Low-dose liver CT: image quality and diagnostic accuracy of deep learning image reconstruction algorithm
Objectives To perform a comprehensive within-subject image quality analysis of abdominal CT examinations reconstructed with DLIR and to evaluate diagnostic accuracy compared to the routinely applied adaptive statistical iterative reconstruction (ASiR-V) algorithm. Materials and methods Oncologic pat...
Saved in:
| Published in | European radiology Vol. 34; no. 4; pp. 2384 - 2393 |
|---|---|
| Main Authors | , , , , , , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.04.2024
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1432-1084 0938-7994 1432-1084 |
| DOI | 10.1007/s00330-023-10171-8 |
Cover
| Abstract | Objectives
To perform a comprehensive within-subject image quality analysis of abdominal CT examinations reconstructed with DLIR and to evaluate diagnostic accuracy compared to the routinely applied adaptive statistical iterative reconstruction (ASiR-V) algorithm.
Materials and methods
Oncologic patients were prospectively enrolled and underwent contrast-enhanced CT. Images were reconstructed with DLIR with three intensity levels of reconstruction (high, medium, and low) and ASiR-V at strength levels from 10 to 100% with a 10% interval. Three radiologists characterized the lesions and two readers assessed diagnostic accuracy and calculated signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), figure of merit (FOM), and subjective image quality, the latter with a 5-point Likert scale.
Results
Fifty patients (mean age: 70 ± 10 years, 23 men) were enrolled and 130 liver lesions (105 benign lesions, 25 metastases) were identified. DLIR_H achieved the highest SNR and CNR, comparable to ASiR-V 100% (
p
≥ .051). DLIR_M returned the highest subjective image quality (score: 5; IQR: 4–5;
p
≤ .001) and significant median increase (29%) in FOM (
p
< .001). Differences in detection were identified only for lesions ≤ 0.5 cm: 32/33 lesions were detected with DLIR_M and 26 lesions were detected with ASiR-V 50% (
p
= .031). Lesion accuracy of was 93.8% (95% CI: 88.1, 97.3; 122 of 130 lesions) for DLIR and 87.7% (95% CI: 80.8, 92.8; 114 of 130 lesions) for ASiR-V 50%.
Conclusions
DLIR yields superior image quality and provides higher diagnostic accuracy compared to ASiR-V in the assessment of hypovascular liver lesions, in particular for lesions ≤ 0.5 cm.
Clinical relevance statement
Deep learning image reconstruction algorithm demonstrates higher diagnostic accuracy compared to iterative reconstruction in the identification of hypovascular liver lesions, especially for lesions ≤ 0.5 cm.
Key Points
• Iterative reconstruction algorithm impacts image texture, with negative effects on diagnostic capabilities.
• Medium-strength deep learning image reconstruction algorithm outperforms iterative reconstruction in the diagnostic accuracy of ≤ 0.5 cm hypovascular liver lesions (93.9% vs 78.8%), also granting higher objective and subjective image quality.
• Deep learning image reconstruction algorithm can be safely implemented in routine abdominal CT protocols in place of iterative reconstruction. |
|---|---|
| AbstractList | To perform a comprehensive within-subject image quality analysis of abdominal CT examinations reconstructed with DLIR and to evaluate diagnostic accuracy compared to the routinely applied adaptive statistical iterative reconstruction (ASiR-V) algorithm.
Oncologic patients were prospectively enrolled and underwent contrast-enhanced CT. Images were reconstructed with DLIR with three intensity levels of reconstruction (high, medium, and low) and ASiR-V at strength levels from 10 to 100% with a 10% interval. Three radiologists characterized the lesions and two readers assessed diagnostic accuracy and calculated signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), figure of merit (FOM), and subjective image quality, the latter with a 5-point Likert scale.
Fifty patients (mean age: 70 ± 10 years, 23 men) were enrolled and 130 liver lesions (105 benign lesions, 25 metastases) were identified. DLIR_H achieved the highest SNR and CNR, comparable to ASiR-V 100% (p ≥ .051). DLIR_M returned the highest subjective image quality (score: 5; IQR: 4-5; p ≤ .001) and significant median increase (29%) in FOM (p < .001). Differences in detection were identified only for lesions ≤ 0.5 cm: 32/33 lesions were detected with DLIR_M and 26 lesions were detected with ASiR-V 50% (p = .031). Lesion accuracy of was 93.8% (95% CI: 88.1, 97.3; 122 of 130 lesions) for DLIR and 87.7% (95% CI: 80.8, 92.8; 114 of 130 lesions) for ASiR-V 50%.
DLIR yields superior image quality and provides higher diagnostic accuracy compared to ASiR-V in the assessment of hypovascular liver lesions, in particular for lesions ≤ 0.5 cm.
Deep learning image reconstruction algorithm demonstrates higher diagnostic accuracy compared to iterative reconstruction in the identification of hypovascular liver lesions, especially for lesions ≤ 0.5 cm.
• Iterative reconstruction algorithm impacts image texture, with negative effects on diagnostic capabilities. • Medium-strength deep learning image reconstruction algorithm outperforms iterative reconstruction in the diagnostic accuracy of ≤ 0.5 cm hypovascular liver lesions (93.9% vs 78.8%), also granting higher objective and subjective image quality. • Deep learning image reconstruction algorithm can be safely implemented in routine abdominal CT protocols in place of iterative reconstruction. Objectives To perform a comprehensive within-subject image quality analysis of abdominal CT examinations reconstructed with DLIR and to evaluate diagnostic accuracy compared to the routinely applied adaptive statistical iterative reconstruction (ASiR-V) algorithm. Materials and methods Oncologic patients were prospectively enrolled and underwent contrast-enhanced CT. Images were reconstructed with DLIR with three intensity levels of reconstruction (high, medium, and low) and ASiR-V at strength levels from 10 to 100% with a 10% interval. Three radiologists characterized the lesions and two readers assessed diagnostic accuracy and calculated signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), figure of merit (FOM), and subjective image quality, the latter with a 5-point Likert scale. Results Fifty patients (mean age: 70 ± 10 years, 23 men) were enrolled and 130 liver lesions (105 benign lesions, 25 metastases) were identified. DLIR_H achieved the highest SNR and CNR, comparable to ASiR-V 100% ( p ≥ .051). DLIR_M returned the highest subjective image quality (score: 5; IQR: 4–5; p ≤ .001) and significant median increase (29%) in FOM ( p < .001). Differences in detection were identified only for lesions ≤ 0.5 cm: 32/33 lesions were detected with DLIR_M and 26 lesions were detected with ASiR-V 50% ( p = .031). Lesion accuracy of was 93.8% (95% CI: 88.1, 97.3; 122 of 130 lesions) for DLIR and 87.7% (95% CI: 80.8, 92.8; 114 of 130 lesions) for ASiR-V 50%. Conclusions DLIR yields superior image quality and provides higher diagnostic accuracy compared to ASiR-V in the assessment of hypovascular liver lesions, in particular for lesions ≤ 0.5 cm. Clinical relevance statement Deep learning image reconstruction algorithm demonstrates higher diagnostic accuracy compared to iterative reconstruction in the identification of hypovascular liver lesions, especially for lesions ≤ 0.5 cm. Key Points • Iterative reconstruction algorithm impacts image texture, with negative effects on diagnostic capabilities. • Medium-strength deep learning image reconstruction algorithm outperforms iterative reconstruction in the diagnostic accuracy of ≤ 0.5 cm hypovascular liver lesions (93.9% vs 78.8%), also granting higher objective and subjective image quality. • Deep learning image reconstruction algorithm can be safely implemented in routine abdominal CT protocols in place of iterative reconstruction. ObjectivesTo perform a comprehensive within-subject image quality analysis of abdominal CT examinations reconstructed with DLIR and to evaluate diagnostic accuracy compared to the routinely applied adaptive statistical iterative reconstruction (ASiR-V) algorithm.Materials and methodsOncologic patients were prospectively enrolled and underwent contrast-enhanced CT. Images were reconstructed with DLIR with three intensity levels of reconstruction (high, medium, and low) and ASiR-V at strength levels from 10 to 100% with a 10% interval. Three radiologists characterized the lesions and two readers assessed diagnostic accuracy and calculated signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), figure of merit (FOM), and subjective image quality, the latter with a 5-point Likert scale.ResultsFifty patients (mean age: 70 ± 10 years, 23 men) were enrolled and 130 liver lesions (105 benign lesions, 25 metastases) were identified. DLIR_H achieved the highest SNR and CNR, comparable to ASiR-V 100% (p ≥ .051). DLIR_M returned the highest subjective image quality (score: 5; IQR: 4–5; p ≤ .001) and significant median increase (29%) in FOM (p < .001). Differences in detection were identified only for lesions ≤ 0.5 cm: 32/33 lesions were detected with DLIR_M and 26 lesions were detected with ASiR-V 50% (p = .031). Lesion accuracy of was 93.8% (95% CI: 88.1, 97.3; 122 of 130 lesions) for DLIR and 87.7% (95% CI: 80.8, 92.8; 114 of 130 lesions) for ASiR-V 50%.ConclusionsDLIR yields superior image quality and provides higher diagnostic accuracy compared to ASiR-V in the assessment of hypovascular liver lesions, in particular for lesions ≤ 0.5 cm.Clinical relevance statementDeep learning image reconstruction algorithm demonstrates higher diagnostic accuracy compared to iterative reconstruction in the identification of hypovascular liver lesions, especially for lesions ≤ 0.5 cm.Key Points• Iterative reconstruction algorithm impacts image texture, with negative effects on diagnostic capabilities.• Medium-strength deep learning image reconstruction algorithm outperforms iterative reconstruction in the diagnostic accuracy of ≤ 0.5 cm hypovascular liver lesions (93.9% vs 78.8%), also granting higher objective and subjective image quality.• Deep learning image reconstruction algorithm can be safely implemented in routine abdominal CT protocols in place of iterative reconstruction. To perform a comprehensive within-subject image quality analysis of abdominal CT examinations reconstructed with DLIR and to evaluate diagnostic accuracy compared to the routinely applied adaptive statistical iterative reconstruction (ASiR-V) algorithm.OBJECTIVESTo perform a comprehensive within-subject image quality analysis of abdominal CT examinations reconstructed with DLIR and to evaluate diagnostic accuracy compared to the routinely applied adaptive statistical iterative reconstruction (ASiR-V) algorithm.Oncologic patients were prospectively enrolled and underwent contrast-enhanced CT. Images were reconstructed with DLIR with three intensity levels of reconstruction (high, medium, and low) and ASiR-V at strength levels from 10 to 100% with a 10% interval. Three radiologists characterized the lesions and two readers assessed diagnostic accuracy and calculated signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), figure of merit (FOM), and subjective image quality, the latter with a 5-point Likert scale.MATERIALS AND METHODSOncologic patients were prospectively enrolled and underwent contrast-enhanced CT. Images were reconstructed with DLIR with three intensity levels of reconstruction (high, medium, and low) and ASiR-V at strength levels from 10 to 100% with a 10% interval. Three radiologists characterized the lesions and two readers assessed diagnostic accuracy and calculated signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), figure of merit (FOM), and subjective image quality, the latter with a 5-point Likert scale.Fifty patients (mean age: 70 ± 10 years, 23 men) were enrolled and 130 liver lesions (105 benign lesions, 25 metastases) were identified. DLIR_H achieved the highest SNR and CNR, comparable to ASiR-V 100% (p ≥ .051). DLIR_M returned the highest subjective image quality (score: 5; IQR: 4-5; p ≤ .001) and significant median increase (29%) in FOM (p < .001). Differences in detection were identified only for lesions ≤ 0.5 cm: 32/33 lesions were detected with DLIR_M and 26 lesions were detected with ASiR-V 50% (p = .031). Lesion accuracy of was 93.8% (95% CI: 88.1, 97.3; 122 of 130 lesions) for DLIR and 87.7% (95% CI: 80.8, 92.8; 114 of 130 lesions) for ASiR-V 50%.RESULTSFifty patients (mean age: 70 ± 10 years, 23 men) were enrolled and 130 liver lesions (105 benign lesions, 25 metastases) were identified. DLIR_H achieved the highest SNR and CNR, comparable to ASiR-V 100% (p ≥ .051). DLIR_M returned the highest subjective image quality (score: 5; IQR: 4-5; p ≤ .001) and significant median increase (29%) in FOM (p < .001). Differences in detection were identified only for lesions ≤ 0.5 cm: 32/33 lesions were detected with DLIR_M and 26 lesions were detected with ASiR-V 50% (p = .031). Lesion accuracy of was 93.8% (95% CI: 88.1, 97.3; 122 of 130 lesions) for DLIR and 87.7% (95% CI: 80.8, 92.8; 114 of 130 lesions) for ASiR-V 50%.DLIR yields superior image quality and provides higher diagnostic accuracy compared to ASiR-V in the assessment of hypovascular liver lesions, in particular for lesions ≤ 0.5 cm.CONCLUSIONSDLIR yields superior image quality and provides higher diagnostic accuracy compared to ASiR-V in the assessment of hypovascular liver lesions, in particular for lesions ≤ 0.5 cm.Deep learning image reconstruction algorithm demonstrates higher diagnostic accuracy compared to iterative reconstruction in the identification of hypovascular liver lesions, especially for lesions ≤ 0.5 cm.CLINICAL RELEVANCE STATEMENTDeep learning image reconstruction algorithm demonstrates higher diagnostic accuracy compared to iterative reconstruction in the identification of hypovascular liver lesions, especially for lesions ≤ 0.5 cm.• Iterative reconstruction algorithm impacts image texture, with negative effects on diagnostic capabilities. • Medium-strength deep learning image reconstruction algorithm outperforms iterative reconstruction in the diagnostic accuracy of ≤ 0.5 cm hypovascular liver lesions (93.9% vs 78.8%), also granting higher objective and subjective image quality. • Deep learning image reconstruction algorithm can be safely implemented in routine abdominal CT protocols in place of iterative reconstruction.KEY POINTS• Iterative reconstruction algorithm impacts image texture, with negative effects on diagnostic capabilities. • Medium-strength deep learning image reconstruction algorithm outperforms iterative reconstruction in the diagnostic accuracy of ≤ 0.5 cm hypovascular liver lesions (93.9% vs 78.8%), also granting higher objective and subjective image quality. • Deep learning image reconstruction algorithm can be safely implemented in routine abdominal CT protocols in place of iterative reconstruction. |
| Author | Caruso, Damiano Persechino, Raffaello De Santis, Domenico Caloisi, Andrea Del Gaudio, Antonella Polici, Michela Guido, Gisella Zerunian, Marta Valanzuolo, Daniela Cremona, Antonio Barbato, Luca Laghi, Andrea Pugliese, Dominga Iannicelli, Elsa |
| Author_xml | – sequence: 1 givenname: Damiano surname: Caruso fullname: Caruso, Damiano organization: Department of Medical-Surgical Sciences and Translational Medicine, Radiology Unit, Sant’Andrea University Hospital, Sapienza University of Rome – sequence: 2 givenname: Domenico surname: De Santis fullname: De Santis, Domenico organization: Department of Medical-Surgical Sciences and Translational Medicine, Radiology Unit, Sant’Andrea University Hospital, Sapienza University of Rome – sequence: 3 givenname: Antonella surname: Del Gaudio fullname: Del Gaudio, Antonella organization: Department of Medical-Surgical Sciences and Translational Medicine, Radiology Unit, Sant’Andrea University Hospital, Sapienza University of Rome – sequence: 4 givenname: Gisella surname: Guido fullname: Guido, Gisella organization: Department of Medical-Surgical Sciences and Translational Medicine, Radiology Unit, Sant’Andrea University Hospital, Sapienza University of Rome – sequence: 5 givenname: Marta surname: Zerunian fullname: Zerunian, Marta organization: Department of Medical-Surgical Sciences and Translational Medicine, Radiology Unit, Sant’Andrea University Hospital, Sapienza University of Rome – sequence: 6 givenname: Michela surname: Polici fullname: Polici, Michela organization: Department of Medical-Surgical Sciences and Translational Medicine, Radiology Unit, Sant’Andrea University Hospital, Sapienza University of Rome – sequence: 7 givenname: Daniela surname: Valanzuolo fullname: Valanzuolo, Daniela organization: Department of Medical-Surgical Sciences and Translational Medicine, Radiology Unit, Sant’Andrea University Hospital, Sapienza University of Rome – sequence: 8 givenname: Dominga surname: Pugliese fullname: Pugliese, Dominga organization: Department of Medical-Surgical Sciences and Translational Medicine, Radiology Unit, Sant’Andrea University Hospital, Sapienza University of Rome – sequence: 9 givenname: Raffaello surname: Persechino fullname: Persechino, Raffaello organization: Department of Medical-Surgical Sciences and Translational Medicine, Radiology Unit, Sant’Andrea University Hospital, Sapienza University of Rome – sequence: 10 givenname: Antonio surname: Cremona fullname: Cremona, Antonio organization: Department of Medical-Surgical Sciences and Translational Medicine, Radiology Unit, Sant’Andrea University Hospital, Sapienza University of Rome – sequence: 11 givenname: Luca surname: Barbato fullname: Barbato, Luca organization: Department of Medical-Surgical Sciences and Translational Medicine, Radiology Unit, Sant’Andrea University Hospital, Sapienza University of Rome – sequence: 12 givenname: Andrea surname: Caloisi fullname: Caloisi, Andrea organization: Department of Medical-Surgical Sciences and Translational Medicine, Radiology Unit, Sant’Andrea University Hospital, Sapienza University of Rome – sequence: 13 givenname: Elsa surname: Iannicelli fullname: Iannicelli, Elsa organization: Department of Medical-Surgical Sciences and Translational Medicine, Radiology Unit, Sant’Andrea University Hospital, Sapienza University of Rome – sequence: 14 givenname: Andrea orcidid: 0000-0002-3091-7819 surname: Laghi fullname: Laghi, Andrea email: andrea.laghi@uniroma1.it organization: Department of Medical-Surgical Sciences and Translational Medicine, Radiology Unit, Sant’Andrea University Hospital, Sapienza University of Rome |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37688618$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkMtuGyEYhVGVqrm0L5BFhNRNN9NyGwayq6zmIlnqJl0jhvk9IcLgwEwiv31x7V6URdQVIL4D5_9O0VFMERA6p-QzJaT7UgjhnDSE8YYS2tFGvUEnVHBWj0oc_bM_RqelPBBCNBXdO3TMO6mUpOoE3S_TczOkAjj4J8h4cXeJ_dqOgB9nG_y0xTYOePB2jKlM3mHr3Jyt2-K0wgPABgewOfo4HmIZXIplyrObfIrYhjFlP92v36O3KxsKfDisZ-jH1be7xU2z_H59u_i6bJzgkjauA06lk0LrVnLWto5JwuTgnOKsZ9pJaIdeUadsvSOtBdZ3XGgQvaBKW36G-P7dOW7s9tmGYDa5VstbQ4nZeTN7b6Z6M7-8GVVTn_apTU6PM5TJrH1xEIKNkOZimKpldFe_qOjHF-hDmnOsM5lKMK2FbnfUxYGa-zUMfzr8Nl8BtQdcTqVkWBnnJ7tzNmXrw-tl2Yvof0148FIqHEfIf2u_kvoJShe1xg |
| CitedBy_id | crossref_primary_10_1007_s10278_024_01232_5 crossref_primary_10_1016_j_heliyon_2024_e34847 crossref_primary_10_1007_s00261_024_04760_4 crossref_primary_10_1007_s00330_024_11314_1 crossref_primary_10_3390_tomography10110133 crossref_primary_10_1007_s11547_024_01944_2 crossref_primary_10_1148_rg_240095 |
| Cites_doi | 10.1007/s00330-016-4383-6 10.1007/s00330-016-4571-4 10.1016/j.ejrad.2021.109808 10.1007/s00330-018-5313-6 10.2214/AJR.14.13241 10.1186/s12880-021-00677-2 10.1007/s00330-021-08438-z 10.1007/s00261-017-1140-5 10.1148/radiol.2019191422 10.1148/radiol.10100047 10.1007/s00261-021-03111-x 10.1007/s00330-021-08367-x 10.1148/radiol.2018181657 10.1148/radiol.211838 10.1148/radiol.14141356 10.1186/s13244-021-00980-0 10.1016/j.clnu.2017.07.007 10.1148/radiol.210551 10.1007/s00330-022-08647-0 10.1148/rg.344135128 10.1016/j.acra.2017.02.012 10.1007/s00330-020-06724-w 10.1259/bjr.20201086 10.1007/s00330-019-06170-3 10.1007/s00330-018-5810-7 10.2214/AJR.19.21809 10.1007/s00330-021-07712-4 10.1371/journal.pone.0270122 10.1259/bjr.20201357 10.1007/s00330-020-07358-8 10.3348/kjr.2020.0116 10.2214/AJR.14.13402 10.1007/s00330-021-07952-4 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2023 2023. The Author(s). The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2023 – notice: 2023. The Author(s). – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION NPM 3V. 7QO 7RV 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. KB0 LK8 M0S M1P M7P NAPCQ P5Z P62 P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 ADTOC UNPAY |
| DOI | 10.1007/s00330-023-10171-8 |
| DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Biotechnology Research Abstracts Nursing & Allied Health Database ProQuest Health & Medical Collection (NC LIVE) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) Biological Sciences Health & Medical Collection (Alumni Edition) Medical Database Biological Science Database Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef PubMed ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Nursing & Allied Health Source ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Advanced Technologies & Aerospace Database Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | PubMed ProQuest Central Student MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1432-1084 |
| EndPage | 2393 |
| ExternalDocumentID | 10.1007/s00330-023-10171-8 37688618 10_1007_s00330_023_10171_8 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: Università degli Studi di Roma La Sapienza |
| GroupedDBID | --- -53 -5E -5G -BR -EM -Y2 -~C .86 .VR 04C 06C 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29G 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 36B 3V. 4.4 406 408 409 40D 40E 53G 5GY 5QI 5VS 67Z 6NX 6PF 7RV 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAWTL AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABIPD ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTEG ABTKH ABTMW ABULA ABUWG ABUWZ ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHVE ACHXU ACIHN ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACREN ACUDM ACZOJ ADBBV ADHHG ADHIR ADIMF ADINQ ADJJI ADKNI ADKPE ADOJX ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEAQA AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFJLC AFKRA AFLOW AFQWF AFRAH AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGVAE AGWIL AGWZB AGYKE AHAVH AHBYD AHIZS AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AZFZN B-. BA0 BBNVY BBWZM BDATZ BENPR BGLVJ BGNMA BHPHI BKEYQ BMSDO BPHCQ BSONS BVXVI C6C CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBD EBLON EBS ECF ECT EIHBH EIOEI EJD EMB EMOBN EN4 ESBYG EX3 F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GRRUI GXS H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ IMOTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW KPH LAS LK8 LLZTM M1P M4Y M7P MA- N2Q N9A NAPCQ NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9S PF0 PQQKQ PROAC PSQYO PT4 PT5 Q2X QOK QOR QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RRX RSV RZK S16 S1Z S26 S27 S28 S37 S3B SAP SCLPG SDE SDH SDM SHX SISQX SJYHP SMD SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZ9 SZN T13 T16 TEORI TSG TSK TSV TT1 TUC U2A U9L UDS UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK8 WOW YLTOR Z45 Z7R Z7U Z7X Z7Y Z7Z Z82 Z83 Z85 Z87 Z88 Z8M Z8O Z8R Z8S Z8T Z8V Z8W Z8Z Z91 Z92 ZMTXR ZOVNA ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADKFA AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PJZUB PPXIY PQGLB ADHKG AGQPQ NPM 7QO 7XB 8FD 8FK AZQEC DWQXO FR3 GNUQQ K9. P64 PKEHL PQEST PQUKI PRINS 7X8 PUEGO ADTOC UNPAY |
| ID | FETCH-LOGICAL-c4361-c7e316c6499563255c26026dcc832b29c6e5db81c8a55c05ae2b7349e4b4189a3 |
| IEDL.DBID | UNPAY |
| ISSN | 1432-1084 0938-7994 |
| IngestDate | Sun Oct 26 04:03:16 EDT 2025 Thu Oct 02 04:08:52 EDT 2025 Tue Oct 07 05:53:51 EDT 2025 Mon Jul 21 05:57:09 EDT 2025 Wed Oct 01 01:17:16 EDT 2025 Thu Apr 24 23:02:35 EDT 2025 Fri Feb 21 02:43:52 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Deep learning Iterative reconstruction Artificial intelligence Diagnostic accuracy Liver |
| Language | English |
| License | 2023. The Author(s). cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4361-c7e316c6499563255c26026dcc832b29c6e5db81c8a55c05ae2b7349e4b4189a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-3091-7819 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://link.springer.com/content/pdf/10.1007/s00330-023-10171-8.pdf |
| PMID | 37688618 |
| PQID | 2972994958 |
| PQPubID | 54162 |
| PageCount | 10 |
| ParticipantIDs | unpaywall_primary_10_1007_s00330_023_10171_8 proquest_miscellaneous_2863297418 proquest_journals_2972994958 pubmed_primary_37688618 crossref_citationtrail_10_1007_s00330_023_10171_8 crossref_primary_10_1007_s00330_023_10171_8 springer_journals_10_1007_s00330_023_10171_8 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-04-01 |
| PublicationDateYYYYMMDD | 2024-04-01 |
| PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Germany – name: Heidelberg |
| PublicationTitle | European radiology |
| PublicationTitleAbbrev | Eur Radiol |
| PublicationTitleAlternate | Eur Radiol |
| PublicationYear | 2024 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | Wichmann, Hardie, Schoepf (CR18) 2017; 27 Racine, Brat, Dufour (CR32) 2021; 141 De Cecco, Caruso, Schoepf (CR16) 2018; 28 Jensen, Gupta, Saleh (CR20) 2022; 303 Noda, Iritani, Kawai (CR25) 2021; 46 Sato, Ichikawa, Domae (CR28) 2022; 32 Rubin (CR1) 2014; 273 Akagi, Nakamura, Higaki (CR14) 2019; 29 CR33 Cao, Liu, Li (CR12) 2021; 94 Willemink, Noël (CR4) 2019; 29 Benz, Ersözlü, Mojon (CR8) 2022; 32 Deak, Smal, Kalender (CR17) 2010; 257 Jiang, Li, Shi (CR26) 2022; 303 van Stiphout, Driessen, Koetzier (CR13) 2022; 32 CR6 CR5 Greffier, Hamard, Pereira (CR7) 2020; 30 Pauchard, Higashigaito, Lamri-Senouci (CR30) 2017; 24 Jensen, Wagner-Bartak, Vu (CR31) 2019; 290 Ehman, Yu, Manduca (CR29) 2014; 34 CR9 CR27 Yoon, Kim, Lim, Lee (CR11) 2021; 21 Pooler, Lubner, Kim (CR21) 2017; 27 CR24 Singh, Digumarthy, Muse (CR10) 2020; 214 Padole, Ali Khawaja, Kalra, Singh (CR22) 2015; 204 CR23 Mileto, Guimaraes, McCollough (CR3) 2019; 293 van Vugt, Coebergh van den Braak, Schippers (CR19) 2018; 37 Caruso, Rosati, Panvini (CR15) 2021; 12 Morimoto, Kamaya, Boulay-Coletta (CR2) 2017; 42 CN De Cecco (10171_CR16) 2018; 28 CT Jensen (10171_CR31) 2019; 290 PD Deak (10171_CR17) 2010; 257 D Racine (10171_CR32) 2021; 141 10171_CR33 B Pauchard (10171_CR30) 2017; 24 R Singh (10171_CR10) 2020; 214 M Sato (10171_CR28) 2022; 32 B Jiang (10171_CR26) 2022; 303 EC Ehman (10171_CR29) 2014; 34 A Mileto (10171_CR3) 2019; 293 JLA van Vugt (10171_CR19) 2018; 37 A Padole (10171_CR22) 2015; 204 DC Benz (10171_CR8) 2022; 32 JL Wichmann (10171_CR18) 2017; 27 MJ Willemink (10171_CR4) 2019; 29 GD Rubin (10171_CR1) 2014; 273 J Greffier (10171_CR7) 2020; 30 10171_CR6 10171_CR23 JA van Stiphout (10171_CR13) 2022; 32 10171_CR9 10171_CR27 M Akagi (10171_CR14) 2019; 29 10171_CR5 10171_CR24 BD Pooler (10171_CR21) 2017; 27 L Cao (10171_CR12) 2021; 94 D Caruso (10171_CR15) 2021; 12 H Yoon (10171_CR11) 2021; 21 LN Morimoto (10171_CR2) 2017; 42 Y Noda (10171_CR25) 2021; 46 CT Jensen (10171_CR20) 2022; 303 |
| References_xml | – volume: 27 start-page: 642 year: 2017 end-page: 650 ident: CR18 article-title: Single- and dual-energy CT of the abdomen: comparison of radiation dose and image quality of 2nd and 3rd generation dual-source CT publication-title: Eur Radiol doi: 10.1007/s00330-016-4383-6 – volume: 27 start-page: 2055 year: 2017 end-page: 2066 ident: CR21 article-title: Prospective evaluation of reduced dose computed tomography for the detection of low-contrast liver lesions: direct comparison with concurrent standard dose imaging publication-title: Eur Radiol doi: 10.1007/s00330-016-4571-4 – ident: CR33 – volume: 141 start-page: 109808 year: 2021 ident: CR32 article-title: Image texture, low contrast liver lesion detectability and impact on dose: deep learning algorithm compared to partial model-based iterative reconstruction publication-title: Eur J Radiol doi: 10.1016/j.ejrad.2021.109808 – ident: CR6 – volume: 28 start-page: 3393 year: 2018 end-page: 3404 ident: CR16 article-title: A noise-optimized virtual monoenergetic reconstruction algorithm improves the diagnostic accuracy of late hepatic arterial phase dual-energy CT for the detection of hypervascular liver lesions publication-title: Eur Radiol doi: 10.1007/s00330-018-5313-6 – volume: 204 start-page: W384 year: 2015 end-page: 392 ident: CR22 article-title: CT radiation dose and iterative reconstruction techniques publication-title: AJR Am J Roentgenol doi: 10.2214/AJR.14.13241 – volume: 21 start-page: 146 year: 2021 ident: CR11 article-title: Image quality assessment of pediatric chest and abdomen CT by deep learning reconstruction publication-title: BMC Med Imaging doi: 10.1186/s12880-021-00677-2 – volume: 32 start-page: 2921 year: 2022 end-page: 2929 ident: CR13 article-title: The effect of deep learning reconstruction on abdominal CT densitometry and image quality: a systematic review and meta-analysis publication-title: Eur Radiol doi: 10.1007/s00330-021-08438-z – volume: 42 start-page: 2279 year: 2017 end-page: 2288 ident: CR2 article-title: Reduced dose CT with model-based iterative reconstruction compared to standard dose CT of the chest, abdomen, and pelvis in oncology patients: intra-individual comparison study on image quality and lesion conspicuity publication-title: Abdom Radiol (NY) doi: 10.1007/s00261-017-1140-5 – volume: 293 start-page: 491 year: 2019 end-page: 503 ident: CR3 article-title: State of the art in abdominal CT: the limits of iterative reconstruction algorithms publication-title: Radiology doi: 10.1148/radiol.2019191422 – ident: CR27 – ident: CR23 – volume: 257 start-page: 158 year: 2010 end-page: 166 ident: CR17 article-title: Multisection CT protocols: sex- and age-specific conversion factors used to determine effective dose from dose-length product publication-title: Radiology doi: 10.1148/radiol.10100047 – volume: 46 start-page: 4238 year: 2021 end-page: 4244 ident: CR25 article-title: Deep learning image reconstruction for pancreatic low-dose computed tomography: comparison with hybrid iterative reconstruction publication-title: Abdom Radiol (NY) doi: 10.1007/s00261-021-03111-x – volume: 32 start-page: 2620 year: 2022 end-page: 2628 ident: CR8 article-title: Radiation dose reduction with deep-learning image reconstruction for coronary computed tomography angiography publication-title: Eur Radiol doi: 10.1007/s00330-021-08367-x – volume: 290 start-page: 400 year: 2019 end-page: 409 ident: CR31 article-title: Detection of colorectal hepatic metastases is superior at standard radiation dose CT versus reduced dose CT publication-title: Radiology doi: 10.1148/radiol.2018181657 – volume: 303 start-page: 90 year: 2022 end-page: 98 ident: CR20 article-title: Reduced-dose deep learning reconstruction for abdominal CT of liver metastases publication-title: Radiology doi: 10.1148/radiol.211838 – volume: 273 start-page: S45 year: 2014 end-page: 74 ident: CR1 article-title: Computed tomography: revolutionizing the practice of medicine for 40 years publication-title: Radiology doi: 10.1148/radiol.14141356 – volume: 12 start-page: 40 year: 2021 ident: CR15 article-title: Optimization of contrast medium volume for abdominal CT in oncologic patients: prospective comparison between fixed and lean body weight-adapted dosing protocols publication-title: Insights Imaging doi: 10.1186/s13244-021-00980-0 – ident: CR9 – volume: 37 start-page: 1707 year: 2018 end-page: 1714 ident: CR19 article-title: Contrast-enhancement influences skeletal muscle density, but not skeletal muscle mass, measurements on computed tomography publication-title: Clin Nutr doi: 10.1016/j.clnu.2017.07.007 – volume: 303 start-page: 202 year: 2022 end-page: 212 ident: CR26 article-title: Deep learning reconstruction shows better lung nodule detection for ultra-low-dose chest CT publication-title: Radiology doi: 10.1148/radiol.210551 – volume: 32 start-page: 5499 year: 2022 end-page: 5507 ident: CR28 article-title: Deep learning image reconstruction for improving image quality of contrast-enhanced dual-energy CT in abdomen publication-title: Eur Radiol doi: 10.1007/s00330-022-08647-0 – ident: CR5 – volume: 34 start-page: 849 year: 2014 end-page: 862 ident: CR29 article-title: Methods for clinical evaluation of noise reduction techniques in abdominopelvic CT publication-title: Radiographics doi: 10.1148/rg.344135128 – volume: 24 start-page: 1114 year: 2017 end-page: 1124 ident: CR30 article-title: Iterative reconstructions in reduced-dose CT: which type ensures diagnostic image quality in young oncology patients? publication-title: Acad Radiol doi: 10.1016/j.acra.2017.02.012 – volume: 30 start-page: 3951 year: 2020 end-page: 3959 ident: CR7 article-title: Image quality and dose reduction opportunity of deep learning image reconstruction algorithm for CT: a phantom study publication-title: Eur Radiol doi: 10.1007/s00330-020-06724-w – volume: 94 start-page: 20201086 year: 2021 ident: CR12 article-title: A study of using a deep learning image reconstruction to improve the image quality of extremely low-dose contrast-enhanced abdominal CT for patients with hepatic lesions publication-title: Br J Radiol doi: 10.1259/bjr.20201086 – volume: 29 start-page: 6163 year: 2019 end-page: 6171 ident: CR14 article-title: Deep learning reconstruction improves image quality of abdominal ultra-high-resolution CT publication-title: Eur Radiol doi: 10.1007/s00330-019-06170-3 – ident: CR24 – volume: 29 start-page: 2185 year: 2019 end-page: 2195 ident: CR4 article-title: The evolution of image reconstruction for CT-from filtered back projection to artificial intelligence publication-title: Eur Radiol doi: 10.1007/s00330-018-5810-7 – volume: 214 start-page: 566 year: 2020 end-page: 573 ident: CR10 article-title: Image quality and lesion detection on deep learning reconstruction and iterative reconstruction of submillisievert chest and abdominal CT publication-title: AJR Am J Roentgenol doi: 10.2214/AJR.19.21809 – ident: 10171_CR6 doi: 10.1007/s00330-021-07712-4 – volume: 273 start-page: S45 year: 2014 ident: 10171_CR1 publication-title: Radiology doi: 10.1148/radiol.14141356 – volume: 257 start-page: 158 year: 2010 ident: 10171_CR17 publication-title: Radiology doi: 10.1148/radiol.10100047 – volume: 204 start-page: W384 year: 2015 ident: 10171_CR22 publication-title: AJR Am J Roentgenol doi: 10.2214/AJR.14.13241 – volume: 32 start-page: 5499 year: 2022 ident: 10171_CR28 publication-title: Eur Radiol doi: 10.1007/s00330-022-08647-0 – volume: 27 start-page: 642 year: 2017 ident: 10171_CR18 publication-title: Eur Radiol doi: 10.1007/s00330-016-4383-6 – volume: 28 start-page: 3393 year: 2018 ident: 10171_CR16 publication-title: Eur Radiol doi: 10.1007/s00330-018-5313-6 – volume: 42 start-page: 2279 year: 2017 ident: 10171_CR2 publication-title: Abdom Radiol (NY) doi: 10.1007/s00261-017-1140-5 – volume: 27 start-page: 2055 year: 2017 ident: 10171_CR21 publication-title: Eur Radiol doi: 10.1007/s00330-016-4571-4 – ident: 10171_CR27 doi: 10.1371/journal.pone.0270122 – volume: 290 start-page: 400 year: 2019 ident: 10171_CR31 publication-title: Radiology doi: 10.1148/radiol.2018181657 – volume: 34 start-page: 849 year: 2014 ident: 10171_CR29 publication-title: Radiographics doi: 10.1148/rg.344135128 – volume: 293 start-page: 491 year: 2019 ident: 10171_CR3 publication-title: Radiology doi: 10.1148/radiol.2019191422 – volume: 37 start-page: 1707 year: 2018 ident: 10171_CR19 publication-title: Clin Nutr doi: 10.1016/j.clnu.2017.07.007 – ident: 10171_CR24 doi: 10.1259/bjr.20201357 – volume: 94 start-page: 20201086 year: 2021 ident: 10171_CR12 publication-title: Br J Radiol doi: 10.1259/bjr.20201086 – volume: 303 start-page: 90 year: 2022 ident: 10171_CR20 publication-title: Radiology doi: 10.1148/radiol.211838 – volume: 46 start-page: 4238 year: 2021 ident: 10171_CR25 publication-title: Abdom Radiol (NY) doi: 10.1007/s00261-021-03111-x – ident: 10171_CR5 doi: 10.1007/s00330-020-07358-8 – volume: 141 start-page: 109808 year: 2021 ident: 10171_CR32 publication-title: Eur J Radiol doi: 10.1016/j.ejrad.2021.109808 – volume: 29 start-page: 2185 year: 2019 ident: 10171_CR4 publication-title: Eur Radiol doi: 10.1007/s00330-018-5810-7 – ident: 10171_CR9 doi: 10.3348/kjr.2020.0116 – volume: 303 start-page: 202 year: 2022 ident: 10171_CR26 publication-title: Radiology doi: 10.1148/radiol.210551 – volume: 32 start-page: 2921 year: 2022 ident: 10171_CR13 publication-title: Eur Radiol doi: 10.1007/s00330-021-08438-z – volume: 214 start-page: 566 year: 2020 ident: 10171_CR10 publication-title: AJR Am J Roentgenol doi: 10.2214/AJR.19.21809 – volume: 24 start-page: 1114 year: 2017 ident: 10171_CR30 publication-title: Acad Radiol doi: 10.1016/j.acra.2017.02.012 – volume: 12 start-page: 40 year: 2021 ident: 10171_CR15 publication-title: Insights Imaging doi: 10.1186/s13244-021-00980-0 – volume: 32 start-page: 2620 year: 2022 ident: 10171_CR8 publication-title: Eur Radiol doi: 10.1007/s00330-021-08367-x – volume: 21 start-page: 146 year: 2021 ident: 10171_CR11 publication-title: BMC Med Imaging doi: 10.1186/s12880-021-00677-2 – volume: 30 start-page: 3951 year: 2020 ident: 10171_CR7 publication-title: Eur Radiol doi: 10.1007/s00330-020-06724-w – ident: 10171_CR23 doi: 10.2214/AJR.14.13402 – ident: 10171_CR33 doi: 10.1007/s00330-021-07952-4 – volume: 29 start-page: 6163 year: 2019 ident: 10171_CR14 publication-title: Eur Radiol doi: 10.1007/s00330-019-06170-3 |
| SSID | ssj0009147 |
| Score | 2.5116913 |
| Snippet | Objectives
To perform a comprehensive within-subject image quality analysis of abdominal CT examinations reconstructed with DLIR and to evaluate diagnostic... To perform a comprehensive within-subject image quality analysis of abdominal CT examinations reconstructed with DLIR and to evaluate diagnostic accuracy... ObjectivesTo perform a comprehensive within-subject image quality analysis of abdominal CT examinations reconstructed with DLIR and to evaluate diagnostic... |
| SourceID | unpaywall proquest pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 2384 |
| SubjectTerms | Accuracy Algorithms Computed Tomography Deep learning Diagnostic Radiology Diagnostic systems Figure of merit Image contrast Image enhancement Image processing Image quality Image reconstruction Imaging Internal Medicine Interventional Radiology Lesions Liver Machine learning Medical diagnosis Medical imaging Medicine Medicine & Public Health Metastases Neuroradiology Radiology Signal to noise ratio Statistical analysis Ultrasound |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dSxwxEB_sCf14KPbTa1VS8K2GmmwumxWktKJIqYcUBd-WbJLTwrp7Vg-5_74zu9k9S-HwZV-yySaZSTLZmfn9ALaV0S6ZKMGl9ylXKk24NaHgo4yQT_D8CJoSnE_G-vhc_bgYXazAuMuFobDKbk9sNmpfO_pH_kVmaAZmaM6br9MbTqxR5F3tKDRspFbw-w3E2BNYlYSMNYDV74fj018LGF7RUI7hNd7wFJuLaTRNMh3Rmu1yPMM4qang5t-j6j_784Hv9AU8m1VTO7-3ZfngeDpag5fRrmTfWkV4BSuheg1PT6Ln_A1c_azvua9vAyspEoMdnO2x39e4mbA2rXLObOWZbwPvsA2GY539sW7O6gnzIUxZ5Je4jNWam3SPPstseYmzdXd1_RbOjw7PDo55ZFngTiVacJeGRGinFeW4JnjDcJJoqbxzuNgLmTkdRr4wwhmLZbsjG2SRJioLqlDCZDZ5B4OqrsI6MKGtyFxKzk-jZLD4TLU2k2BCcFbKIYhuQnMXIciJCaPMe_DkRgg5CiFvhJCbIXzu60xbAI6lb290csrjYrzNF6ozhE99MS4j8o3YKtQzfMfg2DOC8hnC-1a-_edwDzZGU8lOJ_BF48v6stMrxSO6_mF51z_Cc4n2VBs0tAEDlG_YRHvortiKSv4X0yIBpg priority: 102 providerName: ProQuest – databaseName: SpringerLINK - Czech Republic Consortium dbid: AGYKE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB7RRaLtAUqfC7RyJW7FCDtex-kNIShqS0-sBKfIcWYBNSQrdldo--s7TpxAAaFyycWP-DGeh2bmG4BNZbSLRkpwmecxVyqOuDWY8UHikU9IfqD2Cc5Hv_ThUH0_GZyEpLBJG-3euiRrTt0lu_myYzucZAz3ZCS4eQaLNd5WDxZ3v53-2L8B2xUqDgkyD4_8Vwjd0yxveUVfwvNZObbza1sUtwTPwQoM2yU38Sa_t2fTbNv9uYPm-NQ9vYLloImy3YZ0VmEBy9ewdBR87W_g_Gd1zfNqgqzwsRts7_gru7gk9sOaRMw5s2XO8iZUj-Zg1rnZlXVzVo1YjjhmoSLFWRhW294dXi2zxVl1dTE9v3wLw4P9471DHuoycKciLbiLMRLaaeWzYiOySZz0haxy54g9ZDJxGgd5ZoQzltp2BhZlFkcqQZUpYRIbvYNeWZX4AZjQViQu9u5SoyRa-sZamxEaRGel7INoLyp1AbTc184o0g5uuT7ClI4wrY8wNX340o0ZN5Adj_beaO8_Dc93ksqEbI6EbEdq_tw108Pz3hRbYjWjPob2nnjwnz68b-im-x1xbWO0b9lq7_1m8sfWstUR238sfe1ps6_DC0kaWRN2tAE9um_8SBrVNPsUHtBfWkASww priority: 102 providerName: Springer Nature |
| Title | Low-dose liver CT: image quality and diagnostic accuracy of deep learning image reconstruction algorithm |
| URI | https://link.springer.com/article/10.1007/s00330-023-10171-8 https://www.ncbi.nlm.nih.gov/pubmed/37688618 https://www.proquest.com/docview/2972994958 https://www.proquest.com/docview/2863297418 https://link.springer.com/content/pdf/10.1007/s00330-023-10171-8.pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 34 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1432-1084 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009147 issn: 1432-1084 databaseCode: AFBBN dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1432-1084 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0009147 issn: 1432-1084 databaseCode: 7X7 dateStart: 20210101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1432-1084 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0009147 issn: 1432-1084 databaseCode: BENPR dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1432-1084 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0009147 issn: 1432-1084 databaseCode: 8FG dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1432-1084 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009147 issn: 1432-1084 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1432-1084 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009147 issn: 1432-1084 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxEB61icTjwLNAoERG4kaddr1er5dbEpJWQKMKNVJ6Wnltp63Y7kZtoir8esb7ojxUgbh4D2N7_RjbM5qZbwDecim0P-ceZcaElPPQp0rahAaRQz7B98MKF-B8OBEHU_5xFsw24EMdC1N4u9cmyTKmwaE0ZcvdhZnvNoFvLgXZHsX3hjqW8qjsIXkT2iJAibwF7enkqH9SwOzheQ6jIh8iSgYMq0texc78uaOf36ffhM4bBtP7cHeVLdT6WqXpjTdp_BBsPZvSFeVrb7VMevrbL0CP_zvdR_CgElpJv-Syx7Bhsydw57Ayyz-Fs8_5NTX5lSWpc_Mgw-P35PwCbypSxmyuicoMMaVXH_ZBlNarS6XXJJ8TY-2CVMkrTqtmhZreQNsSlZ7ml-fLs4stmI5Hx8MDWqVwoJr7wqM6tL4ntOAugNZH9UUzl_PKaI03ScIiLWxgEulpqZC2FyjLktDnkeUJ92Sk_GfQyvLMvgDiCeVFOnSWVcmZVViGQsi5ldZqxVgHvHrjYl3hm7s0G2ncIDMXyxjjMsbFMsayA--aNosS3ePW2ts1P8TVSb-KWYTqSYRqJpLfNGQ8o87wojKbr7COxLlHDieoA89LPmp-hxe8lMJRdmo--NH5bWPZaZjvL4b-8t-qv4J7DIW30kNpG1q43_Y1Cl_LpAub4SzEUo73u9DujweDifvun3wa4Xcwmhx9QepQDLGcsn63OovfAXvjKE8 |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED6NTWLwgPhNYYCR4IlZ1I7rOEgTgrGpY22FUCftLTi2uyFlSaGrqv5z_G2cEycdQqp42UseYsdx_J3P55zvPoDXQkkTTQSj3NqYChFHVCuX0V7iM5_g-uGkD3AejmT_RHw57Z1uwO8mFsYfq2x0YqWobWn8P_J3PEEzMEFzXn2Y_qSeNcp7VxsKDR2oFexelWIsBHYcu-UCt3CzvaPPiPcbzg8Pxvt9GlgGqBGRZNTELmLSSOFjPCO0sA33tEzWGBT2jCdGup7NFDNKY1m3px3P4kgkTmSCqURH2O4N2BJ4Czd_W58ORl-_rdL-sorirJugWomx-yFspwre8zRqXYprJvXTglH199L4j717xVd7G7bnxVQvFzrPryyHh3fhTrBjycda8O7Bhivuw81h8NQ_gPNBuaC2nDmS-5MfZH_8nvy4QOVF6jDOJdGFJbY-6IdtEBzb-S9tlqScEOvclAQ-i7PwWLVzb7PdEp2fITqX5xcP4eRaxvsRbBZl4Z4AYVKzxMTe2aoEdxqvsZRq4pRzRnPeAdYMaGpCynPPvJGnbbLmCoQUQUgrEFLVgbftM9M64cfa2jsNTmmY_LN0JaodeNUW47T1vhhduHKOdRR-e-JTB3XgcY1v-zrU-UpJX7LbAL5qfF1fdluh-I-uP13f9Zew3R8PB-ngaHT8DG5xtOXqA0s7sIlYu-doi11mL4LAE_h-3XPsD0KgPM4 |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JbxMxFH4qRSpwQOwEChgJTtRqvMQLEkKoJWrpIg6tlNvU43FapOlMII2i_DV-Hc-zpQgp4tLLXLyMx997z8_zNoB30igvxpJRnmWaSqkFdSakdGBj5hM8P4KKAc5Hx2rvVH4bDUZr8LuNhYlula1MrAR1Vvr4j3ybW1QDLarzZnvcuEV83x1-nvyksYJUtLS25TRqEjkIizle36af9ncR6_ecD7-e7OzRpsIA9VIoRr0OgimvZIzvFKhdex5LMmXeI6Gn3HoVBllqmDcO2_oDF3iqhbRBppIZ6wTOewtuayFsdCfUI71M-Muq4mZ9iwJF48KbgJ0qbC8WUOtTPC1pZAhGzd-H4j-a7jUr7T24MysmbjF3eX7tIBw-gPuNBku-1CT3ENZC8Qg2jhob_WO4OCznNCungeTR54PsnHwkPy5RbJE6gHNBXJGRrHbxwzmI8372y_kFKcckC2FCmkoW582w6s7e5bklLj9HLK4uLp_A6Y3s9lNYL8oiPAfClGPW62hmNZIHh0-tlBkHE4J3nPeAtRua-CbZeay5kSddmuYKhARBSCoQEtODD92YSZ3qY2XvzRanpGH7abIk0h687ZqRYaMVxhWhnGEfg99uY9KgHjyr8e1eh9LeGBVbtlrAl5OvWstWRxT_sfQXq5f-BjaQs5LD_eODl3CXoxJXeyptwjpCHV6hEnaVvq6oncDZTbPXH3B8Omg |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7RRWrpoW9gC61cqbfiBTuOY_eGaBGqCuqBlegpcmwvoIZkBbtC21_fceIE-hBq1UsuM3b8GHvGmplvAN4KJW0yEYxy5zIqRJZQo3xBUx2QT1B_eBkSnA-P5MFYfDpJT5bgQ5cL00S7dy7JNqchoDRVs-2pm2z3iW-hBNkORX1Dg0gxqkZIvgfLMkWLfADL46Mvu18bmD08z5lu6iGiZcCRXYmYO_Pnjn7WT78Znbccpg_hwbyamsW1KctbOmn_MfhuNm0oyrfRfFaM7PdfgB7_d7pP4FE0WsluK2VPYclXz-D-YXTLP4ezz_U1dfWVJ2UI8yB7x-_J-QXeVKTN2VwQUzni2qg-7IMYa-eXxi5IPSHO-ymJxStOY7Pmmd5D2xJTntaX57Ozixcw3v94vHdAYwkHakUiGbWZT5i0UoQE2gSfL5aHmlfOWrxJCq6t9KkrFLPKIG0nNZ4XWSK0F4VgSptkFQZVXfl1IEwapm0WPKtKcG_wm0mpJl55bw3nQ2DdxuU24puHMhtl3iMzN8uY4zLmzTLmagjv-jbTFt3jTu7NTh7yeNKvcq7xeaLxmYnkNz0Zz2hwvJjK13PkUTh3HXCChrDWylH_O7zglZKBstXJwU3nd41lqxe-vxj6y39j34AVjsZbG6G0CQPcb_8Kja9Z8TqerR_GqyAS |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Low-dose+liver+CT%3A+image+quality+and+diagnostic+accuracy+of+deep+learning+image+reconstruction+algorithm&rft.jtitle=European+radiology&rft.au=Caruso%2C+Damiano&rft.au=De+Santis%2C+Domenico&rft.au=Del+Gaudio%2C+Antonella&rft.au=Guido%2C+Gisella&rft.date=2024-04-01&rft.pub=Springer+Nature+B.V&rft.issn=0938-7994&rft.eissn=1432-1084&rft.volume=34&rft.issue=4&rft.spage=2384&rft.epage=2393&rft_id=info:doi/10.1007%2Fs00330-023-10171-8&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1432-1084&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1432-1084&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1432-1084&client=summon |