lang, J., Dubois, E., & Shu, C. (2011). Wavelet model-based stereo for fast, robust face reconstruction. In 2011 Canadian conference on computer and robot vision (CRV) (pp. 347–354).
– reference: Harrison, C. R., & Robinette, K. M. (2006). Principles of fit to optimize helmet sizing. Technical report, Air Force Research Lab Wright-Patterson.
– reference: CootesTFTaylorCJCooperDHGrahamJActive shape models-their training and applicationComputer vision and image understanding1995611385910.1006/cviu.1995.1004
– reference: SalazarAWuhrerSShuCPrietoFFully automatic expression-invariant face correspondenceMachine Vision and Applications201425485987910.1007/s00138-013-0579-9
– reference: CootesTFTaylorCJCombining point distribution models with shape models based on finite element analysisImage and Vision Computing199513540340910.1016/0262-8856(95)99727-I
– reference: Wang, Z., Simoncelli, E. P., & Bovik, A. C. (2003). Multiscale structural similarity for image quality assessment. In The thirty-seventh Asilomar conference on signals, systems and computers, 2003 (Vol. 2, pp. 1398–1402). IEEE.
– reference: VlasicDBrandMPfisterHPopovićJFace transfer with multilinear modelsACM Transactions on Graphics (TOG)20052442643310.1145/1073204.1073209
– reference: GarridoPZollhöferMCasasDValgaertsLVaranasiKPérezPTheobaltCReconstruction of personalized 3D face rigs from monocular videoACM Transactions on Graphics201635328:128:1510.1145/2890493
– reference: Albrecht, T., Knothe, R., & Vetter, T. (2008). Modeling the remaining flexibility of partially fixed statistical shape models. In 2nd MICCAI workshop on mathematical foundations of computational anatomy (pp. 160–169).
– reference: BeelerTBradleyDRigid stabilization of facial expressionsACM Transactions on Graphics (TOG)20143344410.1145/2601097.2601182
– reference: ChenYMedioniGObject modelling by registration of multiple range imagesImage and Vision Computing199210314515510.1016/0262-8856(92)90066-C
– reference: BooksteinFLPrincipal warps: Thin-plate splines and the decomposition of deformationsIEEE Transactions on Pattern Analysis and Machine Intelligence198911656758510.1109/34.24792
– reference: De Smet, M., & Van Gool, L. (2010). Optimal regions for linear model-based 3D face reconstruction. In Asian conference on computer vision (pp. 276–289).
– reference: Sorkine, O., & Alexa, M. (2007). As-rigid-as-possible surface modeling. In Proceedings of the fifth Eurographics symposium on geometry processing (pp. 109–116).
– reference: CreusotCPearsNEAustinJA machine-learning approach to keypoint detection and landmarking on 3D meshesInternational Journal of Computer Vision2013102114617910.1007/s11263-012-0605-9
– reference: LoweDGDistinctive image features from scale-invariant keypointsInternational Journal of Computer Vision20046029111010.1023/B:VISI.0000029664.99615.94
– reference: Besl, P. J., & McKay, N. D. (1992). Method for registration of 3-D shapes. In Sensor fusion IV: Control paradigms and data structures (Vol. 1611, pp. 586–607). International Society for Optics and Photonics.
– reference: Petr, M., & Ivana, K. (2015). Hairstyles modeling for police identikits. In Proceedings of the 31st Spring conference on computer graphics (pp. 151–158). ACM.
– reference: ter Haar, F. B., & Veltkamp, R. C. (2008) 3D face model fitting for recognition. In European conference on computer vision (pp. 652–664).
– reference: Yang, F., Bourdev, L., Shechtman, E., Wang, J., & Metaxas, D. (2012). Facial expression editing in video using a temporally-smooth factorization. In 2012 IEEE conference on computer vision and pattern recognition (CVPR) (pp. 861–868). IEEE.
– ident: 1260_CR1
– ident: 1260_CR13
  doi: 10.1109/CVPR.2016.598
– ident: 1260_CR31
– ident: 1260_CR25
– ident: 1260_CR29
– ident: 1260_CR43
  doi: 10.1007/978-3-540-88693-8_48
– volume: 13
  start-page: 600
  issue: 4
  year: 2004
  ident: 1260_CR49
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2003.819861
– volume: 25
  start-page: 1025
  year: 2006
  ident: 1260_CR30
  publication-title: ACM Transactions on Graphics (TOG)
  doi: 10.1145/1141911.1141988
– ident: 1260_CR3
  doi: 10.1109/FG.2018.00067
– ident: 1260_CR41
– ident: 1260_CR2
  doi: 10.1109/CVPR.2007.383165
– ident: 1260_CR45
– volume: 40
  start-page: 1860
  year: 2017
  ident: 1260_CR34
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2017.2739743
– volume: 20
  start-page: 413
  issue: 3
  year: 2014
  ident: 1260_CR15
  publication-title: IEEE Transactions on Visualization and Computer Graphics
  doi: 10.1109/TVCG.2013.249
– volume: 25
  start-page: 1063
  issue: 9
  year: 2003
  ident: 1260_CR8
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2003.1227983
– volume: 126
  start-page: 233
  issue: 2–4
  year: 2018
  ident: 1260_CR12
  publication-title: International Journal of Computer Vision
  doi: 10.1007/s11263-017-1009-7
– volume-title: Statistical shape analysis
  year: 1998
  ident: 1260_CR26
– volume: 15
  start-page: 3221
  issue: 1
  year: 2014
  ident: 1260_CR46
  publication-title: The Journal of Machine Learning Research
– volume: 25
  start-page: 859
  issue: 4
  year: 2014
  ident: 1260_CR39
  publication-title: Machine Vision and Applications
  doi: 10.1007/s00138-013-0579-9
– ident: 1260_CR44
  doi: 10.5962/bhl.title.11332
– ident: 1260_CR42
  doi: 10.1007/978-3-540-45087-0_6
– ident: 1260_CR9
  doi: 10.1109/3DV.2013.22
– ident: 1260_CR38
  doi: 10.1145/2788539.2788561
– ident: 1260_CR6
– volume: 60
  start-page: 91
  issue: 2
  year: 2004
  ident: 1260_CR33
  publication-title: International Journal of Computer Vision
  doi: 10.1023/B:VISI.0000029664.99615.94
– volume: 6
  start-page: 681
  year: 2001
  ident: 1260_CR17
  publication-title: IEEE Transactions on Pattern Analysis & Machine Intelligence
  doi: 10.1109/34.927467
– volume: 16
  start-page: 81
  issue: 2
  year: 1984
  ident: 1260_CR32
  publication-title: Bulletin of the London Mathematical Society
  doi: 10.1112/blms/16.2.81
– ident: 1260_CR54
  doi: 10.1109/AFGR.2008.4813324
– volume: 32
  start-page: 2262
  issue: 12
  year: 2010
  ident: 1260_CR36
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2010.46
– ident: 1260_CR56
– volume: 102
  start-page: 146
  issue: 1
  year: 2013
  ident: 1260_CR20
  publication-title: International Journal of Computer Vision
  doi: 10.1007/s11263-012-0605-9
– ident: 1260_CR27
– volume: 24
  start-page: 426
  year: 2005
  ident: 1260_CR47
  publication-title: ACM Transactions on Graphics (TOG)
  doi: 10.1145/1073204.1073209
– ident: 1260_CR53
  doi: 10.1145/2010324.1964955
– ident: 1260_CR21
  doi: 10.1007/978-3-319-60964-5_64
– volume: 33
  start-page: 44
  issue: 4
  year: 2014
  ident: 1260_CR5
  publication-title: ACM Transactions on Graphics (TOG)
  doi: 10.1145/2601097.2601182
– ident: 1260_CR35
  doi: 10.1109/CVPR.2018.00555
– ident: 1260_CR52
  doi: 10.1109/CVPR.2012.6247759
– volume: 61
  start-page: 38
  issue: 1
  year: 1995
  ident: 1260_CR19
  publication-title: Computer vision and image understanding
  doi: 10.1006/cviu.1995.1004
– volume: 10
  start-page: 145
  issue: 3
  year: 1992
  ident: 1260_CR16
  publication-title: Image and Vision Computing
  doi: 10.1016/0262-8856(92)90066-C
– ident: 1260_CR10
  doi: 10.1109/ICCV.2015.411
– ident: 1260_CR22
  doi: 10.1109/ICCV.2017.335
– volume: 20
  start-page: 1185
  issue: 5
  year: 2011
  ident: 1260_CR48
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2010.2092435
– ident: 1260_CR23
  doi: 10.1109/FG.2018.00023
– volume: 4
  start-page: 1
  issue: 18
  year: 2007
  ident: 1260_CR4
  publication-title: Journal of Virtual Reality and Broadcasting
– ident: 1260_CR14
  doi: 10.1109/CRV.2011.53
– ident: 1260_CR7
  doi: 10.1145/311535.311556
– volume: 11
  start-page: 567
  issue: 6
  year: 1989
  ident: 1260_CR11
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/34.24792
– ident: 1260_CR50
  doi: 10.1109/ACSSC.2003.1292216
– ident: 1260_CR40
– ident: 1260_CR55
  doi: 10.1109/FG.2017.79
– volume: 127
  start-page: 115
  issue: 2
  year: 2019
  ident: 1260_CR51
  publication-title: International Journal of Computer Vision
  doi: 10.1007/s11263-018-1097-z
– ident: 1260_CR37
  doi: 10.1109/AVSS.2009.58
– volume: 35
  start-page: 28:1
  issue: 3
  year: 2016
  ident: 1260_CR28
  publication-title: ACM Transactions on Graphics
  doi: 10.1145/2890493
– volume: 13
  start-page: 403
  issue: 5
  year: 1995
  ident: 1260_CR18
  publication-title: Image and Vision Computing
  doi: 10.1016/0262-8856(95)99727-I
– ident: 1260_CR24
  doi: 10.1109/FG.2018.00023
SSID ssj0002823
Score 2.6319592
Snippet We present a fully-automatic statistical 3D shape modeling approach and apply it to a large dataset of 3D images, the Headspace dataset , thus generating the...
We present a fully-automatic statistical 3D shape modeling approach and apply it to a large dataset of 3D images, the Headspace dataset, thus generating the...
SourceID unpaywall
proquest
gale
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 547
SubjectTerms Algorithms
Artificial Intelligence
Computer Imaging
Computer Science
Datasets
Finite element method
Image Processing and Computer Vision
Iterative methods
Model accuracy
Morphing
Pattern Recognition
Pattern Recognition and Graphics
Statistical models
Surgical mesh
Texture mapping
Three dimensional models
Vision
SummonAdditionalLinks – databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED_8eFAf_BanU4oIPmhxTZOsfZShqKAPfoBvIUlTFUY31g3xv_euS6cOEX1N07S5S3K_y30BHGJzhILLhDpKXMity8KEp1lomLVJK8tRA6AL_ZtbefnIr5_Ek0-TQ7EwU_b705JCXMjjh7x6EHuH7VmYF9RGhlnZmZy6qDqMy8ajOiRkGvkAmZ_H-CaEpo_iLzbRJVgYFX39_qa73S9i52IVlj1eDM7GDF6DGVesw4rHjoHfmSU21eUZ6rYNkAQkqzzMOADVPKPI86CXBx2UT6-9XNNteXD_ovsu0EUWPOA5PRq4TXi8OH_oXIa-TEJoeSyHYWQrXMKNyFqIPhhLjdEuEUZK5lxKOf2c5O1c8DjXKM1tZFzMnUhynqJwjuItmCt6hduGgDNns5aOU5PFXDKe5KIdkVnXIOqwcdKAqKabsj6HOJWy6KrP7MdEa4W0VhWtVbsBx5N3-uMMGr_2PiB2KEpNUZDvy7MelaW6ur9TZ_SzgnEZN-DId8p7-HmrfSgBToKyWX3r2azZqvzmLBVD0IkwDDXNBpzUrP58_NvPnUyWwx_msvO_0XdhkZEyX7mEN2FuOBi5PUQ8Q7NfLfUP0qbvhw
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB7SzaH00PRJt6TBlEIPjTZrvWwfl6QhCSSUJgvpSUiy1JYu3iVrU9pf35EtZ5MQQkJvRpJlvaz5RqP5BuADJqcouAzRae4It64kOS9KYqi1-bj0qAGEA_3jE3kw5Ufn4nwN9npfmPa2e2-S7HwaAktTVe8sSr-zcnxLabA_BgccfBqTbITZj2BdCkTkA1ifnnyZfGtp9lA7ErLoaFMzRlCfENF35vaKrsmnm7v0FXPpE3jcVAv957eeza5IpP0NcH1fuosov0ZNbUb27w2ax__t7DN4GiFrMunW2HNYc9UL2IjwNYmbwxKT-ggRfdpLkAHLtlTQWEEIuxac35O5T3ZRRP6cex0O7JPTH3rhEl2VyRmKiubCvYLp_uez3QMSIzUQy5msSWpbaMSNKMcIgCgtjNEuF0ZK6lwRaAWd5JkXnHmNgMKmxjHuRO55gfggZa9hUM0r9wYSTp0tx5oVpmRcUp57kaXBsmwQ-FiWDyHt50fZSGMeomnM1IqAOYyXwvFS7XipbAifLt9ZdCQed5Z-H6ZdBXaMKly_-a6b5VIdnn5Vk9BYQblkQ_gYC_k5ft7q6M2AnQiEWtdKbvbLR8X9Yako4l5EgqjsDmG7XwGr7Lsat3257O7Rl7cPK74Jg_qice8QZ9VmK_5G_wDdEBob
  priority: 102
  providerName: Unpaywall
Title Statistical Modeling of Craniofacial Shape and Texture
URI https://link.springer.com/article/10.1007/s11263-019-01260-7
https://www.proquest.com/docview/2352397899
https://link.springer.com/content/pdf/10.1007/s11263-019-01260-7.pdf
UnpaywallVersion publishedVersion
Volume 128
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1573-1405
  dateEnd: 20241101
  omitProxy: true
  ssIdentifier: ssj0002823
  issn: 1573-1405
  databaseCode: ABDBF
  dateStart: 20030401
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1573-1405
  dateEnd: 20241101
  omitProxy: false
  ssIdentifier: ssj0002823
  issn: 1573-1405
  databaseCode: ADMLS
  dateStart: 19870101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1573-1405
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002823
  issn: 1573-1405
  databaseCode: AFBBN
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1573-1405
  dateEnd: 20241101
  omitProxy: true
  ssIdentifier: ssj0002823
  issn: 1573-1405
  databaseCode: BENPR
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1573-1405
  dateEnd: 20241101
  omitProxy: true
  ssIdentifier: ssj0002823
  issn: 1573-1405
  databaseCode: 8FG
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-1405
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002823
  issn: 1573-1405
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-1405
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002823
  issn: 1573-1405
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9swED_a5GHrQ_dNs3XBjMEeVrFYlhX7YQwvJO02FkrbQPskJFleC8HOmoSy_353jpy0ewh7MeYsW5--D53udwDvkRyi4DJMh4ljwrqcJSLNmeHWJr28QAuANvR_juXJRHy_jC93YNzEwtCxyoYn1ow6ryztkX_iqCmg7ETz4MvsN6OsUeRdbVJoaJ9aIf9cQ4ztQpsTMlYL2l-H49OzNW9GA2OVXB6NplimoQ-jWQXThZx8mhTUg3c91n8gqv5l2Pc8p3vwaFnO9J87PZ3eE06jp7DvtcogWy2DZ7DjyufwxGuYgf9_50hqkjg0tBcgSd2s0ZrxA5QZjeLTg6oIBijFbqpC0556cH6tZy7QZR5cIDdf3rqXMBkNLwYnzCdTYFZEcsFCW2svwsR5D3UUzlNjtEtiIyV3LiXkPydFv4hFVGiU-TY0LhIuTgqRoggPo1fQKqvSHUAguLN5T0epySMhuUiKuB-S89egbmKjpANhM27KeqRxSngxVRuMZBprhWOt6rFW_Q58XL8zW-FsbC39jqZDEYBFSSdkfunlfK6-nZ-pjBobcyGjDnzwhYoKq7faBxxgJwjz6kHJw2Zalf-F52qz4Dpw1Ez15vG2xh2tl8N_9OX19srfwGNOJn59UPwQWovbpXuLetDCdGE3GR13oZ0dX_0Ydv1SR-pADvA64RnSJuPT7OovnPgDcA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB5RONAeSp9qWmitqlUPxWq8Xm_sA0KUgpICUQVB4rbsy1ApslOcCPHn-tuYcdYJ9BD1ws1ar_cxu95vHjszAJ-wOELg0qGKUhdy42yY8syGmhmTtm2OEgAp9I_6onvKf54lZ0vwt_GFoWuVzZlYH9S2NKQj_8aQU0DsRPFge_QnpKxRZF1tUmgon1rBbtUhxrxjx4G7uUYRrtrq_cD1_szY_t5gtxv6LAOh4bEYh5GpYZ3rxLYRvBnLtFYuTbQQzLmMQuI5wTt5wuNcIRiaSLuYuyTNeYbYFsXY7iNY4THPUPhb-b7X_3U8wwIUaKbJ7FFIS0QWebedqfNexMiGSk5E-NQOO_eg8V-AuGOpfQKrk2Kkbq7VcHgHDPefwVPPxQY70233HJZc8QLWPEcb-POiwqImaURT9hIEsbd1dGhsgDKxkT98UObBLqLm7zJXpMMPTi7VyAWqsMEA0WNy5V7B6YOQ9TUsF2Xh3kDAmTO2reJM25gLxtM86URkbNbIC5k4bUHU0E0aH9mcEmwM5TwmM9FaIq1lTWvZacHX2TejaVyPhbU_0nJICphR0I2cCzWpKtk7OZY7NNiEcRG34IuvlJfYvVHewQEnQTG27tVcb5ZV-iOjkvMN3oLNZqnnrxcNbnO2Hf5jLm8Xd_4BVruDo0N52OsfvIPHjNQL9SX1dVgeX03cBvJgY_3eb_QAzh_637oFPRs4WA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dTxQxEJ8gJioPfhtOURuj8UE2XLvdrwdjCHhyosQIJLyVttsVksvuyd6F8K_x1zGz270DHy6-8LbpdrvtdNrfzLQzA_AeizkClwk0T10grcuDVGZ5YIS1aT8vUAMgg_7PvXjnUH4_io6W4LLzhaFrld2e2GzUeWXJRr4hUFJA7ET1YKPw1yJ-bQ--jP8GlEGKTlq7dBoti-y6i3NU3-rPw22c6w9CDL4ebO0EPsNAYGUYTwJuG0iXJsr7CNxCZMZol0YmjoVzGYXDc7FMikiGhUYgtNy4ULooLWSGuMZDbPcO3E0oijt5qQ--zVAAVZk2jT2qZ1Gcce-w07rtcUGnp-Q-hE_9ILkBiv9Cw7Uz2hW4Py3H-uJcj0bXYHDwGB56-ZVttgz3BJZc-RQeeVmW-Z2ixqIuXURX9gxiEmybuNDYAOVgI094VhVsC_HytCo0We_Z_okeO6bLnB0g8adn7jkc3gpRX8ByWZVuFZgUzuZ9HWYmD2UsZFpECadjZoNSkA3THvCObsr6mOaUWmOk5tGYidYKaa0aWqukB59m34zbiB4La7-j6VAUKqMkpvujp3Wthvu_1SZ1NhIyDnvw0VcqKvy91d61AQdB0bVu1FzrplX5zaJWc9buwXo31fPXizq3PmOH_xjLy8U_fwv3cEWpH8O93VfwQJBdobmdvgbLk7Ope43C18S8abicwfFtL6srf9418g
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB7SzaH00PRJt6TBlEIPjTZrvWwfl6QhCSSUJgvpSUiy1JYu3iVrU9pf35EtZ5MQQkJvRpJlvaz5RqP5BuADJqcouAzRae4It64kOS9KYqi1-bj0qAGEA_3jE3kw5Ufn4nwN9npfmPa2e2-S7HwaAktTVe8sSr-zcnxLabA_BgccfBqTbITZj2BdCkTkA1ifnnyZfGtp9lA7ErLoaFMzRlCfENF35vaKrsmnm7v0FXPpE3jcVAv957eeza5IpP0NcH1fuosov0ZNbUb27w2ax__t7DN4GiFrMunW2HNYc9UL2IjwNYmbwxKT-ggRfdpLkAHLtlTQWEEIuxac35O5T3ZRRP6cex0O7JPTH3rhEl2VyRmKiubCvYLp_uez3QMSIzUQy5msSWpbaMSNKMcIgCgtjNEuF0ZK6lwRaAWd5JkXnHmNgMKmxjHuRO55gfggZa9hUM0r9wYSTp0tx5oVpmRcUp57kaXBsmwQ-FiWDyHt50fZSGMeomnM1IqAOYyXwvFS7XipbAifLt9ZdCQed5Z-H6ZdBXaMKly_-a6b5VIdnn5Vk9BYQblkQ_gYC_k5ft7q6M2AnQiEWtdKbvbLR8X9Yako4l5EgqjsDmG7XwGr7Lsat3257O7Rl7cPK74Jg_qice8QZ9VmK_5G_wDdEBob
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Statistical+Modeling+of+Craniofacial+Shape+and+Texture&rft.jtitle=International+journal+of+computer+vision&rft.au=Dai%2C+Hang&rft.au=Pears%2C+Nick&rft.au=Smith%2C+William&rft.au=Duncan%2C+Christian&rft.date=2020-02-01&rft.pub=Springer&rft.issn=0920-5691&rft.volume=128&rft.issue=2&rft.spage=547&rft_id=info:doi/10.1007%2Fs11263-019-01260-7&rft.externalDocID=A614152463
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-5691&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-5691&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-5691&client=summon