The Multiple-Try Method and Local Optimization in Metropolis Sampling

This article describes a new Metropolis-like transition rule, the multiple-try Metropolis, for Markov chain Monte Carlo (MCMC) simulations. By using this transition rule together with adaptive direction sampling, we propose a novel method for incorporating local optimization steps into a MCMC sample...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Statistical Association Vol. 95; no. 449; pp. 121 - 134
Main Authors Liu, Jun S., Liang, Faming, Wong, Wing Hung
Format Journal Article
LanguageEnglish
Published Alexandria, VA Taylor & Francis Group 01.03.2000
American Statistical Association
Taylor & Francis Ltd
Subjects
Online AccessGet full text
ISSN0162-1459
1537-274X
DOI10.1080/01621459.2000.10473908

Cover

Abstract This article describes a new Metropolis-like transition rule, the multiple-try Metropolis, for Markov chain Monte Carlo (MCMC) simulations. By using this transition rule together with adaptive direction sampling, we propose a novel method for incorporating local optimization steps into a MCMC sampler in continuous state-space. Numerical studies show that the new method performs significantly better than the traditional Metropolis-Hastings (M-H) sampler. With minor tailoring in using the rule, the multiple-try method can also be exploited to achieve the effect of a griddy Gibbs sampler without having to bear with griddy approximations, and the effect of a hit-and-run algorithm without having to figure out the required conditional distribution in a random direction.
AbstractList This article describes a new Metropolis-like transition rule, the multiple-try Metropolis, for Markov chain Monte Carlo (MCMC) simulations. By using this transition rule together with adaptive direction sampling, we propose a novel method for incorporating local optimization steps into a MCMC sampler in continuous state-space. Numerical studies show that the new method performs significantly better than the traditional Metropolis-Hastings (M-H) sampler. With minor tailoring in using the rule, the multiple-try method can also be exploited to achieve the effect of a griddy Gibbs sampler without having to bear with griddy approximations, and the effect of a hit-and-run algorithm without having to figure out the required conditional distribution in a random direction.
This article describes a new Metropolis-like transition rule, the multiple-try Metropolis, for Markov chain Monte Carlo (MCMC) simulations. By using this transition rule together with adaptive direction sampling, we propose a novel method for incorporating local optimization steps into a MCMC sampler in continuous state-space.
Author Liu, Jun S.
Wong, Wing Hung
Liang, Faming
Author_xml – sequence: 1
  givenname: Jun S.
  surname: Liu
  fullname: Liu, Jun S.
  organization: Department of Statistics , Stanford University
– sequence: 2
  givenname: Faming
  surname: Liang
  fullname: Liang, Faming
  organization: Department of Statistics and Applied Probability , National University of Singapore
– sequence: 3
  givenname: Wing Hung
  surname: Wong
  fullname: Wong, Wing Hung
  organization: Department of Statistics , University of California
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1485268$$DView record in Pascal Francis
BookMark eNqF0V1rFDEUBuAgFdxW_4IMKt5NzXcy4E0p9QO29MIVvAuZTMZmySRjkkXWX2_G3UUpSK8C4Tk5J-c9B2chBgvASwQvEZTwHUQcI8q6SwzhckUF6aB8AlaIEdFiQb-dgdWC2kU9A-c5b6uEQsoVuNnc2-Z254ubvW03ad_c2nIfh0aHoVlHo31zNxc3uV-6uBgaFxaQ4hy9y80XPc3ehe_PwdNR-2xfHM8L8PXDzeb6U7u--_j5-mrdGkp4aRGTfU_6buw73HFrezYO0CCi8agF1tYOdKQdMlpAzZk1AlnMNKaajcLgAZIL8Pbw7pzij53NRU0uG-u9DjbusiJSUskYr_DVA7iNuxTqbKouhEPUEVrR6_8hRAUlBEEhqnpzVDrXdYxJB-OympObdNpXKRnmsjJ-YCbFnJMd_wqolpzUKSe15KROOdXC9w8KjSt_ll2Sdv7x8uN421xi-rcpJlAozHnHCK7s6sBcGGOa9M-Y_KCK3vuYTl8ij7T6DcjQt8U
CODEN JSTNAL
CitedBy_id crossref_primary_10_3390_jmse7100372
crossref_primary_10_1061_AJRUA6_0001156
crossref_primary_10_1007_s11222_022_10116_z
crossref_primary_10_1017_S0001867800007540
crossref_primary_10_1016_j_jneumeth_2015_09_009
crossref_primary_10_1239_aap_1418396243
crossref_primary_10_1063_5_0067927
crossref_primary_10_1080_00949655_2013_836652
crossref_primary_10_1093_genetics_165_2_867
crossref_primary_10_1016_j_csda_2013_10_007
crossref_primary_10_1016_j_patcog_2020_107641
crossref_primary_10_2139_ssrn_3331423
crossref_primary_10_1007_s00477_010_0395_y
crossref_primary_10_1016_j_spa_2011_11_004
crossref_primary_10_1016_j_csda_2014_04_011
crossref_primary_10_1088_1742_6596_1087_2_022004
crossref_primary_10_1080_00949655_2023_2176505
crossref_primary_10_1080_10543406_2024_2444222
crossref_primary_10_1145_3414685_3417856
crossref_primary_10_1214_11_EJS634
crossref_primary_10_1002_cjs_11247
crossref_primary_10_1029_2010WR010352
crossref_primary_10_1093_pasj_64_5_92
crossref_primary_10_1063_1_2736681
crossref_primary_10_1093_bioinformatics_btx626
crossref_primary_10_1007_s11222_021_10044_4
crossref_primary_10_1214_15_AOAS821
crossref_primary_10_1016_j_envsoft_2015_08_013
crossref_primary_10_2174_1570178620666230818105236
crossref_primary_10_1007_s00357_018_9294_6
crossref_primary_10_1016_j_csda_2017_04_005
crossref_primary_10_1016_j_dsp_2018_01_004
crossref_primary_10_1016_j_jcp_2015_04_014
crossref_primary_10_1080_03610918_2023_2199352
crossref_primary_10_1002_cjs_5550360401
crossref_primary_10_1080_1331677X_2021_1925573
crossref_primary_10_1214_16_BA999REJ
crossref_primary_10_1029_2019WR025474
crossref_primary_10_1177_0962280214522786
crossref_primary_10_1016_j_dsp_2016_07_013
crossref_primary_10_1186_s13634_017_0524_6
crossref_primary_10_1371_journal_pone_0208927
crossref_primary_10_2174_1570178620666230118111018
crossref_primary_10_1080_03610918_2023_2266157
crossref_primary_10_1007_s11222_016_9642_5
crossref_primary_10_1109_TIT_2019_2901497
crossref_primary_10_1016_j_jpolmod_2023_02_003
crossref_primary_10_1007_s11222_006_5536_2
crossref_primary_10_1038_ncomms6695
crossref_primary_10_5194_gmd_7_303_2014
crossref_primary_10_1007_s40300_022_00235_y
crossref_primary_10_1007_s11430_011_4307_x
crossref_primary_10_1080_10705511_2014_937320
crossref_primary_10_6339_21_JDS1009
crossref_primary_10_1214_07_EJS162
crossref_primary_10_3390_electronics11152396
crossref_primary_10_1002_wics_1265
crossref_primary_10_1080_01621459_2021_1876710
crossref_primary_10_1137_22M1476770
crossref_primary_10_1007_s11263_016_0967_5
crossref_primary_10_1007_s11222_020_09948_4
crossref_primary_10_1186_s13634_020_00675_6
crossref_primary_10_1007_s00180_019_00906_x
crossref_primary_10_2139_ssrn_2320496
crossref_primary_10_1093_gji_ggt482
crossref_primary_10_1016_j_ecolmodel_2023_110422
crossref_primary_10_1073_pnas_1408184111
crossref_primary_10_1007_s11222_017_9780_4
crossref_primary_10_1080_01621459_2020_1811100
crossref_primary_10_1016_j_apenergy_2014_09_063
crossref_primary_10_1007_s10614_024_10818_8
crossref_primary_10_1016_j_patcog_2020_107474
crossref_primary_10_1214_10_BA517A
crossref_primary_10_1007_BF02294842
crossref_primary_10_1093_mnras_stu380
crossref_primary_10_1002_cjs_11196
crossref_primary_10_1080_01621459_2020_1729163
crossref_primary_10_2139_ssrn_2569488
crossref_primary_10_1002_wics_1435
crossref_primary_10_1016_j_gete_2023_100506
crossref_primary_10_1080_10635150600812544
crossref_primary_10_3389_fphy_2021_635959
crossref_primary_10_1145_3388538
crossref_primary_10_1007_s11042_018_6004_7
crossref_primary_10_1146_annurev_statistics_022513_115540
crossref_primary_10_1214_19_AOAS1305
crossref_primary_10_1007_s11222_011_9280_x
crossref_primary_10_1080_10618600_2018_1513365
crossref_primary_10_1214_18_AOAS1139
crossref_primary_10_3389_fams_2020_00025
crossref_primary_10_1016_j_bpj_2024_04_028
crossref_primary_10_3150_21_BEJ1408
crossref_primary_10_3390_s150923431
crossref_primary_10_1137_17M1114867
crossref_primary_10_1145_2185520_2185552
crossref_primary_10_1214_17_AOAS1124
crossref_primary_10_1016_j_ecohyd_2021_02_005
crossref_primary_10_3389_fams_2022_818016
crossref_primary_10_2139_ssrn_3133862
crossref_primary_10_1093_sysbio_syr131
crossref_primary_10_1109_TSP_2003_814466
crossref_primary_10_1007_s11222_011_9301_9
crossref_primary_10_1016_j_ymssp_2021_107760
crossref_primary_10_1111_j_1467_8659_2007_01065_x
crossref_primary_10_1109_TSP_2023_3289728
crossref_primary_10_1016_j_csda_2018_05_020
crossref_primary_10_1016_j_csda_2012_07_014
crossref_primary_10_1080_01621459_2019_1585255
crossref_primary_10_1137_22M1469626
crossref_primary_10_1080_10618600_2023_2165499
crossref_primary_10_1007_s00180_013_0429_2
crossref_primary_10_1093_gigascience_giab009
crossref_primary_10_1109_TSP_2023_3247142
crossref_primary_10_1016_j_jmva_2022_105106
crossref_primary_10_5194_gmd_14_1237_2021
crossref_primary_10_1214_13_AOAS669
crossref_primary_10_3390_e19080424
crossref_primary_10_1007_s00500_018_3244_4
crossref_primary_10_1080_00949655_2016_1264399
crossref_primary_10_1111_j_1467_9868_2009_00736_x
crossref_primary_10_1093_imatrm_tnae004
crossref_primary_10_1134_S0361768817030057
crossref_primary_10_1006_jcph_2001_6860
crossref_primary_10_1088_1748_3190_10_6_066001
crossref_primary_10_1007_s11222_008_9110_y
crossref_primary_10_1038_s41561_022_00929_y
crossref_primary_10_1016_j_micromeso_2017_01_038
crossref_primary_10_1016_j_cam_2022_114278
crossref_primary_10_1109_TVCG_2018_2880455
crossref_primary_10_1214_16_BA999H
crossref_primary_10_1016_j_eswa_2022_118215
crossref_primary_10_1109_TSIPN_2020_3046992
crossref_primary_10_1109_TCBB_2018_2825327
crossref_primary_10_1093_mnras_stad2939
crossref_primary_10_1103_PhysRevD_105_122003
crossref_primary_10_1137_15M1033320
crossref_primary_10_1007_s11222_006_6891_8
crossref_primary_10_1016_j_ecosta_2018_03_003
crossref_primary_10_1080_10618600_2017_1330206
crossref_primary_10_1145_3355089_3356498
crossref_primary_10_1029_2022EF003050
crossref_primary_10_2139_ssrn_3039188
crossref_primary_10_1080_00401706_2024_2444310
crossref_primary_10_1002_sim_7505
crossref_primary_10_1016_j_jempfin_2023_07_002
crossref_primary_10_1007_s11222_023_10241_3
crossref_primary_10_3389_fnimg_2023_1147508
crossref_primary_10_1111_j_1467_9469_2010_00709_x
crossref_primary_10_1214_17_BJPS380
crossref_primary_10_1002_jcc_24213
crossref_primary_10_1002_qj_2843
crossref_primary_10_1080_03610910600591917
crossref_primary_10_1007_s00362_018_1056_3
crossref_primary_10_1142_S0129626413500084
crossref_primary_10_2139_ssrn_2198837
crossref_primary_10_1214_16_BJPS325
crossref_primary_10_1016_j_csda_2019_05_001
crossref_primary_10_1016_j_spl_2012_04_008
crossref_primary_10_3934_math_20231432
crossref_primary_10_1093_gji_ggz421
crossref_primary_10_1214_14_AOS1209
crossref_primary_10_1142_S0217751X17501330
crossref_primary_10_1016_j_jenvrad_2020_106225
crossref_primary_10_1080_10618600_2014_962701
crossref_primary_10_1046_j_1369_7412_2003_05329_x
crossref_primary_10_1073_pnas_0705418104
crossref_primary_10_1111_j_1541_0420_2008_01013_x
crossref_primary_10_1007_s00158_023_03577_x
crossref_primary_10_1007_s00180_019_00878_y
crossref_primary_10_1145_3182161
crossref_primary_10_1371_journal_pone_0236954
crossref_primary_10_1016_j_fmre_2024_11_007
crossref_primary_10_1007_s11222_014_9509_6
crossref_primary_10_1088_1742_5468_ad002d
crossref_primary_10_1016_j_csda_2013_06_012
crossref_primary_10_2166_wcc_2023_202
crossref_primary_10_1016_j_cpc_2011_03_013
crossref_primary_10_1108_SEF_01_2018_0025
crossref_primary_10_1007_s00180_016_0643_9
crossref_primary_10_1007_s11222_020_09977_z
crossref_primary_10_1002_jcc_24205
ContentType Journal Article
Copyright Copyright Taylor & Francis Group, LLC 2000
Copyright 2000 American Statistical Association
2000 INIST-CNRS
Copyright American Statistical Association Mar 2000
Copyright_xml – notice: Copyright Taylor & Francis Group, LLC 2000
– notice: Copyright 2000 American Statistical Association
– notice: 2000 INIST-CNRS
– notice: Copyright American Statistical Association Mar 2000
DBID AAYXX
CITATION
IQODW
JRZRW
K30
PAAUG
PAWHS
PAWZZ
PAXOH
PBHAV
PBQSW
PBYQZ
PCIWU
PCMID
PCZJX
PDGRG
PDWWI
PETMR
PFVGT
PGXDX
PIHIL
PISVA
PJCTQ
PJTMS
PLCHJ
PMHAD
PNQDJ
POUND
PPLAD
PQAPC
PQCAN
PQCMW
PQEME
PQHKH
PQMID
PQNCT
PQNET
PQSCT
PQSET
PSVJG
PVMQY
PZGFC
3V.
7WY
7WZ
7X7
7XB
87Z
88E
88I
8AF
8BJ
8C1
8FE
8FG
8FI
8FJ
8FK
8FL
8G5
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FQK
FRNLG
FYUFA
F~G
GHDGH
GNUQQ
GUQSH
HCIFZ
JBE
K60
K6~
K9-
K9.
L.-
L6V
M0C
M0R
M0S
M0T
M1P
M2O
M2P
M7S
MBDVC
PADUT
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
PYYUZ
Q9U
S0X
DOI 10.1080/01621459.2000.10473908
DatabaseName CrossRef
Pascal-Francis
Periodicals Index Online Segment 35
Periodicals Index Online
Primary Sources Access—Foundation Edition (Plan E) - West
Primary Sources Access (Plan D) - International
Primary Sources Access & Build (Plan A) - MEA
Primary Sources Access—Foundation Edition (Plan E) - Midwest
Primary Sources Access—Foundation Edition (Plan E) - Northeast
Primary Sources Access (Plan D) - Southeast
Primary Sources Access (Plan D) - North Central
Primary Sources Access—Foundation Edition (Plan E) - Southeast
Primary Sources Access (Plan D) - South Central
Primary Sources Access & Build (Plan A) - UK / I
Primary Sources Access (Plan D) - Canada
Primary Sources Access (Plan D) - EMEALA
Primary Sources Access—Foundation Edition (Plan E) - North Central
Primary Sources Access—Foundation Edition (Plan E) - South Central
Primary Sources Access & Build (Plan A) - International
Primary Sources Access—Foundation Edition (Plan E) - International
Primary Sources Access (Plan D) - West
Periodicals Index Online Segments 1-50
Primary Sources Access (Plan D) - APAC
Primary Sources Access (Plan D) - Midwest
Primary Sources Access (Plan D) - MEA
Primary Sources Access—Foundation Edition (Plan E) - Canada
Primary Sources Access—Foundation Edition (Plan E) - UK / I
Primary Sources Access—Foundation Edition (Plan E) - EMEALA
Primary Sources Access & Build (Plan A) - APAC
Primary Sources Access & Build (Plan A) - Canada
Primary Sources Access & Build (Plan A) - West
Primary Sources Access & Build (Plan A) - EMEALA
Primary Sources Access (Plan D) - Northeast
Primary Sources Access & Build (Plan A) - Midwest
Primary Sources Access & Build (Plan A) - North Central
Primary Sources Access & Build (Plan A) - Northeast
Primary Sources Access & Build (Plan A) - South Central
Primary Sources Access & Build (Plan A) - Southeast
Primary Sources Access (Plan D) - UK / I
Primary Sources Access—Foundation Edition (Plan E) - APAC
Primary Sources Access—Foundation Edition (Plan E) - MEA
ProQuest Central (Corporate)
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
STEM Database
International Bibliography of the Social Sciences (IBSS)
Public Health Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Research Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central (New)
Business Premium Collection
Technology Collection
ProQuest One
ProQuest Central
International Bibliography of the Social Sciences
Business Premium Collection (Alumni)
Health Research Premium Collection
ABI/INFORM Global (Corporate)
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
International Bibliography of the Social Sciences
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Consumer Health Database
ProQuest Health & Medical Complete (Alumni)
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ABI/INFORM Global
Consumer Health Database
ProQuest Health & Medical Collection
Healthcare Administration Database
Medical Database
ProQuest Research Library
Science Database
Engineering Database
Research Library (Corporate)
Research Library China
Proquest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering collection
ABI/INFORM Collection China
ProQuest Central Basic
SIRS Editorial
DatabaseTitle CrossRef
Periodicals Index Online Segments 1-50
Periodicals Index Online
Periodicals Index Online Segment 35
ProQuest Business Collection (Alumni Edition)
Research Library Prep
ProQuest Central Student
ProQuest Central Essentials
ProQuest AP Science
SciTech Premium Collection
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Health & Medical Research Collection
ProQuest Central (New)
Research Library China
ProQuest Medical Library (Alumni)
Engineering Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Family Health
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
ProQuest Business Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
ProQuest One Academic Middle East (New)
SIRS Editorial
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Family Health (Alumni Edition)
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
International Bibliography of the Social Sciences (IBSS)
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Research Library
ABI/INFORM Complete (Alumni Edition)
ProQuest Public Health
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Health Management
ABI/INFORM China
ProQuest SciTech Collection
ProQuest Medical Library
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList

ProQuest Business Collection (Alumni Edition)
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
EISSN 1537-274X
EndPage 134
ExternalDocumentID 50707693
1485268
10_1080_01621459_2000_10473908
2669532
10473908
Genre Feature
GroupedDBID -DZ
-~X
.-4
..I
.7F
.GJ
.QJ
0BK
0R~
29L
2AX
30N
3R3
4.4
5GY
5RE
692
7WY
7X7
85S
88E
88I
8AF
8C1
8FE
8FG
8FI
8FJ
8FL
8G5
8R4
8R5
AABCJ
AAENE
AAGDL
AAHBH
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
AAWIL
ABAWQ
ABBHK
ABCCY
ABEFU
ABEHJ
ABFAN
ABFIM
ABJCF
ABJNI
ABLIJ
ABLJU
ABPAQ
ABPEM
ABPFR
ABPPZ
ABPQH
ABTAI
ABUFD
ABUWG
ABXSQ
ABXUL
ABXYU
ABYWD
ACAGQ
ACGFO
ACGFS
ACGOD
ACHJO
ACIWK
ACMTB
ACNCT
ACTIO
ACTMH
ACUBG
ADBBV
ADCVX
ADGTB
ADLSF
ADMHG
ADODI
ADULT
AEISY
AENEX
AEOZL
AEPSL
AEUPB
AEYOC
AFFNX
AFKRA
AFRVT
AFVYC
AFXHP
AGDLA
AGLNM
AGMYJ
AGROQ
AHDZW
AHMOU
AI.
AIHAF
AIJEM
AIYEW
AKBVH
AKOOK
ALCKM
ALMA_UNASSIGNED_HOLDINGS
ALQZU
ALRMG
AMEWO
AQRUH
AQTUD
AQUVI
AVBZW
AWYRJ
AZQEC
BENPR
BEZIV
BGLVJ
BKNYI
BKOMP
BLEHA
BPHCQ
BVXVI
CCCUG
CCPQU
CJ0
CRFIH
CS3
D0L
DGEBU
DKSSO
DMQIW
DQDLB
DSRWC
DU5
DWQXO
EBS
ECEWR
EJD
E~A
E~B
F5P
FEDTE
FJW
FRNLG
FVMVE
FYUFA
GNUQQ
GROUPED_ABI_INFORM_RESEARCH
GTTXZ
GUQSH
H13
HCIFZ
HGD
HMCUK
HQ6
HVGLF
HZ~
H~9
H~P
IPSME
J.P
JAAYA
JAS
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JST
K60
K6~
K9-
KYCEM
L6V
LU7
M0C
M0R
M0T
M1P
M2O
M2P
M4Z
M7S
MS~
MVM
NA5
NHB
NUSFT
NY~
O9-
OK1
P-O
P2P
PADUT
PHGZM
PHGZT
PJZUB
PPXIY
PQBIZ
PQBZA
PQGLB
PQQKQ
PRG
PROAC
PSQYO
PTHSS
Q2X
QCRFL
RNANH
RNS
ROSJB
RTWRZ
RWL
RXW
S-T
S0X
SA0
SNACF
TAE
TASJS
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TOXWX
TTHFI
TUROJ
U5U
UKHRP
UPT
UT5
UU3
VH1
VOH
WH7
WZA
YQT
YXB
YYM
YYP
ZCG
ZGI
ZGOLN
~S~
ADYSH
AFSUE
ALIPV
AMPGV
07G
1OL
AAAVZ
AAFWJ
AAIKQ
AAKBW
AAYXX
ABRLO
ACGEE
ACTCW
ADXHL
AEUMN
AFQQW
AGCQS
AGLEN
AMATQ
AMVHM
AMXXU
BCCOT
BPLKW
C06
CITATION
DWIFK
E.L
HF~
IPNFZ
IVXBP
KQ8
LJTGL
MW2
OFU
PUEGO
RIG
SJN
TAQ
TFMCV
UB9
UQL
WHG
ZUP
ZXP
IQODW
JRZRW
K30
PAAUG
PAWHS
PAWZZ
PAXOH
PBHAV
PBQSW
PBYQZ
PCIWU
PCMID
PCZJX
PDGRG
PDWWI
PETMR
PFVGT
PGXDX
PIHIL
PISVA
PJCTQ
PJTMS
PLCHJ
PMHAD
PNQDJ
POUND
PPLAD
PQAPC
PQCAN
PQCMW
PQEME
PQHKH
PQMID
PQNCT
PQNET
PQSCT
PQSET
PSVJG
PVMQY
PZGFC
3V.
7XB
8BJ
8FK
FQK
JBE
K9.
L.-
MBDVC
PKEHL
PQEST
PQUKI
Q9U
ID FETCH-LOGICAL-c436t-158bb3b9fb9296eeb5fd0c13a2fa72aeed4f491ca70a65ec71e25a24a5f7c2d03
IEDL.DBID BENPR
ISSN 0162-1459
IngestDate Thu Oct 02 17:19:22 EDT 2025
Mon Oct 06 18:06:50 EDT 2025
Sat Jul 26 01:30:46 EDT 2025
Mon Jul 21 09:14:42 EDT 2025
Wed Oct 01 03:21:18 EDT 2025
Thu Apr 24 22:55:51 EDT 2025
Thu Jun 19 14:56:05 EDT 2025
Mon Oct 20 23:47:26 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 449
Keywords Markov chain
Conjugate gradient method
Monte Carlo method
Adaptive directional sampling algorithm
Gridy Gibbs sampler
Adaptive estimation
Gibbs sampling
Sampling
Metropolis Hastings sampler
Markov chain Monte Carlo simulation
Mixture
Sinusoid
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c436t-158bb3b9fb9296eeb5fd0c13a2fa72aeed4f491ca70a65ec71e25a24a5f7c2d03
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
content type line 23
PQID 274601934
PQPubID 1820857
PageCount 14
ParticipantIDs crossref_primary_10_1080_01621459_2000_10473908
crossref_citationtrail_10_1080_01621459_2000_10473908
informaworld_taylorfrancis_310_1080_01621459_2000_10473908
jstor_primary_10_2307_2669532
proquest_miscellaneous_38848556
proquest_journals_1474331077
pascalfrancis_primary_1485268
proquest_journals_274601934
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2000-03-01
PublicationDateYYYYMMDD 2000-03-01
PublicationDate_xml – month: 03
  year: 2000
  text: 2000-03-01
  day: 01
PublicationDecade 2000
PublicationPlace Alexandria, VA
PublicationPlace_xml – name: Alexandria, VA
– name: Washington
– name: Alexandria
PublicationTitle Journal of the American Statistical Association
PublicationYear 2000
Publisher Taylor & Francis Group
American Statistical Association
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis Group
– name: American Statistical Association
– name: Taylor & Francis Ltd
SSID ssj0000788
Score 2.155973
Snippet This article describes a new Metropolis-like transition rule, the multiple-try Metropolis, for Markov chain Monte Carlo (MCMC) simulations. By using this...
SourceID proquest
pascalfrancis
crossref
jstor
informaworld
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 121
SubjectTerms Adaptive direction sampling
Algorithms
Autocorrelation
Conjugate gradient
Damped sinusoidal
Datasets
Determinism
Distribution theory
Exact sciences and technology
Gibbs sampling
Griddy Gibbs sampler
Histograms
Hit-and-run algorithm
Linear inference, regression
Markov analysis
Markov chain Monte Carlo
Markov chains
Markov processes
Markovian processes
Mathematical economics
Mathematics
Metropolis
Metropolis algorithm
Metropolitan areas
Mixture model
Monte Carlo simulation
Optimization
Orientational bias Monte Carlo
Probability and statistics
Probability theory and stochastic processes
Random sampling
Sampling
Sampling distributions
Sampling theory, sample surveys
Sciences and techniques of general use
Statistics
Tanneries
Theory and Methods
Time series
Transition rules
Title The Multiple-Try Method and Local Optimization in Metropolis Sampling
URI https://www.tandfonline.com/doi/abs/10.1080/01621459.2000.10473908
https://www.jstor.org/stable/2669532
https://www.proquest.com/docview/1474331077
https://www.proquest.com/docview/274601934
https://www.proquest.com/docview/38848556
Volume 95
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: aylor and Francis Online
  customDbUrl:
  mediaType: online
  eissn: 1537-274X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000788
  issn: 0162-1459
  databaseCode: AHDZW
  dateStart: 19970301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1537-274X
  dateEnd: 20051231
  omitProxy: true
  ssIdentifier: ssj0000788
  issn: 0162-1459
  databaseCode: 7X7
  dateStart: 19920301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1537-274X
  dateEnd: 20051231
  omitProxy: true
  ssIdentifier: ssj0000788
  issn: 0162-1459
  databaseCode: BENPR
  dateStart: 19920301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1537-274X
  dateEnd: 20051231
  omitProxy: true
  ssIdentifier: ssj0000788
  issn: 0162-1459
  databaseCode: 8FG
  dateStart: 19920301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1537-274X
  dateEnd: 20051231
  omitProxy: true
  ssIdentifier: ssj0000788
  issn: 0162-1459
  databaseCode: 8C1
  dateStart: 19920301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVAWR
  databaseName: Taylor & Francis Science and Technology Library-DRAA
  customDbUrl:
  eissn: 1537-274X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000788
  issn: 0162-1459
  databaseCode: 30N
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.tandfonline.com/page/title-lists
  providerName: Taylor & Francis
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1La9wwEB6SzSWX0id186gOvYrYkmzZhVLasNtQSCilgb2ZkSyXQOtNs86h_74zsr3ZEGguPuhhG400Gmlmvg_gXaoCGQ1YSm-bQprgtaQjGMoss96WBZbBsUf3_KI4uzRfl_lyB86nXBgOq5x0YlTUzcrzHfkJnZ7o7FBp8_H6j2TSKHauTgwaODIrNB8iwtgu7CkGxprB3uf5xbfvd6rZRiJKMnOUzExeTSnDDLZNZVwUc1fY82l1xZyTW7vVPSzTKX6RgylxTePZDkQYD3R63KgWT-HJaGGKT8OUeAY7oXsO-2xUDpjML2BOc0NMkYSyv_krBh5pgV0j4uYmVqRJfo8pmuKq4waRTuFqLdbIQejdz5dwuZj_OD2TI52C9EYXvczy0jntqtaRSVSE4PK2SX2mUbVoFdJmaVpTZR5tikUevM2CylEZzFvrVZPqVzDrVl14DQLpJUFb0gdVajBY55Ri2BdHBlVwDhPIp2Gr_Yg1zpQXv-psgiQdh5tpMLloGO4ETjb9rge0jUd7vN-WSt3He45RFrV-rPNRlOH2tzgwviarpcq1ovp7sr1rZ0qGyUngcJJ1PS79NdVZzkJLrU3g4GH1Zh4n8HZTS0ua_TTYhdUt_XVZMmRP8ea__Q9gf4AF4Hi4Q5j1N7fhiAyk3h3Drl1aepanGT8XX47HhfAPhVIK7Q
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5ROJQLKrRVU6D40B4tEj_ipFJVVS1oKY8TSHtLbcdBSG2WkiDEj-p_7EweyyIkOHH1K5HHnhnbM98H8DEWAZ0Gm3FvypSr4CXHI5jlSWK8yVKbBUcvuscn6eRM_Zzq6RL8G3NhKKxy1Imdoi5nnu7Id_H0hGeHXKqvl385kUbR4-rIoNGvisNwe4MntubLwQ8U7ych9vdOv0_4QCrAvZJpyxOdOSddXjl0DNIQnK7K2CfSisoaYdFkqErlibcmtqkO3iRBaCuU1ZXxoowljvsCVpREVYLbx0zNneI3Hc0lOlGCJ0rnY0IyQXljGRV1mTH0rmpkToyWC7bwHlLqGB1JoZq2QWlVPc3GA4vRmcH9V7A2-K_sW7_g1mEp1BuwSi5rj_j8GvZw5bExTpG3V7esZ6lmti5ZZzrZDPXUnyEBlF3U1KAja7hoWGMpxL0-fwNnzzKvb2G5ntXhHTCLgwRpUNvksbLBOCcEgco4dNeCczYCPU5b4QckcyLU-F0kI-DpMN1EsklF_XRHsDvvd9ljeTzZ4_OiVIq2u0UZZFHIpzpvdzJc_BaF3RfoE-VaCqy_J9u7diojEJ4ItkZZF4NiabDOUI5bbEwEmw-r57skgp15LSoMegWydZhd419nGQECpe8f7b8DLyenx0fF0cHJ4Sas9gAEFHm3Bcvt1XXYRlesdR-6DcDg13PvuP8vX0CI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB61VKq4QOlDhKcPXA2J7cRJb6hlxWu3SIDELbK9DkK0AbHZQ_vrOxMnsFtUceAaZ-zYHo_H8TffAOzEwqPTYHLu9DjjyjvJ8QhmeJJop_PM5N7Sje5wlB1equOr9GomFoZglXSGrgJRRGuraXHfj6seEbeHXgrxa4cwE7qk1Hhwz9_Cu4yuxSiMIx49WWPd5p4kGU5CfZTwf-uZ26Dm6Et7yCLhJ80Eh7AKuS-emfF2bxosg-t7FSApt7vTxu66P_8QPr6u2x9gqXNd2X7QtRV44-uPsEjeaiB7_gQHqHRs2EEU-cXDbzZsE1QzbJOd0q7JfqCJ-tXFfrKbml5o8zTcTNi5IXR7ff0ZLgcHF98OeZengTsls4YnaW6ttEVl0dfKvLdpNY5dIo2ojBYGd2FVqSJxRscmS73TiRepEcqklXZiHMsvsFDf1X4VmMFKvNRoaIpYGa-tFYL4ZCx6at5aE0HaT07pOhJzyqXxs0x6rtNulCi_Jj0KoxTB3qPcfaDxeFHi6-zcl037A6Wb8VK-JLzZaspsW4S4L9EdKlIpsHxOg57eUznx70Sw0WtU2dmUCZZpCm-LtY5g_Xmx0AoP14VUEWw_lqKtoAsgU_u7KX51nhMXULb2mr5tw_uz74Py9Gh0sg6LgZmAIHkbsNA8TP0m-miN3WoX4V8zOSlK
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+multiple-try+method+and+local+optimization+in+metropolis+sampling&rft.jtitle=Journal+of+the+American+Statistical+Association&rft.au=LIU%2C+J.+S&rft.au=LIANG%2C+F&rft.au=WONG%2C+W.+H&rft.date=2000-03-01&rft.pub=American+Statistical+Association&rft.issn=0162-1459&rft.volume=95&rft.issue=449&rft.spage=121&rft.epage=134&rft_id=info:doi/10.1080%2F01621459.2000.10473908&rft.externalDBID=n%2Fa&rft.externalDocID=1485268
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-1459&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-1459&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-1459&client=summon