Liquid flow and phase holdup—measurement and CFD modeling for two-and three-phase bubble columns

Bubble columns are an important class of contacting devices in chemical industry and biotechnology. Their simple setup makes them ideal reactors for two- and three-phase operations such as fermentations or heterogeneous catalysis. Still, design and operation of these reactors is subject to widely em...

Full description

Saved in:
Bibliographic Details
Published inChemical engineering science Vol. 57; no. 11; pp. 1899 - 1908
Main Authors Michele, Volker, Hempel, Dietmar C.
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.06.2002
Elsevier
Subjects
Online AccessGet full text
ISSN0009-2509
1873-4405
DOI10.1016/S0009-2509(02)00051-9

Cover

Abstract Bubble columns are an important class of contacting devices in chemical industry and biotechnology. Their simple setup makes them ideal reactors for two- and three-phase operations such as fermentations or heterogeneous catalysis. Still, design and operation of these reactors is subject to widely empirical scale-up strategies. With recent advances in the development of measurement techniques, a more detailed approach to the development of optimized reactors for specific operations should become possible. This report is based on detailed measurements of local dispersed phase holdups in a pilot plant-sized bubble column operated at high superficial gas velocities and solid holdups. It deals with the influence of superficial gas velocity, solid loading and sparger geometry on measured and computed liquid flow velocities and holdup distributions. Liquid velocity measurements have been performed using the electrodiffusion method, modeling calculations have been carried out using the computational fluid dynamics (CFD) code CFX-4.3. Measurement results presented here give an insight into the development of liquid circulation and fluctuating velocity distribution depending on superficial gas velocity, solid loading and sparger geometry. CFD results implementing a multi-fluid model with k– ε turbulence and special momentum exchange terms for direct gas–solid interactions show that, even on standard PC workstations, this kind of computations can deliver qualitatively reasonable agreement with measurements.
AbstractList The simple setup of bubble columns makes them ideal reactors for two- and three-phase operations such as fermentations or heterogeneous catalysis, but design and operation of these reactors is subject to widely empirical scale-up strategies. This report is based on detailed measurements of local dispersed phase holdups in a pilot plant-sized bubble column operated at high superficial gas velocities and solid holdups. It deals with the influence of superficial gas velocity, solid loading and sparger geometry on measured and computed liquid flow velocities and holdup distributions. Liquid velocity measurements have been performed using the electrodiffusion method, modelling calculations have been carried out using the computational fluid dynamics (CFD) code CFX-4.3. Measurement results presented here give an insight into the development of liquid circulation and fluctuating velocity distribution depending on superficial gas velocity, solid loading and sparger geometry. CFD results implementing a multi-fluid model with kappa-epsilon turbulence and special momentum exchange terms for direct gas-solid interactions show that, even on standard PC workstations, this kind of computations can deliver qualitatively reasonable agreement with measurements. (Original abstract - amended)
Bubble columns are an important class of contacting devices in chemical industry and biotechnology. Their simple setup makes them ideal reactors for two- and three-phase operations such as fermentations or heterogeneous catalysis. Still, design and operation of these reactors is subject to widely empirical scale-up strategies. With recent advances in the development of measurement techniques, a more detailed approach to the development of optimized reactors for specific operations should become possible. This report is based on detailed measurements of local dispersed phase holdups in a pilot plant-sized bubble column operated at high superficial gas velocities and solid holdups. It deals with the influence of superficial gas velocity, solid loading and sparger geometry on measured and computed liquid flow velocities and holdup distributions. Liquid velocity measurements have been performed using the electrodiffusion method, modeling calculations have been carried out using the computational fluid dynamics (CFD) code CFX-4.3. Measurement results presented here give an insight into the development of liquid circulation and fluctuating velocity distribution depending on superficial gas velocity, solid loading and sparger geometry. CFD results implementing a multi-fluid model with k– ε turbulence and special momentum exchange terms for direct gas–solid interactions show that, even on standard PC workstations, this kind of computations can deliver qualitatively reasonable agreement with measurements.
Bubble columns are an important class of contacting devices in chemical industry and biotechnology. Their simple setup makes them ideal reactors for two- and three-phase operations such as fermentations or heterogeneous catalysis. Still, design and operation of these reactors is subject to widely empirical scale-up strategies. With recent advances in the development of measurement techniques, a more detailed approach to the development of optimized reactors for specific operations should become possible. This report is based on detailed measurements of local dispersed phase holdups in a pilot plant-sized bubble column operated at high superficial gas velocities and solid holdups. It deals with the influence of superficial gas velocity, solid loading and sparger geometry on measured and computed liquid flow velocities and holdup distributions. Liquid velocity measurements have been performed using the electrodiffusion method, modeling calculations have been carried out using the computational fluid dynamics (CFD) code CFX-4.3. Measurement results presented here give an insight into the development of liquid circulation and fluctuating velocity distribution depending on superficial gas velocity, solid loading and sparger geometry. CFD results implementing a multi-fluid model with k- epsilon turbulence and special momentum exchange terms for direct gas-solid interactions show that, even on standard PC workstations, this kind of computations can deliver qualitatively reasonable agreement with measurements. copyright 2002 Elsevier Science Ltd. All rights reserved.
Author Michele, Volker
Hempel, Dietmar C.
Author_xml – sequence: 1
  givenname: Volker
  surname: Michele
  fullname: Michele, Volker
  organization: Technical University of Braunschweig, Institute of Biochemical Engineering, Gaussstrasse 17, D-38106 Braunschweig, Germany
– sequence: 2
  givenname: Dietmar C.
  surname: Hempel
  fullname: Hempel, Dietmar C.
  email: d.hempel@tu-bs.de
  organization: Technical University of Braunschweig, Institute of Biochemical Engineering, Gaussstrasse 17, D-38106 Braunschweig, Germany
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=13729628$$DView record in Pascal Francis
BookMark eNqFkcFO3DAQhq0KpC7QR6iUSys4BGwnsRNxQNVSCtJKPZS75djjrivH3rUdUG88BE_YJ2l2F-2By55Go__7Z0bzn6AjHzwg9JngS4IJu_qFMe5K2uDuHNOLqWlI2X1AM9Lyqqxr3Byh2R75iE5S-jO1nBM8Q_3CrkerC-PCcyG9LlZLmaBYBqfH1b-X1wFkGiMM4PNWnt_dFkPQ4Kz_XZgQi_wcyo2QlxGg3Ln7se8dFCq4cfDpDB0b6RJ8equn6PHu--P8vlz8_PEw_7YoVV2xXBIpTQegWd1BVYOW2lBWadxVxlDF-SRTpYlmnPGaEgyMYdYaiWmlmh5Xp-jrbuwqhvUIKYvBJgXOSQ9hTILy6R-UdYdBUre85WwCv7yBMinpTJRe2SRW0Q4y_hWk4rRjtJ246x2nYkgpghHKZplt8DlK6wTBYpOT2OYkNiEITMU2J7E5p3nn3i844LvZ-WD66ZOFKJKy4BVoG0FloYM9MOE_XdqtlQ
CODEN CESCAC
CitedBy_id crossref_primary_10_1002_cjce_5450810355
crossref_primary_10_1021_ie801202x
crossref_primary_10_1016_j_powtec_2023_118869
crossref_primary_10_1021_ie200671k
crossref_primary_10_1016_j_ces_2005_02_017
crossref_primary_10_1016_j_ces_2013_02_034
crossref_primary_10_1016_j_eng_2021_03_002
crossref_primary_10_1021_acs_iecr_1c00609
crossref_primary_10_1016_j_powtec_2016_05_024
crossref_primary_10_1016_j_biosystemseng_2012_08_001
crossref_primary_10_1016_j_ces_2009_08_006
crossref_primary_10_1016_j_jbiosc_2012_07_015
crossref_primary_10_1016_j_biortech_2012_08_134
crossref_primary_10_1016_j_compfluid_2018_07_009
crossref_primary_10_26634_jfet_3_2_684
crossref_primary_10_1016_j_procbio_2004_10_004
crossref_primary_10_1002_ceat_200600395
crossref_primary_10_1080_19942060_2020_1715842
crossref_primary_10_1016_j_cjche_2015_06_020
crossref_primary_10_1016_j_ijmultiphaseflow_2010_01_006
crossref_primary_10_1002_aic_17462
crossref_primary_10_1016_j_cej_2009_12_007
crossref_primary_10_1016_j_ijmultiphaseflow_2015_03_015
crossref_primary_10_1061__ASCE_EE_1943_7870_0000678
crossref_primary_10_1021_ie049555j
crossref_primary_10_1002_cjce_5450830417
crossref_primary_10_1016_j_ijft_2022_100235
crossref_primary_10_3389_fpls_2017_01137
crossref_primary_10_1007_s11814_014_0063_x
crossref_primary_10_1016_j_compag_2011_01_015
crossref_primary_10_1016_j_egypro_2015_01_036
crossref_primary_10_1016_j_flowmeasinst_2009_12_005
crossref_primary_10_1021_ie0715254
crossref_primary_10_1016_j_cep_2008_04_004
crossref_primary_10_1002_aic_10425
crossref_primary_10_1021_ie201108b
crossref_primary_10_1016_j_bej_2022_108770
crossref_primary_10_1098_rsos_171255
crossref_primary_10_1515_ijcre_2014_0146
crossref_primary_10_1016_S1003_9953_11_60347_2
crossref_primary_10_1590_0104_6632_20190361s20180185
crossref_primary_10_1016_j_cep_2019_107633
crossref_primary_10_1016_j_ces_2009_12_001
crossref_primary_10_1021_ie9013925
crossref_primary_10_1016_j_powtec_2024_120244
crossref_primary_10_1080_19942060_2019_1613448
crossref_primary_10_1016_j_ces_2005_04_001
crossref_primary_10_1016_j_renene_2019_11_008
crossref_primary_10_1515_REVCE_2004_20_3_4_225
crossref_primary_10_1016_j_cep_2020_108101
crossref_primary_10_1002_1522_2640_20020915_74_9_1326__AID_CITE1326_3_0_CO_2_U
crossref_primary_10_1016_j_cej_2007_03_023
crossref_primary_10_1016_j_ces_2018_01_002
crossref_primary_10_1002_cite_201200227
crossref_primary_10_1016_j_cej_2017_01_114
crossref_primary_10_1016_j_ces_2016_02_042
crossref_primary_10_1016_j_rser_2014_11_008
crossref_primary_10_1016_j_cep_2025_110156
crossref_primary_10_1016_j_ces_2009_08_016
crossref_primary_10_1002_aic_11254
crossref_primary_10_1016_j_ces_2006_08_046
crossref_primary_10_1016_j_cep_2022_108936
crossref_primary_10_1021_acs_iecr_5b04015
crossref_primary_10_1021_acs_energyfuels_2c02768
crossref_primary_10_1002_aic_14528
crossref_primary_10_1002_aic_17510
crossref_primary_10_1016_j_powtec_2016_09_083
crossref_primary_10_1016_j_ces_2021_117413
crossref_primary_10_1016_j_cej_2011_05_068
crossref_primary_10_1016_j_cep_2023_109523
crossref_primary_10_1016_j_expthermflusci_2014_07_016
crossref_primary_10_1016_j_fuel_2014_08_007
Cites_doi 10.1016/S0009-2509(00)00335-3
10.1016/S0009-2509(99)00587-4
10.1002/(SICI)1521-4125(199909)22:9<767::AID-CEAT767>3.0.CO;2-6
10.1002/(SICI)1521-4125(200003)23:3<222::AID-CEAT222>3.0.CO;2-#
10.1016/S0009-2509(99)00261-4
10.1002/(SICI)1521-4125(200004)23:4<347::AID-CEAT347>3.0.CO;2-0
10.1002/1521-4125(200010)23:10<877::AID-CEAT877>3.3.CO;2-6
10.1002/cite.330700614
ContentType Journal Article
Copyright 2002 Elsevier Science Ltd
2002 INIST-CNRS
Copyright_xml – notice: 2002 Elsevier Science Ltd
– notice: 2002 INIST-CNRS
DBID AAYXX
CITATION
IQODW
8FD
F28
FR3
DOI 10.1016/S0009-2509(02)00051-9
DatabaseName CrossRef
Pascal-Francis
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitleList Technology Research Database


DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EISSN 1873-4405
EndPage 1908
ExternalDocumentID 623667
13729628
10_1016_S0009_2509_02_00051_9
S0009250902000519
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29B
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNUV
ABTAH
ABXDB
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACNCT
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AI.
AIDUJ
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
HLY
HVGLF
HZ~
IHE
J1W
KOM
LX7
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SC5
SCE
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSG
SSZ
T5K
T9H
VH1
WUQ
XFK
XPP
Y6R
ZMT
ZY4
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AFXIZ
AGRNS
BNPGV
IQODW
SSH
8FD
ACLOT
F28
FR3
ID FETCH-LOGICAL-c436t-1aaf9eed649e34edadf263d093ff2c77aaf2cd1d67674210e66068fa023c5b03
IEDL.DBID .~1
ISSN 0009-2509
IngestDate Sat Sep 27 17:01:55 EDT 2025
Thu Sep 04 20:43:25 EDT 2025
Mon Jul 21 09:17:42 EDT 2025
Thu Sep 18 00:31:22 EDT 2025
Thu Apr 24 22:59:56 EDT 2025
Fri Feb 23 02:34:55 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords CFD
Multiphase reactors
Turbulence
Momentum transfer
Fluidization
Modeling
Gas liquid
Gas holdup
Two phase flow
Multiphase flow
Volume fraction
Computational fluid dynamics
Hydrodynamics
Velocity distribution
Particle suspension
Experimental study
Flow velocity measurement
Flow field
Three phase flow
Bubble column
Gas liquid solid
Numerical simulation
Flow velocity
Liquid flow
Electrodiffusion
Measurement method
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c436t-1aaf9eed649e34edadf263d093ff2c77aaf2cd1d67674210e66068fa023c5b03
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 21487876
PQPubID 23462
PageCount 10
ParticipantIDs proquest_miscellaneous_27187269
proquest_miscellaneous_21487876
pascalfrancis_primary_13729628
crossref_citationtrail_10_1016_S0009_2509_02_00051_9
crossref_primary_10_1016_S0009_2509_02_00051_9
elsevier_sciencedirect_doi_10_1016_S0009_2509_02_00051_9
PublicationCentury 2000
PublicationDate 2002-06-01
PublicationDateYYYYMMDD 2002-06-01
PublicationDate_xml – month: 06
  year: 2002
  text: 2002-06-01
  day: 01
PublicationDecade 2000
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Chemical engineering science
PublicationYear 2002
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Wilcox, D. C. (1998). Turbulence modelling for CFD (2nd ed.). La Cañada, CA: DCW Industries, Inc.
Dziallas, H. (2000).
Pfleger, Gomes, Gilbert, Wagner (BIB12) 1999; 54
Onken, Hainke (BIB10) 1999; 22
Tillenkamp, Loth (BIB13) 2000; 23
1.html or via http://www.ibvt.de/forschung/diss/diss.htm.
Paderborn: Fit-Verlag.
Deckwer (BIB5) 1992
Padial, VanderHeyden, Rauenzahn, Yarbro (BIB11) 2000; 55
(10), 877–884; see also correction of misprinted figures in
Lehr, Mewes (BIB8) 2001; 56
Braeske, Brenn, Domnick, Durst, Melling, Ziema (BIB2) 1998; 70
Clift, Grace, Weber (BIB3) 1978
Ph.D. Thesis, Technical University of Braunschweig/Germany. In D. C. Hempel (Ed.)
Dziallas, H., Michele, V., & Hempel, D. C. (2000). Measurement of local phase holdups in a two- and three-phase bubble column.
(2001) 1, 102–103.
Michele, V. (2002). CFD modeling and measurement of liquid flow structure and phase holdup in two- and three-phase bubble columns. Ph.D. Thesis, Technical University of Braunschweig/Germany. In D.C. Hempel (Ed.), ibvt-Schriftenreihe. Paderborn: Fit-Verlag; to be published in Spring 2002. Also available for free download from http://opus.tu-bs.de/opus/index⧹underline
Becker, De Bie, Sweeney (BIB1) 2000; 23
Crowe, Sommerfeld, Tsuji (BIB4) 1998
Braeske (10.1016/S0009-2509(02)00051-9_BIB2) 1998; 70
Lehr (10.1016/S0009-2509(02)00051-9_BIB8) 2001; 56
Tillenkamp (10.1016/S0009-2509(02)00051-9_BIB13) 2000; 23
Clift (10.1016/S0009-2509(02)00051-9_BIB3) 1978
Deckwer (10.1016/S0009-2509(02)00051-9_BIB5) 1992
Crowe (10.1016/S0009-2509(02)00051-9_BIB4) 1998
Padial (10.1016/S0009-2509(02)00051-9_BIB11) 2000; 55
Pfleger (10.1016/S0009-2509(02)00051-9_BIB12) 1999; 54
Onken (10.1016/S0009-2509(02)00051-9_BIB10) 1999; 22
10.1016/S0009-2509(02)00051-9_BIB14
cr-split#-10.1016/S0009-2509(02)00051-9_BIB7.1
cr-split#-10.1016/S0009-2509(02)00051-9_BIB7.2
cr-split#-10.1016/S0009-2509(02)00051-9_BIB9.1
Becker (10.1016/S0009-2509(02)00051-9_BIB1) 2000; 23
cr-split#-10.1016/S0009-2509(02)00051-9_BIB9.2
10.1016/S0009-2509(02)00051-9_BIB6
References_xml – reference: Dziallas, H. (2000).
– volume: 55
  start-page: 3261
  year: 2000
  end-page: 3273
  ident: BIB11
  article-title: Three-dimensional simulation of a three-phase draft-tube bubble column
  publication-title: Chemical Engineering Science
– volume: 70
  start-page: 737
  year: 1998
  end-page: 741
  ident: BIB2
  article-title: Erweiterte Phasen-Doppler-Anemometrie zur Untersuchung dreiphasiger strömungen
  publication-title: Chemie Ingenieur Technik
– reference: Michele, V. (2002). CFD modeling and measurement of liquid flow structure and phase holdup in two- and three-phase bubble columns. Ph.D. Thesis, Technical University of Braunschweig/Germany. In D.C. Hempel (Ed.), ibvt-Schriftenreihe. Paderborn: Fit-Verlag; to be published in Spring 2002. Also available for free download from http://opus.tu-bs.de/opus/index⧹underline
– reference: Paderborn: Fit-Verlag.
– reference: Wilcox, D. C. (1998). Turbulence modelling for CFD (2nd ed.). La Cañada, CA: DCW Industries, Inc.
– volume: 23
  start-page: 222
  year: 2000
  end-page: 226
  ident: BIB1
  article-title: Study on the flow structure in an aerated flat apparatus using laser doppler anemometry
  publication-title: Chemical Engineering and Technology
– year: 1992
  ident: BIB5
  publication-title: Bubble column reactors
– reference: (2001) 1, 102–103.
– reference: Ph.D. Thesis, Technical University of Braunschweig/Germany. In D. C. Hempel (Ed.),
– volume: 23
  start-page: 347
  year: 2000
  end-page: 352
  ident: BIB13
  article-title: Phase distribution measurements during transient bubbly two-phase flow in a vertical pipe
  publication-title: Chemical Engineering and Technology
– volume: 56
  start-page: 1159
  year: 2001
  end-page: 1166
  ident: BIB8
  article-title: A transport equation for the interfacial area density applied to bubble columns
  publication-title: Chemical Engineering Science
– reference: (10), 877–884; see also correction of misprinted figures in
– reference: Dziallas, H., Michele, V., & Hempel, D. C. (2000). Measurement of local phase holdups in a two- and three-phase bubble column.
– year: 1978
  ident: BIB3
  publication-title: Bubbles, drops and particles
– year: 1998
  ident: BIB4
  publication-title: Multiphase flows with droplets and particles
– reference: 1.html or via http://www.ibvt.de/forschung/diss/diss.htm.
– volume: 22
  start-page: 767
  year: 1999
  end-page: 772
  ident: BIB10
  article-title: Measurement of hydrodynamics and dissolved oxygen with a polarographic microelectrode
  publication-title: Chemical Engineering and Technology
– volume: 54
  start-page: 5091
  year: 1999
  end-page: 5099
  ident: BIB12
  article-title: Hydrodynamic simulations of laboratory scale bubble columns fundamental studies of the Eulerian–Eulerian modelling approach
  publication-title: Chemical Engineering Science
– volume: 56
  start-page: 1159
  year: 2001
  ident: 10.1016/S0009-2509(02)00051-9_BIB8
  article-title: A transport equation for the interfacial area density applied to bubble columns
  publication-title: Chemical Engineering Science
  doi: 10.1016/S0009-2509(00)00335-3
– ident: 10.1016/S0009-2509(02)00051-9_BIB14
– volume: 55
  start-page: 3261
  year: 2000
  ident: 10.1016/S0009-2509(02)00051-9_BIB11
  article-title: Three-dimensional simulation of a three-phase draft-tube bubble column
  publication-title: Chemical Engineering Science
  doi: 10.1016/S0009-2509(99)00587-4
– year: 1992
  ident: 10.1016/S0009-2509(02)00051-9_BIB5
– ident: #cr-split#-10.1016/S0009-2509(02)00051-9_BIB7.2
– year: 1998
  ident: 10.1016/S0009-2509(02)00051-9_BIB4
– volume: 22
  start-page: 767
  issue: 9
  year: 1999
  ident: 10.1016/S0009-2509(02)00051-9_BIB10
  article-title: Measurement of hydrodynamics and dissolved oxygen with a polarographic microelectrode
  publication-title: Chemical Engineering and Technology
  doi: 10.1002/(SICI)1521-4125(199909)22:9<767::AID-CEAT767>3.0.CO;2-6
– volume: 23
  start-page: 222
  issue: 3
  year: 2000
  ident: 10.1016/S0009-2509(02)00051-9_BIB1
  article-title: Study on the flow structure in an aerated flat apparatus using laser doppler anemometry
  publication-title: Chemical Engineering and Technology
  doi: 10.1002/(SICI)1521-4125(200003)23:3<222::AID-CEAT222>3.0.CO;2-#
– volume: 54
  start-page: 5091
  year: 1999
  ident: 10.1016/S0009-2509(02)00051-9_BIB12
  article-title: Hydrodynamic simulations of laboratory scale bubble columns fundamental studies of the Eulerian–Eulerian modelling approach
  publication-title: Chemical Engineering Science
  doi: 10.1016/S0009-2509(99)00261-4
– volume: 23
  start-page: 347
  issue: 4
  year: 2000
  ident: 10.1016/S0009-2509(02)00051-9_BIB13
  article-title: Phase distribution measurements during transient bubbly two-phase flow in a vertical pipe
  publication-title: Chemical Engineering and Technology
  doi: 10.1002/(SICI)1521-4125(200004)23:4<347::AID-CEAT347>3.0.CO;2-0
– ident: #cr-split#-10.1016/S0009-2509(02)00051-9_BIB7.1
  doi: 10.1002/1521-4125(200010)23:10<877::AID-CEAT877>3.3.CO;2-6
– ident: #cr-split#-10.1016/S0009-2509(02)00051-9_BIB9.1
– year: 1978
  ident: 10.1016/S0009-2509(02)00051-9_BIB3
– ident: #cr-split#-10.1016/S0009-2509(02)00051-9_BIB9.2
– ident: 10.1016/S0009-2509(02)00051-9_BIB6
– volume: 70
  start-page: 737
  issue: 6
  year: 1998
  ident: 10.1016/S0009-2509(02)00051-9_BIB2
  article-title: Erweiterte Phasen-Doppler-Anemometrie zur Untersuchung dreiphasiger strömungen
  publication-title: Chemie Ingenieur Technik
  doi: 10.1002/cite.330700614
SSID ssj0007710
Score 2.0233004
Snippet Bubble columns are an important class of contacting devices in chemical industry and biotechnology. Their simple setup makes them ideal reactors for two- and...
The simple setup of bubble columns makes them ideal reactors for two- and three-phase operations such as fermentations or heterogeneous catalysis, but design...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1899
SubjectTerms Applied sciences
Biotechnology
Bubble columns
Catalysis
CFD
Chemical engineering
Chemical industry
Chemical reactors
Computational fluid dynamics
Exact sciences and technology
Fermentation
Fluidization
Hydrodynamics of contact apparatus
Modeling
Momentum transfer
Multiphase reactors
Optimization
Personal computers
Turbulence
Title Liquid flow and phase holdup—measurement and CFD modeling for two-and three-phase bubble columns
URI https://dx.doi.org/10.1016/S0009-2509(02)00051-9
https://www.proquest.com/docview/21487876
https://www.proquest.com/docview/27187269
Volume 57
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1873-4405
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007710
  issn: 0009-2509
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1873-4405
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007710
  issn: 0009-2509
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Journal Collection
  customDbUrl:
  eissn: 1873-4405
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007710
  issn: 0009-2509
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-4405
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007710
  issn: 0009-2509
  databaseCode: AKRWK
  dateStart: 19510101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LTuMw0EJwASEELCvKo_iwh-VgcBPXqY-oUBV2lxNI3Cy_oq1U0uw2ETfER_CFfAljJyGL0ILE1fY41sxkHvY8EPqm4p5N04gTYZjzDkqfaOAL4jgY46JvHNf-auDXJR9fs4ub_s0CGja5MD6sspb9lUwP0roeOa6xeZxPJj7HlwpQ4IJGlSHiM9gZ92F9R_dtmEeS9GjTTc2vbrN4qh3C4HcaHYZNiPifflrN1RywllbtLt5I7qCORutorbYj8Ul11A204LJNtPJPdcEvSP-c_CknFqfT2R1WmcX5b1BZ2L83lfnTw-Ntez0YpoejUxwa4wA0BlsWF3cz4icKoLcjFbQutZ46bLxQy-Zb6Gp0djUck7qlAjEs5gXpKZUKUIucCRczZ5UFOsWWihgIZpIEpiNje9aXcWPgDToODs4gVaDZTV_T-CtazGaZ20YYPGcN3o4BC8yxGAANuOWUWuVUqmKXdBBr8ChNXW7cd72YyjauDNAvPfoljWRAvxQddPQCllf1Nj4CGDREkq8YR4JO-Ai0-4qo7Qf9WyaPBh100FBZwl_nn1JU5mblXEbgRQJL83dWgNJPIi52Pn--XbQces-EO589tFj8Ld0-mECF7gYe76Klk_Mf48tnz1YBmw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxEB6V9AAIIZ4iPFofOMDB1Nn1euNjFYhSmuYUpN4sv1ZECpul2VWv_RH8Qn4JY-9uQ4WgEld7x2vNjOeb8WMG4K1OR64oEkGl5T4EKBk1qBfUC3TGZWa9MGFr4GwhZl_45_PsfA8m_VuYcK2ys_2tTY_Wums56rh5VK1W4Y0vkwjgkiWtI3IH9nmGNnkA-8cnp7PFtUHO8xHrC6oFgt1DnnaQ2PiOJe_jOFT-DaIeVHqLjCvaihd_GO-ISNNH8LBzJclxO9vHsOfLJ3D_twSDT8HMV9-blSPFenNJdOlI9RVRi4Qjp6b6efXj226HMHZPph9JrI2D1ATdWVJfbmjoqFHknrbUpjFm7YkNdq3cPoPl9NNyMqNdVQVqeSpqOtK6kIiMgkufcu-0Q1GljskUZWbzHLsT60YuZHLjGBB6gTHOuNAI7jYzLH0Og3JT-hdAMHg2GPBYdMI8T5HQYmTOmNNeFzr1-RB4z0dlu4zjofDFWu2uliH7VWC_YomK7FdyCB-uyao25cZtBONeSOqG7iiEhdtID24IdffDcJwpkvEQDnspK1x44TRFl37TbFWCgSRqtfjHF4j7eSLky_-f3yHcnS3P5mp-sjh9BfdiKZq4BfQaBvVF49-gR1Sbg07jfwGUagRG
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Liquid+flow+and+phase+holdup-measurement+and+CFD+modeling+for+two-+and+three-phase+bubble+columns&rft.jtitle=Chemical+engineering+science&rft.au=MICHELE%2C+Volker&rft.au=HEMPEL%2C+Dietmar+C&rft.date=2002-06-01&rft.pub=Elsevier&rft.issn=0009-2509&rft.volume=57&rft.issue=11&rft.spage=1899&rft.epage=1908&rft_id=info:doi/10.1016%2FS0009-2509%2802%2900051-9&rft.externalDBID=n%2Fa&rft.externalDocID=13729628
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0009-2509&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0009-2509&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0009-2509&client=summon