The Multiple-Try Method and Local Optimization in Metropolis Sampling
This article describes a new Metropolis-like transition rule, the multiple-try Metropolis, for Markov chain Monte Carlo (MCMC) simulations. By using this transition rule together with adaptive direction sampling, we propose a novel method for incorporating local optimization steps into a MCMC sample...
Saved in:
| Published in | Journal of the American Statistical Association Vol. 95; no. 449; pp. 121 - 134 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Alexandria, VA
Taylor & Francis Group
01.03.2000
American Statistical Association Taylor & Francis Ltd |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0162-1459 1537-274X |
| DOI | 10.1080/01621459.2000.10473908 |
Cover
| Abstract | This article describes a new Metropolis-like transition rule, the multiple-try Metropolis, for Markov chain Monte Carlo (MCMC) simulations. By using this transition rule together with adaptive direction sampling, we propose a novel method for incorporating local optimization steps into a MCMC sampler in continuous state-space. Numerical studies show that the new method performs significantly better than the traditional Metropolis-Hastings (M-H) sampler. With minor tailoring in using the rule, the multiple-try method can also be exploited to achieve the effect of a griddy Gibbs sampler without having to bear with griddy approximations, and the effect of a hit-and-run algorithm without having to figure out the required conditional distribution in a random direction. |
|---|---|
| AbstractList | This article describes a new Metropolis-like transition rule, the multiple-try Metropolis, for Markov chain Monte Carlo (MCMC) simulations. By using this transition rule together with adaptive direction sampling, we propose a novel method for incorporating local optimization steps into a MCMC sampler in continuous state-space. Numerical studies show that the new method performs significantly better than the traditional Metropolis-Hastings (M-H) sampler. With minor tailoring in using the rule, the multiple-try method can also be exploited to achieve the effect of a griddy Gibbs sampler without having to bear with griddy approximations, and the effect of a hit-and-run algorithm without having to figure out the required conditional distribution in a random direction. This article describes a new Metropolis-like transition rule, the multiple-try Metropolis, for Markov chain Monte Carlo (MCMC) simulations. By using this transition rule together with adaptive direction sampling, we propose a novel method for incorporating local optimization steps into a MCMC sampler in continuous state-space. |
| Author | Liu, Jun S. Wong, Wing Hung Liang, Faming |
| Author_xml | – sequence: 1 givenname: Jun S. surname: Liu fullname: Liu, Jun S. organization: Department of Statistics , Stanford University – sequence: 2 givenname: Faming surname: Liang fullname: Liang, Faming organization: Department of Statistics and Applied Probability , National University of Singapore – sequence: 3 givenname: Wing Hung surname: Wong fullname: Wong, Wing Hung organization: Department of Statistics , University of California |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1485268$$DView record in Pascal Francis |
| BookMark | eNqF0V1rFDEUBuAgFdxW_4IMKt5NzXcy4E0p9QO29MIVvAuZTMZmySRjkkXWX2_G3UUpSK8C4Tk5J-c9B2chBgvASwQvEZTwHUQcI8q6SwzhckUF6aB8AlaIEdFiQb-dgdWC2kU9A-c5b6uEQsoVuNnc2-Z254ubvW03ad_c2nIfh0aHoVlHo31zNxc3uV-6uBgaFxaQ4hy9y80XPc3ehe_PwdNR-2xfHM8L8PXDzeb6U7u--_j5-mrdGkp4aRGTfU_6buw73HFrezYO0CCi8agF1tYOdKQdMlpAzZk1AlnMNKaajcLgAZIL8Pbw7pzij53NRU0uG-u9DjbusiJSUskYr_DVA7iNuxTqbKouhEPUEVrR6_8hRAUlBEEhqnpzVDrXdYxJB-OympObdNpXKRnmsjJ-YCbFnJMd_wqolpzUKSe15KROOdXC9w8KjSt_ll2Sdv7x8uN421xi-rcpJlAozHnHCK7s6sBcGGOa9M-Y_KCK3vuYTl8ij7T6DcjQt8U |
| CODEN | JSTNAL |
| CitedBy_id | crossref_primary_10_3390_jmse7100372 crossref_primary_10_1061_AJRUA6_0001156 crossref_primary_10_1007_s11222_022_10116_z crossref_primary_10_1017_S0001867800007540 crossref_primary_10_1016_j_jneumeth_2015_09_009 crossref_primary_10_1239_aap_1418396243 crossref_primary_10_1063_5_0067927 crossref_primary_10_1080_00949655_2013_836652 crossref_primary_10_1093_genetics_165_2_867 crossref_primary_10_1016_j_csda_2013_10_007 crossref_primary_10_1016_j_patcog_2020_107641 crossref_primary_10_2139_ssrn_3331423 crossref_primary_10_1007_s00477_010_0395_y crossref_primary_10_1016_j_spa_2011_11_004 crossref_primary_10_1016_j_csda_2014_04_011 crossref_primary_10_1088_1742_6596_1087_2_022004 crossref_primary_10_1080_00949655_2023_2176505 crossref_primary_10_1080_10543406_2024_2444222 crossref_primary_10_1145_3414685_3417856 crossref_primary_10_1214_11_EJS634 crossref_primary_10_1002_cjs_11247 crossref_primary_10_1029_2010WR010352 crossref_primary_10_1093_pasj_64_5_92 crossref_primary_10_1063_1_2736681 crossref_primary_10_1093_bioinformatics_btx626 crossref_primary_10_1007_s11222_021_10044_4 crossref_primary_10_1214_15_AOAS821 crossref_primary_10_1016_j_envsoft_2015_08_013 crossref_primary_10_2174_1570178620666230818105236 crossref_primary_10_1007_s00357_018_9294_6 crossref_primary_10_1016_j_csda_2017_04_005 crossref_primary_10_1016_j_dsp_2018_01_004 crossref_primary_10_1016_j_jcp_2015_04_014 crossref_primary_10_1080_03610918_2023_2199352 crossref_primary_10_1002_cjs_5550360401 crossref_primary_10_1080_1331677X_2021_1925573 crossref_primary_10_1214_16_BA999REJ crossref_primary_10_1029_2019WR025474 crossref_primary_10_1177_0962280214522786 crossref_primary_10_1016_j_dsp_2016_07_013 crossref_primary_10_1186_s13634_017_0524_6 crossref_primary_10_1371_journal_pone_0208927 crossref_primary_10_2174_1570178620666230118111018 crossref_primary_10_1080_03610918_2023_2266157 crossref_primary_10_1007_s11222_016_9642_5 crossref_primary_10_1109_TIT_2019_2901497 crossref_primary_10_1016_j_jpolmod_2023_02_003 crossref_primary_10_1007_s11222_006_5536_2 crossref_primary_10_1038_ncomms6695 crossref_primary_10_5194_gmd_7_303_2014 crossref_primary_10_1007_s40300_022_00235_y crossref_primary_10_1007_s11430_011_4307_x crossref_primary_10_1080_10705511_2014_937320 crossref_primary_10_6339_21_JDS1009 crossref_primary_10_1214_07_EJS162 crossref_primary_10_3390_electronics11152396 crossref_primary_10_1002_wics_1265 crossref_primary_10_1080_01621459_2021_1876710 crossref_primary_10_1137_22M1476770 crossref_primary_10_1007_s11263_016_0967_5 crossref_primary_10_1007_s11222_020_09948_4 crossref_primary_10_1186_s13634_020_00675_6 crossref_primary_10_1007_s00180_019_00906_x crossref_primary_10_2139_ssrn_2320496 crossref_primary_10_1093_gji_ggt482 crossref_primary_10_1016_j_ecolmodel_2023_110422 crossref_primary_10_1073_pnas_1408184111 crossref_primary_10_1007_s11222_017_9780_4 crossref_primary_10_1080_01621459_2020_1811100 crossref_primary_10_1016_j_apenergy_2014_09_063 crossref_primary_10_1007_s10614_024_10818_8 crossref_primary_10_1016_j_patcog_2020_107474 crossref_primary_10_1214_10_BA517A crossref_primary_10_1007_BF02294842 crossref_primary_10_1093_mnras_stu380 crossref_primary_10_1002_cjs_11196 crossref_primary_10_1080_01621459_2020_1729163 crossref_primary_10_2139_ssrn_2569488 crossref_primary_10_1002_wics_1435 crossref_primary_10_1016_j_gete_2023_100506 crossref_primary_10_1080_10635150600812544 crossref_primary_10_3389_fphy_2021_635959 crossref_primary_10_1145_3388538 crossref_primary_10_1007_s11042_018_6004_7 crossref_primary_10_1146_annurev_statistics_022513_115540 crossref_primary_10_1214_19_AOAS1305 crossref_primary_10_1007_s11222_011_9280_x crossref_primary_10_1080_10618600_2018_1513365 crossref_primary_10_1214_18_AOAS1139 crossref_primary_10_3389_fams_2020_00025 crossref_primary_10_1016_j_bpj_2024_04_028 crossref_primary_10_3150_21_BEJ1408 crossref_primary_10_3390_s150923431 crossref_primary_10_1137_17M1114867 crossref_primary_10_1145_2185520_2185552 crossref_primary_10_1214_17_AOAS1124 crossref_primary_10_1016_j_ecohyd_2021_02_005 crossref_primary_10_3389_fams_2022_818016 crossref_primary_10_2139_ssrn_3133862 crossref_primary_10_1093_sysbio_syr131 crossref_primary_10_1109_TSP_2003_814466 crossref_primary_10_1007_s11222_011_9301_9 crossref_primary_10_1016_j_ymssp_2021_107760 crossref_primary_10_1111_j_1467_8659_2007_01065_x crossref_primary_10_1109_TSP_2023_3289728 crossref_primary_10_1016_j_csda_2018_05_020 crossref_primary_10_1016_j_csda_2012_07_014 crossref_primary_10_1080_01621459_2019_1585255 crossref_primary_10_1137_22M1469626 crossref_primary_10_1080_10618600_2023_2165499 crossref_primary_10_1007_s00180_013_0429_2 crossref_primary_10_1093_gigascience_giab009 crossref_primary_10_1109_TSP_2023_3247142 crossref_primary_10_1016_j_jmva_2022_105106 crossref_primary_10_5194_gmd_14_1237_2021 crossref_primary_10_1214_13_AOAS669 crossref_primary_10_3390_e19080424 crossref_primary_10_1007_s00500_018_3244_4 crossref_primary_10_1080_00949655_2016_1264399 crossref_primary_10_1111_j_1467_9868_2009_00736_x crossref_primary_10_1093_imatrm_tnae004 crossref_primary_10_1134_S0361768817030057 crossref_primary_10_1006_jcph_2001_6860 crossref_primary_10_1088_1748_3190_10_6_066001 crossref_primary_10_1007_s11222_008_9110_y crossref_primary_10_1038_s41561_022_00929_y crossref_primary_10_1016_j_micromeso_2017_01_038 crossref_primary_10_1016_j_cam_2022_114278 crossref_primary_10_1109_TVCG_2018_2880455 crossref_primary_10_1214_16_BA999H crossref_primary_10_1016_j_eswa_2022_118215 crossref_primary_10_1109_TSIPN_2020_3046992 crossref_primary_10_1109_TCBB_2018_2825327 crossref_primary_10_1093_mnras_stad2939 crossref_primary_10_1103_PhysRevD_105_122003 crossref_primary_10_1137_15M1033320 crossref_primary_10_1007_s11222_006_6891_8 crossref_primary_10_1016_j_ecosta_2018_03_003 crossref_primary_10_1080_10618600_2017_1330206 crossref_primary_10_1145_3355089_3356498 crossref_primary_10_1029_2022EF003050 crossref_primary_10_2139_ssrn_3039188 crossref_primary_10_1080_00401706_2024_2444310 crossref_primary_10_1002_sim_7505 crossref_primary_10_1016_j_jempfin_2023_07_002 crossref_primary_10_1007_s11222_023_10241_3 crossref_primary_10_3389_fnimg_2023_1147508 crossref_primary_10_1111_j_1467_9469_2010_00709_x crossref_primary_10_1214_17_BJPS380 crossref_primary_10_1002_jcc_24213 crossref_primary_10_1002_qj_2843 crossref_primary_10_1080_03610910600591917 crossref_primary_10_1007_s00362_018_1056_3 crossref_primary_10_1142_S0129626413500084 crossref_primary_10_2139_ssrn_2198837 crossref_primary_10_1214_16_BJPS325 crossref_primary_10_1016_j_csda_2019_05_001 crossref_primary_10_1016_j_spl_2012_04_008 crossref_primary_10_3934_math_20231432 crossref_primary_10_1093_gji_ggz421 crossref_primary_10_1214_14_AOS1209 crossref_primary_10_1142_S0217751X17501330 crossref_primary_10_1016_j_jenvrad_2020_106225 crossref_primary_10_1080_10618600_2014_962701 crossref_primary_10_1046_j_1369_7412_2003_05329_x crossref_primary_10_1073_pnas_0705418104 crossref_primary_10_1111_j_1541_0420_2008_01013_x crossref_primary_10_1007_s00158_023_03577_x crossref_primary_10_1007_s00180_019_00878_y crossref_primary_10_1145_3182161 crossref_primary_10_1371_journal_pone_0236954 crossref_primary_10_1016_j_fmre_2024_11_007 crossref_primary_10_1007_s11222_014_9509_6 crossref_primary_10_1088_1742_5468_ad002d crossref_primary_10_1016_j_csda_2013_06_012 crossref_primary_10_2166_wcc_2023_202 crossref_primary_10_1016_j_cpc_2011_03_013 crossref_primary_10_1108_SEF_01_2018_0025 crossref_primary_10_1007_s00180_016_0643_9 crossref_primary_10_1007_s11222_020_09977_z crossref_primary_10_1002_jcc_24205 |
| ContentType | Journal Article |
| Copyright | Copyright Taylor & Francis Group, LLC 2000 Copyright 2000 American Statistical Association 2000 INIST-CNRS Copyright American Statistical Association Mar 2000 |
| Copyright_xml | – notice: Copyright Taylor & Francis Group, LLC 2000 – notice: Copyright 2000 American Statistical Association – notice: 2000 INIST-CNRS – notice: Copyright American Statistical Association Mar 2000 |
| DBID | AAYXX CITATION IQODW JRZRW K30 PAAUG PAWHS PAWZZ PAXOH PBHAV PBQSW PBYQZ PCIWU PCMID PCZJX PDGRG PDWWI PETMR PFVGT PGXDX PIHIL PISVA PJCTQ PJTMS PLCHJ PMHAD PNQDJ POUND PPLAD PQAPC PQCAN PQCMW PQEME PQHKH PQMID PQNCT PQNET PQSCT PQSET PSVJG PVMQY PZGFC 3V. 7WY 7WZ 7X7 7XB 87Z 88E 88I 8AF 8BJ 8C1 8FE 8FG 8FI 8FJ 8FK 8FL 8G5 ABJCF ABUWG AFKRA AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FQK FRNLG FYUFA F~G GHDGH GNUQQ GUQSH HCIFZ JBE K60 K6~ K9- K9. L.- L6V M0C M0R M0S M0T M1P M2O M2P M7S MBDVC PADUT PHGZM PHGZT PJZUB PKEHL PPXIY PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PTHSS PYYUZ Q9U S0X |
| DOI | 10.1080/01621459.2000.10473908 |
| DatabaseName | CrossRef Pascal-Francis Periodicals Index Online Segment 35 Periodicals Index Online Primary Sources Access—Foundation Edition (Plan E) - West Primary Sources Access (Plan D) - International Primary Sources Access & Build (Plan A) - MEA Primary Sources Access—Foundation Edition (Plan E) - Midwest Primary Sources Access—Foundation Edition (Plan E) - Northeast Primary Sources Access (Plan D) - Southeast Primary Sources Access (Plan D) - North Central Primary Sources Access—Foundation Edition (Plan E) - Southeast Primary Sources Access (Plan D) - South Central Primary Sources Access & Build (Plan A) - UK / I Primary Sources Access (Plan D) - Canada Primary Sources Access (Plan D) - EMEALA Primary Sources Access—Foundation Edition (Plan E) - North Central Primary Sources Access—Foundation Edition (Plan E) - South Central Primary Sources Access & Build (Plan A) - International Primary Sources Access—Foundation Edition (Plan E) - International Primary Sources Access (Plan D) - West Periodicals Index Online Segments 1-50 Primary Sources Access (Plan D) - APAC Primary Sources Access (Plan D) - Midwest Primary Sources Access (Plan D) - MEA Primary Sources Access—Foundation Edition (Plan E) - Canada Primary Sources Access—Foundation Edition (Plan E) - UK / I Primary Sources Access—Foundation Edition (Plan E) - EMEALA Primary Sources Access & Build (Plan A) - APAC Primary Sources Access & Build (Plan A) - Canada Primary Sources Access & Build (Plan A) - West Primary Sources Access & Build (Plan A) - EMEALA Primary Sources Access (Plan D) - Northeast Primary Sources Access & Build (Plan A) - Midwest Primary Sources Access & Build (Plan A) - North Central Primary Sources Access & Build (Plan A) - Northeast Primary Sources Access & Build (Plan A) - South Central Primary Sources Access & Build (Plan A) - Southeast Primary Sources Access (Plan D) - UK / I Primary Sources Access—Foundation Edition (Plan E) - APAC Primary Sources Access—Foundation Edition (Plan E) - MEA ProQuest Central (Corporate) ABI/INFORM Collection ABI/INFORM Global (PDF only) Health & Medical Collection ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Medical Database (Alumni Edition) Science Database (Alumni Edition) STEM Database International Bibliography of the Social Sciences (IBSS) Public Health Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Research Library Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central (New) Business Premium Collection Technology Collection ProQuest One ProQuest Central International Bibliography of the Social Sciences Business Premium Collection (Alumni) Health Research Premium Collection ABI/INFORM Global (Corporate) Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library SciTech Premium Collection International Bibliography of the Social Sciences ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Consumer Health Database ProQuest Health & Medical Complete (Alumni) ABI/INFORM Professional Advanced ProQuest Engineering Collection ABI/INFORM Global Consumer Health Database ProQuest Health & Medical Collection Healthcare Administration Database Medical Database ProQuest Research Library Science Database Engineering Database Research Library (Corporate) Research Library China Proquest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering collection ABI/INFORM Collection China ProQuest Central Basic SIRS Editorial |
| DatabaseTitle | CrossRef Periodicals Index Online Segments 1-50 Periodicals Index Online Periodicals Index Online Segment 35 ProQuest Business Collection (Alumni Edition) Research Library Prep ProQuest Central Student ProQuest Central Essentials ProQuest AP Science SciTech Premium Collection ABI/INFORM Complete ProQuest One Applied & Life Sciences Health Research Premium Collection Health & Medical Research Collection ProQuest Central (New) Research Library China ProQuest Medical Library (Alumni) Engineering Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Family Health ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) ProQuest Business Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection ProQuest One Academic Middle East (New) SIRS Editorial ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Family Health (Alumni Edition) ProQuest Central ABI/INFORM Professional Advanced ProQuest Health & Medical Research Collection ProQuest Engineering Collection International Bibliography of the Social Sciences (IBSS) Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Research Library ABI/INFORM Complete (Alumni Edition) ProQuest Public Health ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Health Management ABI/INFORM China ProQuest SciTech Collection ProQuest Medical Library Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | ProQuest Business Collection (Alumni Edition) |
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Statistics Mathematics |
| EISSN | 1537-274X |
| EndPage | 134 |
| ExternalDocumentID | 50707693 1485268 10_1080_01621459_2000_10473908 2669532 10473908 |
| Genre | Feature |
| GroupedDBID | -DZ -~X .-4 ..I .7F .GJ .QJ 0BK 0R~ 29L 2AX 30N 3R3 4.4 5GY 5RE 692 7WY 7X7 85S 88E 88I 8AF 8C1 8FE 8FG 8FI 8FJ 8FL 8G5 8R4 8R5 AABCJ AAENE AAGDL AAHBH AAHIA AAJMT AALDU AAMIU AAPUL AAQRR AAWIL ABAWQ ABBHK ABCCY ABEFU ABEHJ ABFAN ABFIM ABJCF ABJNI ABLIJ ABLJU ABPAQ ABPEM ABPFR ABPPZ ABPQH ABTAI ABUFD ABUWG ABXSQ ABXUL ABXYU ABYWD ACAGQ ACGFO ACGFS ACGOD ACHJO ACIWK ACMTB ACNCT ACTIO ACTMH ACUBG ADBBV ADCVX ADGTB ADLSF ADMHG ADODI ADULT AEISY AENEX AEOZL AEPSL AEUPB AEYOC AFFNX AFKRA AFRVT AFVYC AFXHP AGDLA AGLNM AGMYJ AGROQ AHDZW AHMOU AI. AIHAF AIJEM AIYEW AKBVH AKOOK ALCKM ALMA_UNASSIGNED_HOLDINGS ALQZU ALRMG AMEWO AQRUH AQTUD AQUVI AVBZW AWYRJ AZQEC BENPR BEZIV BGLVJ BKNYI BKOMP BLEHA BPHCQ BVXVI CCCUG CCPQU CJ0 CRFIH CS3 D0L DGEBU DKSSO DMQIW DQDLB DSRWC DU5 DWQXO EBS ECEWR EJD E~A E~B F5P FEDTE FJW FRNLG FVMVE FYUFA GNUQQ GROUPED_ABI_INFORM_RESEARCH GTTXZ GUQSH H13 HCIFZ HGD HMCUK HQ6 HVGLF HZ~ H~9 H~P IPSME J.P JAAYA JAS JBMMH JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JMS JPL JST K60 K6~ K9- KYCEM L6V LU7 M0C M0R M0T M1P M2O M2P M4Z M7S MS~ MVM NA5 NHB NUSFT NY~ O9- OK1 P-O P2P PADUT PHGZM PHGZT PJZUB PPXIY PQBIZ PQBZA PQGLB PQQKQ PRG PROAC PSQYO PTHSS Q2X QCRFL RNANH RNS ROSJB RTWRZ RWL RXW S-T S0X SA0 SNACF TAE TASJS TBQAZ TDBHL TEJ TFL TFT TFW TN5 TOXWX TTHFI TUROJ U5U UKHRP UPT UT5 UU3 VH1 VOH WH7 WZA YQT YXB YYM YYP ZCG ZGI ZGOLN ~S~ ADYSH AFSUE ALIPV AMPGV 07G 1OL AAAVZ AAFWJ AAIKQ AAKBW AAYXX ABRLO ACGEE ACTCW ADXHL AEUMN AFQQW AGCQS AGLEN AMATQ AMVHM AMXXU BCCOT BPLKW C06 CITATION DWIFK E.L HF~ IPNFZ IVXBP KQ8 LJTGL MW2 OFU PUEGO RIG SJN TAQ TFMCV UB9 UQL WHG ZUP ZXP IQODW JRZRW K30 PAAUG PAWHS PAWZZ PAXOH PBHAV PBQSW PBYQZ PCIWU PCMID PCZJX PDGRG PDWWI PETMR PFVGT PGXDX PIHIL PISVA PJCTQ PJTMS PLCHJ PMHAD PNQDJ POUND PPLAD PQAPC PQCAN PQCMW PQEME PQHKH PQMID PQNCT PQNET PQSCT PQSET PSVJG PVMQY PZGFC 3V. 7XB 8BJ 8FK FQK JBE K9. L.- MBDVC PKEHL PQEST PQUKI Q9U |
| ID | FETCH-LOGICAL-c436t-158bb3b9fb9296eeb5fd0c13a2fa72aeed4f491ca70a65ec71e25a24a5f7c2d03 |
| IEDL.DBID | BENPR |
| ISSN | 0162-1459 |
| IngestDate | Thu Oct 02 17:19:22 EDT 2025 Mon Oct 06 18:06:50 EDT 2025 Sat Jul 26 01:30:46 EDT 2025 Mon Jul 21 09:14:42 EDT 2025 Wed Oct 01 03:21:18 EDT 2025 Thu Apr 24 22:55:51 EDT 2025 Thu Jun 19 14:56:05 EDT 2025 Mon Oct 20 23:47:26 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 449 |
| Keywords | Markov chain Conjugate gradient method Monte Carlo method Adaptive directional sampling algorithm Gridy Gibbs sampler Adaptive estimation Gibbs sampling Sampling Metropolis Hastings sampler Markov chain Monte Carlo simulation Mixture Sinusoid |
| Language | English |
| License | CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c436t-158bb3b9fb9296eeb5fd0c13a2fa72aeed4f491ca70a65ec71e25a24a5f7c2d03 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 content type line 23 |
| PQID | 274601934 |
| PQPubID | 1820857 |
| PageCount | 14 |
| ParticipantIDs | crossref_primary_10_1080_01621459_2000_10473908 crossref_citationtrail_10_1080_01621459_2000_10473908 informaworld_taylorfrancis_310_1080_01621459_2000_10473908 jstor_primary_10_2307_2669532 proquest_miscellaneous_38848556 proquest_journals_1474331077 pascalfrancis_primary_1485268 proquest_journals_274601934 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2000-03-01 |
| PublicationDateYYYYMMDD | 2000-03-01 |
| PublicationDate_xml | – month: 03 year: 2000 text: 2000-03-01 day: 01 |
| PublicationDecade | 2000 |
| PublicationPlace | Alexandria, VA |
| PublicationPlace_xml | – name: Alexandria, VA – name: Washington – name: Alexandria |
| PublicationTitle | Journal of the American Statistical Association |
| PublicationYear | 2000 |
| Publisher | Taylor & Francis Group American Statistical Association Taylor & Francis Ltd |
| Publisher_xml | – name: Taylor & Francis Group – name: American Statistical Association – name: Taylor & Francis Ltd |
| SSID | ssj0000788 |
| Score | 2.155973 |
| Snippet | This article describes a new Metropolis-like transition rule, the multiple-try Metropolis, for Markov chain Monte Carlo (MCMC) simulations. By using this... |
| SourceID | proquest pascalfrancis crossref jstor informaworld |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 121 |
| SubjectTerms | Adaptive direction sampling Algorithms Autocorrelation Conjugate gradient Damped sinusoidal Datasets Determinism Distribution theory Exact sciences and technology Gibbs sampling Griddy Gibbs sampler Histograms Hit-and-run algorithm Linear inference, regression Markov analysis Markov chain Monte Carlo Markov chains Markov processes Markovian processes Mathematical economics Mathematics Metropolis Metropolis algorithm Metropolitan areas Mixture model Monte Carlo simulation Optimization Orientational bias Monte Carlo Probability and statistics Probability theory and stochastic processes Random sampling Sampling Sampling distributions Sampling theory, sample surveys Sciences and techniques of general use Statistics Tanneries Theory and Methods Time series Transition rules |
| Title | The Multiple-Try Method and Local Optimization in Metropolis Sampling |
| URI | https://www.tandfonline.com/doi/abs/10.1080/01621459.2000.10473908 https://www.jstor.org/stable/2669532 https://www.proquest.com/docview/1474331077 https://www.proquest.com/docview/274601934 https://www.proquest.com/docview/38848556 |
| Volume | 95 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: aylor and Francis Online customDbUrl: mediaType: online eissn: 1537-274X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000788 issn: 0162-1459 databaseCode: AHDZW dateStart: 19970301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1537-274X dateEnd: 20051231 omitProxy: true ssIdentifier: ssj0000788 issn: 0162-1459 databaseCode: 7X7 dateStart: 19920301 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1537-274X dateEnd: 20051231 omitProxy: true ssIdentifier: ssj0000788 issn: 0162-1459 databaseCode: BENPR dateStart: 19920301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1537-274X dateEnd: 20051231 omitProxy: true ssIdentifier: ssj0000788 issn: 0162-1459 databaseCode: 8FG dateStart: 19920301 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVPQU databaseName: Public Health Database customDbUrl: eissn: 1537-274X dateEnd: 20051231 omitProxy: true ssIdentifier: ssj0000788 issn: 0162-1459 databaseCode: 8C1 dateStart: 19920301 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVAWR databaseName: Taylor & Francis Science and Technology Library-DRAA customDbUrl: eissn: 1537-274X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000788 issn: 0162-1459 databaseCode: 30N dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.tandfonline.com/page/title-lists providerName: Taylor & Francis |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1La9wwEB6SzSWX0id186gOvYrYkmzZhVLasNtQSCilgb2ZkSyXQOtNs86h_74zsr3ZEGguPuhhG400Gmlmvg_gXaoCGQ1YSm-bQprgtaQjGMoss96WBZbBsUf3_KI4uzRfl_lyB86nXBgOq5x0YlTUzcrzHfkJnZ7o7FBp8_H6j2TSKHauTgwaODIrNB8iwtgu7CkGxprB3uf5xbfvd6rZRiJKMnOUzExeTSnDDLZNZVwUc1fY82l1xZyTW7vVPSzTKX6RgylxTePZDkQYD3R63KgWT-HJaGGKT8OUeAY7oXsO-2xUDpjML2BOc0NMkYSyv_krBh5pgV0j4uYmVqRJfo8pmuKq4waRTuFqLdbIQejdz5dwuZj_OD2TI52C9EYXvczy0jntqtaRSVSE4PK2SX2mUbVoFdJmaVpTZR5tikUevM2CylEZzFvrVZPqVzDrVl14DQLpJUFb0gdVajBY55Ri2BdHBlVwDhPIp2Gr_Yg1zpQXv-psgiQdh5tpMLloGO4ETjb9rge0jUd7vN-WSt3He45RFrV-rPNRlOH2tzgwviarpcq1ovp7sr1rZ0qGyUngcJJ1PS79NdVZzkJLrU3g4GH1Zh4n8HZTS0ua_TTYhdUt_XVZMmRP8ea__Q9gf4AF4Hi4Q5j1N7fhiAyk3h3Drl1aepanGT8XX47HhfAPhVIK7Q |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5ROJQLKrRVU6D40B4tEj_ipFJVVS1oKY8TSHtLbcdBSG2WkiDEj-p_7EweyyIkOHH1K5HHnhnbM98H8DEWAZ0Gm3FvypSr4CXHI5jlSWK8yVKbBUcvuscn6eRM_Zzq6RL8G3NhKKxy1Imdoi5nnu7Id_H0hGeHXKqvl385kUbR4-rIoNGvisNwe4MntubLwQ8U7ych9vdOv0_4QCrAvZJpyxOdOSddXjl0DNIQnK7K2CfSisoaYdFkqErlibcmtqkO3iRBaCuU1ZXxoowljvsCVpREVYLbx0zNneI3Hc0lOlGCJ0rnY0IyQXljGRV1mTH0rmpkToyWC7bwHlLqGB1JoZq2QWlVPc3GA4vRmcH9V7A2-K_sW7_g1mEp1BuwSi5rj_j8GvZw5bExTpG3V7esZ6lmti5ZZzrZDPXUnyEBlF3U1KAja7hoWGMpxL0-fwNnzzKvb2G5ntXhHTCLgwRpUNvksbLBOCcEgco4dNeCczYCPU5b4QckcyLU-F0kI-DpMN1EsklF_XRHsDvvd9ljeTzZ4_OiVIq2u0UZZFHIpzpvdzJc_BaF3RfoE-VaCqy_J9u7diojEJ4ItkZZF4NiabDOUI5bbEwEmw-r57skgp15LSoMegWydZhd419nGQECpe8f7b8DLyenx0fF0cHJ4Sas9gAEFHm3Bcvt1XXYRlesdR-6DcDg13PvuP8vX0CI |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB61VKq4QOlDhKcPXA2J7cRJb6hlxWu3SIDELbK9DkK0AbHZQ_vrOxMnsFtUceAaZ-zYHo_H8TffAOzEwqPTYHLu9DjjyjvJ8QhmeJJop_PM5N7Sje5wlB1equOr9GomFoZglXSGrgJRRGuraXHfj6seEbeHXgrxa4cwE7qk1Hhwz9_Cu4yuxSiMIx49WWPd5p4kGU5CfZTwf-uZ26Dm6Et7yCLhJ80Eh7AKuS-emfF2bxosg-t7FSApt7vTxu66P_8QPr6u2x9gqXNd2X7QtRV44-uPsEjeaiB7_gQHqHRs2EEU-cXDbzZsE1QzbJOd0q7JfqCJ-tXFfrKbml5o8zTcTNi5IXR7ff0ZLgcHF98OeZengTsls4YnaW6ttEVl0dfKvLdpNY5dIo2ojBYGd2FVqSJxRscmS73TiRepEcqklXZiHMsvsFDf1X4VmMFKvNRoaIpYGa-tFYL4ZCx6at5aE0HaT07pOhJzyqXxs0x6rtNulCi_Jj0KoxTB3qPcfaDxeFHi6-zcl037A6Wb8VK-JLzZaspsW4S4L9EdKlIpsHxOg57eUznx70Sw0WtU2dmUCZZpCm-LtY5g_Xmx0AoP14VUEWw_lqKtoAsgU_u7KX51nhMXULb2mr5tw_uz74Py9Gh0sg6LgZmAIHkbsNA8TP0m-miN3WoX4V8zOSlK |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+multiple-try+method+and+local+optimization+in+metropolis+sampling&rft.jtitle=Journal+of+the+American+Statistical+Association&rft.au=LIU%2C+J.+S&rft.au=LIANG%2C+F&rft.au=WONG%2C+W.+H&rft.date=2000-03-01&rft.pub=American+Statistical+Association&rft.issn=0162-1459&rft.volume=95&rft.issue=449&rft.spage=121&rft.epage=134&rft_id=info:doi/10.1080%2F01621459.2000.10473908&rft.externalDBID=n%2Fa&rft.externalDocID=1485268 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-1459&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-1459&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-1459&client=summon |