Controllable Liquid-Liquid Printing with Defect-free, Corrosion-Resistance, Unrestricted Wetting Condition

Conventional printing is worth revisiting because of its established procedures in meeting the surging demand of manufacturing printed electronics, 3D products, etc. However, one goal in penetrating printing into these is to control pattern transfer with no limitation of wettability. Here we introdu...

Full description

Saved in:
Bibliographic Details
Published iniScience Vol. 19; pp. 93 - 100
Main Authors Min, Lingli, Zhang, Haohui, Pan, Hong, Wu, Feng, Hu, Yuhang, Sheng, Zhizhi, Wang, Miao, Zhang, Mengchuang, Wang, Shuli, Chen, Xinyu, Hou, Xu
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 27.09.2019
Elsevier
Subjects
Online AccessGet full text
ISSN2589-0042
2589-0042
DOI10.1016/j.isci.2019.07.017

Cover

Abstract Conventional printing is worth revisiting because of its established procedures in meeting the surging demand of manufacturing printed electronics, 3D products, etc. However, one goal in penetrating printing into these is to control pattern transfer with no limitation of wettability. Here we introduce a miscible liquid-liquid transfer printing mechanism that can synchronize material preparation and material patterning with desirable properties including limitless selection of raw materials, corrosion resistance, no wetting constraint, and ability to prepare large-area defect-free materials for multi-function applications. Theoretical modeling and experiments demonstrate that donor liquid could be used to make patterns within the bulk of a receiver material, allowing the obtained intrinsically patterned functional materials to be resistant to harsh conditions. Different from current liquid printing technologies, this printing approach enables stable and defect-free material preparation and is expected to prove useful in flexible display, soft electronics, 4D printing, and beyond. [Display omitted] •A transfer printing mechanism based on miscible liquid-liquid interfaces•The material preparation and defect-free patterning can be synchronized•This printing mechanism is free of wetting constraint Interface Science; Surface Property; Materials Property; Materials Design
AbstractList Conventional printing is worth revisiting because of its established procedures in meeting the surging demand of manufacturing printed electronics, 3D products, etc. However, one goal in penetrating printing into these is to control pattern transfer with no limitation of wettability. Here we introduce a miscible liquid-liquid transfer printing mechanism that can synchronize material preparation and material patterning with desirable properties including limitless selection of raw materials, corrosion resistance, no wetting constraint, and ability to prepare large-area defect-free materials for multi-function applications. Theoretical modeling and experiments demonstrate that donor liquid could be used to make patterns within the bulk of a receiver material, allowing the obtained intrinsically patterned functional materials to be resistant to harsh conditions. Different from current liquid printing technologies, this printing approach enables stable and defect-free material preparation and is expected to prove useful in flexible display, soft electronics, 4D printing, and beyond. • A transfer printing mechanism based on miscible liquid-liquid interfaces • The material preparation and defect-free patterning can be synchronized • This printing mechanism is free of wetting constraint Interface Science; Surface Property; Materials Property; Materials Design
Conventional printing is worth revisiting because of its established procedures in meeting the surging demand of manufacturing printed electronics, 3D products, etc. However, one goal in penetrating printing into these is to control pattern transfer with no limitation of wettability. Here we introduce a miscible liquid-liquid transfer printing mechanism that can synchronize material preparation and material patterning with desirable properties including limitless selection of raw materials, corrosion resistance, no wetting constraint, and ability to prepare large-area defect-free materials for multi-function applications. Theoretical modeling and experiments demonstrate that donor liquid could be used to make patterns within the bulk of a receiver material, allowing the obtained intrinsically patterned functional materials to be resistant to harsh conditions. Different from current liquid printing technologies, this printing approach enables stable and defect-free material preparation and is expected to prove useful in flexible display, soft electronics, 4D printing, and beyond.Conventional printing is worth revisiting because of its established procedures in meeting the surging demand of manufacturing printed electronics, 3D products, etc. However, one goal in penetrating printing into these is to control pattern transfer with no limitation of wettability. Here we introduce a miscible liquid-liquid transfer printing mechanism that can synchronize material preparation and material patterning with desirable properties including limitless selection of raw materials, corrosion resistance, no wetting constraint, and ability to prepare large-area defect-free materials for multi-function applications. Theoretical modeling and experiments demonstrate that donor liquid could be used to make patterns within the bulk of a receiver material, allowing the obtained intrinsically patterned functional materials to be resistant to harsh conditions. Different from current liquid printing technologies, this printing approach enables stable and defect-free material preparation and is expected to prove useful in flexible display, soft electronics, 4D printing, and beyond.
Conventional printing is worth revisiting because of its established procedures in meeting the surging demand of manufacturing printed electronics, 3D products, etc. However, one goal in penetrating printing into these is to control pattern transfer with no limitation of wettability. Here we introduce a miscible liquid-liquid transfer printing mechanism that can synchronize material preparation and material patterning with desirable properties including limitless selection of raw materials, corrosion resistance, no wetting constraint, and ability to prepare large-area defect-free materials for multi-function applications. Theoretical modeling and experiments demonstrate that donor liquid could be used to make patterns within the bulk of a receiver material, allowing the obtained intrinsically patterned functional materials to be resistant to harsh conditions. Different from current liquid printing technologies, this printing approach enables stable and defect-free material preparation and is expected to prove useful in flexible display, soft electronics, 4D printing, and beyond.
Conventional printing is worth revisiting because of its established procedures in meeting the surging demand of manufacturing printed electronics, 3D products, etc. However, one goal in penetrating printing into these is to control pattern transfer with no limitation of wettability. Here we introduce a miscible liquid-liquid transfer printing mechanism that can synchronize material preparation and material patterning with desirable properties including limitless selection of raw materials, corrosion resistance, no wetting constraint, and ability to prepare large-area defect-free materials for multi-function applications. Theoretical modeling and experiments demonstrate that donor liquid could be used to make patterns within the bulk of a receiver material, allowing the obtained intrinsically patterned functional materials to be resistant to harsh conditions. Different from current liquid printing technologies, this printing approach enables stable and defect-free material preparation and is expected to prove useful in flexible display, soft electronics, 4D printing, and beyond. [Display omitted] •A transfer printing mechanism based on miscible liquid-liquid interfaces•The material preparation and defect-free patterning can be synchronized•This printing mechanism is free of wetting constraint Interface Science; Surface Property; Materials Property; Materials Design
Conventional printing is worth revisiting because of its established procedures in meeting the surging demand of manufacturing printed electronics, 3D products, etc. However, one goal in penetrating printing into these is to control pattern transfer with no limitation of wettability. Here we introduce a miscible liquid-liquid transfer printing mechanism that can synchronize material preparation and material patterning with desirable properties including limitless selection of raw materials, corrosion resistance, no wetting constraint, and ability to prepare large-area defect-free materials for multi-function applications. Theoretical modeling and experiments demonstrate that donor liquid could be used to make patterns within the bulk of a receiver material, allowing the obtained intrinsically patterned functional materials to be resistant to harsh conditions. Different from current liquid printing technologies, this printing approach enables stable and defect-free material preparation and is expected to prove useful in flexible display, soft electronics, 4D printing, and beyond. : Interface Science; Surface Property; Materials Property; Materials Design Subject Areas: Interface Science, Surface Property, Materials Property, Materials Design
Author Hou, Xu
Zhang, Mengchuang
Wu, Feng
Wang, Miao
Hu, Yuhang
Zhang, Haohui
Wang, Shuli
Pan, Hong
Min, Lingli
Sheng, Zhizhi
Chen, Xinyu
AuthorAffiliation 3 George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
4 Collaborative Innovation Center of Chemistry for Energy Materials, Xiamen University, Xiamen 361005, China
5 State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
2 Research Institute for Biomimetics and Soft Matter, College of Physical Science and Technology, Xiamen University, Xiamen 361005, China
1 College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
AuthorAffiliation_xml – name: 4 Collaborative Innovation Center of Chemistry for Energy Materials, Xiamen University, Xiamen 361005, China
– name: 5 State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
– name: 1 College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
– name: 3 George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
– name: 2 Research Institute for Biomimetics and Soft Matter, College of Physical Science and Technology, Xiamen University, Xiamen 361005, China
Author_xml – sequence: 1
  givenname: Lingli
  surname: Min
  fullname: Min, Lingli
  organization: College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
– sequence: 2
  givenname: Haohui
  surname: Zhang
  fullname: Zhang, Haohui
  organization: George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
– sequence: 3
  givenname: Hong
  surname: Pan
  fullname: Pan, Hong
  organization: College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
– sequence: 4
  givenname: Feng
  surname: Wu
  fullname: Wu, Feng
  organization: Research Institute for Biomimetics and Soft Matter, College of Physical Science and Technology, Xiamen University, Xiamen 361005, China
– sequence: 5
  givenname: Yuhang
  surname: Hu
  fullname: Hu, Yuhang
  organization: George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
– sequence: 6
  givenname: Zhizhi
  surname: Sheng
  fullname: Sheng, Zhizhi
  organization: College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
– sequence: 7
  givenname: Miao
  surname: Wang
  fullname: Wang, Miao
  organization: Research Institute for Biomimetics and Soft Matter, College of Physical Science and Technology, Xiamen University, Xiamen 361005, China
– sequence: 8
  givenname: Mengchuang
  surname: Zhang
  fullname: Zhang, Mengchuang
  organization: Research Institute for Biomimetics and Soft Matter, College of Physical Science and Technology, Xiamen University, Xiamen 361005, China
– sequence: 9
  givenname: Shuli
  surname: Wang
  fullname: Wang, Shuli
  organization: College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
– sequence: 10
  givenname: Xinyu
  surname: Chen
  fullname: Chen, Xinyu
  organization: College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
– sequence: 11
  givenname: Xu
  surname: Hou
  fullname: Hou, Xu
  email: houx@xmu.edu.cn
  organization: College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31357171$$D View this record in MEDLINE/PubMed
BookMark eNqNkltrFDEYhoNUbF37B7yQufTCWXOaZBZEKOupsKCIxcuQZL7ZZplN2ky2pf_ebzu1tF4UIZCQeQ-ZPHlJDmKKQMhrRueMMvV-Mw-jD3NO2WJO9Zwy_Ywc8aZd1JRKfvBgfUiOx3FDKeU45EK9IIeCiUYzzY7IZpliyWkYrBugWoXLXejqaap-5BBLiOvqOpTz6hP04EvdZ4B31TLlnMaQYv0TxjAWGz3unsUMY8nBF-iq31BuzVjQhYLSV-R5b4cRju_mGTn78vnX8lu9-v71dHmyqr0UStdCOLeQC-Dgeup62TZacs49a5XsOWdaNUxraJzUjXbOit76jgvV-o5y13oxI6dTbpfsxlzksLX5xiQbzO1Gymtjcwl-ACOk9w2XSnW-keh33vcgpRSNY0oxgVliytrFC3tzbYfhPpBRswdhNmYPwuxBGKoNgkDXx8l1sXNb6DzgFdvh0VEef4nh3KzTlVFKSYa9M_L2LiCnyx3eqdliCSClCGk3Gs6VpkxyJVH65mHXfclfxCjgk8AjsTFD_39_0P5j8qHYPUU8bxietn6YrICMrwJkgwrA99GFjA8IIYSn7H8A4HbkVg
CitedBy_id crossref_primary_10_1039_C9SM02506E
crossref_primary_10_1021_acsami_1c12945
crossref_primary_10_1002_adma_202005664
crossref_primary_10_1016_j_mattod_2022_02_014
crossref_primary_10_1016_j_isci_2021_102334
crossref_primary_10_1016_j_isci_2021_102121
crossref_primary_10_1021_acsnano_2c10999
crossref_primary_10_1002_smll_202105017
crossref_primary_10_1016_j_joule_2023_04_007
crossref_primary_10_1016_j_mechmat_2023_104778
crossref_primary_10_1007_s10118_020_2453_3
crossref_primary_10_1007_s40964_024_00815_6
crossref_primary_10_1021_accountsmr_1c00024
Cites_doi 10.1002/adma.201201386
10.1038/s41467-019-09042-y
10.1021/am5042548
10.1021/la804020k
10.1016/j.cocis.2014.02.004
10.1073/pnas.0914031107
10.1038/s41467-019-08639-7
10.1146/annurev.matsci.28.1.153
10.1002/aelm.201600260
10.1021/acsami.5b07006
10.1038/nnano.2010.175
10.1126/science.aaa2397
10.1007/978-981-13-0110-0
10.1002/smll.201403355
10.1002/adma.201503682
10.1109/CA.1995.393542
10.4028/www.scientific.net/AMR.174.447
10.1038/nature14253
10.1002/adma.201707603
10.1039/C7TC04804A
10.1021/acs.jpcc.8b02605
10.1007/s10853-006-0842-9
10.1126/science.1229495
10.1039/C4LC01486C
10.1002/adma.201601407
10.1146/annurev-matsci-070909-104502
10.1021/jp064147+
10.1002/adma.201602736
10.1038/nmat1532
10.1002/admi.201400080
10.1146/annurev-fluid-010814-014620
10.1002/adfm.201500908
10.1021/acsami.8b09812
10.1039/C7CS00631D
10.1039/c3cs35501b
ContentType Journal Article
Copyright 2019 The Author(s)
Copyright © 2019 The Author(s). Published by Elsevier Inc. All rights reserved.
2019 The Author(s) 2019
Copyright_xml – notice: 2019 The Author(s)
– notice: Copyright © 2019 The Author(s). Published by Elsevier Inc. All rights reserved.
– notice: 2019 The Author(s) 2019
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1016/j.isci.2019.07.017
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
EISSN 2589-0042
EndPage 100
ExternalDocumentID oai_doaj_org_article_34cc52466dc54cd0bccfe44435b16613
10.1016/j.isci.2019.07.017
PMC6664161
31357171
10_1016_j_isci_2019_07_017
S2589004219302421
Genre Journal Article
GroupedDBID 0SF
53G
6I.
AACTN
AAEDW
AAFTH
AALRI
AAXUO
ABMAC
ADBBV
AEXQZ
AFTJW
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
HYE
M41
NCXOZ
OK1
ROL
RPM
SSZ
0R~
AAMRU
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
APXCP
CITATION
NPM
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c4367-33bb949e2ebf0bf48574222c1864f221765177e5b4757bba3facd2368cd02b8c3
IEDL.DBID DOA
ISSN 2589-0042
IngestDate Fri Oct 03 12:53:08 EDT 2025
Tue Aug 19 23:31:36 EDT 2025
Tue Sep 30 16:48:11 EDT 2025
Thu Oct 02 06:03:26 EDT 2025
Thu Jan 02 22:31:31 EST 2025
Tue Jul 01 01:03:26 EDT 2025
Thu Apr 24 22:55:28 EDT 2025
Tue May 16 22:28:48 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Materials Property
Surface Property
Interface Science
Materials Design
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2019 The Author(s). Published by Elsevier Inc. All rights reserved.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4367-33bb949e2ebf0bf48574222c1864f221765177e5b4757bba3facd2368cd02b8c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Lead Contact
OpenAccessLink https://doaj.org/article/34cc52466dc54cd0bccfe44435b16613
PMID 31357171
PQID 2267014264
PQPubID 23479
PageCount 8
ParticipantIDs doaj_primary_oai_doaj_org_article_34cc52466dc54cd0bccfe44435b16613
unpaywall_primary_10_1016_j_isci_2019_07_017
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6664161
proquest_miscellaneous_2267014264
pubmed_primary_31357171
crossref_primary_10_1016_j_isci_2019_07_017
crossref_citationtrail_10_1016_j_isci_2019_07_017
elsevier_sciencedirect_doi_10_1016_j_isci_2019_07_017
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-09-27
PublicationDateYYYYMMDD 2019-09-27
PublicationDate_xml – month: 09
  year: 2019
  text: 2019-09-27
  day: 27
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle iScience
PublicationTitleAlternate iScience
PublicationYear 2019
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Bao, Su, Wang, Chen, Wu, Jia, Song, Jiang (bib3) 2014; 1
Schwartz, Boydston (bib26) 2019; 10
Carlson, Bowen, Huang, Nuzzo, Rogers (bib4) 2012; 24
Fukuda, Someya (bib8) 2017; 29
Vorobev (bib32) 2014; 19
Derby (bib5) 2010; 40
Xia, Whitesides (bib34) 1998; 28
Forth, Liu, Hasnain, Toor, Miszta, Shi, Geissler, Emrick, Helms, Russell (bib7) 2018; 30
Hwang, Cho, Dang, Kwak, Song, Moon, Sung (bib13) 2010; 5
Meitl, Zhu, Kumar, Lee, Feng, Huang, Adesida, Nuzzo, Rogers (bib22) 2006; 5
Zeng, Tian, Zhao, Tirrell, Israelachvili (bib35) 2009; 25
Jiang, Bao, Li, Sun, Zhang, Li, Li, Yao, Song (bib15) 2016; 28
Su, Huang, Li, Qian, Li, Hu, Pan, Li, Li, Song (bib27) 2018; 30
Jaworek (bib14) 2007; 42
Kunii, T.L., Nosovskij, G.V., and Hayashi, T.. (1995). A diffusion model for computer animation of diffuse ink painting. In Proceedings of the Computer Animation (IEEE Computer Society), pp. 98.
Bai, Chen, Li, Shao, He, Chen, Li, Zhang, Zhang, Wang (bib1) 2018; 10
Tumbleston, Shirvanyants, Ermoshkin, Janusziewicz, Johnson, Kelly, Chen, Pinschmidt, Rolland, Ermoshkin (bib30) 2015; 347
Kumar (bib17) 2015; 47
Hoon, Minho, Kahyun, Insol, Kangseok, Chaenyung, Tae-il, Eui (bib11) 2018; 28
Hou, Hu, Grinthal, Khan, Aizenberg (bib12) 2015; 519
Goncalves, Cardoso, Pereira, Oliveira, Nunes-Pereira, Costa, Lanceros-Mendez (bib9) 2018; 122
Kim, Kumar, Bandodkar, Wang (bib16) 2017; 3
Rietveld, Kobayashi, Yamada, Matsushige (bib25) 2006; 110
Tian, Song, Jiang (bib29) 2013; 42
Lee, Kim, Zheng (bib19) 2010; 107
Guo, Li, Li, Zhou, Song (bib10) 2015; 15
Feng, Chai, Forth, Ashby, Russell, Helms (bib6) 2019; 10
Villar, Graham, Bayley (bib31) 2013; 340
Zhou, Song (bib36) 2011; 174
Wang, Li, Kuang, Gao, Wang, Huang, Jiang, Song (bib33) 2015; 11
Parra-Cabrera, Achille, Kuhn, Ameloot (bib23) 2018; 47
Raut, Al-Shamery (bib24) 2018; 6
Liu, Wang, He, Wang, Li, Jiang, Song (bib21) 2014; 6
Sun, Bao, He, Zhou, Song (bib28) 2015; 7
Bao, Jiang, Li, Zhang, Chen, Yang, Wang, Su, Jiang, Song (bib2) 2015; 25
Lee, Um, Lee, Lim, Kim, Ko (bib20) 2016; 28
Lee (10.1016/j.isci.2019.07.017_bib19) 2010; 107
Lee (10.1016/j.isci.2019.07.017_bib20) 2016; 28
Forth (10.1016/j.isci.2019.07.017_bib7) 2018; 30
Feng (10.1016/j.isci.2019.07.017_bib6) 2019; 10
10.1016/j.isci.2019.07.017_bib18
Su (10.1016/j.isci.2019.07.017_bib27) 2018; 30
Wang (10.1016/j.isci.2019.07.017_bib33) 2015; 11
Derby (10.1016/j.isci.2019.07.017_bib5) 2010; 40
Sun (10.1016/j.isci.2019.07.017_bib28) 2015; 7
Jiang (10.1016/j.isci.2019.07.017_bib15) 2016; 28
Fukuda (10.1016/j.isci.2019.07.017_bib8) 2017; 29
Guo (10.1016/j.isci.2019.07.017_bib10) 2015; 15
Hoon (10.1016/j.isci.2019.07.017_bib11) 2018; 28
Jaworek (10.1016/j.isci.2019.07.017_bib14) 2007; 42
Villar (10.1016/j.isci.2019.07.017_bib31) 2013; 340
Bai (10.1016/j.isci.2019.07.017_bib1) 2018; 10
Vorobev (10.1016/j.isci.2019.07.017_bib32) 2014; 19
Kumar (10.1016/j.isci.2019.07.017_bib17) 2015; 47
Zhou (10.1016/j.isci.2019.07.017_bib36) 2011; 174
Rietveld (10.1016/j.isci.2019.07.017_bib25) 2006; 110
Zeng (10.1016/j.isci.2019.07.017_bib35) 2009; 25
Liu (10.1016/j.isci.2019.07.017_bib21) 2014; 6
Tian (10.1016/j.isci.2019.07.017_bib29) 2013; 42
Parra-Cabrera (10.1016/j.isci.2019.07.017_bib23) 2018; 47
Goncalves (10.1016/j.isci.2019.07.017_bib9) 2018; 122
Schwartz (10.1016/j.isci.2019.07.017_bib26) 2019; 10
Bao (10.1016/j.isci.2019.07.017_bib2) 2015; 25
Hwang (10.1016/j.isci.2019.07.017_bib13) 2010; 5
Xia (10.1016/j.isci.2019.07.017_bib34) 1998; 28
Bao (10.1016/j.isci.2019.07.017_bib3) 2014; 1
Tumbleston (10.1016/j.isci.2019.07.017_bib30) 2015; 347
Hou (10.1016/j.isci.2019.07.017_bib12) 2015; 519
Kim (10.1016/j.isci.2019.07.017_bib16) 2017; 3
Carlson (10.1016/j.isci.2019.07.017_bib4) 2012; 24
Meitl (10.1016/j.isci.2019.07.017_bib22) 2006; 5
Raut (10.1016/j.isci.2019.07.017_bib24) 2018; 6
References_xml – volume: 28
  start-page: 1420
  year: 2016
  end-page: 1426
  ident: bib15
  article-title: Fabrication of transparent multilayer circuits by inkjet printing
  publication-title: Adv. Mater.
– reference: Kunii, T.L., Nosovskij, G.V., and Hayashi, T.. (1995). A diffusion model for computer animation of diffuse ink painting. In Proceedings of the Computer Animation (IEEE Computer Society), pp. 98.
– volume: 28
  start-page: 7457
  year: 2016
  end-page: 7465
  ident: bib20
  article-title: Octopus-inspired smart adhesive pads for transfer printing of semiconducting nanomembranes
  publication-title: Adv. Mater.
– volume: 11
  start-page: 1900
  year: 2015
  end-page: 1904
  ident: bib33
  article-title: Interface manipulation for printing three-dimensional microstructures under magnetic guiding
  publication-title: Small
– volume: 25
  start-page: 3286
  year: 2015
  end-page: 3294
  ident: bib2
  article-title: Fabrication of patterned concave microstructures by inkjet imprinting
  publication-title: Adv. Funct. Mater.
– volume: 47
  start-page: 209
  year: 2018
  end-page: 230
  ident: bib23
  article-title: 3D printing in chemical engineering and catalytic technology: structured catalysts, mixers and reactors
  publication-title: Chem. Soc. Rev.
– volume: 29
  start-page: 1602736
  year: 2017
  ident: bib8
  article-title: Recent progress in the development of printed thin-film transistors and circuits with high-resolution printing technology
  publication-title: Adv. Mater.
– volume: 10
  start-page: 791
  year: 2019
  ident: bib26
  article-title: Multimaterial actinic spatial control 3D and 4D printing
  publication-title: Nat. Commun.
– volume: 42
  start-page: 266
  year: 2007
  end-page: 297
  ident: bib14
  article-title: Electrospray droplet sources for thin film deposition
  publication-title: J. Mater. Sci.
– volume: 30
  start-page: 1707603
  year: 2018
  ident: bib7
  article-title: Reconfigurable printed liquids
  publication-title: Adv. Mater.
– volume: 10
  start-page: 25960
  year: 2018
  end-page: 25966
  ident: bib1
  article-title: Fabrication of MOF thin films at miscible liquid–liquid interface by spray method
  publication-title: ACS Appl. Mater. Interfaces
– volume: 110
  start-page: 23351
  year: 2006
  end-page: 23364
  ident: bib25
  article-title: Electrospray deposition, model, and experiment:  toward general control of film morphology
  publication-title: J. Phys. Chem. B
– volume: 6
  start-page: 1618
  year: 2018
  end-page: 1641
  ident: bib24
  article-title: Inkjet printing metals on flexible materials for plastic and paper electronics
  publication-title: J. Mater. Chem. C
– volume: 340
  start-page: 48
  year: 2013
  end-page: 52
  ident: bib31
  article-title: A tissue-like printed material
  publication-title: Science
– volume: 28
  start-page: 153
  year: 1998
  end-page: 184
  ident: bib34
  article-title: Soft lithography
  publication-title: Annu. Rev. Mater. Sci.
– volume: 25
  start-page: 4954
  year: 2009
  end-page: 4964
  ident: bib35
  article-title: Friction at the liquid/liquid interface of two immiscible polymer films
  publication-title: Langmuir
– volume: 1
  start-page: 1400080
  year: 2014
  ident: bib3
  article-title: Stretching velocity-dependent dynamic adhesion of the water/oil interfaces for high quality lithographic printing
  publication-title: Adv. Mater. Interfaces
– volume: 47
  start-page: 67
  year: 2015
  end-page: 94
  ident: bib17
  article-title: Liquid transfer in printing processes: liquid bridges with moving contact lines
  publication-title: Annu. Rev. Fluid Mech.
– volume: 30
  start-page: 8
  year: 2018
  ident: bib27
  article-title: A 3D self-shaping strategy for nanoresolution multicomponent architectures
  publication-title: Adv. Mater.
– volume: 42
  start-page: 5184
  year: 2013
  end-page: 5209
  ident: bib29
  article-title: Patterning of controllable surface wettability for printing techniques
  publication-title: Chem. Soc. Rev.
– volume: 40
  start-page: 395
  year: 2010
  end-page: 414
  ident: bib5
  article-title: Inkjet printing of functional and structural materials: fluid property requirements, feature stability, and resolution
  publication-title: Annu. Rev. Mater. Res.
– volume: 3
  start-page: 1600260
  year: 2017
  ident: bib16
  article-title: Advanced materials for printed wearable electrochemical devices: a review
  publication-title: Adv. Electron. Mater.
– volume: 107
  start-page: 9950
  year: 2010
  end-page: 9955
  ident: bib19
  article-title: Fabricating nanowire devices on diverse substrates by simple transfer-printing methods
  publication-title: Proc. Natl. Acad. Sci. U S A
– volume: 122
  start-page: 11433
  year: 2018
  end-page: 11441
  ident: bib9
  article-title: Evaluation of the physicochemical properties and active response of piezoelectric poly(vinylidene fluoride-co-trifluoroethylene) as a function of its microstructure
  publication-title: J. Phys. Chem. C
– volume: 519
  start-page: 70
  year: 2015
  end-page: 73
  ident: bib12
  article-title: Liquid-based gating mechanism with tunable multiphase selectivity and antifouling behaviour
  publication-title: Nature
– volume: 7
  start-page: 28086
  year: 2015
  end-page: 28099
  ident: bib28
  article-title: Recent advances in controlling the depositing morphologies of inkjet droplets
  publication-title: ACS Appl. Mater. Interfaces
– volume: 174
  start-page: 447
  year: 2011
  end-page: 449
  ident: bib36
  article-title: Green plate making technology based on nano-materials
  publication-title: Adv. Mater. Res.
– volume: 24
  start-page: 5284
  year: 2012
  end-page: 5318
  ident: bib4
  article-title: Transfer printing techniques for materials assembly and micro/nanodevice fabrication
  publication-title: Adv. Mater.
– volume: 10
  start-page: 1095
  year: 2019
  ident: bib6
  article-title: Harnessing liquid-in-liquid printing and micropatterned substrates to fabricate 3-dimensional all-liquid fluidic devices
  publication-title: Nat. Commun.
– volume: 19
  start-page: 300
  year: 2014
  end-page: 308
  ident: bib32
  article-title: Dissolution dynamics of miscible liquid/liquid interfaces
  publication-title: Curr. Opin. Colloid Interface Sci.
– volume: 28
  year: 2018
  ident: bib11
  article-title: Wet-responsive, reconfigurable, and biocompatible hydrogel adhesive films for transfer printing of nanomembranes
  publication-title: Adv. Funct. Mater.
– volume: 6
  start-page: 13344
  year: 2014
  end-page: 13348
  ident: bib21
  article-title: Inkjet printing controllable footprint lines by regulating the dynamic wettability of coalescing ink droplets
  publication-title: ACS Appl. Mater. Interfaces
– volume: 15
  start-page: 1759
  year: 2015
  end-page: 1764
  ident: bib10
  article-title: Inkjet print microchannels based on a liquid template
  publication-title: Lab Chip
– volume: 347
  start-page: 1349
  year: 2015
  end-page: 1352
  ident: bib30
  article-title: Continuous liquid interface production of 3D objects
  publication-title: Science
– volume: 5
  start-page: 33
  year: 2006
  end-page: 38
  ident: bib22
  article-title: Transfer printing by kinetic control of adhesion to an elastomeric stamp
  publication-title: Nat. Mater.
– volume: 5
  start-page: 742
  year: 2010
  end-page: 748
  ident: bib13
  article-title: Direct nanoprinting by liquid-bridge-mediated nanotransfer moulding
  publication-title: Nat. Nanotechnol.
– volume: 24
  start-page: 5284
  year: 2012
  ident: 10.1016/j.isci.2019.07.017_bib4
  article-title: Transfer printing techniques for materials assembly and micro/nanodevice fabrication
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201201386
– volume: 10
  start-page: 1095
  year: 2019
  ident: 10.1016/j.isci.2019.07.017_bib6
  article-title: Harnessing liquid-in-liquid printing and micropatterned substrates to fabricate 3-dimensional all-liquid fluidic devices
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09042-y
– volume: 6
  start-page: 13344
  year: 2014
  ident: 10.1016/j.isci.2019.07.017_bib21
  article-title: Inkjet printing controllable footprint lines by regulating the dynamic wettability of coalescing ink droplets
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am5042548
– volume: 25
  start-page: 4954
  year: 2009
  ident: 10.1016/j.isci.2019.07.017_bib35
  article-title: Friction at the liquid/liquid interface of two immiscible polymer films
  publication-title: Langmuir
  doi: 10.1021/la804020k
– volume: 30
  start-page: 8
  year: 2018
  ident: 10.1016/j.isci.2019.07.017_bib27
  article-title: A 3D self-shaping strategy for nanoresolution multicomponent architectures
  publication-title: Adv. Mater.
– volume: 19
  start-page: 300
  year: 2014
  ident: 10.1016/j.isci.2019.07.017_bib32
  article-title: Dissolution dynamics of miscible liquid/liquid interfaces
  publication-title: Curr. Opin. Colloid Interface Sci.
  doi: 10.1016/j.cocis.2014.02.004
– volume: 107
  start-page: 9950
  year: 2010
  ident: 10.1016/j.isci.2019.07.017_bib19
  article-title: Fabricating nanowire devices on diverse substrates by simple transfer-printing methods
  publication-title: Proc. Natl. Acad. Sci. U S A
  doi: 10.1073/pnas.0914031107
– volume: 10
  start-page: 791
  year: 2019
  ident: 10.1016/j.isci.2019.07.017_bib26
  article-title: Multimaterial actinic spatial control 3D and 4D printing
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-08639-7
– volume: 28
  start-page: 153
  year: 1998
  ident: 10.1016/j.isci.2019.07.017_bib34
  article-title: Soft lithography
  publication-title: Annu. Rev. Mater. Sci.
  doi: 10.1146/annurev.matsci.28.1.153
– volume: 3
  start-page: 1600260
  year: 2017
  ident: 10.1016/j.isci.2019.07.017_bib16
  article-title: Advanced materials for printed wearable electrochemical devices: a review
  publication-title: Adv. Electron. Mater.
  doi: 10.1002/aelm.201600260
– volume: 7
  start-page: 28086
  year: 2015
  ident: 10.1016/j.isci.2019.07.017_bib28
  article-title: Recent advances in controlling the depositing morphologies of inkjet droplets
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b07006
– volume: 5
  start-page: 742
  year: 2010
  ident: 10.1016/j.isci.2019.07.017_bib13
  article-title: Direct nanoprinting by liquid-bridge-mediated nanotransfer moulding
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2010.175
– volume: 347
  start-page: 1349
  year: 2015
  ident: 10.1016/j.isci.2019.07.017_bib30
  article-title: Continuous liquid interface production of 3D objects
  publication-title: Science
  doi: 10.1126/science.aaa2397
– volume: 28
  year: 2018
  ident: 10.1016/j.isci.2019.07.017_bib11
  article-title: Wet-responsive, reconfigurable, and biocompatible hydrogel adhesive films for transfer printing of nanomembranes
  publication-title: Adv. Funct. Mater.
  doi: 10.1007/978-981-13-0110-0
– volume: 11
  start-page: 1900
  year: 2015
  ident: 10.1016/j.isci.2019.07.017_bib33
  article-title: Interface manipulation for printing three-dimensional microstructures under magnetic guiding
  publication-title: Small
  doi: 10.1002/smll.201403355
– volume: 28
  start-page: 1420
  year: 2016
  ident: 10.1016/j.isci.2019.07.017_bib15
  article-title: Fabrication of transparent multilayer circuits by inkjet printing
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201503682
– ident: 10.1016/j.isci.2019.07.017_bib18
  doi: 10.1109/CA.1995.393542
– volume: 174
  start-page: 447
  year: 2011
  ident: 10.1016/j.isci.2019.07.017_bib36
  article-title: Green plate making technology based on nano-materials
  publication-title: Adv. Mater. Res.
  doi: 10.4028/www.scientific.net/AMR.174.447
– volume: 519
  start-page: 70
  year: 2015
  ident: 10.1016/j.isci.2019.07.017_bib12
  article-title: Liquid-based gating mechanism with tunable multiphase selectivity and antifouling behaviour
  publication-title: Nature
  doi: 10.1038/nature14253
– volume: 30
  start-page: 1707603
  year: 2018
  ident: 10.1016/j.isci.2019.07.017_bib7
  article-title: Reconfigurable printed liquids
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201707603
– volume: 6
  start-page: 1618
  year: 2018
  ident: 10.1016/j.isci.2019.07.017_bib24
  article-title: Inkjet printing metals on flexible materials for plastic and paper electronics
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C7TC04804A
– volume: 122
  start-page: 11433
  year: 2018
  ident: 10.1016/j.isci.2019.07.017_bib9
  article-title: Evaluation of the physicochemical properties and active response of piezoelectric poly(vinylidene fluoride-co-trifluoroethylene) as a function of its microstructure
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.8b02605
– volume: 42
  start-page: 266
  year: 2007
  ident: 10.1016/j.isci.2019.07.017_bib14
  article-title: Electrospray droplet sources for thin film deposition
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-006-0842-9
– volume: 340
  start-page: 48
  year: 2013
  ident: 10.1016/j.isci.2019.07.017_bib31
  article-title: A tissue-like printed material
  publication-title: Science
  doi: 10.1126/science.1229495
– volume: 15
  start-page: 1759
  year: 2015
  ident: 10.1016/j.isci.2019.07.017_bib10
  article-title: Inkjet print microchannels based on a liquid template
  publication-title: Lab Chip
  doi: 10.1039/C4LC01486C
– volume: 28
  start-page: 7457
  year: 2016
  ident: 10.1016/j.isci.2019.07.017_bib20
  article-title: Octopus-inspired smart adhesive pads for transfer printing of semiconducting nanomembranes
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201601407
– volume: 40
  start-page: 395
  year: 2010
  ident: 10.1016/j.isci.2019.07.017_bib5
  article-title: Inkjet printing of functional and structural materials: fluid property requirements, feature stability, and resolution
  publication-title: Annu. Rev. Mater. Res.
  doi: 10.1146/annurev-matsci-070909-104502
– volume: 110
  start-page: 23351
  year: 2006
  ident: 10.1016/j.isci.2019.07.017_bib25
  article-title: Electrospray deposition, model, and experiment:  toward general control of film morphology
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp064147+
– volume: 29
  start-page: 1602736
  year: 2017
  ident: 10.1016/j.isci.2019.07.017_bib8
  article-title: Recent progress in the development of printed thin-film transistors and circuits with high-resolution printing technology
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201602736
– volume: 5
  start-page: 33
  year: 2006
  ident: 10.1016/j.isci.2019.07.017_bib22
  article-title: Transfer printing by kinetic control of adhesion to an elastomeric stamp
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1532
– volume: 1
  start-page: 1400080
  year: 2014
  ident: 10.1016/j.isci.2019.07.017_bib3
  article-title: Stretching velocity-dependent dynamic adhesion of the water/oil interfaces for high quality lithographic printing
  publication-title: Adv. Mater. Interfaces
  doi: 10.1002/admi.201400080
– volume: 47
  start-page: 67
  year: 2015
  ident: 10.1016/j.isci.2019.07.017_bib17
  article-title: Liquid transfer in printing processes: liquid bridges with moving contact lines
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev-fluid-010814-014620
– volume: 25
  start-page: 3286
  year: 2015
  ident: 10.1016/j.isci.2019.07.017_bib2
  article-title: Fabrication of patterned concave microstructures by inkjet imprinting
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201500908
– volume: 10
  start-page: 25960
  year: 2018
  ident: 10.1016/j.isci.2019.07.017_bib1
  article-title: Fabrication of MOF thin films at miscible liquid–liquid interface by spray method
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b09812
– volume: 47
  start-page: 209
  year: 2018
  ident: 10.1016/j.isci.2019.07.017_bib23
  article-title: 3D printing in chemical engineering and catalytic technology: structured catalysts, mixers and reactors
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C7CS00631D
– volume: 42
  start-page: 5184
  year: 2013
  ident: 10.1016/j.isci.2019.07.017_bib29
  article-title: Patterning of controllable surface wettability for printing techniques
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c3cs35501b
SSID ssj0002002496
Score 2.1720917
Snippet Conventional printing is worth revisiting because of its established procedures in meeting the surging demand of manufacturing printed electronics, 3D...
SourceID doaj
unpaywall
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 93
SubjectTerms Interface Science
Materials Design
Materials Property
Surface Property
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEB6V9AAXHuJlXjISN-I269312scSqCoEVVWIKKeVd71bXCInuLEQ_Hpm_AhEkapyipxMEq_nW-83629mAF5JaVJuckczTUTCeBPlXNjIcp_7RFmRGUpw_nicHM3E-zN5tgND40JSVdKOdXuP7q_d_qdYphmhC8kGLSlsf1n4G7CbSKTfI9idHZ8cfKUmcpLkP2jXJ8d0Oi5KbiUJV9YW6Wwbk_1dgNo6_Rvr0DbP3JZL3myqZf7rZz6f_7MWHd6B0yGjp5OgfN9rVmbP_t4u8Hj9Yd6F2z0zDQ86u3uw46r7cDHtpOxzyrAKP5Q_mrKIupfwpC7bNhMh7eWGbx0JQyJfOzcOp4saB48uj07dJTFUhNY4nFFpIeoIgCw3_OJaxTWa0kNzNH0As8N3n6dHUd-eIbKC4-2Vc2MykbnYGT8xXqRS0X6SZWkifIyhTiKZUk4aoaQyJkfv2yLmSWqLSWxSyx_CqFpU7jGEXrHCY_CSsBzjdTfJneSiEFR7P-ZFIQJgg8-07WuXUwuNuR5Eahea_KzJz3qiNPo5gNfr7yy7yh1XWr8hKKwtqep2-8aiPte9hzSC2MpYJElhpcBRGGu9EwIZp2F47jwAOQBJ9wSmIyb4U-WVf_5yQJ3G2U3IyCu3aC41kmOFQSyy1gAedShcnyJnXGIwzgJQG_jcGMPmJ1X5ra0gjjErBbYBjNdIvsY1evJ_5k_hFh2RuCZWz2C0qhv3HBncyrzo5-wfDttE-g
  priority: 102
  providerName: Unpaywall
Title Controllable Liquid-Liquid Printing with Defect-free, Corrosion-Resistance, Unrestricted Wetting Condition
URI https://dx.doi.org/10.1016/j.isci.2019.07.017
https://www.ncbi.nlm.nih.gov/pubmed/31357171
https://www.proquest.com/docview/2267014264
https://pubmed.ncbi.nlm.nih.gov/PMC6664161
http://www.cell.com/article/S2589004219302421/pdf
https://doaj.org/article/34cc52466dc54cd0bccfe44435b16613
UnpaywallVersion publishedVersion
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2589-0042
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002002496
  issn: 2589-0042
  databaseCode: DOA
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2589-0042
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002002496
  issn: 2589-0042
  databaseCode: RPM
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUQHOilalXahlLkStzYiCS24-RIFxCqCkJVV4WTZTu2mtUqSxdWFf--M3Z22RUS7aGnSInz5XnOzMTPbwg5EMJUzGiHI42n3HiTasZtapnXvpSW1wYXOF9clucj_uVaXK-U-kJOWJQHjh13BCdaUfCybKzgtsmMtd5xDl7e5OBbgs5nVtUrydQ4TK-hFF6oLCeQEwTQ7FfMRHIXrnhFXlcdlDtDtbJHrxTE-9ec09Pg8ymHcnve3eqH33oyWXFQZ6_Iyz6ypMfxjV6TDde9IeNhpKJPcIUU_dr-mrdNGjf0ataGMhEU_8XSE4fEjtTPnBvQ4XQGzwkmS7-5O4wwARoDOkJpIFT0hyiV_nCBMQ1NcdIbmu6Q0dnp9-F52pdXSC1n8HlkzJia165wxmfG80pI_B9k86rkvoBUpRS5lE4YLoU0RoP1bFOwsgIrFKay7C3Z7Kade0-ol3njIfkocw35tsu0E4w3HLXzC9Y0PCH5onuV7bXHsQTGRC1IZmOFJlFoEpVJBSZJyOHynNuovPFs689otWVLVM0OOwBLqseS-huWEiIWNld9ABIDC7hU--zNPy0AomB04pSL7tx0fqcguJWQhELUmZB3ETDLR2Q5E5BM5wmRa1Bae4f1I137MyiAQ86JiWlCBkvQ_UMf7f6PPvpAXuAlkTJTyD2yeT-bu48Ql92b_TAE98nW6PLq-OYPiBk3Bw
linkProvider Directory of Open Access Journals
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEB6V9AAXHuJlXjISN-I269312scSqCoEVVWIKKeVd71bXCInuLEQ_Hpm_AhEkapyipxMEq_nW-83629mAF5JaVJuckczTUTCeBPlXNjIcp_7RFmRGUpw_nicHM3E-zN5tgND40JSVdKOdXuP7q_d_qdYphmhC8kGLSlsf1n4G7CbSKTfI9idHZ8cfKUmcpLkP2jXJ8d0Oi5KbiUJV9YW6Wwbk_1dgNo6_Rvr0DbP3JZL3myqZf7rZz6f_7MWHd6B0yGjp5OgfN9rVmbP_t4u8Hj9Yd6F2z0zDQ86u3uw46r7cDHtpOxzyrAKP5Q_mrKIupfwpC7bNhMh7eWGbx0JQyJfOzcOp4saB48uj07dJTFUhNY4nFFpIeoIgCw3_OJaxTWa0kNzNH0As8N3n6dHUd-eIbKC4-2Vc2MykbnYGT8xXqRS0X6SZWkifIyhTiKZUk4aoaQyJkfv2yLmSWqLSWxSyx_CqFpU7jGEXrHCY_CSsBzjdTfJneSiEFR7P-ZFIQJgg8-07WuXUwuNuR5Eahea_KzJz3qiNPo5gNfr7yy7yh1XWr8hKKwtqep2-8aiPte9hzSC2MpYJElhpcBRGGu9EwIZp2F47jwAOQBJ9wSmIyb4U-WVf_5yQJ3G2U3IyCu3aC41kmOFQSyy1gAedShcnyJnXGIwzgJQG_jcGMPmJ1X5ra0gjjErBbYBjNdIvsY1evJ_5k_hFh2RuCZWz2C0qhv3HBncyrzo5-wfDttE-g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Controllable+Liquid-Liquid+Printing+with+Defect-free%2C+Corrosion-Resistance%2C+Unrestricted+Wetting+Condition&rft.jtitle=iScience&rft.au=Min%2C+Lingli&rft.au=Zhang%2C+Haohui&rft.au=Pan%2C+Hong&rft.au=Wu%2C+Feng&rft.date=2019-09-27&rft.issn=2589-0042&rft.eissn=2589-0042&rft.volume=19&rft.spage=93&rft_id=info:doi/10.1016%2Fj.isci.2019.07.017&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2589-0042&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2589-0042&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2589-0042&client=summon