Controllable Liquid-Liquid Printing with Defect-free, Corrosion-Resistance, Unrestricted Wetting Condition
Conventional printing is worth revisiting because of its established procedures in meeting the surging demand of manufacturing printed electronics, 3D products, etc. However, one goal in penetrating printing into these is to control pattern transfer with no limitation of wettability. Here we introdu...
Saved in:
| Published in | iScience Vol. 19; pp. 93 - 100 |
|---|---|
| Main Authors | , , , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Elsevier Inc
27.09.2019
Elsevier |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2589-0042 2589-0042 |
| DOI | 10.1016/j.isci.2019.07.017 |
Cover
| Abstract | Conventional printing is worth revisiting because of its established procedures in meeting the surging demand of manufacturing printed electronics, 3D products, etc. However, one goal in penetrating printing into these is to control pattern transfer with no limitation of wettability. Here we introduce a miscible liquid-liquid transfer printing mechanism that can synchronize material preparation and material patterning with desirable properties including limitless selection of raw materials, corrosion resistance, no wetting constraint, and ability to prepare large-area defect-free materials for multi-function applications. Theoretical modeling and experiments demonstrate that donor liquid could be used to make patterns within the bulk of a receiver material, allowing the obtained intrinsically patterned functional materials to be resistant to harsh conditions. Different from current liquid printing technologies, this printing approach enables stable and defect-free material preparation and is expected to prove useful in flexible display, soft electronics, 4D printing, and beyond.
[Display omitted]
•A transfer printing mechanism based on miscible liquid-liquid interfaces•The material preparation and defect-free patterning can be synchronized•This printing mechanism is free of wetting constraint
Interface Science; Surface Property; Materials Property; Materials Design |
|---|---|
| AbstractList | Conventional printing is worth revisiting because of its established procedures in meeting the surging demand of manufacturing printed electronics, 3D products, etc. However, one goal in penetrating printing into these is to control pattern transfer with no limitation of wettability. Here we introduce a miscible liquid-liquid transfer printing mechanism that can synchronize material preparation and material patterning with desirable properties including limitless selection of raw materials, corrosion resistance, no wetting constraint, and ability to prepare large-area defect-free materials for multi-function applications. Theoretical modeling and experiments demonstrate that donor liquid could be used to make patterns within the bulk of a receiver material, allowing the obtained intrinsically patterned functional materials to be resistant to harsh conditions. Different from current liquid printing technologies, this printing approach enables stable and defect-free material preparation and is expected to prove useful in flexible display, soft electronics, 4D printing, and beyond.
•
A transfer printing mechanism based on miscible liquid-liquid interfaces
•
The material preparation and defect-free patterning can be synchronized
•
This printing mechanism is free of wetting constraint
Interface Science; Surface Property; Materials Property; Materials Design Conventional printing is worth revisiting because of its established procedures in meeting the surging demand of manufacturing printed electronics, 3D products, etc. However, one goal in penetrating printing into these is to control pattern transfer with no limitation of wettability. Here we introduce a miscible liquid-liquid transfer printing mechanism that can synchronize material preparation and material patterning with desirable properties including limitless selection of raw materials, corrosion resistance, no wetting constraint, and ability to prepare large-area defect-free materials for multi-function applications. Theoretical modeling and experiments demonstrate that donor liquid could be used to make patterns within the bulk of a receiver material, allowing the obtained intrinsically patterned functional materials to be resistant to harsh conditions. Different from current liquid printing technologies, this printing approach enables stable and defect-free material preparation and is expected to prove useful in flexible display, soft electronics, 4D printing, and beyond.Conventional printing is worth revisiting because of its established procedures in meeting the surging demand of manufacturing printed electronics, 3D products, etc. However, one goal in penetrating printing into these is to control pattern transfer with no limitation of wettability. Here we introduce a miscible liquid-liquid transfer printing mechanism that can synchronize material preparation and material patterning with desirable properties including limitless selection of raw materials, corrosion resistance, no wetting constraint, and ability to prepare large-area defect-free materials for multi-function applications. Theoretical modeling and experiments demonstrate that donor liquid could be used to make patterns within the bulk of a receiver material, allowing the obtained intrinsically patterned functional materials to be resistant to harsh conditions. Different from current liquid printing technologies, this printing approach enables stable and defect-free material preparation and is expected to prove useful in flexible display, soft electronics, 4D printing, and beyond. Conventional printing is worth revisiting because of its established procedures in meeting the surging demand of manufacturing printed electronics, 3D products, etc. However, one goal in penetrating printing into these is to control pattern transfer with no limitation of wettability. Here we introduce a miscible liquid-liquid transfer printing mechanism that can synchronize material preparation and material patterning with desirable properties including limitless selection of raw materials, corrosion resistance, no wetting constraint, and ability to prepare large-area defect-free materials for multi-function applications. Theoretical modeling and experiments demonstrate that donor liquid could be used to make patterns within the bulk of a receiver material, allowing the obtained intrinsically patterned functional materials to be resistant to harsh conditions. Different from current liquid printing technologies, this printing approach enables stable and defect-free material preparation and is expected to prove useful in flexible display, soft electronics, 4D printing, and beyond. Conventional printing is worth revisiting because of its established procedures in meeting the surging demand of manufacturing printed electronics, 3D products, etc. However, one goal in penetrating printing into these is to control pattern transfer with no limitation of wettability. Here we introduce a miscible liquid-liquid transfer printing mechanism that can synchronize material preparation and material patterning with desirable properties including limitless selection of raw materials, corrosion resistance, no wetting constraint, and ability to prepare large-area defect-free materials for multi-function applications. Theoretical modeling and experiments demonstrate that donor liquid could be used to make patterns within the bulk of a receiver material, allowing the obtained intrinsically patterned functional materials to be resistant to harsh conditions. Different from current liquid printing technologies, this printing approach enables stable and defect-free material preparation and is expected to prove useful in flexible display, soft electronics, 4D printing, and beyond. [Display omitted] •A transfer printing mechanism based on miscible liquid-liquid interfaces•The material preparation and defect-free patterning can be synchronized•This printing mechanism is free of wetting constraint Interface Science; Surface Property; Materials Property; Materials Design Conventional printing is worth revisiting because of its established procedures in meeting the surging demand of manufacturing printed electronics, 3D products, etc. However, one goal in penetrating printing into these is to control pattern transfer with no limitation of wettability. Here we introduce a miscible liquid-liquid transfer printing mechanism that can synchronize material preparation and material patterning with desirable properties including limitless selection of raw materials, corrosion resistance, no wetting constraint, and ability to prepare large-area defect-free materials for multi-function applications. Theoretical modeling and experiments demonstrate that donor liquid could be used to make patterns within the bulk of a receiver material, allowing the obtained intrinsically patterned functional materials to be resistant to harsh conditions. Different from current liquid printing technologies, this printing approach enables stable and defect-free material preparation and is expected to prove useful in flexible display, soft electronics, 4D printing, and beyond. : Interface Science; Surface Property; Materials Property; Materials Design Subject Areas: Interface Science, Surface Property, Materials Property, Materials Design |
| Author | Hou, Xu Zhang, Mengchuang Wu, Feng Wang, Miao Hu, Yuhang Zhang, Haohui Wang, Shuli Pan, Hong Min, Lingli Sheng, Zhizhi Chen, Xinyu |
| AuthorAffiliation | 3 George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA 4 Collaborative Innovation Center of Chemistry for Energy Materials, Xiamen University, Xiamen 361005, China 5 State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China 2 Research Institute for Biomimetics and Soft Matter, College of Physical Science and Technology, Xiamen University, Xiamen 361005, China 1 College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China |
| AuthorAffiliation_xml | – name: 4 Collaborative Innovation Center of Chemistry for Energy Materials, Xiamen University, Xiamen 361005, China – name: 5 State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China – name: 1 College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China – name: 3 George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA – name: 2 Research Institute for Biomimetics and Soft Matter, College of Physical Science and Technology, Xiamen University, Xiamen 361005, China |
| Author_xml | – sequence: 1 givenname: Lingli surname: Min fullname: Min, Lingli organization: College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China – sequence: 2 givenname: Haohui surname: Zhang fullname: Zhang, Haohui organization: George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA – sequence: 3 givenname: Hong surname: Pan fullname: Pan, Hong organization: College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China – sequence: 4 givenname: Feng surname: Wu fullname: Wu, Feng organization: Research Institute for Biomimetics and Soft Matter, College of Physical Science and Technology, Xiamen University, Xiamen 361005, China – sequence: 5 givenname: Yuhang surname: Hu fullname: Hu, Yuhang organization: George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA – sequence: 6 givenname: Zhizhi surname: Sheng fullname: Sheng, Zhizhi organization: College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China – sequence: 7 givenname: Miao surname: Wang fullname: Wang, Miao organization: Research Institute for Biomimetics and Soft Matter, College of Physical Science and Technology, Xiamen University, Xiamen 361005, China – sequence: 8 givenname: Mengchuang surname: Zhang fullname: Zhang, Mengchuang organization: Research Institute for Biomimetics and Soft Matter, College of Physical Science and Technology, Xiamen University, Xiamen 361005, China – sequence: 9 givenname: Shuli surname: Wang fullname: Wang, Shuli organization: College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China – sequence: 10 givenname: Xinyu surname: Chen fullname: Chen, Xinyu organization: College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China – sequence: 11 givenname: Xu surname: Hou fullname: Hou, Xu email: houx@xmu.edu.cn organization: College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31357171$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkltrFDEYhoNUbF37B7yQufTCWXOaZBZEKOupsKCIxcuQZL7ZZplN2ky2pf_ebzu1tF4UIZCQeQ-ZPHlJDmKKQMhrRueMMvV-Mw-jD3NO2WJO9Zwy_Ywc8aZd1JRKfvBgfUiOx3FDKeU45EK9IIeCiUYzzY7IZpliyWkYrBugWoXLXejqaap-5BBLiOvqOpTz6hP04EvdZ4B31TLlnMaQYv0TxjAWGz3unsUMY8nBF-iq31BuzVjQhYLSV-R5b4cRju_mGTn78vnX8lu9-v71dHmyqr0UStdCOLeQC-Dgeup62TZacs49a5XsOWdaNUxraJzUjXbOit76jgvV-o5y13oxI6dTbpfsxlzksLX5xiQbzO1Gymtjcwl-ACOk9w2XSnW-keh33vcgpRSNY0oxgVliytrFC3tzbYfhPpBRswdhNmYPwuxBGKoNgkDXx8l1sXNb6DzgFdvh0VEef4nh3KzTlVFKSYa9M_L2LiCnyx3eqdliCSClCGk3Gs6VpkxyJVH65mHXfclfxCjgk8AjsTFD_39_0P5j8qHYPUU8bxietn6YrICMrwJkgwrA99GFjA8IIYSn7H8A4HbkVg |
| CitedBy_id | crossref_primary_10_1039_C9SM02506E crossref_primary_10_1021_acsami_1c12945 crossref_primary_10_1002_adma_202005664 crossref_primary_10_1016_j_mattod_2022_02_014 crossref_primary_10_1016_j_isci_2021_102334 crossref_primary_10_1016_j_isci_2021_102121 crossref_primary_10_1021_acsnano_2c10999 crossref_primary_10_1002_smll_202105017 crossref_primary_10_1016_j_joule_2023_04_007 crossref_primary_10_1016_j_mechmat_2023_104778 crossref_primary_10_1007_s10118_020_2453_3 crossref_primary_10_1007_s40964_024_00815_6 crossref_primary_10_1021_accountsmr_1c00024 |
| Cites_doi | 10.1002/adma.201201386 10.1038/s41467-019-09042-y 10.1021/am5042548 10.1021/la804020k 10.1016/j.cocis.2014.02.004 10.1073/pnas.0914031107 10.1038/s41467-019-08639-7 10.1146/annurev.matsci.28.1.153 10.1002/aelm.201600260 10.1021/acsami.5b07006 10.1038/nnano.2010.175 10.1126/science.aaa2397 10.1007/978-981-13-0110-0 10.1002/smll.201403355 10.1002/adma.201503682 10.1109/CA.1995.393542 10.4028/www.scientific.net/AMR.174.447 10.1038/nature14253 10.1002/adma.201707603 10.1039/C7TC04804A 10.1021/acs.jpcc.8b02605 10.1007/s10853-006-0842-9 10.1126/science.1229495 10.1039/C4LC01486C 10.1002/adma.201601407 10.1146/annurev-matsci-070909-104502 10.1021/jp064147+ 10.1002/adma.201602736 10.1038/nmat1532 10.1002/admi.201400080 10.1146/annurev-fluid-010814-014620 10.1002/adfm.201500908 10.1021/acsami.8b09812 10.1039/C7CS00631D 10.1039/c3cs35501b |
| ContentType | Journal Article |
| Copyright | 2019 The Author(s) Copyright © 2019 The Author(s). Published by Elsevier Inc. All rights reserved. 2019 The Author(s) 2019 |
| Copyright_xml | – notice: 2019 The Author(s) – notice: Copyright © 2019 The Author(s). Published by Elsevier Inc. All rights reserved. – notice: 2019 The Author(s) 2019 |
| DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.1016/j.isci.2019.07.017 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 2589-0042 |
| EndPage | 100 |
| ExternalDocumentID | oai_doaj_org_article_34cc52466dc54cd0bccfe44435b16613 10.1016/j.isci.2019.07.017 PMC6664161 31357171 10_1016_j_isci_2019_07_017 S2589004219302421 |
| Genre | Journal Article |
| GroupedDBID | 0SF 53G 6I. AACTN AAEDW AAFTH AALRI AAXUO ABMAC ADBBV AEXQZ AFTJW AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS BCNDV EBS EJD FDB GROUPED_DOAJ HYE M41 NCXOZ OK1 ROL RPM SSZ 0R~ AAMRU AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFPUW AIGII AKBMS AKYEP APXCP CITATION NPM 7X8 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c4367-33bb949e2ebf0bf48574222c1864f221765177e5b4757bba3facd2368cd02b8c3 |
| IEDL.DBID | DOA |
| ISSN | 2589-0042 |
| IngestDate | Fri Oct 03 12:53:08 EDT 2025 Tue Aug 19 23:31:36 EDT 2025 Tue Sep 30 16:48:11 EDT 2025 Thu Oct 02 06:03:26 EDT 2025 Thu Jan 02 22:31:31 EST 2025 Tue Jul 01 01:03:26 EDT 2025 Thu Apr 24 22:55:28 EDT 2025 Tue May 16 22:28:48 EDT 2023 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Materials Property Surface Property Interface Science Materials Design |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. Copyright © 2019 The Author(s). Published by Elsevier Inc. All rights reserved. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4367-33bb949e2ebf0bf48574222c1864f221765177e5b4757bba3facd2368cd02b8c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Lead Contact |
| OpenAccessLink | https://doaj.org/article/34cc52466dc54cd0bccfe44435b16613 |
| PMID | 31357171 |
| PQID | 2267014264 |
| PQPubID | 23479 |
| PageCount | 8 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_34cc52466dc54cd0bccfe44435b16613 unpaywall_primary_10_1016_j_isci_2019_07_017 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6664161 proquest_miscellaneous_2267014264 pubmed_primary_31357171 crossref_primary_10_1016_j_isci_2019_07_017 crossref_citationtrail_10_1016_j_isci_2019_07_017 elsevier_sciencedirect_doi_10_1016_j_isci_2019_07_017 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2019-09-27 |
| PublicationDateYYYYMMDD | 2019-09-27 |
| PublicationDate_xml | – month: 09 year: 2019 text: 2019-09-27 day: 27 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | iScience |
| PublicationTitleAlternate | iScience |
| PublicationYear | 2019 |
| Publisher | Elsevier Inc Elsevier |
| Publisher_xml | – name: Elsevier Inc – name: Elsevier |
| References | Bao, Su, Wang, Chen, Wu, Jia, Song, Jiang (bib3) 2014; 1 Schwartz, Boydston (bib26) 2019; 10 Carlson, Bowen, Huang, Nuzzo, Rogers (bib4) 2012; 24 Fukuda, Someya (bib8) 2017; 29 Vorobev (bib32) 2014; 19 Derby (bib5) 2010; 40 Xia, Whitesides (bib34) 1998; 28 Forth, Liu, Hasnain, Toor, Miszta, Shi, Geissler, Emrick, Helms, Russell (bib7) 2018; 30 Hwang, Cho, Dang, Kwak, Song, Moon, Sung (bib13) 2010; 5 Meitl, Zhu, Kumar, Lee, Feng, Huang, Adesida, Nuzzo, Rogers (bib22) 2006; 5 Zeng, Tian, Zhao, Tirrell, Israelachvili (bib35) 2009; 25 Jiang, Bao, Li, Sun, Zhang, Li, Li, Yao, Song (bib15) 2016; 28 Su, Huang, Li, Qian, Li, Hu, Pan, Li, Li, Song (bib27) 2018; 30 Jaworek (bib14) 2007; 42 Kunii, T.L., Nosovskij, G.V., and Hayashi, T.. (1995). A diffusion model for computer animation of diffuse ink painting. In Proceedings of the Computer Animation (IEEE Computer Society), pp. 98. Bai, Chen, Li, Shao, He, Chen, Li, Zhang, Zhang, Wang (bib1) 2018; 10 Tumbleston, Shirvanyants, Ermoshkin, Janusziewicz, Johnson, Kelly, Chen, Pinschmidt, Rolland, Ermoshkin (bib30) 2015; 347 Kumar (bib17) 2015; 47 Hoon, Minho, Kahyun, Insol, Kangseok, Chaenyung, Tae-il, Eui (bib11) 2018; 28 Hou, Hu, Grinthal, Khan, Aizenberg (bib12) 2015; 519 Goncalves, Cardoso, Pereira, Oliveira, Nunes-Pereira, Costa, Lanceros-Mendez (bib9) 2018; 122 Kim, Kumar, Bandodkar, Wang (bib16) 2017; 3 Rietveld, Kobayashi, Yamada, Matsushige (bib25) 2006; 110 Tian, Song, Jiang (bib29) 2013; 42 Lee, Kim, Zheng (bib19) 2010; 107 Guo, Li, Li, Zhou, Song (bib10) 2015; 15 Feng, Chai, Forth, Ashby, Russell, Helms (bib6) 2019; 10 Villar, Graham, Bayley (bib31) 2013; 340 Zhou, Song (bib36) 2011; 174 Wang, Li, Kuang, Gao, Wang, Huang, Jiang, Song (bib33) 2015; 11 Parra-Cabrera, Achille, Kuhn, Ameloot (bib23) 2018; 47 Raut, Al-Shamery (bib24) 2018; 6 Liu, Wang, He, Wang, Li, Jiang, Song (bib21) 2014; 6 Sun, Bao, He, Zhou, Song (bib28) 2015; 7 Bao, Jiang, Li, Zhang, Chen, Yang, Wang, Su, Jiang, Song (bib2) 2015; 25 Lee, Um, Lee, Lim, Kim, Ko (bib20) 2016; 28 Lee (10.1016/j.isci.2019.07.017_bib19) 2010; 107 Lee (10.1016/j.isci.2019.07.017_bib20) 2016; 28 Forth (10.1016/j.isci.2019.07.017_bib7) 2018; 30 Feng (10.1016/j.isci.2019.07.017_bib6) 2019; 10 10.1016/j.isci.2019.07.017_bib18 Su (10.1016/j.isci.2019.07.017_bib27) 2018; 30 Wang (10.1016/j.isci.2019.07.017_bib33) 2015; 11 Derby (10.1016/j.isci.2019.07.017_bib5) 2010; 40 Sun (10.1016/j.isci.2019.07.017_bib28) 2015; 7 Jiang (10.1016/j.isci.2019.07.017_bib15) 2016; 28 Fukuda (10.1016/j.isci.2019.07.017_bib8) 2017; 29 Guo (10.1016/j.isci.2019.07.017_bib10) 2015; 15 Hoon (10.1016/j.isci.2019.07.017_bib11) 2018; 28 Jaworek (10.1016/j.isci.2019.07.017_bib14) 2007; 42 Villar (10.1016/j.isci.2019.07.017_bib31) 2013; 340 Bai (10.1016/j.isci.2019.07.017_bib1) 2018; 10 Vorobev (10.1016/j.isci.2019.07.017_bib32) 2014; 19 Kumar (10.1016/j.isci.2019.07.017_bib17) 2015; 47 Zhou (10.1016/j.isci.2019.07.017_bib36) 2011; 174 Rietveld (10.1016/j.isci.2019.07.017_bib25) 2006; 110 Zeng (10.1016/j.isci.2019.07.017_bib35) 2009; 25 Liu (10.1016/j.isci.2019.07.017_bib21) 2014; 6 Tian (10.1016/j.isci.2019.07.017_bib29) 2013; 42 Parra-Cabrera (10.1016/j.isci.2019.07.017_bib23) 2018; 47 Goncalves (10.1016/j.isci.2019.07.017_bib9) 2018; 122 Schwartz (10.1016/j.isci.2019.07.017_bib26) 2019; 10 Bao (10.1016/j.isci.2019.07.017_bib2) 2015; 25 Hwang (10.1016/j.isci.2019.07.017_bib13) 2010; 5 Xia (10.1016/j.isci.2019.07.017_bib34) 1998; 28 Bao (10.1016/j.isci.2019.07.017_bib3) 2014; 1 Tumbleston (10.1016/j.isci.2019.07.017_bib30) 2015; 347 Hou (10.1016/j.isci.2019.07.017_bib12) 2015; 519 Kim (10.1016/j.isci.2019.07.017_bib16) 2017; 3 Carlson (10.1016/j.isci.2019.07.017_bib4) 2012; 24 Meitl (10.1016/j.isci.2019.07.017_bib22) 2006; 5 Raut (10.1016/j.isci.2019.07.017_bib24) 2018; 6 |
| References_xml | – volume: 28 start-page: 1420 year: 2016 end-page: 1426 ident: bib15 article-title: Fabrication of transparent multilayer circuits by inkjet printing publication-title: Adv. Mater. – reference: Kunii, T.L., Nosovskij, G.V., and Hayashi, T.. (1995). A diffusion model for computer animation of diffuse ink painting. In Proceedings of the Computer Animation (IEEE Computer Society), pp. 98. – volume: 28 start-page: 7457 year: 2016 end-page: 7465 ident: bib20 article-title: Octopus-inspired smart adhesive pads for transfer printing of semiconducting nanomembranes publication-title: Adv. Mater. – volume: 11 start-page: 1900 year: 2015 end-page: 1904 ident: bib33 article-title: Interface manipulation for printing three-dimensional microstructures under magnetic guiding publication-title: Small – volume: 25 start-page: 3286 year: 2015 end-page: 3294 ident: bib2 article-title: Fabrication of patterned concave microstructures by inkjet imprinting publication-title: Adv. Funct. Mater. – volume: 47 start-page: 209 year: 2018 end-page: 230 ident: bib23 article-title: 3D printing in chemical engineering and catalytic technology: structured catalysts, mixers and reactors publication-title: Chem. Soc. Rev. – volume: 29 start-page: 1602736 year: 2017 ident: bib8 article-title: Recent progress in the development of printed thin-film transistors and circuits with high-resolution printing technology publication-title: Adv. Mater. – volume: 10 start-page: 791 year: 2019 ident: bib26 article-title: Multimaterial actinic spatial control 3D and 4D printing publication-title: Nat. Commun. – volume: 42 start-page: 266 year: 2007 end-page: 297 ident: bib14 article-title: Electrospray droplet sources for thin film deposition publication-title: J. Mater. Sci. – volume: 30 start-page: 1707603 year: 2018 ident: bib7 article-title: Reconfigurable printed liquids publication-title: Adv. Mater. – volume: 10 start-page: 25960 year: 2018 end-page: 25966 ident: bib1 article-title: Fabrication of MOF thin films at miscible liquid–liquid interface by spray method publication-title: ACS Appl. Mater. Interfaces – volume: 110 start-page: 23351 year: 2006 end-page: 23364 ident: bib25 article-title: Electrospray deposition, model, and experiment: toward general control of film morphology publication-title: J. Phys. Chem. B – volume: 6 start-page: 1618 year: 2018 end-page: 1641 ident: bib24 article-title: Inkjet printing metals on flexible materials for plastic and paper electronics publication-title: J. Mater. Chem. C – volume: 340 start-page: 48 year: 2013 end-page: 52 ident: bib31 article-title: A tissue-like printed material publication-title: Science – volume: 28 start-page: 153 year: 1998 end-page: 184 ident: bib34 article-title: Soft lithography publication-title: Annu. Rev. Mater. Sci. – volume: 25 start-page: 4954 year: 2009 end-page: 4964 ident: bib35 article-title: Friction at the liquid/liquid interface of two immiscible polymer films publication-title: Langmuir – volume: 1 start-page: 1400080 year: 2014 ident: bib3 article-title: Stretching velocity-dependent dynamic adhesion of the water/oil interfaces for high quality lithographic printing publication-title: Adv. Mater. Interfaces – volume: 47 start-page: 67 year: 2015 end-page: 94 ident: bib17 article-title: Liquid transfer in printing processes: liquid bridges with moving contact lines publication-title: Annu. Rev. Fluid Mech. – volume: 30 start-page: 8 year: 2018 ident: bib27 article-title: A 3D self-shaping strategy for nanoresolution multicomponent architectures publication-title: Adv. Mater. – volume: 42 start-page: 5184 year: 2013 end-page: 5209 ident: bib29 article-title: Patterning of controllable surface wettability for printing techniques publication-title: Chem. Soc. Rev. – volume: 40 start-page: 395 year: 2010 end-page: 414 ident: bib5 article-title: Inkjet printing of functional and structural materials: fluid property requirements, feature stability, and resolution publication-title: Annu. Rev. Mater. Res. – volume: 3 start-page: 1600260 year: 2017 ident: bib16 article-title: Advanced materials for printed wearable electrochemical devices: a review publication-title: Adv. Electron. Mater. – volume: 107 start-page: 9950 year: 2010 end-page: 9955 ident: bib19 article-title: Fabricating nanowire devices on diverse substrates by simple transfer-printing methods publication-title: Proc. Natl. Acad. Sci. U S A – volume: 122 start-page: 11433 year: 2018 end-page: 11441 ident: bib9 article-title: Evaluation of the physicochemical properties and active response of piezoelectric poly(vinylidene fluoride-co-trifluoroethylene) as a function of its microstructure publication-title: J. Phys. Chem. C – volume: 519 start-page: 70 year: 2015 end-page: 73 ident: bib12 article-title: Liquid-based gating mechanism with tunable multiphase selectivity and antifouling behaviour publication-title: Nature – volume: 7 start-page: 28086 year: 2015 end-page: 28099 ident: bib28 article-title: Recent advances in controlling the depositing morphologies of inkjet droplets publication-title: ACS Appl. Mater. Interfaces – volume: 174 start-page: 447 year: 2011 end-page: 449 ident: bib36 article-title: Green plate making technology based on nano-materials publication-title: Adv. Mater. Res. – volume: 24 start-page: 5284 year: 2012 end-page: 5318 ident: bib4 article-title: Transfer printing techniques for materials assembly and micro/nanodevice fabrication publication-title: Adv. Mater. – volume: 10 start-page: 1095 year: 2019 ident: bib6 article-title: Harnessing liquid-in-liquid printing and micropatterned substrates to fabricate 3-dimensional all-liquid fluidic devices publication-title: Nat. Commun. – volume: 19 start-page: 300 year: 2014 end-page: 308 ident: bib32 article-title: Dissolution dynamics of miscible liquid/liquid interfaces publication-title: Curr. Opin. Colloid Interface Sci. – volume: 28 year: 2018 ident: bib11 article-title: Wet-responsive, reconfigurable, and biocompatible hydrogel adhesive films for transfer printing of nanomembranes publication-title: Adv. Funct. Mater. – volume: 6 start-page: 13344 year: 2014 end-page: 13348 ident: bib21 article-title: Inkjet printing controllable footprint lines by regulating the dynamic wettability of coalescing ink droplets publication-title: ACS Appl. Mater. Interfaces – volume: 15 start-page: 1759 year: 2015 end-page: 1764 ident: bib10 article-title: Inkjet print microchannels based on a liquid template publication-title: Lab Chip – volume: 347 start-page: 1349 year: 2015 end-page: 1352 ident: bib30 article-title: Continuous liquid interface production of 3D objects publication-title: Science – volume: 5 start-page: 33 year: 2006 end-page: 38 ident: bib22 article-title: Transfer printing by kinetic control of adhesion to an elastomeric stamp publication-title: Nat. Mater. – volume: 5 start-page: 742 year: 2010 end-page: 748 ident: bib13 article-title: Direct nanoprinting by liquid-bridge-mediated nanotransfer moulding publication-title: Nat. Nanotechnol. – volume: 24 start-page: 5284 year: 2012 ident: 10.1016/j.isci.2019.07.017_bib4 article-title: Transfer printing techniques for materials assembly and micro/nanodevice fabrication publication-title: Adv. Mater. doi: 10.1002/adma.201201386 – volume: 10 start-page: 1095 year: 2019 ident: 10.1016/j.isci.2019.07.017_bib6 article-title: Harnessing liquid-in-liquid printing and micropatterned substrates to fabricate 3-dimensional all-liquid fluidic devices publication-title: Nat. Commun. doi: 10.1038/s41467-019-09042-y – volume: 6 start-page: 13344 year: 2014 ident: 10.1016/j.isci.2019.07.017_bib21 article-title: Inkjet printing controllable footprint lines by regulating the dynamic wettability of coalescing ink droplets publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am5042548 – volume: 25 start-page: 4954 year: 2009 ident: 10.1016/j.isci.2019.07.017_bib35 article-title: Friction at the liquid/liquid interface of two immiscible polymer films publication-title: Langmuir doi: 10.1021/la804020k – volume: 30 start-page: 8 year: 2018 ident: 10.1016/j.isci.2019.07.017_bib27 article-title: A 3D self-shaping strategy for nanoresolution multicomponent architectures publication-title: Adv. Mater. – volume: 19 start-page: 300 year: 2014 ident: 10.1016/j.isci.2019.07.017_bib32 article-title: Dissolution dynamics of miscible liquid/liquid interfaces publication-title: Curr. Opin. Colloid Interface Sci. doi: 10.1016/j.cocis.2014.02.004 – volume: 107 start-page: 9950 year: 2010 ident: 10.1016/j.isci.2019.07.017_bib19 article-title: Fabricating nanowire devices on diverse substrates by simple transfer-printing methods publication-title: Proc. Natl. Acad. Sci. U S A doi: 10.1073/pnas.0914031107 – volume: 10 start-page: 791 year: 2019 ident: 10.1016/j.isci.2019.07.017_bib26 article-title: Multimaterial actinic spatial control 3D and 4D printing publication-title: Nat. Commun. doi: 10.1038/s41467-019-08639-7 – volume: 28 start-page: 153 year: 1998 ident: 10.1016/j.isci.2019.07.017_bib34 article-title: Soft lithography publication-title: Annu. Rev. Mater. Sci. doi: 10.1146/annurev.matsci.28.1.153 – volume: 3 start-page: 1600260 year: 2017 ident: 10.1016/j.isci.2019.07.017_bib16 article-title: Advanced materials for printed wearable electrochemical devices: a review publication-title: Adv. Electron. Mater. doi: 10.1002/aelm.201600260 – volume: 7 start-page: 28086 year: 2015 ident: 10.1016/j.isci.2019.07.017_bib28 article-title: Recent advances in controlling the depositing morphologies of inkjet droplets publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b07006 – volume: 5 start-page: 742 year: 2010 ident: 10.1016/j.isci.2019.07.017_bib13 article-title: Direct nanoprinting by liquid-bridge-mediated nanotransfer moulding publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2010.175 – volume: 347 start-page: 1349 year: 2015 ident: 10.1016/j.isci.2019.07.017_bib30 article-title: Continuous liquid interface production of 3D objects publication-title: Science doi: 10.1126/science.aaa2397 – volume: 28 year: 2018 ident: 10.1016/j.isci.2019.07.017_bib11 article-title: Wet-responsive, reconfigurable, and biocompatible hydrogel adhesive films for transfer printing of nanomembranes publication-title: Adv. Funct. Mater. doi: 10.1007/978-981-13-0110-0 – volume: 11 start-page: 1900 year: 2015 ident: 10.1016/j.isci.2019.07.017_bib33 article-title: Interface manipulation for printing three-dimensional microstructures under magnetic guiding publication-title: Small doi: 10.1002/smll.201403355 – volume: 28 start-page: 1420 year: 2016 ident: 10.1016/j.isci.2019.07.017_bib15 article-title: Fabrication of transparent multilayer circuits by inkjet printing publication-title: Adv. Mater. doi: 10.1002/adma.201503682 – ident: 10.1016/j.isci.2019.07.017_bib18 doi: 10.1109/CA.1995.393542 – volume: 174 start-page: 447 year: 2011 ident: 10.1016/j.isci.2019.07.017_bib36 article-title: Green plate making technology based on nano-materials publication-title: Adv. Mater. Res. doi: 10.4028/www.scientific.net/AMR.174.447 – volume: 519 start-page: 70 year: 2015 ident: 10.1016/j.isci.2019.07.017_bib12 article-title: Liquid-based gating mechanism with tunable multiphase selectivity and antifouling behaviour publication-title: Nature doi: 10.1038/nature14253 – volume: 30 start-page: 1707603 year: 2018 ident: 10.1016/j.isci.2019.07.017_bib7 article-title: Reconfigurable printed liquids publication-title: Adv. Mater. doi: 10.1002/adma.201707603 – volume: 6 start-page: 1618 year: 2018 ident: 10.1016/j.isci.2019.07.017_bib24 article-title: Inkjet printing metals on flexible materials for plastic and paper electronics publication-title: J. Mater. Chem. C doi: 10.1039/C7TC04804A – volume: 122 start-page: 11433 year: 2018 ident: 10.1016/j.isci.2019.07.017_bib9 article-title: Evaluation of the physicochemical properties and active response of piezoelectric poly(vinylidene fluoride-co-trifluoroethylene) as a function of its microstructure publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.8b02605 – volume: 42 start-page: 266 year: 2007 ident: 10.1016/j.isci.2019.07.017_bib14 article-title: Electrospray droplet sources for thin film deposition publication-title: J. Mater. Sci. doi: 10.1007/s10853-006-0842-9 – volume: 340 start-page: 48 year: 2013 ident: 10.1016/j.isci.2019.07.017_bib31 article-title: A tissue-like printed material publication-title: Science doi: 10.1126/science.1229495 – volume: 15 start-page: 1759 year: 2015 ident: 10.1016/j.isci.2019.07.017_bib10 article-title: Inkjet print microchannels based on a liquid template publication-title: Lab Chip doi: 10.1039/C4LC01486C – volume: 28 start-page: 7457 year: 2016 ident: 10.1016/j.isci.2019.07.017_bib20 article-title: Octopus-inspired smart adhesive pads for transfer printing of semiconducting nanomembranes publication-title: Adv. Mater. doi: 10.1002/adma.201601407 – volume: 40 start-page: 395 year: 2010 ident: 10.1016/j.isci.2019.07.017_bib5 article-title: Inkjet printing of functional and structural materials: fluid property requirements, feature stability, and resolution publication-title: Annu. Rev. Mater. Res. doi: 10.1146/annurev-matsci-070909-104502 – volume: 110 start-page: 23351 year: 2006 ident: 10.1016/j.isci.2019.07.017_bib25 article-title: Electrospray deposition, model, and experiment: toward general control of film morphology publication-title: J. Phys. Chem. B doi: 10.1021/jp064147+ – volume: 29 start-page: 1602736 year: 2017 ident: 10.1016/j.isci.2019.07.017_bib8 article-title: Recent progress in the development of printed thin-film transistors and circuits with high-resolution printing technology publication-title: Adv. Mater. doi: 10.1002/adma.201602736 – volume: 5 start-page: 33 year: 2006 ident: 10.1016/j.isci.2019.07.017_bib22 article-title: Transfer printing by kinetic control of adhesion to an elastomeric stamp publication-title: Nat. Mater. doi: 10.1038/nmat1532 – volume: 1 start-page: 1400080 year: 2014 ident: 10.1016/j.isci.2019.07.017_bib3 article-title: Stretching velocity-dependent dynamic adhesion of the water/oil interfaces for high quality lithographic printing publication-title: Adv. Mater. Interfaces doi: 10.1002/admi.201400080 – volume: 47 start-page: 67 year: 2015 ident: 10.1016/j.isci.2019.07.017_bib17 article-title: Liquid transfer in printing processes: liquid bridges with moving contact lines publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev-fluid-010814-014620 – volume: 25 start-page: 3286 year: 2015 ident: 10.1016/j.isci.2019.07.017_bib2 article-title: Fabrication of patterned concave microstructures by inkjet imprinting publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201500908 – volume: 10 start-page: 25960 year: 2018 ident: 10.1016/j.isci.2019.07.017_bib1 article-title: Fabrication of MOF thin films at miscible liquid–liquid interface by spray method publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b09812 – volume: 47 start-page: 209 year: 2018 ident: 10.1016/j.isci.2019.07.017_bib23 article-title: 3D printing in chemical engineering and catalytic technology: structured catalysts, mixers and reactors publication-title: Chem. Soc. Rev. doi: 10.1039/C7CS00631D – volume: 42 start-page: 5184 year: 2013 ident: 10.1016/j.isci.2019.07.017_bib29 article-title: Patterning of controllable surface wettability for printing techniques publication-title: Chem. Soc. Rev. doi: 10.1039/c3cs35501b |
| SSID | ssj0002002496 |
| Score | 2.1720917 |
| Snippet | Conventional printing is worth revisiting because of its established procedures in meeting the surging demand of manufacturing printed electronics, 3D... |
| SourceID | doaj unpaywall pubmedcentral proquest pubmed crossref elsevier |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 93 |
| SubjectTerms | Interface Science Materials Design Materials Property Surface Property |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEB6V9AAXHuJlXjISN-I269312scSqCoEVVWIKKeVd71bXCInuLEQ_Hpm_AhEkapyipxMEq_nW-83629mAF5JaVJuckczTUTCeBPlXNjIcp_7RFmRGUpw_nicHM3E-zN5tgND40JSVdKOdXuP7q_d_qdYphmhC8kGLSlsf1n4G7CbSKTfI9idHZ8cfKUmcpLkP2jXJ8d0Oi5KbiUJV9YW6Wwbk_1dgNo6_Rvr0DbP3JZL3myqZf7rZz6f_7MWHd6B0yGjp5OgfN9rVmbP_t4u8Hj9Yd6F2z0zDQ86u3uw46r7cDHtpOxzyrAKP5Q_mrKIupfwpC7bNhMh7eWGbx0JQyJfOzcOp4saB48uj07dJTFUhNY4nFFpIeoIgCw3_OJaxTWa0kNzNH0As8N3n6dHUd-eIbKC4-2Vc2MykbnYGT8xXqRS0X6SZWkifIyhTiKZUk4aoaQyJkfv2yLmSWqLSWxSyx_CqFpU7jGEXrHCY_CSsBzjdTfJneSiEFR7P-ZFIQJgg8-07WuXUwuNuR5Eahea_KzJz3qiNPo5gNfr7yy7yh1XWr8hKKwtqep2-8aiPte9hzSC2MpYJElhpcBRGGu9EwIZp2F47jwAOQBJ9wSmIyb4U-WVf_5yQJ3G2U3IyCu3aC41kmOFQSyy1gAedShcnyJnXGIwzgJQG_jcGMPmJ1X5ra0gjjErBbYBjNdIvsY1evJ_5k_hFh2RuCZWz2C0qhv3HBncyrzo5-wfDttE-g priority: 102 providerName: Unpaywall |
| Title | Controllable Liquid-Liquid Printing with Defect-free, Corrosion-Resistance, Unrestricted Wetting Condition |
| URI | https://dx.doi.org/10.1016/j.isci.2019.07.017 https://www.ncbi.nlm.nih.gov/pubmed/31357171 https://www.proquest.com/docview/2267014264 https://pubmed.ncbi.nlm.nih.gov/PMC6664161 http://www.cell.com/article/S2589004219302421/pdf https://doaj.org/article/34cc52466dc54cd0bccfe44435b16613 |
| UnpaywallVersion | publishedVersion |
| Volume | 19 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2589-0042 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002002496 issn: 2589-0042 databaseCode: DOA dateStart: 20180101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2589-0042 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002002496 issn: 2589-0042 databaseCode: RPM dateStart: 20180101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUQHOilalXahlLkStzYiCS24-RIFxCqCkJVV4WTZTu2mtUqSxdWFf--M3Z22RUS7aGnSInz5XnOzMTPbwg5EMJUzGiHI42n3HiTasZtapnXvpSW1wYXOF9clucj_uVaXK-U-kJOWJQHjh13BCdaUfCybKzgtsmMtd5xDl7e5OBbgs5nVtUrydQ4TK-hFF6oLCeQEwTQ7FfMRHIXrnhFXlcdlDtDtbJHrxTE-9ec09Pg8ymHcnve3eqH33oyWXFQZ6_Iyz6ypMfxjV6TDde9IeNhpKJPcIUU_dr-mrdNGjf0ataGMhEU_8XSE4fEjtTPnBvQ4XQGzwkmS7-5O4wwARoDOkJpIFT0hyiV_nCBMQ1NcdIbmu6Q0dnp9-F52pdXSC1n8HlkzJia165wxmfG80pI_B9k86rkvoBUpRS5lE4YLoU0RoP1bFOwsgIrFKay7C3Z7Kade0-ol3njIfkocw35tsu0E4w3HLXzC9Y0PCH5onuV7bXHsQTGRC1IZmOFJlFoEpVJBSZJyOHynNuovPFs689otWVLVM0OOwBLqseS-huWEiIWNld9ABIDC7hU--zNPy0AomB04pSL7tx0fqcguJWQhELUmZB3ETDLR2Q5E5BM5wmRa1Bae4f1I137MyiAQ86JiWlCBkvQ_UMf7f6PPvpAXuAlkTJTyD2yeT-bu48Ql92b_TAE98nW6PLq-OYPiBk3Bw |
| linkProvider | Directory of Open Access Journals |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEB6V9AAXHuJlXjISN-I269312scSqCoEVVWIKKeVd71bXCInuLEQ_Hpm_AhEkapyipxMEq_nW-83629mAF5JaVJuckczTUTCeBPlXNjIcp_7RFmRGUpw_nicHM3E-zN5tgND40JSVdKOdXuP7q_d_qdYphmhC8kGLSlsf1n4G7CbSKTfI9idHZ8cfKUmcpLkP2jXJ8d0Oi5KbiUJV9YW6Wwbk_1dgNo6_Rvr0DbP3JZL3myqZf7rZz6f_7MWHd6B0yGjp5OgfN9rVmbP_t4u8Hj9Yd6F2z0zDQ86u3uw46r7cDHtpOxzyrAKP5Q_mrKIupfwpC7bNhMh7eWGbx0JQyJfOzcOp4saB48uj07dJTFUhNY4nFFpIeoIgCw3_OJaxTWa0kNzNH0As8N3n6dHUd-eIbKC4-2Vc2MykbnYGT8xXqRS0X6SZWkifIyhTiKZUk4aoaQyJkfv2yLmSWqLSWxSyx_CqFpU7jGEXrHCY_CSsBzjdTfJneSiEFR7P-ZFIQJgg8-07WuXUwuNuR5Eahea_KzJz3qiNPo5gNfr7yy7yh1XWr8hKKwtqep2-8aiPte9hzSC2MpYJElhpcBRGGu9EwIZp2F47jwAOQBJ9wSmIyb4U-WVf_5yQJ3G2U3IyCu3aC41kmOFQSyy1gAedShcnyJnXGIwzgJQG_jcGMPmJ1X5ra0gjjErBbYBjNdIvsY1evJ_5k_hFh2RuCZWz2C0qhv3HBncyrzo5-wfDttE-g |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Controllable+Liquid-Liquid+Printing+with+Defect-free%2C+Corrosion-Resistance%2C+Unrestricted+Wetting+Condition&rft.jtitle=iScience&rft.au=Min%2C+Lingli&rft.au=Zhang%2C+Haohui&rft.au=Pan%2C+Hong&rft.au=Wu%2C+Feng&rft.date=2019-09-27&rft.issn=2589-0042&rft.eissn=2589-0042&rft.volume=19&rft.spage=93&rft_id=info:doi/10.1016%2Fj.isci.2019.07.017&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2589-0042&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2589-0042&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2589-0042&client=summon |