Low-dose liver CT: image quality and diagnostic accuracy of deep learning image reconstruction algorithm

Objectives To perform a comprehensive within-subject image quality analysis of abdominal CT examinations reconstructed with DLIR and to evaluate diagnostic accuracy compared to the routinely applied adaptive statistical iterative reconstruction (ASiR-V) algorithm. Materials and methods Oncologic pat...

Full description

Saved in:
Bibliographic Details
Published inEuropean radiology Vol. 34; no. 4; pp. 2384 - 2393
Main Authors Caruso, Damiano, De Santis, Domenico, Del Gaudio, Antonella, Guido, Gisella, Zerunian, Marta, Polici, Michela, Valanzuolo, Daniela, Pugliese, Dominga, Persechino, Raffaello, Cremona, Antonio, Barbato, Luca, Caloisi, Andrea, Iannicelli, Elsa, Laghi, Andrea
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.04.2024
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1432-1084
0938-7994
1432-1084
DOI10.1007/s00330-023-10171-8

Cover

Abstract Objectives To perform a comprehensive within-subject image quality analysis of abdominal CT examinations reconstructed with DLIR and to evaluate diagnostic accuracy compared to the routinely applied adaptive statistical iterative reconstruction (ASiR-V) algorithm. Materials and methods Oncologic patients were prospectively enrolled and underwent contrast-enhanced CT. Images were reconstructed with DLIR with three intensity levels of reconstruction (high, medium, and low) and ASiR-V at strength levels from 10 to 100% with a 10% interval. Three radiologists characterized the lesions and two readers assessed diagnostic accuracy and calculated signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), figure of merit (FOM), and subjective image quality, the latter with a 5-point Likert scale. Results Fifty patients (mean age: 70 ± 10 years, 23 men) were enrolled and 130 liver lesions (105 benign lesions, 25 metastases) were identified. DLIR_H achieved the highest SNR and CNR, comparable to ASiR-V 100% ( p  ≥ .051). DLIR_M returned the highest subjective image quality (score: 5; IQR: 4–5; p  ≤ .001) and significant median increase (29%) in FOM ( p  < .001). Differences in detection were identified only for lesions ≤ 0.5 cm: 32/33 lesions were detected with DLIR_M and 26 lesions were detected with ASiR-V 50% ( p  = .031). Lesion accuracy of was 93.8% (95% CI: 88.1, 97.3; 122 of 130 lesions) for DLIR and 87.7% (95% CI: 80.8, 92.8; 114 of 130 lesions) for ASiR-V 50%. Conclusions DLIR yields superior image quality and provides higher diagnostic accuracy compared to ASiR-V in the assessment of hypovascular liver lesions, in particular for lesions ≤ 0.5 cm. Clinical relevance statement Deep learning image reconstruction algorithm demonstrates higher diagnostic accuracy compared to iterative reconstruction in the identification of hypovascular liver lesions, especially for lesions ≤ 0.5 cm. Key Points • Iterative reconstruction algorithm impacts image texture, with negative effects on diagnostic capabilities. • Medium-strength deep learning image reconstruction algorithm outperforms iterative reconstruction in the diagnostic accuracy of ≤ 0.5 cm hypovascular liver lesions (93.9% vs 78.8%), also granting higher objective and subjective image quality. • Deep learning image reconstruction algorithm can be safely implemented in routine abdominal CT protocols in place of iterative reconstruction.
AbstractList To perform a comprehensive within-subject image quality analysis of abdominal CT examinations reconstructed with DLIR and to evaluate diagnostic accuracy compared to the routinely applied adaptive statistical iterative reconstruction (ASiR-V) algorithm. Oncologic patients were prospectively enrolled and underwent contrast-enhanced CT. Images were reconstructed with DLIR with three intensity levels of reconstruction (high, medium, and low) and ASiR-V at strength levels from 10 to 100% with a 10% interval. Three radiologists characterized the lesions and two readers assessed diagnostic accuracy and calculated signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), figure of merit (FOM), and subjective image quality, the latter with a 5-point Likert scale. Fifty patients (mean age: 70 ± 10 years, 23 men) were enrolled and 130 liver lesions (105 benign lesions, 25 metastases) were identified. DLIR_H achieved the highest SNR and CNR, comparable to ASiR-V 100% (p ≥ .051). DLIR_M returned the highest subjective image quality (score: 5; IQR: 4-5; p ≤ .001) and significant median increase (29%) in FOM (p < .001). Differences in detection were identified only for lesions ≤ 0.5 cm: 32/33 lesions were detected with DLIR_M and 26 lesions were detected with ASiR-V 50% (p = .031). Lesion accuracy of was 93.8% (95% CI: 88.1, 97.3; 122 of 130 lesions) for DLIR and 87.7% (95% CI: 80.8, 92.8; 114 of 130 lesions) for ASiR-V 50%. DLIR yields superior image quality and provides higher diagnostic accuracy compared to ASiR-V in the assessment of hypovascular liver lesions, in particular for lesions ≤ 0.5 cm. Deep learning image reconstruction algorithm demonstrates higher diagnostic accuracy compared to iterative reconstruction in the identification of hypovascular liver lesions, especially for lesions ≤ 0.5 cm. • Iterative reconstruction algorithm impacts image texture, with negative effects on diagnostic capabilities. • Medium-strength deep learning image reconstruction algorithm outperforms iterative reconstruction in the diagnostic accuracy of ≤ 0.5 cm hypovascular liver lesions (93.9% vs 78.8%), also granting higher objective and subjective image quality. • Deep learning image reconstruction algorithm can be safely implemented in routine abdominal CT protocols in place of iterative reconstruction.
Objectives To perform a comprehensive within-subject image quality analysis of abdominal CT examinations reconstructed with DLIR and to evaluate diagnostic accuracy compared to the routinely applied adaptive statistical iterative reconstruction (ASiR-V) algorithm. Materials and methods Oncologic patients were prospectively enrolled and underwent contrast-enhanced CT. Images were reconstructed with DLIR with three intensity levels of reconstruction (high, medium, and low) and ASiR-V at strength levels from 10 to 100% with a 10% interval. Three radiologists characterized the lesions and two readers assessed diagnostic accuracy and calculated signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), figure of merit (FOM), and subjective image quality, the latter with a 5-point Likert scale. Results Fifty patients (mean age: 70 ± 10 years, 23 men) were enrolled and 130 liver lesions (105 benign lesions, 25 metastases) were identified. DLIR_H achieved the highest SNR and CNR, comparable to ASiR-V 100% ( p  ≥ .051). DLIR_M returned the highest subjective image quality (score: 5; IQR: 4–5; p  ≤ .001) and significant median increase (29%) in FOM ( p  < .001). Differences in detection were identified only for lesions ≤ 0.5 cm: 32/33 lesions were detected with DLIR_M and 26 lesions were detected with ASiR-V 50% ( p  = .031). Lesion accuracy of was 93.8% (95% CI: 88.1, 97.3; 122 of 130 lesions) for DLIR and 87.7% (95% CI: 80.8, 92.8; 114 of 130 lesions) for ASiR-V 50%. Conclusions DLIR yields superior image quality and provides higher diagnostic accuracy compared to ASiR-V in the assessment of hypovascular liver lesions, in particular for lesions ≤ 0.5 cm. Clinical relevance statement Deep learning image reconstruction algorithm demonstrates higher diagnostic accuracy compared to iterative reconstruction in the identification of hypovascular liver lesions, especially for lesions ≤ 0.5 cm. Key Points • Iterative reconstruction algorithm impacts image texture, with negative effects on diagnostic capabilities. • Medium-strength deep learning image reconstruction algorithm outperforms iterative reconstruction in the diagnostic accuracy of ≤ 0.5 cm hypovascular liver lesions (93.9% vs 78.8%), also granting higher objective and subjective image quality. • Deep learning image reconstruction algorithm can be safely implemented in routine abdominal CT protocols in place of iterative reconstruction.
ObjectivesTo perform a comprehensive within-subject image quality analysis of abdominal CT examinations reconstructed with DLIR and to evaluate diagnostic accuracy compared to the routinely applied adaptive statistical iterative reconstruction (ASiR-V) algorithm.Materials and methodsOncologic patients were prospectively enrolled and underwent contrast-enhanced CT. Images were reconstructed with DLIR with three intensity levels of reconstruction (high, medium, and low) and ASiR-V at strength levels from 10 to 100% with a 10% interval. Three radiologists characterized the lesions and two readers assessed diagnostic accuracy and calculated signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), figure of merit (FOM), and subjective image quality, the latter with a 5-point Likert scale.ResultsFifty patients (mean age: 70 ± 10 years, 23 men) were enrolled and 130 liver lesions (105 benign lesions, 25 metastases) were identified. DLIR_H achieved the highest SNR and CNR, comparable to ASiR-V 100% (p ≥ .051). DLIR_M returned the highest subjective image quality (score: 5; IQR: 4–5; p ≤ .001) and significant median increase (29%) in FOM (p < .001). Differences in detection were identified only for lesions ≤ 0.5 cm: 32/33 lesions were detected with DLIR_M and 26 lesions were detected with ASiR-V 50% (p = .031). Lesion accuracy of was 93.8% (95% CI: 88.1, 97.3; 122 of 130 lesions) for DLIR and 87.7% (95% CI: 80.8, 92.8; 114 of 130 lesions) for ASiR-V 50%.ConclusionsDLIR yields superior image quality and provides higher diagnostic accuracy compared to ASiR-V in the assessment of hypovascular liver lesions, in particular for lesions ≤ 0.5 cm.Clinical relevance statementDeep learning image reconstruction algorithm demonstrates higher diagnostic accuracy compared to iterative reconstruction in the identification of hypovascular liver lesions, especially for lesions ≤ 0.5 cm.Key Points• Iterative reconstruction algorithm impacts image texture, with negative effects on diagnostic capabilities.• Medium-strength deep learning image reconstruction algorithm outperforms iterative reconstruction in the diagnostic accuracy of ≤ 0.5 cm hypovascular liver lesions (93.9% vs 78.8%), also granting higher objective and subjective image quality.• Deep learning image reconstruction algorithm can be safely implemented in routine abdominal CT protocols in place of iterative reconstruction.
To perform a comprehensive within-subject image quality analysis of abdominal CT examinations reconstructed with DLIR and to evaluate diagnostic accuracy compared to the routinely applied adaptive statistical iterative reconstruction (ASiR-V) algorithm.OBJECTIVESTo perform a comprehensive within-subject image quality analysis of abdominal CT examinations reconstructed with DLIR and to evaluate diagnostic accuracy compared to the routinely applied adaptive statistical iterative reconstruction (ASiR-V) algorithm.Oncologic patients were prospectively enrolled and underwent contrast-enhanced CT. Images were reconstructed with DLIR with three intensity levels of reconstruction (high, medium, and low) and ASiR-V at strength levels from 10 to 100% with a 10% interval. Three radiologists characterized the lesions and two readers assessed diagnostic accuracy and calculated signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), figure of merit (FOM), and subjective image quality, the latter with a 5-point Likert scale.MATERIALS AND METHODSOncologic patients were prospectively enrolled and underwent contrast-enhanced CT. Images were reconstructed with DLIR with three intensity levels of reconstruction (high, medium, and low) and ASiR-V at strength levels from 10 to 100% with a 10% interval. Three radiologists characterized the lesions and two readers assessed diagnostic accuracy and calculated signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), figure of merit (FOM), and subjective image quality, the latter with a 5-point Likert scale.Fifty patients (mean age: 70 ± 10 years, 23 men) were enrolled and 130 liver lesions (105 benign lesions, 25 metastases) were identified. DLIR_H achieved the highest SNR and CNR, comparable to ASiR-V 100% (p ≥ .051). DLIR_M returned the highest subjective image quality (score: 5; IQR: 4-5; p ≤ .001) and significant median increase (29%) in FOM (p < .001). Differences in detection were identified only for lesions ≤ 0.5 cm: 32/33 lesions were detected with DLIR_M and 26 lesions were detected with ASiR-V 50% (p = .031). Lesion accuracy of was 93.8% (95% CI: 88.1, 97.3; 122 of 130 lesions) for DLIR and 87.7% (95% CI: 80.8, 92.8; 114 of 130 lesions) for ASiR-V 50%.RESULTSFifty patients (mean age: 70 ± 10 years, 23 men) were enrolled and 130 liver lesions (105 benign lesions, 25 metastases) were identified. DLIR_H achieved the highest SNR and CNR, comparable to ASiR-V 100% (p ≥ .051). DLIR_M returned the highest subjective image quality (score: 5; IQR: 4-5; p ≤ .001) and significant median increase (29%) in FOM (p < .001). Differences in detection were identified only for lesions ≤ 0.5 cm: 32/33 lesions were detected with DLIR_M and 26 lesions were detected with ASiR-V 50% (p = .031). Lesion accuracy of was 93.8% (95% CI: 88.1, 97.3; 122 of 130 lesions) for DLIR and 87.7% (95% CI: 80.8, 92.8; 114 of 130 lesions) for ASiR-V 50%.DLIR yields superior image quality and provides higher diagnostic accuracy compared to ASiR-V in the assessment of hypovascular liver lesions, in particular for lesions ≤ 0.5 cm.CONCLUSIONSDLIR yields superior image quality and provides higher diagnostic accuracy compared to ASiR-V in the assessment of hypovascular liver lesions, in particular for lesions ≤ 0.5 cm.Deep learning image reconstruction algorithm demonstrates higher diagnostic accuracy compared to iterative reconstruction in the identification of hypovascular liver lesions, especially for lesions ≤ 0.5 cm.CLINICAL RELEVANCE STATEMENTDeep learning image reconstruction algorithm demonstrates higher diagnostic accuracy compared to iterative reconstruction in the identification of hypovascular liver lesions, especially for lesions ≤ 0.5 cm.• Iterative reconstruction algorithm impacts image texture, with negative effects on diagnostic capabilities. • Medium-strength deep learning image reconstruction algorithm outperforms iterative reconstruction in the diagnostic accuracy of ≤ 0.5 cm hypovascular liver lesions (93.9% vs 78.8%), also granting higher objective and subjective image quality. • Deep learning image reconstruction algorithm can be safely implemented in routine abdominal CT protocols in place of iterative reconstruction.KEY POINTS• Iterative reconstruction algorithm impacts image texture, with negative effects on diagnostic capabilities. • Medium-strength deep learning image reconstruction algorithm outperforms iterative reconstruction in the diagnostic accuracy of ≤ 0.5 cm hypovascular liver lesions (93.9% vs 78.8%), also granting higher objective and subjective image quality. • Deep learning image reconstruction algorithm can be safely implemented in routine abdominal CT protocols in place of iterative reconstruction.
Author Caruso, Damiano
Persechino, Raffaello
De Santis, Domenico
Caloisi, Andrea
Del Gaudio, Antonella
Polici, Michela
Guido, Gisella
Zerunian, Marta
Valanzuolo, Daniela
Cremona, Antonio
Barbato, Luca
Laghi, Andrea
Pugliese, Dominga
Iannicelli, Elsa
Author_xml – sequence: 1
  givenname: Damiano
  surname: Caruso
  fullname: Caruso, Damiano
  organization: Department of Medical-Surgical Sciences and Translational Medicine, Radiology Unit, Sant’Andrea University Hospital, Sapienza University of Rome
– sequence: 2
  givenname: Domenico
  surname: De Santis
  fullname: De Santis, Domenico
  organization: Department of Medical-Surgical Sciences and Translational Medicine, Radiology Unit, Sant’Andrea University Hospital, Sapienza University of Rome
– sequence: 3
  givenname: Antonella
  surname: Del Gaudio
  fullname: Del Gaudio, Antonella
  organization: Department of Medical-Surgical Sciences and Translational Medicine, Radiology Unit, Sant’Andrea University Hospital, Sapienza University of Rome
– sequence: 4
  givenname: Gisella
  surname: Guido
  fullname: Guido, Gisella
  organization: Department of Medical-Surgical Sciences and Translational Medicine, Radiology Unit, Sant’Andrea University Hospital, Sapienza University of Rome
– sequence: 5
  givenname: Marta
  surname: Zerunian
  fullname: Zerunian, Marta
  organization: Department of Medical-Surgical Sciences and Translational Medicine, Radiology Unit, Sant’Andrea University Hospital, Sapienza University of Rome
– sequence: 6
  givenname: Michela
  surname: Polici
  fullname: Polici, Michela
  organization: Department of Medical-Surgical Sciences and Translational Medicine, Radiology Unit, Sant’Andrea University Hospital, Sapienza University of Rome
– sequence: 7
  givenname: Daniela
  surname: Valanzuolo
  fullname: Valanzuolo, Daniela
  organization: Department of Medical-Surgical Sciences and Translational Medicine, Radiology Unit, Sant’Andrea University Hospital, Sapienza University of Rome
– sequence: 8
  givenname: Dominga
  surname: Pugliese
  fullname: Pugliese, Dominga
  organization: Department of Medical-Surgical Sciences and Translational Medicine, Radiology Unit, Sant’Andrea University Hospital, Sapienza University of Rome
– sequence: 9
  givenname: Raffaello
  surname: Persechino
  fullname: Persechino, Raffaello
  organization: Department of Medical-Surgical Sciences and Translational Medicine, Radiology Unit, Sant’Andrea University Hospital, Sapienza University of Rome
– sequence: 10
  givenname: Antonio
  surname: Cremona
  fullname: Cremona, Antonio
  organization: Department of Medical-Surgical Sciences and Translational Medicine, Radiology Unit, Sant’Andrea University Hospital, Sapienza University of Rome
– sequence: 11
  givenname: Luca
  surname: Barbato
  fullname: Barbato, Luca
  organization: Department of Medical-Surgical Sciences and Translational Medicine, Radiology Unit, Sant’Andrea University Hospital, Sapienza University of Rome
– sequence: 12
  givenname: Andrea
  surname: Caloisi
  fullname: Caloisi, Andrea
  organization: Department of Medical-Surgical Sciences and Translational Medicine, Radiology Unit, Sant’Andrea University Hospital, Sapienza University of Rome
– sequence: 13
  givenname: Elsa
  surname: Iannicelli
  fullname: Iannicelli, Elsa
  organization: Department of Medical-Surgical Sciences and Translational Medicine, Radiology Unit, Sant’Andrea University Hospital, Sapienza University of Rome
– sequence: 14
  givenname: Andrea
  orcidid: 0000-0002-3091-7819
  surname: Laghi
  fullname: Laghi, Andrea
  email: andrea.laghi@uniroma1.it
  organization: Department of Medical-Surgical Sciences and Translational Medicine, Radiology Unit, Sant’Andrea University Hospital, Sapienza University of Rome
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37688618$$D View this record in MEDLINE/PubMed
BookMark eNqNkMtuGyEYhVGVqrm0L5BFhNRNN9NyGwayq6zmIlnqJl0jhvk9IcLgwEwiv31x7V6URdQVIL4D5_9O0VFMERA6p-QzJaT7UgjhnDSE8YYS2tFGvUEnVHBWj0oc_bM_RqelPBBCNBXdO3TMO6mUpOoE3S_TczOkAjj4J8h4cXeJ_dqOgB9nG_y0xTYOePB2jKlM3mHr3Jyt2-K0wgPABgewOfo4HmIZXIplyrObfIrYhjFlP92v36O3KxsKfDisZ-jH1be7xU2z_H59u_i6bJzgkjauA06lk0LrVnLWto5JwuTgnOKsZ9pJaIdeUadsvSOtBdZ3XGgQvaBKW36G-P7dOW7s9tmGYDa5VstbQ4nZeTN7b6Z6M7-8GVVTn_apTU6PM5TJrH1xEIKNkOZimKpldFe_qOjHF-hDmnOsM5lKMK2FbnfUxYGa-zUMfzr8Nl8BtQdcTqVkWBnnJ7tzNmXrw-tl2Yvof0148FIqHEfIf2u_kvoJShe1xg
CitedBy_id crossref_primary_10_1007_s10278_024_01232_5
crossref_primary_10_1016_j_heliyon_2024_e34847
crossref_primary_10_1007_s00261_024_04760_4
crossref_primary_10_1007_s00330_024_11314_1
crossref_primary_10_3390_tomography10110133
crossref_primary_10_1007_s11547_024_01944_2
crossref_primary_10_1148_rg_240095
Cites_doi 10.1007/s00330-016-4383-6
10.1007/s00330-016-4571-4
10.1016/j.ejrad.2021.109808
10.1007/s00330-018-5313-6
10.2214/AJR.14.13241
10.1186/s12880-021-00677-2
10.1007/s00330-021-08438-z
10.1007/s00261-017-1140-5
10.1148/radiol.2019191422
10.1148/radiol.10100047
10.1007/s00261-021-03111-x
10.1007/s00330-021-08367-x
10.1148/radiol.2018181657
10.1148/radiol.211838
10.1148/radiol.14141356
10.1186/s13244-021-00980-0
10.1016/j.clnu.2017.07.007
10.1148/radiol.210551
10.1007/s00330-022-08647-0
10.1148/rg.344135128
10.1016/j.acra.2017.02.012
10.1007/s00330-020-06724-w
10.1259/bjr.20201086
10.1007/s00330-019-06170-3
10.1007/s00330-018-5810-7
10.2214/AJR.19.21809
10.1007/s00330-021-07712-4
10.1371/journal.pone.0270122
10.1259/bjr.20201357
10.1007/s00330-020-07358-8
10.3348/kjr.2020.0116
10.2214/AJR.14.13402
10.1007/s00330-021-07952-4
ContentType Journal Article
Copyright The Author(s) 2023
2023. The Author(s).
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: 2023. The Author(s).
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7QO
7RV
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
KB0
LK8
M0S
M1P
M7P
NAPCQ
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
ADTOC
UNPAY
DOI 10.1007/s00330-023-10171-8
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Nursing & Allied Health Database
ProQuest Health & Medical Collection (NC LIVE)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Biological Sciences
Health & Medical Collection (Alumni Edition)
Medical Database
Biological Science Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
PubMed
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Advanced Technologies & Aerospace Database
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed

ProQuest Central Student
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1432-1084
EndPage 2393
ExternalDocumentID 10.1007/s00330-023-10171-8
37688618
10_1007_s00330_023_10171_8
Genre Journal Article
GrantInformation_xml – fundername: Università degli Studi di Roma La Sapienza
GroupedDBID ---
-53
-5E
-5G
-BR
-EM
-Y2
-~C
.86
.VR
04C
06C
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29G
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
36B
3V.
4.4
406
408
409
40D
40E
53G
5GY
5QI
5VS
67Z
6NX
6PF
7RV
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAWTL
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIPD
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTKH
ABTMW
ABULA
ABUWG
ABUWZ
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHVE
ACHXU
ACIHN
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACREN
ACUDM
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADJJI
ADKNI
ADKPE
ADOJX
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFJLC
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGVAE
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
BA0
BBNVY
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKEYQ
BMSDO
BPHCQ
BSONS
BVXVI
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBD
EBLON
EBS
ECF
ECT
EIHBH
EIOEI
EJD
EMB
EMOBN
EN4
ESBYG
EX3
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GRRUI
GXS
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
IMOTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
KPH
LAS
LK8
LLZTM
M1P
M4Y
M7P
MA-
N2Q
N9A
NAPCQ
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9S
PF0
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QOK
QOR
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RRX
RSV
RZK
S16
S1Z
S26
S27
S28
S37
S3B
SAP
SCLPG
SDE
SDH
SDM
SHX
SISQX
SJYHP
SMD
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZ9
SZN
T13
T16
TEORI
TSG
TSK
TSV
TT1
TUC
U2A
U9L
UDS
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK8
WOW
YLTOR
Z45
Z7R
Z7U
Z7X
Z7Y
Z7Z
Z82
Z83
Z85
Z87
Z88
Z8M
Z8O
Z8R
Z8S
Z8T
Z8V
Z8W
Z8Z
Z91
Z92
ZMTXR
ZOVNA
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
ADHKG
AGQPQ
NPM
7QO
7XB
8FD
8FK
AZQEC
DWQXO
FR3
GNUQQ
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
ADTOC
UNPAY
ID FETCH-LOGICAL-c4361-c7e316c6499563255c26026dcc832b29c6e5db81c8a55c05ae2b7349e4b4189a3
IEDL.DBID UNPAY
ISSN 1432-1084
0938-7994
IngestDate Sun Oct 26 04:03:16 EDT 2025
Thu Oct 02 04:08:52 EDT 2025
Tue Oct 07 05:53:51 EDT 2025
Mon Jul 21 05:57:09 EDT 2025
Wed Oct 01 01:17:16 EDT 2025
Thu Apr 24 23:02:35 EDT 2025
Fri Feb 21 02:43:52 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Deep learning
Iterative reconstruction
Artificial intelligence
Diagnostic accuracy
Liver
Language English
License 2023. The Author(s).
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4361-c7e316c6499563255c26026dcc832b29c6e5db81c8a55c05ae2b7349e4b4189a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3091-7819
OpenAccessLink https://proxy.k.utb.cz/login?url=https://link.springer.com/content/pdf/10.1007/s00330-023-10171-8.pdf
PMID 37688618
PQID 2972994958
PQPubID 54162
PageCount 10
ParticipantIDs unpaywall_primary_10_1007_s00330_023_10171_8
proquest_miscellaneous_2863297418
proquest_journals_2972994958
pubmed_primary_37688618
crossref_citationtrail_10_1007_s00330_023_10171_8
crossref_primary_10_1007_s00330_023_10171_8
springer_journals_10_1007_s00330_023_10171_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-04-01
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Germany
– name: Heidelberg
PublicationTitle European radiology
PublicationTitleAbbrev Eur Radiol
PublicationTitleAlternate Eur Radiol
PublicationYear 2024
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Wichmann, Hardie, Schoepf (CR18) 2017; 27
Racine, Brat, Dufour (CR32) 2021; 141
De Cecco, Caruso, Schoepf (CR16) 2018; 28
Jensen, Gupta, Saleh (CR20) 2022; 303
Noda, Iritani, Kawai (CR25) 2021; 46
Sato, Ichikawa, Domae (CR28) 2022; 32
Rubin (CR1) 2014; 273
Akagi, Nakamura, Higaki (CR14) 2019; 29
CR33
Cao, Liu, Li (CR12) 2021; 94
Willemink, Noël (CR4) 2019; 29
Benz, Ersözlü, Mojon (CR8) 2022; 32
Deak, Smal, Kalender (CR17) 2010; 257
Jiang, Li, Shi (CR26) 2022; 303
van Stiphout, Driessen, Koetzier (CR13) 2022; 32
CR6
CR5
Greffier, Hamard, Pereira (CR7) 2020; 30
Pauchard, Higashigaito, Lamri-Senouci (CR30) 2017; 24
Jensen, Wagner-Bartak, Vu (CR31) 2019; 290
Ehman, Yu, Manduca (CR29) 2014; 34
CR9
CR27
Yoon, Kim, Lim, Lee (CR11) 2021; 21
Pooler, Lubner, Kim (CR21) 2017; 27
CR24
Singh, Digumarthy, Muse (CR10) 2020; 214
Padole, Ali Khawaja, Kalra, Singh (CR22) 2015; 204
CR23
Mileto, Guimaraes, McCollough (CR3) 2019; 293
van Vugt, Coebergh van den Braak, Schippers (CR19) 2018; 37
Caruso, Rosati, Panvini (CR15) 2021; 12
Morimoto, Kamaya, Boulay-Coletta (CR2) 2017; 42
CN De Cecco (10171_CR16) 2018; 28
CT Jensen (10171_CR31) 2019; 290
PD Deak (10171_CR17) 2010; 257
D Racine (10171_CR32) 2021; 141
10171_CR33
B Pauchard (10171_CR30) 2017; 24
R Singh (10171_CR10) 2020; 214
M Sato (10171_CR28) 2022; 32
B Jiang (10171_CR26) 2022; 303
EC Ehman (10171_CR29) 2014; 34
A Mileto (10171_CR3) 2019; 293
JLA van Vugt (10171_CR19) 2018; 37
A Padole (10171_CR22) 2015; 204
DC Benz (10171_CR8) 2022; 32
JL Wichmann (10171_CR18) 2017; 27
MJ Willemink (10171_CR4) 2019; 29
GD Rubin (10171_CR1) 2014; 273
J Greffier (10171_CR7) 2020; 30
10171_CR6
10171_CR23
JA van Stiphout (10171_CR13) 2022; 32
10171_CR9
10171_CR27
M Akagi (10171_CR14) 2019; 29
10171_CR5
10171_CR24
BD Pooler (10171_CR21) 2017; 27
L Cao (10171_CR12) 2021; 94
D Caruso (10171_CR15) 2021; 12
H Yoon (10171_CR11) 2021; 21
LN Morimoto (10171_CR2) 2017; 42
Y Noda (10171_CR25) 2021; 46
CT Jensen (10171_CR20) 2022; 303
References_xml – volume: 27
  start-page: 642
  year: 2017
  end-page: 650
  ident: CR18
  article-title: Single- and dual-energy CT of the abdomen: comparison of radiation dose and image quality of 2nd and 3rd generation dual-source CT
  publication-title: Eur Radiol
  doi: 10.1007/s00330-016-4383-6
– volume: 27
  start-page: 2055
  year: 2017
  end-page: 2066
  ident: CR21
  article-title: Prospective evaluation of reduced dose computed tomography for the detection of low-contrast liver lesions: direct comparison with concurrent standard dose imaging
  publication-title: Eur Radiol
  doi: 10.1007/s00330-016-4571-4
– ident: CR33
– volume: 141
  start-page: 109808
  year: 2021
  ident: CR32
  article-title: Image texture, low contrast liver lesion detectability and impact on dose: deep learning algorithm compared to partial model-based iterative reconstruction
  publication-title: Eur J Radiol
  doi: 10.1016/j.ejrad.2021.109808
– ident: CR6
– volume: 28
  start-page: 3393
  year: 2018
  end-page: 3404
  ident: CR16
  article-title: A noise-optimized virtual monoenergetic reconstruction algorithm improves the diagnostic accuracy of late hepatic arterial phase dual-energy CT for the detection of hypervascular liver lesions
  publication-title: Eur Radiol
  doi: 10.1007/s00330-018-5313-6
– volume: 204
  start-page: W384
  year: 2015
  end-page: 392
  ident: CR22
  article-title: CT radiation dose and iterative reconstruction techniques
  publication-title: AJR Am J Roentgenol
  doi: 10.2214/AJR.14.13241
– volume: 21
  start-page: 146
  year: 2021
  ident: CR11
  article-title: Image quality assessment of pediatric chest and abdomen CT by deep learning reconstruction
  publication-title: BMC Med Imaging
  doi: 10.1186/s12880-021-00677-2
– volume: 32
  start-page: 2921
  year: 2022
  end-page: 2929
  ident: CR13
  article-title: The effect of deep learning reconstruction on abdominal CT densitometry and image quality: a systematic review and meta-analysis
  publication-title: Eur Radiol
  doi: 10.1007/s00330-021-08438-z
– volume: 42
  start-page: 2279
  year: 2017
  end-page: 2288
  ident: CR2
  article-title: Reduced dose CT with model-based iterative reconstruction compared to standard dose CT of the chest, abdomen, and pelvis in oncology patients: intra-individual comparison study on image quality and lesion conspicuity
  publication-title: Abdom Radiol (NY)
  doi: 10.1007/s00261-017-1140-5
– volume: 293
  start-page: 491
  year: 2019
  end-page: 503
  ident: CR3
  article-title: State of the art in abdominal CT: the limits of iterative reconstruction algorithms
  publication-title: Radiology
  doi: 10.1148/radiol.2019191422
– ident: CR27
– ident: CR23
– volume: 257
  start-page: 158
  year: 2010
  end-page: 166
  ident: CR17
  article-title: Multisection CT protocols: sex- and age-specific conversion factors used to determine effective dose from dose-length product
  publication-title: Radiology
  doi: 10.1148/radiol.10100047
– volume: 46
  start-page: 4238
  year: 2021
  end-page: 4244
  ident: CR25
  article-title: Deep learning image reconstruction for pancreatic low-dose computed tomography: comparison with hybrid iterative reconstruction
  publication-title: Abdom Radiol (NY)
  doi: 10.1007/s00261-021-03111-x
– volume: 32
  start-page: 2620
  year: 2022
  end-page: 2628
  ident: CR8
  article-title: Radiation dose reduction with deep-learning image reconstruction for coronary computed tomography angiography
  publication-title: Eur Radiol
  doi: 10.1007/s00330-021-08367-x
– volume: 290
  start-page: 400
  year: 2019
  end-page: 409
  ident: CR31
  article-title: Detection of colorectal hepatic metastases is superior at standard radiation dose CT versus reduced dose CT
  publication-title: Radiology
  doi: 10.1148/radiol.2018181657
– volume: 303
  start-page: 90
  year: 2022
  end-page: 98
  ident: CR20
  article-title: Reduced-dose deep learning reconstruction for abdominal CT of liver metastases
  publication-title: Radiology
  doi: 10.1148/radiol.211838
– volume: 273
  start-page: S45
  year: 2014
  end-page: 74
  ident: CR1
  article-title: Computed tomography: revolutionizing the practice of medicine for 40 years
  publication-title: Radiology
  doi: 10.1148/radiol.14141356
– volume: 12
  start-page: 40
  year: 2021
  ident: CR15
  article-title: Optimization of contrast medium volume for abdominal CT in oncologic patients: prospective comparison between fixed and lean body weight-adapted dosing protocols
  publication-title: Insights Imaging
  doi: 10.1186/s13244-021-00980-0
– ident: CR9
– volume: 37
  start-page: 1707
  year: 2018
  end-page: 1714
  ident: CR19
  article-title: Contrast-enhancement influences skeletal muscle density, but not skeletal muscle mass, measurements on computed tomography
  publication-title: Clin Nutr
  doi: 10.1016/j.clnu.2017.07.007
– volume: 303
  start-page: 202
  year: 2022
  end-page: 212
  ident: CR26
  article-title: Deep learning reconstruction shows better lung nodule detection for ultra-low-dose chest CT
  publication-title: Radiology
  doi: 10.1148/radiol.210551
– volume: 32
  start-page: 5499
  year: 2022
  end-page: 5507
  ident: CR28
  article-title: Deep learning image reconstruction for improving image quality of contrast-enhanced dual-energy CT in abdomen
  publication-title: Eur Radiol
  doi: 10.1007/s00330-022-08647-0
– ident: CR5
– volume: 34
  start-page: 849
  year: 2014
  end-page: 862
  ident: CR29
  article-title: Methods for clinical evaluation of noise reduction techniques in abdominopelvic CT
  publication-title: Radiographics
  doi: 10.1148/rg.344135128
– volume: 24
  start-page: 1114
  year: 2017
  end-page: 1124
  ident: CR30
  article-title: Iterative reconstructions in reduced-dose CT: which type ensures diagnostic image quality in young oncology patients?
  publication-title: Acad Radiol
  doi: 10.1016/j.acra.2017.02.012
– volume: 30
  start-page: 3951
  year: 2020
  end-page: 3959
  ident: CR7
  article-title: Image quality and dose reduction opportunity of deep learning image reconstruction algorithm for CT: a phantom study
  publication-title: Eur Radiol
  doi: 10.1007/s00330-020-06724-w
– volume: 94
  start-page: 20201086
  year: 2021
  ident: CR12
  article-title: A study of using a deep learning image reconstruction to improve the image quality of extremely low-dose contrast-enhanced abdominal CT for patients with hepatic lesions
  publication-title: Br J Radiol
  doi: 10.1259/bjr.20201086
– volume: 29
  start-page: 6163
  year: 2019
  end-page: 6171
  ident: CR14
  article-title: Deep learning reconstruction improves image quality of abdominal ultra-high-resolution CT
  publication-title: Eur Radiol
  doi: 10.1007/s00330-019-06170-3
– ident: CR24
– volume: 29
  start-page: 2185
  year: 2019
  end-page: 2195
  ident: CR4
  article-title: The evolution of image reconstruction for CT-from filtered back projection to artificial intelligence
  publication-title: Eur Radiol
  doi: 10.1007/s00330-018-5810-7
– volume: 214
  start-page: 566
  year: 2020
  end-page: 573
  ident: CR10
  article-title: Image quality and lesion detection on deep learning reconstruction and iterative reconstruction of submillisievert chest and abdominal CT
  publication-title: AJR Am J Roentgenol
  doi: 10.2214/AJR.19.21809
– ident: 10171_CR6
  doi: 10.1007/s00330-021-07712-4
– volume: 273
  start-page: S45
  year: 2014
  ident: 10171_CR1
  publication-title: Radiology
  doi: 10.1148/radiol.14141356
– volume: 257
  start-page: 158
  year: 2010
  ident: 10171_CR17
  publication-title: Radiology
  doi: 10.1148/radiol.10100047
– volume: 204
  start-page: W384
  year: 2015
  ident: 10171_CR22
  publication-title: AJR Am J Roentgenol
  doi: 10.2214/AJR.14.13241
– volume: 32
  start-page: 5499
  year: 2022
  ident: 10171_CR28
  publication-title: Eur Radiol
  doi: 10.1007/s00330-022-08647-0
– volume: 27
  start-page: 642
  year: 2017
  ident: 10171_CR18
  publication-title: Eur Radiol
  doi: 10.1007/s00330-016-4383-6
– volume: 28
  start-page: 3393
  year: 2018
  ident: 10171_CR16
  publication-title: Eur Radiol
  doi: 10.1007/s00330-018-5313-6
– volume: 42
  start-page: 2279
  year: 2017
  ident: 10171_CR2
  publication-title: Abdom Radiol (NY)
  doi: 10.1007/s00261-017-1140-5
– volume: 27
  start-page: 2055
  year: 2017
  ident: 10171_CR21
  publication-title: Eur Radiol
  doi: 10.1007/s00330-016-4571-4
– ident: 10171_CR27
  doi: 10.1371/journal.pone.0270122
– volume: 290
  start-page: 400
  year: 2019
  ident: 10171_CR31
  publication-title: Radiology
  doi: 10.1148/radiol.2018181657
– volume: 34
  start-page: 849
  year: 2014
  ident: 10171_CR29
  publication-title: Radiographics
  doi: 10.1148/rg.344135128
– volume: 293
  start-page: 491
  year: 2019
  ident: 10171_CR3
  publication-title: Radiology
  doi: 10.1148/radiol.2019191422
– volume: 37
  start-page: 1707
  year: 2018
  ident: 10171_CR19
  publication-title: Clin Nutr
  doi: 10.1016/j.clnu.2017.07.007
– ident: 10171_CR24
  doi: 10.1259/bjr.20201357
– volume: 94
  start-page: 20201086
  year: 2021
  ident: 10171_CR12
  publication-title: Br J Radiol
  doi: 10.1259/bjr.20201086
– volume: 303
  start-page: 90
  year: 2022
  ident: 10171_CR20
  publication-title: Radiology
  doi: 10.1148/radiol.211838
– volume: 46
  start-page: 4238
  year: 2021
  ident: 10171_CR25
  publication-title: Abdom Radiol (NY)
  doi: 10.1007/s00261-021-03111-x
– ident: 10171_CR5
  doi: 10.1007/s00330-020-07358-8
– volume: 141
  start-page: 109808
  year: 2021
  ident: 10171_CR32
  publication-title: Eur J Radiol
  doi: 10.1016/j.ejrad.2021.109808
– volume: 29
  start-page: 2185
  year: 2019
  ident: 10171_CR4
  publication-title: Eur Radiol
  doi: 10.1007/s00330-018-5810-7
– ident: 10171_CR9
  doi: 10.3348/kjr.2020.0116
– volume: 303
  start-page: 202
  year: 2022
  ident: 10171_CR26
  publication-title: Radiology
  doi: 10.1148/radiol.210551
– volume: 32
  start-page: 2921
  year: 2022
  ident: 10171_CR13
  publication-title: Eur Radiol
  doi: 10.1007/s00330-021-08438-z
– volume: 214
  start-page: 566
  year: 2020
  ident: 10171_CR10
  publication-title: AJR Am J Roentgenol
  doi: 10.2214/AJR.19.21809
– volume: 24
  start-page: 1114
  year: 2017
  ident: 10171_CR30
  publication-title: Acad Radiol
  doi: 10.1016/j.acra.2017.02.012
– volume: 12
  start-page: 40
  year: 2021
  ident: 10171_CR15
  publication-title: Insights Imaging
  doi: 10.1186/s13244-021-00980-0
– volume: 32
  start-page: 2620
  year: 2022
  ident: 10171_CR8
  publication-title: Eur Radiol
  doi: 10.1007/s00330-021-08367-x
– volume: 21
  start-page: 146
  year: 2021
  ident: 10171_CR11
  publication-title: BMC Med Imaging
  doi: 10.1186/s12880-021-00677-2
– volume: 30
  start-page: 3951
  year: 2020
  ident: 10171_CR7
  publication-title: Eur Radiol
  doi: 10.1007/s00330-020-06724-w
– ident: 10171_CR23
  doi: 10.2214/AJR.14.13402
– ident: 10171_CR33
  doi: 10.1007/s00330-021-07952-4
– volume: 29
  start-page: 6163
  year: 2019
  ident: 10171_CR14
  publication-title: Eur Radiol
  doi: 10.1007/s00330-019-06170-3
SSID ssj0009147
Score 2.5116913
Snippet Objectives To perform a comprehensive within-subject image quality analysis of abdominal CT examinations reconstructed with DLIR and to evaluate diagnostic...
To perform a comprehensive within-subject image quality analysis of abdominal CT examinations reconstructed with DLIR and to evaluate diagnostic accuracy...
ObjectivesTo perform a comprehensive within-subject image quality analysis of abdominal CT examinations reconstructed with DLIR and to evaluate diagnostic...
SourceID unpaywall
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2384
SubjectTerms Accuracy
Algorithms
Computed Tomography
Deep learning
Diagnostic Radiology
Diagnostic systems
Figure of merit
Image contrast
Image enhancement
Image processing
Image quality
Image reconstruction
Imaging
Internal Medicine
Interventional Radiology
Lesions
Liver
Machine learning
Medical diagnosis
Medical imaging
Medicine
Medicine & Public Health
Metastases
Neuroradiology
Radiology
Signal to noise ratio
Statistical analysis
Ultrasound
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dSxwxEB_sCf14KPbTa1VS8K2GmmwumxWktKJIqYcUBd-WbJLTwrp7Vg-5_74zu9k9S-HwZV-yySaZSTLZmfn9ALaV0S6ZKMGl9ylXKk24NaHgo4yQT_D8CJoSnE_G-vhc_bgYXazAuMuFobDKbk9sNmpfO_pH_kVmaAZmaM6br9MbTqxR5F3tKDRspFbw-w3E2BNYlYSMNYDV74fj018LGF7RUI7hNd7wFJuLaTRNMh3Rmu1yPMM4qang5t-j6j_784Hv9AU8m1VTO7-3ZfngeDpag5fRrmTfWkV4BSuheg1PT6Ln_A1c_azvua9vAyspEoMdnO2x39e4mbA2rXLObOWZbwPvsA2GY539sW7O6gnzIUxZ5Je4jNWam3SPPstseYmzdXd1_RbOjw7PDo55ZFngTiVacJeGRGinFeW4JnjDcJJoqbxzuNgLmTkdRr4wwhmLZbsjG2SRJioLqlDCZDZ5B4OqrsI6MKGtyFxKzk-jZLD4TLU2k2BCcFbKIYhuQnMXIciJCaPMe_DkRgg5CiFvhJCbIXzu60xbAI6lb290csrjYrzNF6ozhE99MS4j8o3YKtQzfMfg2DOC8hnC-1a-_edwDzZGU8lOJ_BF48v6stMrxSO6_mF51z_Cc4n2VBs0tAEDlG_YRHvortiKSv4X0yIBpg
  priority: 102
  providerName: ProQuest
– databaseName: SpringerLINK - Czech Republic Consortium
  dbid: AGYKE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB7RRaLtAUqfC7RyJW7FCDtex-kNIShqS0-sBKfIcWYBNSQrdldo--s7TpxAAaFyycWP-DGeh2bmG4BNZbSLRkpwmecxVyqOuDWY8UHikU9IfqD2Cc5Hv_ThUH0_GZyEpLBJG-3euiRrTt0lu_myYzucZAz3ZCS4eQaLNd5WDxZ3v53-2L8B2xUqDgkyD4_8Vwjd0yxveUVfwvNZObbza1sUtwTPwQoM2yU38Sa_t2fTbNv9uYPm-NQ9vYLloImy3YZ0VmEBy9ewdBR87W_g_Gd1zfNqgqzwsRts7_gru7gk9sOaRMw5s2XO8iZUj-Zg1rnZlXVzVo1YjjhmoSLFWRhW294dXi2zxVl1dTE9v3wLw4P9471DHuoycKciLbiLMRLaaeWzYiOySZz0haxy54g9ZDJxGgd5ZoQzltp2BhZlFkcqQZUpYRIbvYNeWZX4AZjQViQu9u5SoyRa-sZamxEaRGel7INoLyp1AbTc184o0g5uuT7ClI4wrY8wNX340o0ZN5Adj_beaO8_Dc93ksqEbI6EbEdq_tw108Pz3hRbYjWjPob2nnjwnz68b-im-x1xbWO0b9lq7_1m8sfWstUR238sfe1ps6_DC0kaWRN2tAE9um_8SBrVNPsUHtBfWkASww
  priority: 102
  providerName: Springer Nature
Title Low-dose liver CT: image quality and diagnostic accuracy of deep learning image reconstruction algorithm
URI https://link.springer.com/article/10.1007/s00330-023-10171-8
https://www.ncbi.nlm.nih.gov/pubmed/37688618
https://www.proquest.com/docview/2972994958
https://www.proquest.com/docview/2863297418
https://link.springer.com/content/pdf/10.1007/s00330-023-10171-8.pdf
UnpaywallVersion publishedVersion
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1432-1084
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009147
  issn: 1432-1084
  databaseCode: AFBBN
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1432-1084
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0009147
  issn: 1432-1084
  databaseCode: 7X7
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1432-1084
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0009147
  issn: 1432-1084
  databaseCode: BENPR
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1432-1084
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0009147
  issn: 1432-1084
  databaseCode: 8FG
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1432-1084
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009147
  issn: 1432-1084
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1432-1084
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009147
  issn: 1432-1084
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxEB61icTjwLNAoERG4kaddr1er5dbEpJWQKMKNVJ6Wnltp63Y7kZtoir8esb7ojxUgbh4D2N7_RjbM5qZbwDecim0P-ceZcaElPPQp0rahAaRQz7B98MKF-B8OBEHU_5xFsw24EMdC1N4u9cmyTKmwaE0ZcvdhZnvNoFvLgXZHsX3hjqW8qjsIXkT2iJAibwF7enkqH9SwOzheQ6jIh8iSgYMq0texc78uaOf36ffhM4bBtP7cHeVLdT6WqXpjTdp_BBsPZvSFeVrb7VMevrbL0CP_zvdR_CgElpJv-Syx7Bhsydw57Ayyz-Fs8_5NTX5lSWpc_Mgw-P35PwCbypSxmyuicoMMaVXH_ZBlNarS6XXJJ8TY-2CVMkrTqtmhZreQNsSlZ7ml-fLs4stmI5Hx8MDWqVwoJr7wqM6tL4ntOAugNZH9UUzl_PKaI03ScIiLWxgEulpqZC2FyjLktDnkeUJ92Sk_GfQyvLMvgDiCeVFOnSWVcmZVViGQsi5ldZqxVgHvHrjYl3hm7s0G2ncIDMXyxjjMsbFMsayA--aNosS3ePW2ts1P8TVSb-KWYTqSYRqJpLfNGQ8o87wojKbr7COxLlHDieoA89LPmp-hxe8lMJRdmo--NH5bWPZaZjvL4b-8t-qv4J7DIW30kNpG1q43_Y1Cl_LpAub4SzEUo73u9DujweDifvun3wa4Xcwmhx9QepQDLGcsn63OovfAXvjKE8
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED6NTWLwgPhNYYCR4IlZ1I7rOEgTgrGpY22FUCftLTi2uyFlSaGrqv5z_G2cEycdQqp42UseYsdx_J3P55zvPoDXQkkTTQSj3NqYChFHVCuX0V7iM5_g-uGkD3AejmT_RHw57Z1uwO8mFsYfq2x0YqWobWn8P_J3PEEzMEFzXn2Y_qSeNcp7VxsKDR2oFexelWIsBHYcu-UCt3CzvaPPiPcbzg8Pxvt9GlgGqBGRZNTELmLSSOFjPCO0sA33tEzWGBT2jCdGup7NFDNKY1m3px3P4kgkTmSCqURH2O4N2BJ4Czd_W58ORl-_rdL-sorirJugWomx-yFspwre8zRqXYprJvXTglH199L4j717xVd7G7bnxVQvFzrPryyHh3fhTrBjycda8O7Bhivuw81h8NQ_gPNBuaC2nDmS-5MfZH_8nvy4QOVF6jDOJdGFJbY-6IdtEBzb-S9tlqScEOvclAQ-i7PwWLVzb7PdEp2fITqX5xcP4eRaxvsRbBZl4Z4AYVKzxMTe2aoEdxqvsZRq4pRzRnPeAdYMaGpCynPPvJGnbbLmCoQUQUgrEFLVgbftM9M64cfa2jsNTmmY_LN0JaodeNUW47T1vhhduHKOdRR-e-JTB3XgcY1v-zrU-UpJX7LbAL5qfF1fdluh-I-uP13f9Zew3R8PB-ngaHT8DG5xtOXqA0s7sIlYu-doi11mL4LAE_h-3XPsD0KgPM4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JbxMxFH4qRSpwQOwEChgJTtRqvMQLEkKoJWrpIg6tlNvU43FapOlMII2i_DV-Hc-zpQgp4tLLXLyMx997z8_zNoB30igvxpJRnmWaSqkFdSakdGBj5hM8P4KKAc5Hx2rvVH4bDUZr8LuNhYlula1MrAR1Vvr4j3ybW1QDLarzZnvcuEV83x1-nvyksYJUtLS25TRqEjkIizle36af9ncR6_ecD7-e7OzRpsIA9VIoRr0OgimvZIzvFKhdex5LMmXeI6Gn3HoVBllqmDcO2_oDF3iqhbRBppIZ6wTOewtuayFsdCfUI71M-Muq4mZ9iwJF48KbgJ0qbC8WUOtTPC1pZAhGzd-H4j-a7jUr7T24MysmbjF3eX7tIBw-gPuNBku-1CT3ENZC8Qg2jhob_WO4OCznNCungeTR54PsnHwkPy5RbJE6gHNBXJGRrHbxwzmI8372y_kFKcckC2FCmkoW582w6s7e5bklLj9HLK4uLp_A6Y3s9lNYL8oiPAfClGPW62hmNZIHh0-tlBkHE4J3nPeAtRua-CbZeay5kSddmuYKhARBSCoQEtODD92YSZ3qY2XvzRanpGH7abIk0h687ZqRYaMVxhWhnGEfg99uY9KgHjyr8e1eh9LeGBVbtlrAl5OvWstWRxT_sfQXq5f-BjaQs5LD_eODl3CXoxJXeyptwjpCHV6hEnaVvq6oncDZTbPXH3B8Omg
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7RRWrpoW9gC61cqbfiBTuOY_eGaBGqCuqBlegpcmwvoIZkBbtC21_fceIE-hBq1UsuM3b8GHvGmplvAN4KJW0yEYxy5zIqRJZQo3xBUx2QT1B_eBkSnA-P5MFYfDpJT5bgQ5cL00S7dy7JNqchoDRVs-2pm2z3iW-hBNkORX1Dg0gxqkZIvgfLMkWLfADL46Mvu18bmD08z5lu6iGiZcCRXYmYO_Pnjn7WT78Znbccpg_hwbyamsW1KctbOmn_MfhuNm0oyrfRfFaM7PdfgB7_d7pP4FE0WsluK2VPYclXz-D-YXTLP4ezz_U1dfWVJ2UI8yB7x-_J-QXeVKTN2VwQUzni2qg-7IMYa-eXxi5IPSHO-ymJxStOY7Pmmd5D2xJTntaX57Ozixcw3v94vHdAYwkHakUiGbWZT5i0UoQE2gSfL5aHmlfOWrxJCq6t9KkrFLPKIG0nNZ4XWSK0F4VgSptkFQZVXfl1IEwapm0WPKtKcG_wm0mpJl55bw3nQ2DdxuU24puHMhtl3iMzN8uY4zLmzTLmagjv-jbTFt3jTu7NTh7yeNKvcq7xeaLxmYnkNz0Zz2hwvJjK13PkUTh3HXCChrDWylH_O7zglZKBstXJwU3nd41lqxe-vxj6y39j34AVjsZbG6G0CQPcb_8Kja9Z8TqerR_GqyAS
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Low-dose+liver+CT%3A+image+quality+and+diagnostic+accuracy+of+deep+learning+image+reconstruction+algorithm&rft.jtitle=European+radiology&rft.au=Caruso%2C+Damiano&rft.au=De+Santis%2C+Domenico&rft.au=Del+Gaudio%2C+Antonella&rft.au=Guido%2C+Gisella&rft.date=2024-04-01&rft.pub=Springer+Nature+B.V&rft.issn=0938-7994&rft.eissn=1432-1084&rft.volume=34&rft.issue=4&rft.spage=2384&rft.epage=2393&rft_id=info:doi/10.1007%2Fs00330-023-10171-8&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1432-1084&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1432-1084&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1432-1084&client=summon