In vivo viability of stored red blood cells derived from riboflavin plus ultraviolet light-treated whole blood

BACKGROUND: A novel system using ultraviolet (UV) light and riboflavin (Mirasol System, CaridianBCT Biotechnologies) to fragment nucleic acids has been developed to treat whole blood (WB), aiming at the reduction of potential pathogen load and white blood cell inactivation. We evaluated stored red b...

Full description

Saved in:
Bibliographic Details
Published inTransfusion (Philadelphia, Pa.) Vol. 51; no. 7; pp. 1460 - 1468
Main Authors Cancelas, Jose A., Rugg, Neeta, Fletcher, Dana, Pratt, P. Gayle, Worsham, D. Nicole, Dunn, Susan K., Marschner, Susanne, Reddy, Heather L., Goodrich, Raymond P.
Format Journal Article
LanguageEnglish
Published Malden, USA Blackwell Publishing Inc 01.07.2011
Wiley
Subjects
Online AccessGet full text
ISSN0041-1132
1537-2995
1537-2995
DOI10.1111/j.1537-2995.2010.03027.x

Cover

Abstract BACKGROUND: A novel system using ultraviolet (UV) light and riboflavin (Mirasol System, CaridianBCT Biotechnologies) to fragment nucleic acids has been developed to treat whole blood (WB), aiming at the reduction of potential pathogen load and white blood cell inactivation. We evaluated stored red blood cell (RBC) metabolic status and viability, in vitro and in vivo, of riboflavin/UV light–treated WB (IMPROVE study). STUDY DESIGN AND METHODS: The study compared recovery and survival of RBCs obtained from nonleukoreduced WB treated using three different UV light energies (22, 33, or 44 J/mLRBC). After treatment, WB from 12 subjects was separated into components and tested at the beginning and end of component storage. After 42 days of storage, an aliquot of RBCs was radiolabeled and autologously reinfused into subjects for analysis of 24‐hour recovery and survival of RBCs. RESULTS: Eleven subjects completed the in vivo study. No device‐related adverse events were observed. By Day 42 of storage, a significant change in the concentrations of sodium and potassium was observed. Five subjects had a 24‐hour RBC recovery of 75% or more with no significant differences among the energy groups. RBC t1/2 was 24 ± 9 days for the combined three groups. Significant correlations between 24‐hour RBC recovery and survival, hemolysis, adenosine triphosphate (ATP), and CO2 levels were observed. CONCLUSIONS: This study shows that key RBC quality variables, hemolysis, and ATP concentration may be predictive of their 24‐hour recovery and t1/2 survival. These variables will now be used to assess modifications to the system including storage duration, storage temperature, and appropriate energy dose for treatment.
AbstractList BACKGROUND: A novel system using ultraviolet (UV) light and riboflavin (Mirasol System, CaridianBCT Biotechnologies) to fragment nucleic acids has been developed to treat whole blood (WB), aiming at the reduction of potential pathogen load and white blood cell inactivation. We evaluated stored red blood cell (RBC) metabolic status and viability, in vitro and in vivo, of riboflavin/UV light–treated WB (IMPROVE study). STUDY DESIGN AND METHODS: The study compared recovery and survival of RBCs obtained from nonleukoreduced WB treated using three different UV light energies (22, 33, or 44 J/mL RBC ). After treatment, WB from 12 subjects was separated into components and tested at the beginning and end of component storage. After 42 days of storage, an aliquot of RBCs was radiolabeled and autologously reinfused into subjects for analysis of 24‐hour recovery and survival of RBCs. RESULTS: Eleven subjects completed the in vivo study. No device‐related adverse events were observed. By Day 42 of storage, a significant change in the concentrations of sodium and potassium was observed. Five subjects had a 24‐hour RBC recovery of 75% or more with no significant differences among the energy groups. RBC t 1/2 was 24 ± 9 days for the combined three groups. Significant correlations between 24‐hour RBC recovery and survival, hemolysis, adenosine triphosphate (ATP), and CO 2 levels were observed. CONCLUSIONS: This study shows that key RBC quality variables, hemolysis, and ATP concentration may be predictive of their 24‐hour recovery and t 1/2 survival. These variables will now be used to assess modifications to the system including storage duration, storage temperature, and appropriate energy dose for treatment.
BACKGROUND: A novel system using ultraviolet (UV) light and riboflavin (Mirasol System, CaridianBCT Biotechnologies) to fragment nucleic acids has been developed to treat whole blood (WB), aiming at the reduction of potential pathogen load and white blood cell inactivation. We evaluated stored red blood cell (RBC) metabolic status and viability, in vitro and in vivo, of riboflavin/UV light–treated WB (IMPROVE study). STUDY DESIGN AND METHODS: The study compared recovery and survival of RBCs obtained from nonleukoreduced WB treated using three different UV light energies (22, 33, or 44 J/mLRBC). After treatment, WB from 12 subjects was separated into components and tested at the beginning and end of component storage. After 42 days of storage, an aliquot of RBCs was radiolabeled and autologously reinfused into subjects for analysis of 24‐hour recovery and survival of RBCs. RESULTS: Eleven subjects completed the in vivo study. No device‐related adverse events were observed. By Day 42 of storage, a significant change in the concentrations of sodium and potassium was observed. Five subjects had a 24‐hour RBC recovery of 75% or more with no significant differences among the energy groups. RBC t1/2 was 24 ± 9 days for the combined three groups. Significant correlations between 24‐hour RBC recovery and survival, hemolysis, adenosine triphosphate (ATP), and CO2 levels were observed. CONCLUSIONS: This study shows that key RBC quality variables, hemolysis, and ATP concentration may be predictive of their 24‐hour recovery and t1/2 survival. These variables will now be used to assess modifications to the system including storage duration, storage temperature, and appropriate energy dose for treatment.
A novel system using ultraviolet (UV) light and riboflavin (Mirasol System, CaridianBCT Biotechnologies) to fragment nucleic acids has been developed to treat whole blood (WB), aiming at the reduction of potential pathogen load and white blood cell inactivation. We evaluated stored red blood cell (RBC) metabolic status and viability, in vitro and in vivo, of riboflavin/UV light-treated WB (IMPROVE study). The study compared recovery and survival of RBCs obtained from nonleukoreduced WB treated using three different UV light energies (22, 33, or 44 J/mL(RBC)). After treatment, WB from 12 subjects was separated into components and tested at the beginning and end of component storage. After 42 days of storage, an aliquot of RBCs was radiolabeled and autologously reinfused into subjects for analysis of 24-hour recovery and survival of RBCs. Eleven subjects completed the in vivo study. No device-related adverse events were observed. By Day 42 of storage, a significant change in the concentrations of sodium and potassium was observed. Five subjects had a 24-hour RBC recovery of 75% or more with no significant differences among the energy groups. RBC t(1/2) was 24 ± 9 days for the combined three groups. Significant correlations between 24-hour RBC recovery and survival, hemolysis, adenosine triphosphate (ATP), and CO(2) levels were observed. This study shows that key RBC quality variables, hemolysis, and ATP concentration may be predictive of their 24-hour recovery and t(1/2) survival. These variables will now be used to assess modifications to the system including storage duration, storage temperature, and appropriate energy dose for treatment.
A novel system using ultraviolet (UV) light and riboflavin (Mirasol System, CaridianBCT Biotechnologies) to fragment nucleic acids has been developed to treat whole blood (WB), aiming at the reduction of potential pathogen load and white blood cell inactivation. We evaluated stored red blood cell (RBC) metabolic status and viability, in vitro and in vivo, of riboflavin/UV light-treated WB (IMPROVE study).BACKGROUNDA novel system using ultraviolet (UV) light and riboflavin (Mirasol System, CaridianBCT Biotechnologies) to fragment nucleic acids has been developed to treat whole blood (WB), aiming at the reduction of potential pathogen load and white blood cell inactivation. We evaluated stored red blood cell (RBC) metabolic status and viability, in vitro and in vivo, of riboflavin/UV light-treated WB (IMPROVE study).The study compared recovery and survival of RBCs obtained from nonleukoreduced WB treated using three different UV light energies (22, 33, or 44 J/mL(RBC)). After treatment, WB from 12 subjects was separated into components and tested at the beginning and end of component storage. After 42 days of storage, an aliquot of RBCs was radiolabeled and autologously reinfused into subjects for analysis of 24-hour recovery and survival of RBCs.STUDY DESIGN AND METHODSThe study compared recovery and survival of RBCs obtained from nonleukoreduced WB treated using three different UV light energies (22, 33, or 44 J/mL(RBC)). After treatment, WB from 12 subjects was separated into components and tested at the beginning and end of component storage. After 42 days of storage, an aliquot of RBCs was radiolabeled and autologously reinfused into subjects for analysis of 24-hour recovery and survival of RBCs.Eleven subjects completed the in vivo study. No device-related adverse events were observed. By Day 42 of storage, a significant change in the concentrations of sodium and potassium was observed. Five subjects had a 24-hour RBC recovery of 75% or more with no significant differences among the energy groups. RBC t(1/2) was 24 ± 9 days for the combined three groups. Significant correlations between 24-hour RBC recovery and survival, hemolysis, adenosine triphosphate (ATP), and CO(2) levels were observed.RESULTSEleven subjects completed the in vivo study. No device-related adverse events were observed. By Day 42 of storage, a significant change in the concentrations of sodium and potassium was observed. Five subjects had a 24-hour RBC recovery of 75% or more with no significant differences among the energy groups. RBC t(1/2) was 24 ± 9 days for the combined three groups. Significant correlations between 24-hour RBC recovery and survival, hemolysis, adenosine triphosphate (ATP), and CO(2) levels were observed.This study shows that key RBC quality variables, hemolysis, and ATP concentration may be predictive of their 24-hour recovery and t(1/2) survival. These variables will now be used to assess modifications to the system including storage duration, storage temperature, and appropriate energy dose for treatment.CONCLUSIONSThis study shows that key RBC quality variables, hemolysis, and ATP concentration may be predictive of their 24-hour recovery and t(1/2) survival. These variables will now be used to assess modifications to the system including storage duration, storage temperature, and appropriate energy dose for treatment.
Author Cancelas, Jose A.
Reddy, Heather L.
Fletcher, Dana
Goodrich, Raymond P.
Pratt, P. Gayle
Worsham, D. Nicole
Dunn, Susan K.
Marschner, Susanne
Rugg, Neeta
Author_xml – sequence: 1
  givenname: Jose A.
  surname: Cancelas
  fullname: Cancelas, Jose A.
  organization: From the Hoxworth Blood Center, Cincinnati, Ohio; and CaridianBCT Biotechnologies, Lakewood, Colorado
– sequence: 2
  givenname: Neeta
  surname: Rugg
  fullname: Rugg, Neeta
  organization: From the Hoxworth Blood Center, Cincinnati, Ohio; and CaridianBCT Biotechnologies, Lakewood, Colorado
– sequence: 3
  givenname: Dana
  surname: Fletcher
  fullname: Fletcher, Dana
  organization: From the Hoxworth Blood Center, Cincinnati, Ohio; and CaridianBCT Biotechnologies, Lakewood, Colorado
– sequence: 4
  givenname: P. Gayle
  surname: Pratt
  fullname: Pratt, P. Gayle
  organization: From the Hoxworth Blood Center, Cincinnati, Ohio; and CaridianBCT Biotechnologies, Lakewood, Colorado
– sequence: 5
  givenname: D. Nicole
  surname: Worsham
  fullname: Worsham, D. Nicole
  organization: From the Hoxworth Blood Center, Cincinnati, Ohio; and CaridianBCT Biotechnologies, Lakewood, Colorado
– sequence: 6
  givenname: Susan K.
  surname: Dunn
  fullname: Dunn, Susan K.
  organization: From the Hoxworth Blood Center, Cincinnati, Ohio; and CaridianBCT Biotechnologies, Lakewood, Colorado
– sequence: 7
  givenname: Susanne
  surname: Marschner
  fullname: Marschner, Susanne
  organization: From the Hoxworth Blood Center, Cincinnati, Ohio; and CaridianBCT Biotechnologies, Lakewood, Colorado
– sequence: 8
  givenname: Heather L.
  surname: Reddy
  fullname: Reddy, Heather L.
  organization: From the Hoxworth Blood Center, Cincinnati, Ohio; and CaridianBCT Biotechnologies, Lakewood, Colorado
– sequence: 9
  givenname: Raymond P.
  surname: Goodrich
  fullname: Goodrich, Raymond P.
  organization: From the Hoxworth Blood Center, Cincinnati, Ohio; and CaridianBCT Biotechnologies, Lakewood, Colorado
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24396054$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/21275998$$D View this record in MEDLINE/PubMed
BookMark eNqNUUtvEzEYtFARTQt_AfmCOG3wY18-gAQRCUURSLQSR8v22tTBWae2N03-PV42LRKnWvJrPDOf_M0FOOt9rwGAGM1xHu82c1zRpiCMVXOCMoooIs388AzMHh_OwAyhEhcYU3IOLmLcIIQIQ_gFOCeYNBVj7Qz0Vz3c273Pi5DW2XSE3sCYfNAdHKd03ndQaeci7HSw-4yZ4LcwWOmNE3vbw50bIhxcCvnmnU7Q2V-3qUhBi5Tp97cZnIxegudGuKhfnfZLcL38fLP4Uqy_r64WH9eFKmndFFTKjtXMUF0yRU3JZIkQlkIqgzSqiJGK1EI3ZdtJ1DZKKqw6ZaggpDMlvQRvJ9dd8HeDjolvbRy_IHrth8jbpmowKzHNzNcn5iC3uuO7YLciHPlDgzLhzYkgohLOBNErG__xSspqVI0lP0w8FXyMQRuubBLJ-j53xTqOER-T4xs-BsTHgPiYHP-bHD9kg_Y_g4caT5C-n6T31unjk3X85sdyPGV9MeltTPrwqBfhN68b2lT857cV_9p-Wl-vlgte0T_YA8E1
CODEN TRANAT
CitedBy_id crossref_primary_10_1111_j_1423_0410_2012_01662_x
crossref_primary_10_1159_000342232
crossref_primary_10_1111_vox_13039
crossref_primary_10_1111_trf_15344
crossref_primary_10_1111_trf_12894
crossref_primary_10_1111_trf_12235
crossref_primary_10_1111_trf_12895
crossref_primary_10_1111_trf_15766
crossref_primary_10_1111_j_1537_2995_2012_03715_x
crossref_primary_10_1016_j_hoc_2016_01_005
crossref_primary_10_1016_j_tmrv_2016_02_003
crossref_primary_10_1016_j_jphotobiol_2019_04_005
crossref_primary_10_1111_trf_14396
crossref_primary_10_1111_trf_15485
crossref_primary_10_1097_SHK_0000000000000280
crossref_primary_10_1111_j_1537_2995_2011_03245_x
crossref_primary_10_1111_j_1537_2995_2011_03201_x
crossref_primary_10_1111_trf_12867
crossref_primary_10_1016_j_transci_2014_12_016
crossref_primary_10_24287_1726_1708_2018_17_4_43_50
crossref_primary_10_1111_trf_13959
crossref_primary_10_31482_mmsl_2021_046
crossref_primary_10_1016_j_tmrv_2014_03_003
crossref_primary_10_1111_trf_13432
crossref_primary_10_1111_trf_12047
crossref_primary_10_1080_17474086_2019_1640599
crossref_primary_10_1111_trf_12048
crossref_primary_10_1111_trf_13259
crossref_primary_10_1111_trf_12545
crossref_primary_10_1111_j_1537_2995_2012_03746_x
crossref_primary_10_1111_bjh_16093
crossref_primary_10_1111_trf_14084
crossref_primary_10_1111_tme_12456
crossref_primary_10_1111_j_1751_2824_2011_01437_x
crossref_primary_10_1159_000365646
crossref_primary_10_1111_vox_12757
crossref_primary_10_1111_j_1751_2824_2011_01531_x
crossref_primary_10_1111_voxs_12085
Cites_doi 10.1046/j.1537-2995.2002.00021.x
10.1046/j.1537-2995.1998.38198141508.x
10.1111/j.1537-2995.2007.01171.x
10.1111/j.1751-1097.2005.tb00210.x
10.1016/S0887-7963(92)70166-7
10.1111/j.0041-1132.2004.00657.x
10.1111/j.1751-1097.2004.tb00043.x
10.1111/j.1537-2995.2010.02704.x
10.1016/j.blre.2007.07.003
10.1182/blood-2008-10-167643
10.1111/j.1537-2995.2008.01642.x
10.1111/j.1365-2141.1980.tb07189.x
10.1111/j.1432-1033.1981.tb05246.x
10.1046/j.1537-2995.1999.39299154725.x
10.1097/01.ta.0000222671.84335.64
10.1111/j.1537-2995.2005.00583.x
10.1016/j.biologicals.2009.10.019
10.1111/j.1365-2141.1992.tb04602.x
10.1111/j.1537-2995.2009.02272.x
10.1111/j.1537-2995.2006.00973.x
10.1016/j.transci.2009.09.006
10.1213/ane.0b013e3181930a6e
10.1111/j.1537-2995.2009.02517.x
10.1111/j.1423-0410.1975.tb02756.x
10.1016/j.biologicals.2009.10.016
10.1111/j.1537-2995.2006.00939.x
10.1097/CCM.0b013e31817e2ef9
10.1111/j.1537-2995.2005.00582.x
ContentType Journal Article
Copyright 2011 American Association of Blood Banks
2015 INIST-CNRS
2011 American Association of Blood Banks.
Copyright_xml – notice: 2011 American Association of Blood Banks
– notice: 2015 INIST-CNRS
– notice: 2011 American Association of Blood Banks.
DBID BSCLL
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1111/j.1537-2995.2010.03027.x
DatabaseName Istex
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList CrossRef

MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1537-2995
EndPage 1468
ExternalDocumentID 21275998
24396054
10_1111_j_1537_2995_2010_03027_x
TRF3027
ark_67375_WNG_J8BLSGFC_5
Genre article
Research Support, U.S. Gov't, Non-P.H.S
Journal Article
GroupedDBID ---
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
123
1OB
1OC
29Q
31~
33P
36B
3O-
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5HH
5LA
5RE
5VS
66C
6PF
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHQN
AAIPD
AAMMB
AAMNL
AANLZ
AAONW
AAQQT
AASGY
AAWTL
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBNA
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHMBA
AIACR
AIAGR
AIDQK
AIDYY
AIQQE
AITYG
AIURR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBS
EGARE
EJD
EMOBN
EX3
F00
F5P
FUBAC
G-S
G.N
GODZA
H.X
HF~
HGLYW
HZI
HZ~
H~9
IHE
IX1
J0M
J5H
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SJN
SUPJJ
TEORI
TWZ
UB1
V8K
V9Y
W8V
W99
WBKPD
WH7
WHWMO
WIH
WIJ
WIK
WOHZO
WOW
WQJ
WVDHM
WXI
WXSBR
X7M
XG1
YFH
YQI
YQJ
YUY
ZGI
ZXP
ZZTAW
~IA
~WT
AAHHS
ACCFJ
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
ESX
UCJ
WUP
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c4367-3bbd969f3e49c3f49b4001babcf0e052fbc26ae748db087cbc1cdcf3a22df43
IEDL.DBID DR2
ISSN 0041-1132
1537-2995
IngestDate Fri Sep 05 07:56:06 EDT 2025
Mon Jul 21 05:31:08 EDT 2025
Mon Jul 21 09:16:20 EDT 2025
Thu Apr 24 23:05:09 EDT 2025
Tue Jul 01 01:46:05 EDT 2025
Wed Jan 22 17:03:40 EST 2025
Sun Sep 21 06:17:56 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Blood cell
Treatment
Transfusion
Conservation
Red blood cell
Riboflavin
B-Vitamins
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
2011 American Association of Blood Banks.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4367-3bbd969f3e49c3f49b4001babcf0e052fbc26ae748db087cbc1cdcf3a22df43
Notes istex:A930D1A3CAD870151C997BC0B453209001B84CBD
ark:/67375/WNG-J8BLSGFC-5
ArticleID:TRF3027
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 21275998
PQID 875719413
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_875719413
pubmed_primary_21275998
pascalfrancis_primary_24396054
crossref_citationtrail_10_1111_j_1537_2995_2010_03027_x
crossref_primary_10_1111_j_1537_2995_2010_03027_x
wiley_primary_10_1111_j_1537_2995_2010_03027_x_TRF3027
istex_primary_ark_67375_WNG_J8BLSGFC_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2011
PublicationDateYYYYMMDD 2011-07-01
PublicationDate_xml – month: 07
  year: 2011
  text: July 2011
PublicationDecade 2010
PublicationPlace Malden, USA
PublicationPlace_xml – name: Malden, USA
– name: Hoboken, NJ
– name: United States
PublicationTitle Transfusion (Philadelphia, Pa.)
PublicationTitleAlternate Transfusion
PublicationYear 2011
Publisher Blackwell Publishing Inc
Wiley
Publisher_xml – name: Blackwell Publishing Inc
– name: Wiley
References Goodrich RP, Doane S, Reddy HL. Design and development of a method for the reduction of infectious pathogen load and inactivation of white blood cells in whole blood products. Biologicals 2010;38:20-30.
Cancelas JA, Dumont LJ, Herschel L, Roger J, Rugg N, Garraty G, Arndt P, Propst P, Corash L, Sundin D, AuBuchon J. A randomized, controlled, 2-period crossover study of recovery and lifespan of radiolabeled autologous 35-day-old red blood cells prepared with a modified S-303 treatment for pathogen inactivation. Vox Sang 2008;95(Suppl 1):8.
Li J, Goodrich L, Hansen E, Edrich R, Gampp D, Goodrich RP. Platelet glycolytic flux increases stimulated by ultraviolet-induced stress is not the direct cause of platelet morphology and activation changes: possible implications for the role of glucose in platelet storage. Transfusion 2005;45:1750-8.
Martin CB, Wilfong E, Ruane P, Goodrich R, Platz M. An action spectrum of the riboflavin-photosensitized inactivation of Lambda phage. Photochem Photobiol 2005;81:474-80.
Bandarenko N, Cancelas J, Snyder EL, Hay SN, Rugg N, Corda T, Joines AD, Gormas JF, Pratt GP, Kowalsky R, Rose M, Rose L, Foley J, Popovsky MA. Successful in vivo recovery and extended storage of additive solution (AS)-5 red blood cells after deglycerolization and resuspension in AS-3 for 15 days with an automated closed system. Transfusion 2007;47:680-6.
Ataullakhanov FI, Vitvitsky VM, Zhabotinsky AM, Pichugin AV, Platonova OV, Kholodenko BN, Ehrlich LI. The regulation of glycolysis in human erythrocytes. The dependence of the glycolytic flux on the ATP concentration. Eur J Biochem 1981;115:359-65.
Usry RT, Moore GL, Manalo FW. Morphology of stored, rejuvenated human erythrocytes. Vox Sang 1975;28: 176-83.
Keegan TB, Heaton A, Holme S, Owens M, Nelson EJ. Improved post-transfusion quality of density separated AS-3 red cells after extended storage. Br J Haematol 1992;82:114-21.
Spinella PC. Warm fresh whole blood transfusion for severe hemorrhage: U.S. military and potential civilian applications. Crit Care Med 2008;36(Suppl):S340-5.
Smith J, Rock G. Protein quality in Mirasol pathogen reduction technology-treated, apheresis-derived fresh-frozen plasma. Transfusion 2010;50:926-31.
Vamvakas EC, Blajchman MA. Transfusion-related immunomodulation (TRIM): an update. Blood Rev 2007;21:327-48.
Fast LD, DiLeone G, Cardarelli G, Li J, Goodrich R. Mirasol PRT treatment of donor white blood cells prevents the development of xenogeneic graft-versus-host disease in Rag2-/-gamma c-/- double knockout mice. Transfusion 2006;46:1553-60.
Hornsey VS, Drummond O, Morrison A, McMillan L, MacGregor IR, Prowse CV. Pathogen reduction of fresh plasma using riboflavin and ultraviolet light: effects on plasma coagulation proteins. Transfusion 2009;49: 2167-72.
Benjamin RJ, McCullough J, Mintz PD, Snyder E, Spotnitz WD, Rizzo RJ, Wages D, Lin JS, Wood L, Corash L, Conlan MG. Therapeutic efficacy and safety of red blood cells treated with a chemical process (S-303) for pathogen inactivation: a Phase III clinical trial in cardiac surgery patients. Transfusion 2005;45:1739-49.
Kauvar DS, Holcomb JB, Norris GC, Hess JR. Fresh whole blood transfusion: a controversial military practice. J Trauma 2006;61:181-4.
Recommended method for radioisotope red-cell survival studies. International Committee for Standardization in Haematology. Br J Haematol 1980;45:659-66.
Klein HG, Dodd RY, Dzik WH, Luban NL, Ness PM, Pisciotto P, Schiff PD, Snyder EL. Current status of solvent/detergent-treated frozen plasma. Transfusion 1998;38:102-7.
Heaton WA. Evaluation of posttransfusion recovery and survival of transfused red cells. Transfus Med Rev 1992;6:153-69.
Mufti NA, Erickson AC, North AK, Hanson D, Sawyer L, Corash LM, Lin L. Treatment of whole blood (WB) and red blood cells (RBC) with S-303 inactivates pathogens and retains in vitro quality of stored RBC. Biologicals 2010;38:14-9.
Larrea L, Calabuig M, Roldan V, Rivera J, Tsai HM, Vicente V, Roig R. The influence of riboflavin photochemistry on plasma coagulation factors. Transfus Apher Sci 2009;41:199-204.
Dumont LJ, AuBuchon JP. Evaluation of proposed FDA criteria for the evaluation of radiolabeled red cell recovery trials. Transfusion 2008;48:1053-60.
Kumar V, Lockerbie O, Keil SD, Ruane PH, Platz MS, Martin CB, Ravanat JL, Cadet J, Goodrich RP. Riboflavin and UV-light based pathogen reduction: extent and consequence of DNA damage at the molecular level. Photochem Photobiol 2004;80:15-21.
Hendrickson JE, Hillyer CD. Noninfectious serious hazards of transfusion. Anesth Analg 2009;108:759-69.
Heddle NM. Universal leukoreduction and acute transfusion reactions: putting the puzzle together. Transfusion 2004;44:1-4.
Rock G. A comparison of methods of pathogen inactivation of FFP. Vox Sang 2010. [Epub ahead of print].
Custer B, Agapova M, Martinez RH. The cost-effectiveness of pathogen reduction technology as assessed using a multiple risk reduction model. Transfusion 2010;50:2461-73.
Rios JA, Hambleton J, Viele M, Rugg N, Sindermann G, Greenwalt T, Wages D, Cook D, Corash L. Viability of red cells prepared with S-303 pathogen inactivation treatment. Transfusion 2006;46:1778-86.
Vamvakas EC, Blajchman MA. Transfusion-related mortality: the ongoing risks of allogeneic blood transfusion and the available strategies for their prevention. Blood 2009;113:3406-17.
AuBuchon JP, Pickard CA, Herschel LH, Roger JC, Tracy JE, Purmal A, Chapman J, Ackerman S, Beach KJ. Production of pathogen-inactivated RBC concentrates using PEN110 chemistry: a Phase I clinical study. Transfusion 2002;42:146-52.
Moroff G, Holme S, AuBuchon JP, Heaton WA, Sweeney JD, Friedman LI. Viability and in vitro properties of AS-1 red cells after gamma irradiation. Transfusion 1999;39:128-34.
2004; 44
2010; 38
2009; 41
2010
1980; 45
2008; 36
2009; 113
2005; 81
2008; 95
2009; 49
2005; 45
1998; 38
1992; 6
2006; 61
2006; 46
2002; 42
1981; 115
1975; 28
1999; 39
2008; 48
2009; 108
2007; 21
2004; 80
1992; 82
2007; 47
2010; 50
e_1_2_8_27_2
e_1_2_8_28_2
e_1_2_8_29_2
e_1_2_8_23_2
e_1_2_8_24_2
e_1_2_8_25_2
e_1_2_8_26_2
e_1_2_8_9_2
Cancelas JA (e_1_2_8_22_2) 2008; 95
e_1_2_8_4_2
e_1_2_8_3_2
e_1_2_8_6_2
e_1_2_8_5_2
e_1_2_8_8_2
e_1_2_8_7_2
e_1_2_8_20_2
e_1_2_8_21_2
e_1_2_8_16_2
e_1_2_8_17_2
e_1_2_8_18_2
e_1_2_8_19_2
e_1_2_8_12_2
e_1_2_8_13_2
e_1_2_8_14_2
e_1_2_8_15_2
Rock G (e_1_2_8_2_2) 2010
e_1_2_8_31_2
e_1_2_8_30_2
e_1_2_8_10_2
e_1_2_8_11_2
References_xml – reference: Moroff G, Holme S, AuBuchon JP, Heaton WA, Sweeney JD, Friedman LI. Viability and in vitro properties of AS-1 red cells after gamma irradiation. Transfusion 1999;39:128-34.
– reference: Fast LD, DiLeone G, Cardarelli G, Li J, Goodrich R. Mirasol PRT treatment of donor white blood cells prevents the development of xenogeneic graft-versus-host disease in Rag2-/-gamma c-/- double knockout mice. Transfusion 2006;46:1553-60.
– reference: Martin CB, Wilfong E, Ruane P, Goodrich R, Platz M. An action spectrum of the riboflavin-photosensitized inactivation of Lambda phage. Photochem Photobiol 2005;81:474-80.
– reference: Heaton WA. Evaluation of posttransfusion recovery and survival of transfused red cells. Transfus Med Rev 1992;6:153-69.
– reference: Vamvakas EC, Blajchman MA. Transfusion-related mortality: the ongoing risks of allogeneic blood transfusion and the available strategies for their prevention. Blood 2009;113:3406-17.
– reference: Dumont LJ, AuBuchon JP. Evaluation of proposed FDA criteria for the evaluation of radiolabeled red cell recovery trials. Transfusion 2008;48:1053-60.
– reference: Hornsey VS, Drummond O, Morrison A, McMillan L, MacGregor IR, Prowse CV. Pathogen reduction of fresh plasma using riboflavin and ultraviolet light: effects on plasma coagulation proteins. Transfusion 2009;49: 2167-72.
– reference: Custer B, Agapova M, Martinez RH. The cost-effectiveness of pathogen reduction technology as assessed using a multiple risk reduction model. Transfusion 2010;50:2461-73.
– reference: Rock G. A comparison of methods of pathogen inactivation of FFP. Vox Sang 2010. [Epub ahead of print].
– reference: AuBuchon JP, Pickard CA, Herschel LH, Roger JC, Tracy JE, Purmal A, Chapman J, Ackerman S, Beach KJ. Production of pathogen-inactivated RBC concentrates using PEN110 chemistry: a Phase I clinical study. Transfusion 2002;42:146-52.
– reference: Cancelas JA, Dumont LJ, Herschel L, Roger J, Rugg N, Garraty G, Arndt P, Propst P, Corash L, Sundin D, AuBuchon J. A randomized, controlled, 2-period crossover study of recovery and lifespan of radiolabeled autologous 35-day-old red blood cells prepared with a modified S-303 treatment for pathogen inactivation. Vox Sang 2008;95(Suppl 1):8.
– reference: Rios JA, Hambleton J, Viele M, Rugg N, Sindermann G, Greenwalt T, Wages D, Cook D, Corash L. Viability of red cells prepared with S-303 pathogen inactivation treatment. Transfusion 2006;46:1778-86.
– reference: Klein HG, Dodd RY, Dzik WH, Luban NL, Ness PM, Pisciotto P, Schiff PD, Snyder EL. Current status of solvent/detergent-treated frozen plasma. Transfusion 1998;38:102-7.
– reference: Smith J, Rock G. Protein quality in Mirasol pathogen reduction technology-treated, apheresis-derived fresh-frozen plasma. Transfusion 2010;50:926-31.
– reference: Mufti NA, Erickson AC, North AK, Hanson D, Sawyer L, Corash LM, Lin L. Treatment of whole blood (WB) and red blood cells (RBC) with S-303 inactivates pathogens and retains in vitro quality of stored RBC. Biologicals 2010;38:14-9.
– reference: Li J, Goodrich L, Hansen E, Edrich R, Gampp D, Goodrich RP. Platelet glycolytic flux increases stimulated by ultraviolet-induced stress is not the direct cause of platelet morphology and activation changes: possible implications for the role of glucose in platelet storage. Transfusion 2005;45:1750-8.
– reference: Kauvar DS, Holcomb JB, Norris GC, Hess JR. Fresh whole blood transfusion: a controversial military practice. J Trauma 2006;61:181-4.
– reference: Kumar V, Lockerbie O, Keil SD, Ruane PH, Platz MS, Martin CB, Ravanat JL, Cadet J, Goodrich RP. Riboflavin and UV-light based pathogen reduction: extent and consequence of DNA damage at the molecular level. Photochem Photobiol 2004;80:15-21.
– reference: Ataullakhanov FI, Vitvitsky VM, Zhabotinsky AM, Pichugin AV, Platonova OV, Kholodenko BN, Ehrlich LI. The regulation of glycolysis in human erythrocytes. The dependence of the glycolytic flux on the ATP concentration. Eur J Biochem 1981;115:359-65.
– reference: Benjamin RJ, McCullough J, Mintz PD, Snyder E, Spotnitz WD, Rizzo RJ, Wages D, Lin JS, Wood L, Corash L, Conlan MG. Therapeutic efficacy and safety of red blood cells treated with a chemical process (S-303) for pathogen inactivation: a Phase III clinical trial in cardiac surgery patients. Transfusion 2005;45:1739-49.
– reference: Heddle NM. Universal leukoreduction and acute transfusion reactions: putting the puzzle together. Transfusion 2004;44:1-4.
– reference: Hendrickson JE, Hillyer CD. Noninfectious serious hazards of transfusion. Anesth Analg 2009;108:759-69.
– reference: Vamvakas EC, Blajchman MA. Transfusion-related immunomodulation (TRIM): an update. Blood Rev 2007;21:327-48.
– reference: Recommended method for radioisotope red-cell survival studies. International Committee for Standardization in Haematology. Br J Haematol 1980;45:659-66.
– reference: Keegan TB, Heaton A, Holme S, Owens M, Nelson EJ. Improved post-transfusion quality of density separated AS-3 red cells after extended storage. Br J Haematol 1992;82:114-21.
– reference: Bandarenko N, Cancelas J, Snyder EL, Hay SN, Rugg N, Corda T, Joines AD, Gormas JF, Pratt GP, Kowalsky R, Rose M, Rose L, Foley J, Popovsky MA. Successful in vivo recovery and extended storage of additive solution (AS)-5 red blood cells after deglycerolization and resuspension in AS-3 for 15 days with an automated closed system. Transfusion 2007;47:680-6.
– reference: Goodrich RP, Doane S, Reddy HL. Design and development of a method for the reduction of infectious pathogen load and inactivation of white blood cells in whole blood products. Biologicals 2010;38:20-30.
– reference: Spinella PC. Warm fresh whole blood transfusion for severe hemorrhage: U.S. military and potential civilian applications. Crit Care Med 2008;36(Suppl):S340-5.
– reference: Usry RT, Moore GL, Manalo FW. Morphology of stored, rejuvenated human erythrocytes. Vox Sang 1975;28: 176-83.
– reference: Larrea L, Calabuig M, Roldan V, Rivera J, Tsai HM, Vicente V, Roig R. The influence of riboflavin photochemistry on plasma coagulation factors. Transfus Apher Sci 2009;41:199-204.
– volume: 108
  start-page: 759
  year: 2009
  end-page: 69
  article-title: Noninfectious serious hazards of transfusion
  publication-title: Anesth Analg
– volume: 47
  start-page: 680
  year: 2007
  end-page: 6
  article-title: Successful in vivo recovery and extended storage of additive solution (AS)‐5 red blood cells after deglycerolization and resuspension in AS‐3 for 15 days with an automated closed system
  publication-title: Transfusion
– volume: 38
  start-page: 102
  year: 1998
  end-page: 7
  article-title: Current status of solvent/detergent‐treated frozen plasma
  publication-title: Transfusion
– volume: 28
  start-page: 176
  year: 1975
  end-page: 83
  article-title: Morphology of stored, rejuvenated human erythrocytes
  publication-title: Vox Sang
– volume: 38
  start-page: 14
  year: 2010
  end-page: 9
  article-title: Treatment of whole blood (WB) and red blood cells (RBC) with S‐303 inactivates pathogens and retains in vitro quality of stored RBC
  publication-title: Biologicals
– volume: 48
  start-page: 1053
  year: 2008
  end-page: 60
  article-title: Evaluation of proposed FDA criteria for the evaluation of radiolabeled red cell recovery trials
  publication-title: Transfusion
– volume: 95
  start-page: 8
  issue: 1
  year: 2008
  article-title: A randomized, controlled, 2‐period crossover study of recovery and lifespan of radiolabeled autologous 35‐day‐old red blood cells prepared with a modified S‐303 treatment for pathogen inactivation
  publication-title: Vox Sang
– volume: 39
  start-page: 128
  year: 1999
  end-page: 34
  article-title: Viability and in vitro properties of AS‐1 red cells after gamma irradiation
  publication-title: Transfusion
– volume: 45
  start-page: 1739
  year: 2005
  end-page: 49
  article-title: Therapeutic efficacy and safety of red blood cells treated with a chemical process (S‐303) for pathogen inactivation: a Phase III clinical trial in cardiac surgery patients
  publication-title: Transfusion
– volume: 38
  start-page: 20
  year: 2010
  end-page: 30
  article-title: Design and development of a method for the reduction of infectious pathogen load and inactivation of white blood cells in whole blood products
  publication-title: Biologicals
– volume: 115
  start-page: 359
  year: 1981
  end-page: 65
  article-title: The regulation of glycolysis in human erythrocytes. The dependence of the glycolytic flux on the ATP concentration
  publication-title: Eur J Biochem
– volume: 21
  start-page: 327
  year: 2007
  end-page: 48
  article-title: Transfusion‐related immunomodulation (TRIM): an update
  publication-title: Blood Rev
– volume: 50
  start-page: 926
  year: 2010
  end-page: 31
  article-title: Protein quality in Mirasol pathogen reduction technology‐treated, apheresis‐derived fresh‐frozen plasma
  publication-title: Transfusion
– volume: 49
  start-page: 2167
  year: 2009
  end-page: 72
  article-title: Pathogen reduction of fresh plasma using riboflavin and ultraviolet light: effects on plasma coagulation proteins
  publication-title: Transfusion
– year: 2010
  article-title: A comparison of methods of pathogen inactivation of FFP
  publication-title: Vox Sang
– volume: 80
  start-page: 15
  year: 2004
  end-page: 21
  article-title: Riboflavin and UV‐light based pathogen reduction: extent and consequence of DNA damage at the molecular level
  publication-title: Photochem Photobiol
– volume: 81
  start-page: 474
  year: 2005
  end-page: 80
  article-title: An action spectrum of the riboflavin‐photosensitized inactivation of Lambda phage
  publication-title: Photochem Photobiol
– volume: 45
  start-page: 659
  year: 1980
  end-page: 66
  article-title: Recommended method for radioisotope red‐cell survival studies. International Committee for Standardization in Haematology
  publication-title: Br J Haematol
– volume: 45
  start-page: 1750
  year: 2005
  end-page: 8
  article-title: Platelet glycolytic flux increases stimulated by ultraviolet‐induced stress is not the direct cause of platelet morphology and activation changes: possible implications for the role of glucose in platelet storage
  publication-title: Transfusion
– volume: 46
  start-page: 1553
  year: 2006
  end-page: 60
  article-title: Mirasol PRT treatment of donor white blood cells prevents the development of xenogeneic graft‐versus‐host disease in Rag2‐/‐gamma c‐/‐ double knockout mice
  publication-title: Transfusion
– volume: 42
  start-page: 146
  year: 2002
  end-page: 52
  article-title: Production of pathogen‐inactivated RBC concentrates using PEN110 chemistry: a Phase I clinical study
  publication-title: Transfusion
– volume: 113
  start-page: 3406
  year: 2009
  end-page: 17
  article-title: Transfusion‐related mortality: the ongoing risks of allogeneic blood transfusion and the available strategies for their prevention
  publication-title: Blood
– volume: 82
  start-page: 114
  year: 1992
  end-page: 21
  article-title: Improved post‐transfusion quality of density separated AS‐3 red cells after extended storage
  publication-title: Br J Haematol
– volume: 6
  start-page: 153
  year: 1992
  end-page: 69
  article-title: Evaluation of posttransfusion recovery and survival of transfused red cells
  publication-title: Transfus Med Rev
– volume: 61
  start-page: 181
  year: 2006
  end-page: 4
  article-title: Fresh whole blood transfusion: a controversial military practice
  publication-title: J Trauma
– volume: 41
  start-page: 199
  year: 2009
  end-page: 204
  article-title: The influence of riboflavin photochemistry on plasma coagulation factors
  publication-title: Transfus Apher Sci
– volume: 44
  start-page: 1
  year: 2004
  end-page: 4
  article-title: Universal leukoreduction and acute transfusion reactions: putting the puzzle together
  publication-title: Transfusion
– volume: 46
  start-page: 1778
  year: 2006
  end-page: 86
  article-title: Viability of red cells prepared with S‐303 pathogen inactivation treatment
  publication-title: Transfusion
– volume: 50
  start-page: 2461
  year: 2010
  end-page: 73
  article-title: The cost‐effectiveness of pathogen reduction technology as assessed using a multiple risk reduction model
  publication-title: Transfusion
– volume: 36
  start-page: S340
  year: 2008
  end-page: 5
  article-title: Warm fresh whole blood transfusion for severe hemorrhage: U.S. military and potential civilian applications
  publication-title: Crit Care Med
– ident: e_1_2_8_20_2
  doi: 10.1046/j.1537-2995.2002.00021.x
– ident: e_1_2_8_3_2
  doi: 10.1046/j.1537-2995.1998.38198141508.x
– ident: e_1_2_8_14_2
  doi: 10.1111/j.1537-2995.2007.01171.x
– ident: e_1_2_8_12_2
  doi: 10.1111/j.1751-1097.2005.tb00210.x
– ident: e_1_2_8_27_2
  doi: 10.1016/S0887-7963(92)70166-7
– ident: e_1_2_8_8_2
  doi: 10.1111/j.0041-1132.2004.00657.x
– ident: e_1_2_8_10_2
  doi: 10.1111/j.1751-1097.2004.tb00043.x
– ident: e_1_2_8_29_2
  doi: 10.1111/j.1537-2995.2010.02704.x
– ident: e_1_2_8_6_2
  doi: 10.1016/j.blre.2007.07.003
– ident: e_1_2_8_7_2
  doi: 10.1182/blood-2008-10-167643
– ident: e_1_2_8_24_2
  doi: 10.1111/j.1537-2995.2008.01642.x
– ident: e_1_2_8_15_2
  doi: 10.1111/j.1365-2141.1980.tb07189.x
– ident: e_1_2_8_28_2
  doi: 10.1111/j.1432-1033.1981.tb05246.x
– ident: e_1_2_8_25_2
  doi: 10.1046/j.1537-2995.1999.39299154725.x
– ident: e_1_2_8_30_2
  doi: 10.1097/01.ta.0000222671.84335.64
– ident: e_1_2_8_4_2
  doi: 10.1111/j.1537-2995.2005.00583.x
– ident: e_1_2_8_23_2
  doi: 10.1016/j.biologicals.2009.10.019
– ident: e_1_2_8_16_2
  doi: 10.1111/j.1365-2141.1992.tb04602.x
– ident: e_1_2_8_17_2
  doi: 10.1111/j.1537-2995.2009.02272.x
– ident: e_1_2_8_21_2
  doi: 10.1111/j.1537-2995.2006.00973.x
– ident: e_1_2_8_18_2
  doi: 10.1016/j.transci.2009.09.006
– ident: e_1_2_8_5_2
  doi: 10.1213/ane.0b013e3181930a6e
– ident: e_1_2_8_19_2
  doi: 10.1111/j.1537-2995.2009.02517.x
– ident: e_1_2_8_13_2
  doi: 10.1111/j.1423-0410.1975.tb02756.x
– ident: e_1_2_8_11_2
  doi: 10.1016/j.biologicals.2009.10.016
– ident: e_1_2_8_9_2
  doi: 10.1111/j.1537-2995.2006.00939.x
– volume: 95
  start-page: 8
  issue: 1
  year: 2008
  ident: e_1_2_8_22_2
  article-title: A randomized, controlled, 2‐period crossover study of recovery and lifespan of radiolabeled autologous 35‐day‐old red blood cells prepared with a modified S‐303 treatment for pathogen inactivation
  publication-title: Vox Sang
– ident: e_1_2_8_31_2
  doi: 10.1097/CCM.0b013e31817e2ef9
– year: 2010
  ident: e_1_2_8_2_2
  article-title: A comparison of methods of pathogen inactivation of FFP
  publication-title: Vox Sang
– ident: e_1_2_8_26_2
  doi: 10.1111/j.1537-2995.2005.00582.x
SSID ssj0002901
Score 2.2132692
Snippet BACKGROUND: A novel system using ultraviolet (UV) light and riboflavin (Mirasol System, CaridianBCT Biotechnologies) to fragment nucleic acids has been...
BACKGROUND: A novel system using ultraviolet (UV) light and riboflavin (Mirasol System, CaridianBCT Biotechnologies) to fragment nucleic acids has been...
A novel system using ultraviolet (UV) light and riboflavin (Mirasol System, CaridianBCT Biotechnologies) to fragment nucleic acids has been developed to treat...
SourceID proquest
pubmed
pascalfrancis
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1460
SubjectTerms Adenosine Triphosphate - analysis
Anesthesia. Intensive care medicine. Transfusions. Cell therapy and gene therapy
Biological and medical sciences
Blood
Blood Preservation - methods
Blood Preservation - standards
Blood. Blood and plasma substitutes. Blood products. Blood cells. Blood typing. Plasmapheresis. Apheresis
Bone marrow, stem cells transplantation. Graft versus host reaction
Cell Survival - drug effects
Cell Survival - radiation effects
Erythrocytes - cytology
Erythrocytes - drug effects
Hemolysis - drug effects
Hemolysis - radiation effects
Humans
Medical sciences
Predictive Value of Tests
Riboflavin - pharmacology
Transfusions. Complications. Transfusion reactions. Cell and gene therapy
Ultraviolet Rays - adverse effects
Title In vivo viability of stored red blood cells derived from riboflavin plus ultraviolet light-treated whole blood
URI https://api.istex.fr/ark:/67375/WNG-J8BLSGFC-5/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1537-2995.2010.03027.x
https://www.ncbi.nlm.nih.gov/pubmed/21275998
https://www.proquest.com/docview/875719413
Volume 51
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELZQKyEuUH4bCpUPiFtWG9v5O0JhWyraQ1tEb5btONJqo-xqkyyFE-_QN-RJmLGzW4J6qBCHRFGksZLxjD32fP6GkDc8YsqC8YTM4pEclfFQGW1DpceGpSpJmKuicHKaHH0Rx5fxZY9_wrMwnh9is-GGnuHGa3RwpZuhk8c8DWE4jXuEFqbgRhhPRjxBGv0PZzdMUpgu9MnmKMTi6kNQz60NDWaqbVT6FSInVQPKK33Vi9vC0mGU66apySMyW_-gR6fMRl2rR-bHX9yP_0cDO-RhH83Sd978HpN7tn5C7p_0-fqnZPGppqvpag43zwf-nc5LioBMW1C8HG6eYvagoQU4wwre4YkXupzC9Fyp1bSmi6praFe1S-VQBC2tcEPh189rB5IHgW9Y49c39YycTz5eHByFfY2H0AgOYzTXusiTvORW5IaXItcwqERaaVOO7ThmpTYsUTYVWaHHWWq0iUxhSq4YK0rBn5Otel7bXUJTbYWKMhOBUYpccQ1zM5Ljx1nBisyagKTr3pSmpz_HKhyV_GMZBOqUqE6J6pROnfIqINFGcuEpQO4g89YZzEZALWcIoUtj-fX0UB5n7z-fH04OZByQ_YFFbQQYRIqw1BQBoWsTk-D52CGqtvOukViKIMohCAnIC296N8JI2w8L6YAkzoDu_N3y4myCTy__VXCPPPC77ghofkW22mVnX0PY1up955C_AZNUNHE
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9swDBaGFth2afee9-h0GHZzEEt-HrdiadolObQZ1psgyTIQ1HCCxE67nvYf9g_3S0ZKTjoPPRTDDjYMAxRsiqQo8hNJyHseMGlAeHxm8EiOTLkvtTK-VH3NEhnHzHZRGE_i4dfw5Dw6b9sB4VkYVx9iG3BDzbD2GhUcA9JdLY944oM9jVqIFubgeuBQ7tp0HXpIpze1pDBh6NLNgY_t1buwnltH6qxVu8j2K8ROyhWwr3B9L25zTLt-rl2oBvuk3Pyiw6dc9Jpa9fT1X9Uf_xMPHpG91qGlH50EPib3TPWE3B-3KfunZHFc0fVsPYebKwn-nc4LiphMk1O8LHSeYgJhRXPQhzW8w0MvdDmDFbqU61lFF2Wzok1ZL6UFEtS0xJjCrx8_LU4eCC6xza8b6hk5G3yeHg79ts2Dr0MOZporlWdxVnATZpoXYabArgRKKl30TT9ihdIsliYJ01z100QrHehcF1wylhchf052qnllXhKaKBPKINUByGWYSa5gecb6-FGaszw12iPJZjqFbiugYyOOUvyxEwJ2CmSnQHYKy05x5ZFgS7lwVUDuQPPBSsyWQC4vEEWXROLb5EicpJ9GZ0eDQxF55KAjUlsCBs4i7DZDj9CNjAlQfpwQWZl5sxLYjSDIwA_xyAsnezfEWLkf9tIeia0E3fm7xfR0gE-v_pXwHXkwnI5HYnQ8-fKaPHRBeMQ3vyE79bIxb8GLq9WB1c7f15E4jw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQK1VceD_Co_iAuGW1sZ3XEQrpg3aF2iJ6s2zHkVYbZVe7yVI48R_4h_wSZuzslkU9VIhDoijSWMl4XvZ8niHkNY-YsiA8IbN4JEdlPFRG21DpoWGpShLmuiicjJKDz-LoIr7o8U94FsbXh1hvuKFmOHuNCj4rq00lj3kagjmNe4QWpuAGEE9uiwS8JgZIp1elpDBf6LPNUYjd1TdRPdeOtOGqtpHrlwidVAvgXuXbXlwXl26Guc5PFXfJZPWHHp4yGXStHpjvfxV__D8suEfu9OEsfevl7z65ZZsHZOekT9g_JLPDhi7HyyncfEHwb3RaUURk2pLi5YDzFNMHC1qCNizhHR55ofMx-OdaLccNndXdgnZ1O1cORtDSGncUfv346VDyQPAVm_z6oR6Rs-LD-d5B2Dd5CI3gYKS51mWe5BW3Ije8ErkGqxJppU01tMOYVdqwRNlUZKUeZqnRJjKlqbhirKwEf0y2mmljnxKaaitUlJkIpFLkimtwzlgdP85KVmbWBCRdzaY0ff1zbMNRyz_WQcBOieyUyE7p2CkvAxKtKWe-BsgNaN44gVkTqPkEMXRpLL-M9uVR9u74bL_Yk3FAdjckak3AIFSEtaYICF2JmATVxwlRjZ12C4m9CKIcopCAPPGid0WMdfthJR2QxAnQjb9bnp8W-PTsXwlfkZ1P7wt5fDj6-Jzc9jvwCG5-QbbaeWdfQgjX6l2nm78B9CQ3Pg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In+vivo+viability+of+stored+red+blood+cells+derived+from+riboflavin+plus+ultraviolet+light%E2%80%93treated+whole+blood&rft.jtitle=Transfusion+%28Philadelphia%2C+Pa.%29&rft.au=Cancelas%2C+Jose+A.&rft.au=Rugg%2C+Neeta&rft.au=Fletcher%2C+Dana&rft.au=Pratt%2C+P.+Gayle&rft.date=2011-07-01&rft.pub=Blackwell+Publishing+Inc&rft.issn=0041-1132&rft.eissn=1537-2995&rft.volume=51&rft.issue=7&rft.spage=1460&rft.epage=1468&rft_id=info:doi/10.1111%2Fj.1537-2995.2010.03027.x&rft.externalDBID=10.1111%252Fj.1537-2995.2010.03027.x&rft.externalDocID=TRF3027
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0041-1132&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0041-1132&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0041-1132&client=summon