Statistical Modeling of Craniofacial Shape and Texture
We present a fully-automatic statistical 3D shape modeling approach and apply it to a large dataset of 3D images, the Headspace dataset , thus generating the first public shape-and-texture 3D morphable model (3DMM) of the full human head. Our approach is the first to employ a template that adapts to...
Saved in:
| Published in | International journal of computer vision Vol. 128; no. 2; pp. 547 - 571 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
Springer US
01.02.2020
Springer Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0920-5691 1573-1405 1573-1405 |
| DOI | 10.1007/s11263-019-01260-7 |
Cover
| Abstract | We present a fully-automatic statistical 3D shape modeling approach and apply it to a large dataset of 3D images, the
Headspace dataset
, thus generating the first public shape-and-texture 3D morphable model (3DMM) of the full human head. Our approach is the first to employ a template that adapts to the dataset subject before dense morphing. This is fully automatic and achieved using 2D facial landmarking, projection to 3D shape, and mesh editing. In dense template morphing, we improve on the well-known Coherent Point Drift algorithm, by incorporating iterative data-sampling and alignment. Our evaluations demonstrate that our method has better performance in correspondence accuracy and modeling ability when compared with other competing algorithms. We propose a texture map refinement scheme to build high quality texture maps and texture model. We present several applications that include the first clinical use of craniofacial 3DMMs in the assessment of different types of surgical intervention applied to a craniosynostosis patient group. |
|---|---|
| AbstractList | We present a fully-automatic statistical 3D shape modeling approach and apply it to a large dataset of 3D images, the Headspace dataset, thus generating the first public shape-and-texture 3D morphable model (3DMM) of the full human head. Our approach is the first to employ a template that adapts to the dataset subject before dense morphing. This is fully automatic and achieved using 2D facial landmarking, projection to 3D shape, and mesh editing. In dense template morphing, we improve on the well-known Coherent Point Drift algorithm, by incorporating iterative data-sampling and alignment. Our evaluations demonstrate that our method has better performance in correspondence accuracy and modeling ability when compared with other competing algorithms. We propose a texture map refinement scheme to build high quality texture maps and texture model. We present several applications that include the first clinical use of craniofacial 3DMMs in the assessment of different types of surgical intervention applied to a craniosynostosis patient group. We present a fully-automatic statistical 3D shape modeling approach and apply it to a large dataset of 3D images, the Headspace dataset , thus generating the first public shape-and-texture 3D morphable model (3DMM) of the full human head. Our approach is the first to employ a template that adapts to the dataset subject before dense morphing. This is fully automatic and achieved using 2D facial landmarking, projection to 3D shape, and mesh editing. In dense template morphing, we improve on the well-known Coherent Point Drift algorithm, by incorporating iterative data-sampling and alignment. Our evaluations demonstrate that our method has better performance in correspondence accuracy and modeling ability when compared with other competing algorithms. We propose a texture map refinement scheme to build high quality texture maps and texture model. We present several applications that include the first clinical use of craniofacial 3DMMs in the assessment of different types of surgical intervention applied to a craniosynostosis patient group. |
| Audience | Academic |
| Author | Smith, William Dai, Hang Pears, Nick Duncan, Christian |
| Author_xml | – sequence: 1 givenname: Hang surname: Dai fullname: Dai, Hang organization: Department of Computer Science, University of York, Inception Institute of AI – sequence: 2 givenname: Nick orcidid: 0000-0001-9513-5634 surname: Pears fullname: Pears, Nick email: nick.pears@york.ac.uk organization: Department of Computer Science, University of York – sequence: 3 givenname: William surname: Smith fullname: Smith, William organization: Department of Computer Science, University of York – sequence: 4 givenname: Christian surname: Duncan fullname: Duncan, Christian organization: Alder Hey Hospital |
| BookMark | eNqNkEtLxDAYRYMoOD7-gKuCKxfVvNssZfAxoAjOuA5p5ssYqemYtKj_3owVRBciIQSSe8J37h7aDl0AhI4IPiUYV2eJECpZiYnKm0pcVltoQkTFSsKx2EYTrCguhVRkF-2l9IQxpjVlEyTnvel96r01bXHbLaH1YVV0rphGE3znjPX5Yf5o1lCYsCwW8NYPEQ7QjjNtgsOvcx89XF4sptflzd3VbHp-U1rOZF8Si7EkgjdiiWvFKFVNY6AWjZQUQGHGOUheOcGZM5RzSxpgHETtuJKEE7aP2PjvENbm_dW0rV5H_2ziuyZYb9T1qK6zuv5U11WmjkdqHbuXAVKvn7ohhjyopkxQpqpaqZw6HVMr04L2wXV9NDavJTx7m_t1Pt-fb-YQlEuWgZMfQM70uY6VGVLSs_n9z2w9Zm3sUorgtPWbpjMSjW__np7-Qv-l_FVUyuGwgvit_Af1Aa2LpvU |
| CitedBy_id | crossref_primary_10_3390_diagnostics12071516 crossref_primary_10_4103_jpn_JPN_48_22 crossref_primary_10_1016_j_cviu_2024_104227 crossref_primary_10_1016_j_culher_2021_09_004 crossref_primary_10_1007_s11263_022_01730_5 crossref_primary_10_1016_j_cad_2023_103483 crossref_primary_10_1016_j_compbiomed_2025_109652 crossref_primary_10_1016_j_imavis_2021_104119 crossref_primary_10_1109_ACCESS_2021_3129507 crossref_primary_10_1111_cgf_14793 crossref_primary_10_1016_j_cosrev_2021_100400 crossref_primary_10_1016_j_asoc_2024_112260 crossref_primary_10_3389_fmedt_2023_1254690 crossref_primary_10_1016_j_cmpb_2022_106893 crossref_primary_10_1109_TVCG_2023_3284500 crossref_primary_10_3390_ani13030385 crossref_primary_10_1007_s00371_022_02431_3 crossref_primary_10_1016_j_cag_2023_11_007 crossref_primary_10_1097_SCS_0000000000007379 crossref_primary_10_1097_SCS_0000000000009314 crossref_primary_10_1016_j_eswa_2023_119678 crossref_primary_10_1016_j_jcms_2021_02_020 crossref_primary_10_1002_aisy_202400159 crossref_primary_10_1002_ar_24582 crossref_primary_10_1109_TPAMI_2023_3307338 crossref_primary_10_1109_ACCESS_2024_3396632 crossref_primary_10_1080_10255842_2020_1849156 crossref_primary_10_3390_s24123737 crossref_primary_10_1109_TPAMI_2024_3480151 crossref_primary_10_1016_j_cviu_2022_103384 crossref_primary_10_1016_j_cmpb_2024_108395 crossref_primary_10_1145_3550454_3555475 crossref_primary_10_32604_cmes_2024_056753 crossref_primary_10_1145_3592093 crossref_primary_10_1016_j_jbi_2022_104121 crossref_primary_10_3390_ani13071179 crossref_primary_10_1155_2021_3346136 crossref_primary_10_1111_cgf_14945 crossref_primary_10_1109_TIP_2021_3096081 crossref_primary_10_1038_s41598_024_56956_9 |
| Cites_doi | 10.1109/CVPR.2016.598 10.1007/978-3-540-88693-8_48 10.1109/TIP.2003.819861 10.1145/1141911.1141988 10.1109/FG.2018.00067 10.1109/CVPR.2007.383165 10.1109/TPAMI.2017.2739743 10.1109/TVCG.2013.249 10.1109/TPAMI.2003.1227983 10.1007/s11263-017-1009-7 10.1007/s00138-013-0579-9 10.5962/bhl.title.11332 10.1007/978-3-540-45087-0_6 10.1109/3DV.2013.22 10.1145/2788539.2788561 10.1023/B:VISI.0000029664.99615.94 10.1109/34.927467 10.1112/blms/16.2.81 10.1109/AFGR.2008.4813324 10.1109/TPAMI.2010.46 10.1007/s11263-012-0605-9 10.1145/1073204.1073209 10.1145/2010324.1964955 10.1007/978-3-319-60964-5_64 10.1145/2601097.2601182 10.1109/CVPR.2018.00555 10.1109/CVPR.2012.6247759 10.1006/cviu.1995.1004 10.1016/0262-8856(92)90066-C 10.1109/ICCV.2015.411 10.1109/ICCV.2017.335 10.1109/TIP.2010.2092435 10.1109/FG.2018.00023 10.1109/CRV.2011.53 10.1145/311535.311556 10.1109/34.24792 10.1109/ACSSC.2003.1292216 10.1109/FG.2017.79 10.1007/s11263-018-1097-z 10.1109/AVSS.2009.58 10.1145/2890493 10.1016/0262-8856(95)99727-I |
| ContentType | Journal Article |
| Copyright | The Author(s) 2019 COPYRIGHT 2020 Springer International Journal of Computer Vision is a copyright of Springer, (2019). All Rights Reserved. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2019 – notice: COPYRIGHT 2020 Springer – notice: International Journal of Computer Vision is a copyright of Springer, (2019). All Rights Reserved. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION ISR 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8FD 8FE 8FG 8FK 8FL ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PYYUZ Q9U ADTOC UNPAY |
| DOI | 10.1007/s11263-019-01260-7 |
| DatabaseName | Springer Nature OA Free Journals CrossRef Gale In Context: Science ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection (ProQuest) ProQuest One ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database (ProQuest) ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ABI/INFORM Collection China ProQuest Central Basic Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ABI/INFORM China ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) Business Premium Collection (Alumni) |
| DatabaseTitleList | CrossRef ABI/INFORM Global (Corporate) |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Computer Science |
| EISSN | 1573-1405 |
| EndPage | 571 |
| ExternalDocumentID | 10.1007/s11263-019-01260-7 A614152463 10_1007_s11263_019_01260_7 |
| GrantInformation_xml | – fundername: Google grantid: 2017 Faculty Research Award: Headspace Online funderid: http://dx.doi.org/10.13039/100006785 |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29J 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 6TJ 78A 7WY 8FE 8FG 8FL 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACIHN ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEAQA AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. B0M BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS C6C CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EAD EAP EAS EBLON EBS EDO EIOEI EJD EMK EPL ESBYG ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IAO IHE IJ- IKXTQ ISR ITC ITM IWAJR IXC IZIGR IZQ I~X I~Y I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M0N M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 QF4 QM1 QN7 QO4 QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TAE TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z83 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8S Z8T Z8W Z92 ZMTXR ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ICD PHGZM PHGZT PQGLB PUEGO 7SC 7XB 8AL 8FD 8FK JQ2 L.- L7M L~C L~D PKEHL PQEST PQUKI PRINS Q9U ADTOC UNPAY |
| ID | FETCH-LOGICAL-c436t-1c006154b5d0893229bbae85b662ee90344e647f543fa244c1be34e58f4961413 |
| IEDL.DBID | BENPR |
| ISSN | 0920-5691 1573-1405 |
| IngestDate | Wed Oct 01 16:34:12 EDT 2025 Wed Aug 13 03:28:56 EDT 2025 Mon Oct 20 16:44:04 EDT 2025 Thu Oct 16 14:00:44 EDT 2025 Wed Oct 01 05:08:42 EDT 2025 Thu Apr 24 23:01:47 EDT 2025 Fri Feb 21 02:35:18 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Statistical shape model 3D morphable model Craniofacial shape Shape morphing |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c436t-1c006154b5d0893229bbae85b662ee90344e647f543fa244c1be34e58f4961413 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-9513-5634 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://link.springer.com/content/pdf/10.1007/s11263-019-01260-7.pdf |
| PQID | 2352397899 |
| PQPubID | 1456341 |
| PageCount | 25 |
| ParticipantIDs | unpaywall_primary_10_1007_s11263_019_01260_7 proquest_journals_2352397899 gale_infotracacademiconefile_A614152463 gale_incontextgauss_ISR_A614152463 crossref_citationtrail_10_1007_s11263_019_01260_7 crossref_primary_10_1007_s11263_019_01260_7 springer_journals_10_1007_s11263_019_01260_7 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20200200 2020-02-00 20200201 |
| PublicationDateYYYYMMDD | 2020-02-01 |
| PublicationDate_xml | – month: 2 year: 2020 text: 20200200 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | International journal of computer vision |
| PublicationTitleAbbrev | Int J Comput Vis |
| PublicationYear | 2020 |
| Publisher | Springer US Springer Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer – name: Springer Nature B.V |
| References | CaoCWengYZhouSTongYZhouKFacewarehouse: A 3D facial expression database for visual computingIEEE Transactions on Visualization and Computer Graphics201420341342510.1109/TVCG.2013.249 Bolkart, T., & Wuhrer, S. (2013). Statistical analysis of 3D faces in motion. In 2013 International conference on 3D vision-3DV 2013 (pp. 103–110). IEEE. WangZBovikACSheikhHRSimoncelliEPImage quality assessment: From error visibility to structural similarityIEEE Transactions on Image Processing200413460061210.1109/TIP.2003.819861 SalazarAWuhrerSShuCPrietoFFully automatic expression-invariant face correspondenceMachine Vision and Applications201425485987910.1007/s00138-013-0579-9 Van Der MaatenLAccelerating t-SNE using tree-based algorithmsThe Journal of Machine Learning Research20141513221324532771691319.62134 VlasicDBrandMPfisterHPopovićJFace transfer with multilinear modelsACM Transactions on Graphics (TOG)20052442643310.1145/1073204.1073209 Brunton, A., Lang, J., Dubois, E., & Shu, C. (2011). Wavelet model-based stereo for fast, robust face reconstruction. In 2011 Canadian conference on computer and robot vision (CRV) (pp. 347–354). BassoCVerriAHerderJFitting 3D morphable models using implicit representationsJournal of Virtual Reality and Broadcasting2007418110 Blanz, V., & Vetter, T. (1999). A morphable model for the synthesis of 3D faces. In Proceedings of the 26th annual conference on Computer graphics and interactive techniques (pp. 187–194). GolovinskiyAMatusikWPfisterHRusinkiewiczSFunkhouserTA statistical model for synthesis of detailed facial geometryACM Transactions on Graphics (TOG)2006251025103410.1145/1141911.1141988 De Smet, M., & Van Gool, L. (2010). Optimal regions for linear model-based 3D face reconstruction. In Asian conference on computer vision (pp. 276–289). Madsen, D., Lüthi, M., Schneider, A., & Vetter, T. (2018). Probabilistic joint face-skull modelling for facial reconstruction. In Proceedings of CVPR (pp. 5295–5303). Tran, L., & Liu, X. (2018). Nonlinear 3D face morphable model. arXiv preprint arXiv:1804.03786. CootesTFTaylorCJCooperDHGrahamJActive shape models-their training and applicationComputer vision and image understanding1995611385910.1006/cviu.1995.1004 BooksteinFLPrincipal warps: Thin-plate splines and the decomposition of deformationsIEEE Transactions on Pattern Analysis and Machine Intelligence198911656758510.1109/34.24792 Zhu, X., & Ramanan, D. (2012). Face detection, pose estimation, and landmark localization in the wild. In Proceedings of CVPR (pp. 2879–2886). ChenYMedioniGObject modelling by registration of multiple range imagesImage and Vision Computing199210314515510.1016/0262-8856(92)90066-C Saragih, J. M., Lucey, S., & Cohn, J. F. (2011). Real-time avatar animation from a single image. In IEEE international conference on automatic face and gesture recognition 2011 (pp. 213–220). MyronenkoASongXPoint set registration: Coherent point driftIEEE Transactions on Pattern Analysis and Machine Intelligence201032122262227510.1109/TPAMI.2010.46 ter Haar, F. B., & Veltkamp, R. C. (2008) 3D face model fitting for recognition. In European conference on computer vision (pp. 652–664). An, Z., Deng, W., Yuan, T., & Hu, J. (2018). Deep transfer network with 3D morphable models for face recognition. In 2018 13th IEEE international conference on automatic face gesture recognition (pp. 416–422). CreusotCPearsNEAustinJA machine-learning approach to keypoint detection and landmarking on 3D meshesInternational Journal of Computer Vision2013102114617910.1007/s11263-012-0605-9 WuYJiQFacial landmark detection: A literature surveyInternational Journal of Computer Vision2019127211514210.1007/s11263-018-1097-z LüthiMGerigTJudCVetterTGaussian process morphable modelsIEEE Transactions on Pattern Analysis and Machine Intelligence2017401860187310.1109/TPAMI.2017.2739743 CootesTFEdwardsGJTaylorCJActive appearance modelsIEEE Transactions on Pattern Analysis & Machine Intelligence2001668168510.1109/34.927467 Thompson, D. W. (1917). On growth and form. Cambridge University Press. Harrison, C. R., & Robinette, K. M. (2006). Principles of fit to optimize helmet sizing. Technical report, Air Force Research Lab Wright-Patterson. Bolkart, T., & Wuhrer, S. (2015). A groupwise multilinear correspondence optimization for 3D faces. In Proceedings of the IEEE international conference on computer vision (pp. 3604–3612). Paysan, P., Knothe, R., Amberg, B., Romdhani, S., & Vetter, T. (2009). A 3D face model for pose and illumination invariant face recognition. In Sixth IEEE international conference on advanced video and signal based surveillance, 2009. AVSS’09 (pp. 296–301). Gerig, T., Forster, A., Blumer, C., Egger, B., Lüthi, M., Schönborn, S., & Vetter, T. (2017). Morphable face models: An open framework. CoRR arXiv:1709.08398. Dai, H., Pears, N., Smith, W., & Duncan, C. (2017b). A 3D morphable model of craniofacial shape and texture variation. In 2017 IEEE international conference on computer vision (ICCV) (pp. 3104–3112). IEEE. CootesTFTaylorCJCombining point distribution models with shape models based on finite element analysisImage and Vision Computing199513540340910.1016/0262-8856(95)99727-I Duncan, C., Armstrong, R., Pears, N. E., Dai, H., & Smith, W. (2018). The headspace dataset. https://www-users.cs.york.ac.uk/~nep/research/Headspace/. Accessed 5 Nov 2019. Amberg, B., Romdhani, S., & Vetter, T. (2007). Optimal step nonrigid ICP algorithms for surface registration. In IEEE conference on computer vision and pattern recognition (pp. 1–7). Zhou, Y., & Zaferiou, S. (2017). Deformable models of ears in-the-wild for alignment and recognition. In 2017 12th IEEE international conference on automatic face and gesture recognition (FG 2017) (pp. 626–633). IEEE. Besl, P. J., & McKay, N. D. (1992). Method for registration of 3-D shapes. In Sensor fusion IV: Control paradigms and data structures (Vol. 1611, pp. 586–607). International Society for Optics and Photonics. Dai, H., Pears, N., Smith, W., & Duncan, C. (2018b). Symmetric shape morphing for 3D face and head modelling. In 2018 13th IEEE international conference on automatic face gesture recognition (FG 2018) (pp. 91–97). Booth, J., Roussos, A., Zafeiriou, S., Ponniah, A., & Dunaway, D. (2016). A 3D morphable model learnt from 10,000 faces. In Proceedings of CVPR (pp. 5543–5552). BoothJRoussosAPonniahADunawayDZafeiriouSLarge scale 3D morphable modelsInternational Journal of Computer Vision20181262–4233254376661810.1007/s11263-017-1009-7 Yang, F., Bourdev, L., Shechtman, E., Wang, J., & Metaxas, D. (2012). Facial expression editing in video using a temporally-smooth factorization. In 2012 IEEE conference on computer vision and pattern recognition (CVPR) (pp. 861–868). IEEE. Albrecht, T., Knothe, R., & Vetter, T. (2008). Modeling the remaining flexibility of partially fixed statistical shape models. In 2nd MICCAI workshop on mathematical foundations of computational anatomy (pp. 160–169). LoweDGDistinctive image features from scale-invariant keypointsInternational Journal of Computer Vision20046029111010.1023/B:VISI.0000029664.99615.94 BlanzVVetterTFace recognition based on fitting a 3D morphable modelIEEE Transactions on Pattern Analysis and Machine Intelligence20032591063107410.1109/TPAMI.2003.1227983 Petr, M., & Ivana, K. (2015). Hairstyles modeling for police identikits. In Proceedings of the 31st Spring conference on computer graphics (pp. 151–158). ACM. Yin, L., Chen, X., Sun, Y., Worm, T., & Reale, M. (2008). A high-resolution 3D dynamic facial expression database. In 8th IEEE international conference on automatic face and gesture recognition, 2008. FG’08 (pp. 1–6). IEEE. GarridoPZollhöferMCasasDValgaertsLVaranasiKPérezPTheobaltCReconstruction of personalized 3D face rigs from monocular videoACM Transactions on Graphics201635328:128:1510.1145/2890493 DrydenILMardiaKVStatistical shape analysis1998ChichesterJohn Wiley and Sons0901.62072 WangZLiQInformation content weighting for perceptual image quality assessmentIEEE Transactions on Image Processing201120511851198283867110.1109/TIP.2010.2092435 KendallDGShape manifolds, procrustean metrics, and complex projective spacesBulletin of the London Mathematical Society19841628112173723710.1112/blms/16.2.81 Sorkine, O., & Alexa, M. (2007). As-rigid-as-possible surface modeling. In Proceedings of the fifth Eurographics symposium on geometry processing (pp. 109–116). Dai, H., Pears, N., & Duncan, C. (2017a). A 2D morphable model of craniofacial profile and its application to craniosynostosis. In Medical image understanding and analysis, communications in computer and information science (Vol. 723). Styner, M. A., Rajamani, K. T., Nolte, L. P., Zsemlye, G., Székely, G., Taylor, C. J., & Davies, R. H. (2003). Evaluation of 3D correspondence methods for model building. In Information processing in medical imaging (pp. 63–75). Dai, H., Pears, N., Smith, W., & Duncan, C. (2018a). Symmetric shape morphing for 3D face and head modelling. In 2018 13th IEEE international conference on automatic face and gesture recognition (FG 2018) (pp. 91–97). IEEE. Wang, Z., Simoncelli, E. P., & Bovik, A. C. (2003). Multiscale structural similarity for image quality assessment. In The thirty-seventh Asilomar conference on signals, systems and computers, 2003 (Vol. 2, pp. 1398–1402). IEEE. Yang, F., Wang, J., Shechtman, E., Bourdev, L., & Metaxas, D. (2011). Expression flow for 3D-aware face component transfer. In ACM transactions on graphics (TOG) (vol. 30, p. 60). BeelerTBradleyDRigid stabilization of facial expressionsACM Transactions on Graphics (TOG)20143344410.1145/2601097.2601182 IL Dryden (1260_CR26) 1998 1260_CR9 A Myronenko (1260_CR36) 2010; 32 1260_CR7 A Golovinskiy (1260_CR30) 2006; 25 L Van Der Maaten (1260_CR46) 2014; 15 Z Wang (1260_CR49) 2004; 13 1260_CR6 1260_CR3 1260_CR50 1260_CR14 1260_CR13 1260_CR56 1260_CR55 1260_CR10 1260_CR54 1260_CR53 1260_CR52 Y Wu (1260_CR51) 2019; 127 FL Bookstein (1260_CR11) 1989; 11 D Vlasic (1260_CR47) 2005; 24 1260_CR40 A Salazar (1260_CR39) 2014; 25 V Blanz (1260_CR8) 2003; 25 1260_CR45 1260_CR44 1260_CR43 1260_CR42 C Cao (1260_CR15) 2014; 20 1260_CR41 DG Kendall (1260_CR32) 1984; 16 C Basso (1260_CR4) 2007; 4 M Lüthi (1260_CR34) 2017; 40 TF Cootes (1260_CR19) 1995; 61 TF Cootes (1260_CR18) 1995; 13 1260_CR37 1260_CR35 T Beeler (1260_CR5) 2014; 33 Z Wang (1260_CR48) 2011; 20 1260_CR31 C Creusot (1260_CR20) 2013; 102 1260_CR38 Y Chen (1260_CR16) 1992; 10 TF Cootes (1260_CR17) 2001; 6 P Garrido (1260_CR28) 2016; 35 J Booth (1260_CR12) 2018; 126 1260_CR25 1260_CR24 1260_CR23 1260_CR22 1260_CR21 1260_CR2 DG Lowe (1260_CR33) 2004; 60 1260_CR1 1260_CR29 1260_CR27 |
| References_xml | – reference: Booth, J., Roussos, A., Zafeiriou, S., Ponniah, A., & Dunaway, D. (2016). A 3D morphable model learnt from 10,000 faces. In Proceedings of CVPR (pp. 5543–5552). – reference: Bolkart, T., & Wuhrer, S. (2015). A groupwise multilinear correspondence optimization for 3D faces. In Proceedings of the IEEE international conference on computer vision (pp. 3604–3612). – reference: MyronenkoASongXPoint set registration: Coherent point driftIEEE Transactions on Pattern Analysis and Machine Intelligence201032122262227510.1109/TPAMI.2010.46 – reference: Yang, F., Wang, J., Shechtman, E., Bourdev, L., & Metaxas, D. (2011). Expression flow for 3D-aware face component transfer. In ACM transactions on graphics (TOG) (vol. 30, p. 60). – reference: Duncan, C., Armstrong, R., Pears, N. E., Dai, H., & Smith, W. (2018). The headspace dataset. https://www-users.cs.york.ac.uk/~nep/research/Headspace/. Accessed 5 Nov 2019. – reference: Styner, M. A., Rajamani, K. T., Nolte, L. P., Zsemlye, G., Székely, G., Taylor, C. J., & Davies, R. H. (2003). Evaluation of 3D correspondence methods for model building. In Information processing in medical imaging (pp. 63–75). – reference: CootesTFEdwardsGJTaylorCJActive appearance modelsIEEE Transactions on Pattern Analysis & Machine Intelligence2001668168510.1109/34.927467 – reference: DrydenILMardiaKVStatistical shape analysis1998ChichesterJohn Wiley and Sons0901.62072 – reference: Thompson, D. W. (1917). On growth and form. Cambridge University Press. – reference: BoothJRoussosAPonniahADunawayDZafeiriouSLarge scale 3D morphable modelsInternational Journal of Computer Vision20181262–4233254376661810.1007/s11263-017-1009-7 – reference: Dai, H., Pears, N., & Duncan, C. (2017a). A 2D morphable model of craniofacial profile and its application to craniosynostosis. In Medical image understanding and analysis, communications in computer and information science (Vol. 723). – reference: Dai, H., Pears, N., Smith, W., & Duncan, C. (2018a). Symmetric shape morphing for 3D face and head modelling. In 2018 13th IEEE international conference on automatic face and gesture recognition (FG 2018) (pp. 91–97). IEEE. – reference: Zhu, X., & Ramanan, D. (2012). Face detection, pose estimation, and landmark localization in the wild. In Proceedings of CVPR (pp. 2879–2886). – reference: KendallDGShape manifolds, procrustean metrics, and complex projective spacesBulletin of the London Mathematical Society19841628112173723710.1112/blms/16.2.81 – reference: Yin, L., Chen, X., Sun, Y., Worm, T., & Reale, M. (2008). A high-resolution 3D dynamic facial expression database. In 8th IEEE international conference on automatic face and gesture recognition, 2008. FG’08 (pp. 1–6). IEEE. – reference: Gerig, T., Forster, A., Blumer, C., Egger, B., Lüthi, M., Schönborn, S., & Vetter, T. (2017). Morphable face models: An open framework. CoRR arXiv:1709.08398. – reference: Van Der MaatenLAccelerating t-SNE using tree-based algorithmsThe Journal of Machine Learning Research20141513221324532771691319.62134 – reference: Saragih, J. M., Lucey, S., & Cohn, J. F. (2011). Real-time avatar animation from a single image. In IEEE international conference on automatic face and gesture recognition 2011 (pp. 213–220). – reference: BlanzVVetterTFace recognition based on fitting a 3D morphable modelIEEE Transactions on Pattern Analysis and Machine Intelligence20032591063107410.1109/TPAMI.2003.1227983 – reference: LüthiMGerigTJudCVetterTGaussian process morphable modelsIEEE Transactions on Pattern Analysis and Machine Intelligence2017401860187310.1109/TPAMI.2017.2739743 – reference: Madsen, D., Lüthi, M., Schneider, A., & Vetter, T. (2018). Probabilistic joint face-skull modelling for facial reconstruction. In Proceedings of CVPR (pp. 5295–5303). – reference: An, Z., Deng, W., Yuan, T., & Hu, J. (2018). Deep transfer network with 3D morphable models for face recognition. In 2018 13th IEEE international conference on automatic face gesture recognition (pp. 416–422). – reference: CaoCWengYZhouSTongYZhouKFacewarehouse: A 3D facial expression database for visual computingIEEE Transactions on Visualization and Computer Graphics201420341342510.1109/TVCG.2013.249 – reference: WangZBovikACSheikhHRSimoncelliEPImage quality assessment: From error visibility to structural similarityIEEE Transactions on Image Processing200413460061210.1109/TIP.2003.819861 – reference: Bolkart, T., & Wuhrer, S. (2013). Statistical analysis of 3D faces in motion. In 2013 International conference on 3D vision-3DV 2013 (pp. 103–110). IEEE. – reference: Dai, H., Pears, N., Smith, W., & Duncan, C. (2017b). A 3D morphable model of craniofacial shape and texture variation. In 2017 IEEE international conference on computer vision (ICCV) (pp. 3104–3112). IEEE. – reference: WangZLiQInformation content weighting for perceptual image quality assessmentIEEE Transactions on Image Processing201120511851198283867110.1109/TIP.2010.2092435 – reference: WuYJiQFacial landmark detection: A literature surveyInternational Journal of Computer Vision2019127211514210.1007/s11263-018-1097-z – reference: Blanz, V., & Vetter, T. (1999). A morphable model for the synthesis of 3D faces. In Proceedings of the 26th annual conference on Computer graphics and interactive techniques (pp. 187–194). – reference: Dai, H., Pears, N., Smith, W., & Duncan, C. (2018b). Symmetric shape morphing for 3D face and head modelling. In 2018 13th IEEE international conference on automatic face gesture recognition (FG 2018) (pp. 91–97). – reference: Amberg, B., Romdhani, S., & Vetter, T. (2007). Optimal step nonrigid ICP algorithms for surface registration. In IEEE conference on computer vision and pattern recognition (pp. 1–7). – reference: Paysan, P., Knothe, R., Amberg, B., Romdhani, S., & Vetter, T. (2009). A 3D face model for pose and illumination invariant face recognition. In Sixth IEEE international conference on advanced video and signal based surveillance, 2009. AVSS’09 (pp. 296–301). – reference: BassoCVerriAHerderJFitting 3D morphable models using implicit representationsJournal of Virtual Reality and Broadcasting2007418110 – reference: Tran, L., & Liu, X. (2018). Nonlinear 3D face morphable model. arXiv preprint arXiv:1804.03786. – reference: Zhou, Y., & Zaferiou, S. (2017). Deformable models of ears in-the-wild for alignment and recognition. In 2017 12th IEEE international conference on automatic face and gesture recognition (FG 2017) (pp. 626–633). IEEE. – reference: GolovinskiyAMatusikWPfisterHRusinkiewiczSFunkhouserTA statistical model for synthesis of detailed facial geometryACM Transactions on Graphics (TOG)2006251025103410.1145/1141911.1141988 – reference: Brunton, A., Lang, J., Dubois, E., & Shu, C. (2011). Wavelet model-based stereo for fast, robust face reconstruction. In 2011 Canadian conference on computer and robot vision (CRV) (pp. 347–354). – reference: Harrison, C. R., & Robinette, K. M. (2006). Principles of fit to optimize helmet sizing. Technical report, Air Force Research Lab Wright-Patterson. – reference: CootesTFTaylorCJCooperDHGrahamJActive shape models-their training and applicationComputer vision and image understanding1995611385910.1006/cviu.1995.1004 – reference: SalazarAWuhrerSShuCPrietoFFully automatic expression-invariant face correspondenceMachine Vision and Applications201425485987910.1007/s00138-013-0579-9 – reference: CootesTFTaylorCJCombining point distribution models with shape models based on finite element analysisImage and Vision Computing199513540340910.1016/0262-8856(95)99727-I – reference: Wang, Z., Simoncelli, E. P., & Bovik, A. C. (2003). Multiscale structural similarity for image quality assessment. In The thirty-seventh Asilomar conference on signals, systems and computers, 2003 (Vol. 2, pp. 1398–1402). IEEE. – reference: VlasicDBrandMPfisterHPopovićJFace transfer with multilinear modelsACM Transactions on Graphics (TOG)20052442643310.1145/1073204.1073209 – reference: GarridoPZollhöferMCasasDValgaertsLVaranasiKPérezPTheobaltCReconstruction of personalized 3D face rigs from monocular videoACM Transactions on Graphics201635328:128:1510.1145/2890493 – reference: Albrecht, T., Knothe, R., & Vetter, T. (2008). Modeling the remaining flexibility of partially fixed statistical shape models. In 2nd MICCAI workshop on mathematical foundations of computational anatomy (pp. 160–169). – reference: BeelerTBradleyDRigid stabilization of facial expressionsACM Transactions on Graphics (TOG)20143344410.1145/2601097.2601182 – reference: ChenYMedioniGObject modelling by registration of multiple range imagesImage and Vision Computing199210314515510.1016/0262-8856(92)90066-C – reference: BooksteinFLPrincipal warps: Thin-plate splines and the decomposition of deformationsIEEE Transactions on Pattern Analysis and Machine Intelligence198911656758510.1109/34.24792 – reference: De Smet, M., & Van Gool, L. (2010). Optimal regions for linear model-based 3D face reconstruction. In Asian conference on computer vision (pp. 276–289). – reference: Sorkine, O., & Alexa, M. (2007). As-rigid-as-possible surface modeling. In Proceedings of the fifth Eurographics symposium on geometry processing (pp. 109–116). – reference: CreusotCPearsNEAustinJA machine-learning approach to keypoint detection and landmarking on 3D meshesInternational Journal of Computer Vision2013102114617910.1007/s11263-012-0605-9 – reference: LoweDGDistinctive image features from scale-invariant keypointsInternational Journal of Computer Vision20046029111010.1023/B:VISI.0000029664.99615.94 – reference: Besl, P. J., & McKay, N. D. (1992). Method for registration of 3-D shapes. In Sensor fusion IV: Control paradigms and data structures (Vol. 1611, pp. 586–607). International Society for Optics and Photonics. – reference: Petr, M., & Ivana, K. (2015). Hairstyles modeling for police identikits. In Proceedings of the 31st Spring conference on computer graphics (pp. 151–158). ACM. – reference: ter Haar, F. B., & Veltkamp, R. C. (2008) 3D face model fitting for recognition. In European conference on computer vision (pp. 652–664). – reference: Yang, F., Bourdev, L., Shechtman, E., Wang, J., & Metaxas, D. (2012). Facial expression editing in video using a temporally-smooth factorization. In 2012 IEEE conference on computer vision and pattern recognition (CVPR) (pp. 861–868). IEEE. – ident: 1260_CR1 – ident: 1260_CR13 doi: 10.1109/CVPR.2016.598 – ident: 1260_CR31 – ident: 1260_CR25 – ident: 1260_CR29 – ident: 1260_CR43 doi: 10.1007/978-3-540-88693-8_48 – volume: 13 start-page: 600 issue: 4 year: 2004 ident: 1260_CR49 publication-title: IEEE Transactions on Image Processing doi: 10.1109/TIP.2003.819861 – volume: 25 start-page: 1025 year: 2006 ident: 1260_CR30 publication-title: ACM Transactions on Graphics (TOG) doi: 10.1145/1141911.1141988 – ident: 1260_CR3 doi: 10.1109/FG.2018.00067 – ident: 1260_CR41 – ident: 1260_CR2 doi: 10.1109/CVPR.2007.383165 – ident: 1260_CR45 – volume: 40 start-page: 1860 year: 2017 ident: 1260_CR34 publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2017.2739743 – volume: 20 start-page: 413 issue: 3 year: 2014 ident: 1260_CR15 publication-title: IEEE Transactions on Visualization and Computer Graphics doi: 10.1109/TVCG.2013.249 – volume: 25 start-page: 1063 issue: 9 year: 2003 ident: 1260_CR8 publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2003.1227983 – volume: 126 start-page: 233 issue: 2–4 year: 2018 ident: 1260_CR12 publication-title: International Journal of Computer Vision doi: 10.1007/s11263-017-1009-7 – volume-title: Statistical shape analysis year: 1998 ident: 1260_CR26 – volume: 15 start-page: 3221 issue: 1 year: 2014 ident: 1260_CR46 publication-title: The Journal of Machine Learning Research – volume: 25 start-page: 859 issue: 4 year: 2014 ident: 1260_CR39 publication-title: Machine Vision and Applications doi: 10.1007/s00138-013-0579-9 – ident: 1260_CR44 doi: 10.5962/bhl.title.11332 – ident: 1260_CR42 doi: 10.1007/978-3-540-45087-0_6 – ident: 1260_CR9 doi: 10.1109/3DV.2013.22 – ident: 1260_CR38 doi: 10.1145/2788539.2788561 – ident: 1260_CR6 – volume: 60 start-page: 91 issue: 2 year: 2004 ident: 1260_CR33 publication-title: International Journal of Computer Vision doi: 10.1023/B:VISI.0000029664.99615.94 – volume: 6 start-page: 681 year: 2001 ident: 1260_CR17 publication-title: IEEE Transactions on Pattern Analysis & Machine Intelligence doi: 10.1109/34.927467 – volume: 16 start-page: 81 issue: 2 year: 1984 ident: 1260_CR32 publication-title: Bulletin of the London Mathematical Society doi: 10.1112/blms/16.2.81 – ident: 1260_CR54 doi: 10.1109/AFGR.2008.4813324 – volume: 32 start-page: 2262 issue: 12 year: 2010 ident: 1260_CR36 publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2010.46 – ident: 1260_CR56 – volume: 102 start-page: 146 issue: 1 year: 2013 ident: 1260_CR20 publication-title: International Journal of Computer Vision doi: 10.1007/s11263-012-0605-9 – ident: 1260_CR27 – volume: 24 start-page: 426 year: 2005 ident: 1260_CR47 publication-title: ACM Transactions on Graphics (TOG) doi: 10.1145/1073204.1073209 – ident: 1260_CR53 doi: 10.1145/2010324.1964955 – ident: 1260_CR21 doi: 10.1007/978-3-319-60964-5_64 – volume: 33 start-page: 44 issue: 4 year: 2014 ident: 1260_CR5 publication-title: ACM Transactions on Graphics (TOG) doi: 10.1145/2601097.2601182 – ident: 1260_CR35 doi: 10.1109/CVPR.2018.00555 – ident: 1260_CR52 doi: 10.1109/CVPR.2012.6247759 – volume: 61 start-page: 38 issue: 1 year: 1995 ident: 1260_CR19 publication-title: Computer vision and image understanding doi: 10.1006/cviu.1995.1004 – volume: 10 start-page: 145 issue: 3 year: 1992 ident: 1260_CR16 publication-title: Image and Vision Computing doi: 10.1016/0262-8856(92)90066-C – ident: 1260_CR10 doi: 10.1109/ICCV.2015.411 – ident: 1260_CR22 doi: 10.1109/ICCV.2017.335 – volume: 20 start-page: 1185 issue: 5 year: 2011 ident: 1260_CR48 publication-title: IEEE Transactions on Image Processing doi: 10.1109/TIP.2010.2092435 – ident: 1260_CR23 doi: 10.1109/FG.2018.00023 – volume: 4 start-page: 1 issue: 18 year: 2007 ident: 1260_CR4 publication-title: Journal of Virtual Reality and Broadcasting – ident: 1260_CR14 doi: 10.1109/CRV.2011.53 – ident: 1260_CR7 doi: 10.1145/311535.311556 – volume: 11 start-page: 567 issue: 6 year: 1989 ident: 1260_CR11 publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/34.24792 – ident: 1260_CR50 doi: 10.1109/ACSSC.2003.1292216 – ident: 1260_CR40 – ident: 1260_CR55 doi: 10.1109/FG.2017.79 – volume: 127 start-page: 115 issue: 2 year: 2019 ident: 1260_CR51 publication-title: International Journal of Computer Vision doi: 10.1007/s11263-018-1097-z – ident: 1260_CR37 doi: 10.1109/AVSS.2009.58 – volume: 35 start-page: 28:1 issue: 3 year: 2016 ident: 1260_CR28 publication-title: ACM Transactions on Graphics doi: 10.1145/2890493 – volume: 13 start-page: 403 issue: 5 year: 1995 ident: 1260_CR18 publication-title: Image and Vision Computing doi: 10.1016/0262-8856(95)99727-I – ident: 1260_CR24 doi: 10.1109/FG.2018.00023 |
| SSID | ssj0002823 |
| Score | 2.6319592 |
| Snippet | We present a fully-automatic statistical 3D shape modeling approach and apply it to a large dataset of 3D images, the
Headspace dataset
, thus generating the... We present a fully-automatic statistical 3D shape modeling approach and apply it to a large dataset of 3D images, the Headspace dataset, thus generating the... |
| SourceID | unpaywall proquest gale crossref springer |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 547 |
| SubjectTerms | Algorithms Artificial Intelligence Computer Imaging Computer Science Datasets Finite element method Image Processing and Computer Vision Iterative methods Model accuracy Morphing Pattern Recognition Pattern Recognition and Graphics Statistical models Surgical mesh Texture mapping Three dimensional models Vision |
| SummonAdditionalLinks | – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED_8eFAf_BanU4oIPmhxTZOsfZShqKAPfoBvIUlTFUY31g3xv_euS6cOEX1N07S5S3K_y30BHGJzhILLhDpKXMity8KEp1lomLVJK8tRA6AL_ZtbefnIr5_Ek0-TQ7EwU_b705JCXMjjh7x6EHuH7VmYF9RGhlnZmZy6qDqMy8ajOiRkGvkAmZ_H-CaEpo_iLzbRJVgYFX39_qa73S9i52IVlj1eDM7GDF6DGVesw4rHjoHfmSU21eUZ6rYNkAQkqzzMOADVPKPI86CXBx2UT6-9XNNteXD_ovsu0EUWPOA5PRq4TXi8OH_oXIa-TEJoeSyHYWQrXMKNyFqIPhhLjdEuEUZK5lxKOf2c5O1c8DjXKM1tZFzMnUhynqJwjuItmCt6hduGgDNns5aOU5PFXDKe5KIdkVnXIOqwcdKAqKabsj6HOJWy6KrP7MdEa4W0VhWtVbsBx5N3-uMMGr_2PiB2KEpNUZDvy7MelaW6ur9TZ_SzgnEZN-DId8p7-HmrfSgBToKyWX3r2azZqvzmLBVD0IkwDDXNBpzUrP58_NvPnUyWwx_msvO_0XdhkZEyX7mEN2FuOBi5PUQ8Q7NfLfUP0qbvhw priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB7SzaH00PRJt6TBlEIPjTZrvWwfl6QhCSSUJgvpSUiy1JYu3iVrU9pf35EtZ5MQQkJvRpJlvaz5RqP5BuADJqcouAzRae4It64kOS9KYqi1-bj0qAGEA_3jE3kw5Ufn4nwN9npfmPa2e2-S7HwaAktTVe8sSr-zcnxLabA_BgccfBqTbITZj2BdCkTkA1ifnnyZfGtp9lA7ErLoaFMzRlCfENF35vaKrsmnm7v0FXPpE3jcVAv957eeza5IpP0NcH1fuosov0ZNbUb27w2ax__t7DN4GiFrMunW2HNYc9UL2IjwNYmbwxKT-ggRfdpLkAHLtlTQWEEIuxac35O5T3ZRRP6cex0O7JPTH3rhEl2VyRmKiubCvYLp_uez3QMSIzUQy5msSWpbaMSNKMcIgCgtjNEuF0ZK6lwRaAWd5JkXnHmNgMKmxjHuRO55gfggZa9hUM0r9wYSTp0tx5oVpmRcUp57kaXBsmwQ-FiWDyHt50fZSGMeomnM1IqAOYyXwvFS7XipbAifLt9ZdCQed5Z-H6ZdBXaMKly_-a6b5VIdnn5Vk9BYQblkQ_gYC_k5ft7q6M2AnQiEWtdKbvbLR8X9Yako4l5EgqjsDmG7XwGr7Lsat3257O7Rl7cPK74Jg_qice8QZ9VmK_5G_wDdEBob priority: 102 providerName: Unpaywall |
| Title | Statistical Modeling of Craniofacial Shape and Texture |
| URI | https://link.springer.com/article/10.1007/s11263-019-01260-7 https://www.proquest.com/docview/2352397899 https://link.springer.com/content/pdf/10.1007/s11263-019-01260-7.pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 128 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1573-1405 dateEnd: 20241101 omitProxy: true ssIdentifier: ssj0002823 issn: 1573-1405 databaseCode: ABDBF dateStart: 20030401 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1573-1405 dateEnd: 20241101 omitProxy: false ssIdentifier: ssj0002823 issn: 1573-1405 databaseCode: ADMLS dateStart: 19870101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1573-1405 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002823 issn: 1573-1405 databaseCode: AFBBN dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1573-1405 dateEnd: 20241101 omitProxy: true ssIdentifier: ssj0002823 issn: 1573-1405 databaseCode: BENPR dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1573-1405 dateEnd: 20241101 omitProxy: true ssIdentifier: ssj0002823 issn: 1573-1405 databaseCode: 8FG dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1573-1405 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002823 issn: 1573-1405 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1573-1405 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002823 issn: 1573-1405 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9swED_a5GHrQ_dNs3XBjMEeVrFYlhX7YQwvJO02FkrbQPskJFleC8HOmoSy_353jpy0ewh7MeYsW5--D53udwDvkRyi4DJMh4ljwrqcJSLNmeHWJr28QAuANvR_juXJRHy_jC93YNzEwtCxyoYn1ow6ryztkX_iqCmg7ETz4MvsN6OsUeRdbVJoaJ9aIf9cQ4ztQpsTMlYL2l-H49OzNW9GA2OVXB6NplimoQ-jWQXThZx8mhTUg3c91n8gqv5l2Pc8p3vwaFnO9J87PZ3eE06jp7DvtcogWy2DZ7DjyufwxGuYgf9_50hqkjg0tBcgSd2s0ZrxA5QZjeLTg6oIBijFbqpC0556cH6tZy7QZR5cIDdf3rqXMBkNLwYnzCdTYFZEcsFCW2svwsR5D3UUzlNjtEtiIyV3LiXkPydFv4hFVGiU-TY0LhIuTgqRoggPo1fQKqvSHUAguLN5T0epySMhuUiKuB-S89egbmKjpANhM27KeqRxSngxVRuMZBprhWOt6rFW_Q58XL8zW-FsbC39jqZDEYBFSSdkfunlfK6-nZ-pjBobcyGjDnzwhYoKq7faBxxgJwjz6kHJw2Zalf-F52qz4Dpw1Ez15vG2xh2tl8N_9OX19srfwGNOJn59UPwQWovbpXuLetDCdGE3GR13oZ0dX_0Ydv1SR-pADvA64RnSJuPT7OovnPgDcA |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB5RONAeSp9qWmitqlUPxWq8Xm_sA0KUgpICUQVB4rbsy1ApslOcCPHn-tuYcdYJ9BD1ws1ar_cxu95vHjszAJ-wOELg0qGKUhdy42yY8syGmhmTtm2OEgAp9I_6onvKf54lZ0vwt_GFoWuVzZlYH9S2NKQj_8aQU0DsRPFge_QnpKxRZF1tUmgon1rBbtUhxrxjx4G7uUYRrtrq_cD1_szY_t5gtxv6LAOh4bEYh5GpYZ3rxLYRvBnLtFYuTbQQzLmMQuI5wTt5wuNcIRiaSLuYuyTNeYbYFsXY7iNY4THPUPhb-b7X_3U8wwIUaKbJ7FFIS0QWebedqfNexMiGSk5E-NQOO_eg8V-AuGOpfQKrk2Kkbq7VcHgHDPefwVPPxQY70233HJZc8QLWPEcb-POiwqImaURT9hIEsbd1dGhsgDKxkT98UObBLqLm7zJXpMMPTi7VyAWqsMEA0WNy5V7B6YOQ9TUsF2Xh3kDAmTO2reJM25gLxtM86URkbNbIC5k4bUHU0E0aH9mcEmwM5TwmM9FaIq1lTWvZacHX2TejaVyPhbU_0nJICphR0I2cCzWpKtk7OZY7NNiEcRG34IuvlJfYvVHewQEnQTG27tVcb5ZV-iOjkvMN3oLNZqnnrxcNbnO2Hf5jLm8Xd_4BVruDo0N52OsfvIPHjNQL9SX1dVgeX03cBvJgY_3eb_QAzh_637oFPRs4WA |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dTxQxEJ8gJioPfhtOURuj8UE2XLvdrwdjCHhyosQIJLyVttsVksvuyd6F8K_x1zGz270DHy6-8LbpdrvtdNrfzLQzA_AeizkClwk0T10grcuDVGZ5YIS1aT8vUAMgg_7PvXjnUH4_io6W4LLzhaFrld2e2GzUeWXJRr4hUFJA7ET1YKPw1yJ-bQ--jP8GlEGKTlq7dBoti-y6i3NU3-rPw22c6w9CDL4ebO0EPsNAYGUYTwJuG0iXJsr7CNxCZMZol0YmjoVzGYXDc7FMikiGhUYgtNy4ULooLWSGuMZDbPcO3E0oijt5qQ--zVAAVZk2jT2qZ1Gcce-w07rtcUGnp-Q-hE_9ILkBiv9Cw7Uz2hW4Py3H-uJcj0bXYHDwGB56-ZVttgz3BJZc-RQeeVmW-Z2ixqIuXURX9gxiEmybuNDYAOVgI094VhVsC_HytCo0We_Z_okeO6bLnB0g8adn7jkc3gpRX8ByWZVuFZgUzuZ9HWYmD2UsZFpECadjZoNSkA3THvCObsr6mOaUWmOk5tGYidYKaa0aWqukB59m34zbiB4La7-j6VAUKqMkpvujp3Wthvu_1SZ1NhIyDnvw0VcqKvy91d61AQdB0bVu1FzrplX5zaJWc9buwXo31fPXizq3PmOH_xjLy8U_fwv3cEWpH8O93VfwQJBdobmdvgbLk7Ope43C18S8abicwfFtL6srf9418g |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB7SzaH00PRJt6TBlEIPjTZrvWwfl6QhCSSUJgvpSUiy1JYu3iVrU9pf35EtZ5MQQkJvRpJlvaz5RqP5BuADJqcouAzRae4It64kOS9KYqi1-bj0qAGEA_3jE3kw5Ufn4nwN9npfmPa2e2-S7HwaAktTVe8sSr-zcnxLabA_BgccfBqTbITZj2BdCkTkA1ifnnyZfGtp9lA7ErLoaFMzRlCfENF35vaKrsmnm7v0FXPpE3jcVAv957eeza5IpP0NcH1fuosov0ZNbUb27w2ax__t7DN4GiFrMunW2HNYc9UL2IjwNYmbwxKT-ggRfdpLkAHLtlTQWEEIuxac35O5T3ZRRP6cex0O7JPTH3rhEl2VyRmKiubCvYLp_uez3QMSIzUQy5msSWpbaMSNKMcIgCgtjNEuF0ZK6lwRaAWd5JkXnHmNgMKmxjHuRO55gfggZa9hUM0r9wYSTp0tx5oVpmRcUp57kaXBsmwQ-FiWDyHt50fZSGMeomnM1IqAOYyXwvFS7XipbAifLt9ZdCQed5Z-H6ZdBXaMKly_-a6b5VIdnn5Vk9BYQblkQ_gYC_k5ft7q6M2AnQiEWtdKbvbLR8X9Yako4l5EgqjsDmG7XwGr7Lsat3257O7Rl7cPK74Jg_qice8QZ9VmK_5G_wDdEBob |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Statistical+Modeling+of+Craniofacial+Shape+and+Texture&rft.jtitle=International+journal+of+computer+vision&rft.au=Dai%2C+Hang&rft.au=Pears%2C+Nick&rft.au=Smith%2C+William&rft.au=Duncan%2C+Christian&rft.date=2020-02-01&rft.pub=Springer&rft.issn=0920-5691&rft.volume=128&rft.issue=2&rft.spage=547&rft_id=info:doi/10.1007%2Fs11263-019-01260-7&rft.externalDocID=A614152463 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-5691&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-5691&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-5691&client=summon |