PROTAX-GPU: a scalable probabilistic taxonomic classification system for DNA barcodes

DNA-based identification is vital for classifying biological specimens, yet methods to quantify the uncertainty of sequence-based taxonomic assignments are scarce. Challenges arise from noisy reference databases, including mislabelled entries and missing taxa. PROTAX addresses these issues with a pr...

Full description

Saved in:
Bibliographic Details
Published inPhilosophical transactions of the Royal Society of London. Series B. Biological sciences Vol. 379; no. 1904; p. 20230124
Main Authors Li, Roy, Ratnasingham, Sujeevan, Zarubiieva, Iuliia, Somervuo, Panu, Taylor, Graham W.
Format Journal Article
LanguageEnglish
Published England The Royal Society 24.06.2024
Subjects
Online AccessGet full text
ISSN0962-8436
1471-2970
1471-2970
DOI10.1098/rstb.2023.0124

Cover

Abstract DNA-based identification is vital for classifying biological specimens, yet methods to quantify the uncertainty of sequence-based taxonomic assignments are scarce. Challenges arise from noisy reference databases, including mislabelled entries and missing taxa. PROTAX addresses these issues with a probabilistic approach to taxonomic classification, advancing on methods that rely solely on sequence similarity. It provides calibrated probabilistic assignments to a partially populated taxonomic hierarchy, accounting for taxa that lack references and incorrect taxonomic annotation. While effective on smaller scales, global application of PROTAX necessitates substantially larger reference libraries, a goal previously hindered by computational barriers. We introduce PROTAX-GPU, a scalable algorithm capable of leveraging the global Barcode of Life Data System (>14 million specimens) as a reference database. Using graphics processing units (GPU) to accelerate similarity and nearest-neighbour operations and the JAX library for Python integration, we achieve over a 1000 × speedup compared with the central processing unit (CPU)-based implementation without compromising PROTAX’s key benefits. PROTAX-GPU marks a significant stride towards real-time DNA barcoding, enabling quicker and more efficient species identification in environmental assessments. This capability opens up new avenues for real-time monitoring and analysis of biodiversity, advancing our ability to understand and respond to ecological dynamics. This article is part of the theme issue ‘Towards a toolkit for global insect biodiversity monitoring’.
AbstractList DNA-based identification is vital for classifying biological specimens, yet methods to quantify the uncertainty of sequence-based taxonomic assignments are scarce. Challenges arise from noisy reference databases, including mislabelled entries and missing taxa. PROTAX addresses these issues with a probabilistic approach to taxonomic classification, advancing on methods that rely solely on sequence similarity. It provides calibrated probabilistic assignments to a partially populated taxonomic hierarchy, accounting for taxa that lack references and incorrect taxonomic annotation. While effective on smaller scales, global application of PROTAX necessitates substantially larger reference libraries, a goal previously hindered by computational barriers. We introduce PROTAX-GPU, a scalable algorithm capable of leveraging the global Barcode of Life Data System (>14 million specimens) as a reference database. Using graphics processing units (GPU) to accelerate similarity and nearest-neighbour operations and the JAX library for Python integration, we achieve over a 1000 × speedup compared with the central processing unit (CPU)-based implementation without compromising PROTAX’s key benefits. PROTAX-GPU marks a significant stride towards real-time DNA barcoding, enabling quicker and more efficient species identification in environmental assessments. This capability opens up new avenues for real-time monitoring and analysis of biodiversity, advancing our ability to understand and respond to ecological dynamics. This article is part of the theme issue ‘Towards a toolkit for global insect biodiversity monitoring’.
DNA-based identification is vital for classifying biological specimens, yet methods to quantify the uncertainty of sequence-based taxonomic assignments are scarce. Challenges arise from noisy reference databases, including mislabelled entries and missing taxa. PROTAX addresses these issues with a probabilistic approach to taxonomic classification, advancing on methods that rely solely on sequence similarity. It provides calibrated probabilistic assignments to a partially populated taxonomic hierarchy, accounting for taxa that lack references and incorrect taxonomic annotation. While effective on smaller scales, global application of PROTAX necessitates substantially larger reference libraries, a goal previously hindered by computational barriers. We introduce PROTAX-GPU, a scalable algorithm capable of leveraging the global Barcode of Life Data System (>14 million specimens) as a reference database. Using graphics processing units (GPU) to accelerate similarity and nearest-neighbour operations and the JAX library for Python integration, we achieve over a 1000 × speedup compared with the central processing unit (CPU)-based implementation without compromising PROTAX's key benefits. PROTAX-GPU marks a significant stride towards real-time DNA barcoding, enabling quicker and more efficient species identification in environmental assessments. This capability opens up new avenues for real-time monitoring and analysis of biodiversity, advancing our ability to understand and respond to ecological dynamics. This article is part of the theme issue 'Towards a toolkit for global insect biodiversity monitoring'.
DNA-based identification is vital for classifying biological specimens, yet methods to quantify the uncertainty of sequence-based taxonomic assignments are scarce. Challenges arise from noisy reference databases, including mislabelled entries and missing taxa. PROTAX addresses these issues with a probabilistic approach to taxonomic classification, advancing on methods that rely solely on sequence similarity. It provides calibrated probabilistic assignments to a partially populated taxonomic hierarchy, accounting for taxa that lack references and incorrect taxonomic annotation. While effective on smaller scales, global application of PROTAX necessitates substantially larger reference libraries, a goal previously hindered by computational barriers. We introduce PROTAX-GPU, a scalable algorithm capable of leveraging the global Barcode of Life Data System (>14 million specimens) as a reference database. Using graphics processing units (GPU) to accelerate similarity and nearest-neighbour operations and the JAX library for Python integration, we achieve over a 1000 × speedup compared with the central processing unit (CPU)-based implementation without compromising PROTAX's key benefits. PROTAX-GPU marks a significant stride towards real-time DNA barcoding, enabling quicker and more efficient species identification in environmental assessments. This capability opens up new avenues for real-time monitoring and analysis of biodiversity, advancing our ability to understand and respond to ecological dynamics. This article is part of the theme issue 'Towards a toolkit for global insect biodiversity monitoring'.DNA-based identification is vital for classifying biological specimens, yet methods to quantify the uncertainty of sequence-based taxonomic assignments are scarce. Challenges arise from noisy reference databases, including mislabelled entries and missing taxa. PROTAX addresses these issues with a probabilistic approach to taxonomic classification, advancing on methods that rely solely on sequence similarity. It provides calibrated probabilistic assignments to a partially populated taxonomic hierarchy, accounting for taxa that lack references and incorrect taxonomic annotation. While effective on smaller scales, global application of PROTAX necessitates substantially larger reference libraries, a goal previously hindered by computational barriers. We introduce PROTAX-GPU, a scalable algorithm capable of leveraging the global Barcode of Life Data System (>14 million specimens) as a reference database. Using graphics processing units (GPU) to accelerate similarity and nearest-neighbour operations and the JAX library for Python integration, we achieve over a 1000 × speedup compared with the central processing unit (CPU)-based implementation without compromising PROTAX's key benefits. PROTAX-GPU marks a significant stride towards real-time DNA barcoding, enabling quicker and more efficient species identification in environmental assessments. This capability opens up new avenues for real-time monitoring and analysis of biodiversity, advancing our ability to understand and respond to ecological dynamics. This article is part of the theme issue 'Towards a toolkit for global insect biodiversity monitoring'.
Author Li, Roy
Ratnasingham, Sujeevan
Zarubiieva, Iuliia
Taylor, Graham W.
Somervuo, Panu
Author_xml – sequence: 1
  givenname: Roy
  surname: Li
  fullname: Li, Roy
  organization: Vector Institute for Artificial Intelligence, Toronto, Canada M5G 0C6, Department of Computer Science, University of Toronto, Toronto, Canada M5S 2E4
– sequence: 2
  givenname: Sujeevan
  surname: Ratnasingham
  fullname: Ratnasingham, Sujeevan
  organization: Centre for Biodiversity Genomics, Guelph, Canada N1G 2W1
– sequence: 3
  givenname: Iuliia
  surname: Zarubiieva
  fullname: Zarubiieva, Iuliia
  organization: Vector Institute for Artificial Intelligence, Toronto, Canada M5G 0C6, School of Engineering, University of Guelph, Guelph, Canada N1G 2W1
– sequence: 4
  givenname: Panu
  surname: Somervuo
  fullname: Somervuo, Panu
  organization: Department of Biosciences, University of Helsinki, Helsinki 00014, Finland
– sequence: 5
  givenname: Graham W.
  orcidid: 0000-0001-5867-3652
  surname: Taylor
  fullname: Taylor, Graham W.
  organization: Vector Institute for Artificial Intelligence, Toronto, Canada M5G 0C6, School of Engineering, University of Guelph, Guelph, Canada N1G 2W1
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38705180$$D View this record in MEDLINE/PubMed
BookMark eNqFkE1v1DAQhq2qqN0WrhyrHLlkO3ac2O4FrVooSBWtUFfiZk28DnXlxIvtBfbfk7DlqxLqaUaa90PzHJH9IQyWkJcU5hSUPI0pt3MGrJoDZXyPzCgXtGRKwD6ZgWpYKXnVHJKjlO4BQNWCH5DDSgqoqYQZWd58vL5dfCovb5ZnBRbJoMfW22IdQ4ut8y5lZ4qM38MQ-nEzHlNynTOYXRiKtE3Z9kUXYnHxYVG0GE1Y2fScPOvQJ_viYR6T5ds3t-fvyqvry_fni6vS8KrOpbTKQmsAVrJjRlrOVV01BmQnobFNZ4SssZYoqQKFnVg1SgI3tUAOpmGmOianu9zNsMbtN_Rer6PrMW41BT0B0hMgPQHSE6DR8XrnWG_a3q6MHXLEP66ATv97Gdyd_hy-akpBAONiTHj1kBDDl41NWfcuGes9DjZskq5GspxVjZikJ3-X_W75hX8U8J3AxJBStJ02Lv8kO3Y7__8n5o9sT3z9AyQMqVU
CitedBy_id crossref_primary_10_1038_s44358_025_00022_3
crossref_primary_10_1098_rstb_2023_0118
crossref_primary_10_1098_rstb_2023_0101
crossref_primary_10_1098_rstb_2023_0124
Cites_doi 10.1111/1755-0998.13008
10.1111/j.1439-0469.1983.tb00285.x
10.1098/rspb.2002.2218
10.3390/d14060463
10.1111/j.1471-8286.2007.01678.x
10.1111/2041-210X.14009
10.1111/1755-0998.13510
10.1093/nar/gkv1276
10.1126/science.1122033
10.1109/ISSCC.2019.8662396
10.1093/sysbio/syaa026
10.1111/2041-210X.14104
10.1098/rstb.2005.1714
10.1093/bioinformatics/btu721
10.1046/j.1365-3008.2001.00201.x
10.3114/fuse.2022.09.04
10.1111/nph.15301
10.1371/journal.pbio.2002231
10.1093/bioinformatics/btw346
10.1093/sysbio/syp027
10.1186/s40537-021-00444-8
10.1371/journal.pbio.1001127
10.1186/s40168-018-0521-5
10.1093/bioinformatics/btad701
10.1098/rstb.2023.0124
10.1371/journal.pone.0066213
ContentType Journal Article
Copyright 2024 The Authors. 2024
Copyright_xml – notice: 2024 The Authors. 2024
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ADTOC
UNPAY
DOI 10.1098/rstb.2023.0124
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Sciences (General)
Biology
DocumentTitleAlternate PROTAX-GPU: a scalable probabilistic taxonomic classification system for DNA barcodes
EISSN 1471-2970
ExternalDocumentID 10.1098/rstb.2023.0124
PMC11070247
38705180
10_1098_rstb_2023_0124
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: ;
  grantid: Food From Thought
– fundername: ;
  grantid: 856506
– fundername: ;
  grantid: Canada CIFAR AI Chairs
– fundername: ;
  grantid: RGPIN-2019-0437
– fundername: ;
  grantid: CRC-2021-00561
GroupedDBID ---
-~X
0R~
29O
2WC
4.4
53G
AACGO
AANCE
AAYXX
ABPLY
ABTLG
ACPRK
ACSFO
ADBBV
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BTFSW
CITATION
DIK
E3Z
EBS
F5P
GX1
H13
HYE
HZ~
JSG
JST
KQ8
MRS
MV1
NSAHA
O9-
OK1
RPM
RRY
TN5
V1E
W8F
YNT
~02
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
AANZV
ABBHK
ABIEJ
ABXSQ
ACHIC
ACMKX
ACQIA
ACRPL
ADNMO
ADQXQ
ADTOC
ADULT
AEUPB
AEXZC
AGPVY
AGQPQ
AJZGM
ALMYZ
AQVQM
AS~
BGBPD
CAG
COF
DCCCD
EJD
HGD
HQ3
HTVGU
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
K-O
MVM
ROL
SA0
UNPAY
WHG
WOQ
ID FETCH-LOGICAL-c435t-8e9e0bc00d8f2c8e449536c08f806e6fc785a58a81909af7d69804c57a40c62c3
IEDL.DBID UNPAY
ISSN 0962-8436
1471-2970
IngestDate Sun Oct 26 03:28:35 EDT 2025
Tue Sep 30 17:08:51 EDT 2025
Thu Jul 10 22:17:11 EDT 2025
Mon Jul 21 05:33:28 EDT 2025
Tue Jul 01 03:25:41 EDT 2025
Thu Apr 24 22:51:40 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1904
Keywords taxonomic classification
machine learning
high-performance computing
DNA barcoding
Language English
License Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and source are credited.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c435t-8e9e0bc00d8f2c8e449536c08f806e6fc785a58a81909af7d69804c57a40c62c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Electronic supplementary material is available online at https://doi.org/10.6084/m9.figshare.c.7159016.
One contribution of 23 to a theme issue ‘Towards a toolkit for global insect biodiversity monitoring’.
ORCID 0000-0001-5867-3652
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1098/rstb.2023.0124
PMID 38705180
PQID 3051423677
PQPubID 23479
ParticipantIDs unpaywall_primary_10_1098_rstb_2023_0124
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11070247
proquest_miscellaneous_3051423677
pubmed_primary_38705180
crossref_citationtrail_10_1098_rstb_2023_0124
crossref_primary_10_1098_rstb_2023_0124
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-06-24
PublicationDateYYYYMMDD 2024-06-24
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-24
  day: 24
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Philosophical transactions of the Royal Society of London. Series B. Biological sciences
PublicationTitleAlternate Philos Trans R Soc Lond B Biol Sci
PublicationYear 2024
Publisher The Royal Society
Publisher_xml – name: The Royal Society
References e_1_3_7_20_2
e_1_3_7_22_2
e_1_3_7_21_2
e_1_3_7_24_2
e_1_3_7_23_2
e_1_3_7_26_2
e_1_3_7_25_2
e_1_3_7_28_2
e_1_3_7_27_2
e_1_3_7_9_2
Griswold C (e_1_3_7_5_2) 2009; 215
e_1_3_7_31_2
Ruppert KM (e_1_3_7_29_2) 2019; 17
e_1_3_7_30_2
e_1_3_7_10_2
e_1_3_7_11_2
e_1_3_7_12_2
e_1_3_7_13_2
e_1_3_7_14_2
e_1_3_7_15_2
e_1_3_7_16_2
e_1_3_7_17_2
e_1_3_7_18_2
e_1_3_7_19_2
e_1_3_7_2_2
e_1_3_7_4_2
e_1_3_7_3_2
e_1_3_7_6_2
e_1_3_7_8_2
e_1_3_7_7_2
References_xml – ident: e_1_3_7_12_2
  doi: 10.1111/1755-0998.13008
– ident: e_1_3_7_31_2
– volume: 215
  start-page: 77
  year: 2009
  ident: e_1_3_7_5_2
  article-title: An extraordinary new family of spiders from caves in the Pacific Northwest (Araneae, Trogloraptoridae, new family)
  publication-title: Zookeys
– ident: e_1_3_7_6_2
  doi: 10.1111/j.1439-0469.1983.tb00285.x
– ident: e_1_3_7_10_2
  doi: 10.1098/rspb.2002.2218
– ident: e_1_3_7_28_2
  doi: 10.3390/d14060463
– ident: e_1_3_7_8_2
  doi: 10.1111/j.1471-8286.2007.01678.x
– volume: 17
  start-page: e00547
  year: 2019
  ident: e_1_3_7_29_2
  article-title: Past, present, and future perspectives of environmental DNA (eDNA) metabarcoding: a systematic review in methods, monitoring, and applications of global eDNA
  publication-title: GECCO
– ident: e_1_3_7_18_2
  doi: 10.1111/2041-210X.14009
– ident: e_1_3_7_17_2
  doi: 10.1111/1755-0998.13510
– ident: e_1_3_7_9_2
  doi: 10.1093/nar/gkv1276
– ident: e_1_3_7_11_2
  doi: 10.1126/science.1122033
– ident: e_1_3_7_25_2
  doi: 10.1109/ISSCC.2019.8662396
– ident: e_1_3_7_3_2
  doi: 10.1093/sysbio/syaa026
– ident: e_1_3_7_20_2
  doi: 10.1111/2041-210X.14104
– ident: e_1_3_7_23_2
  doi: 10.1098/rstb.2005.1714
– ident: e_1_3_7_13_2
  doi: 10.1093/bioinformatics/btu721
– ident: e_1_3_7_21_2
  doi: 10.1046/j.1365-3008.2001.00201.x
– ident: e_1_3_7_4_2
  doi: 10.3114/fuse.2022.09.04
– ident: e_1_3_7_16_2
  doi: 10.1111/nph.15301
– ident: e_1_3_7_7_2
  doi: 10.1371/journal.pbio.2002231
– ident: e_1_3_7_14_2
  doi: 10.1093/bioinformatics/btw346
– ident: e_1_3_7_22_2
  doi: 10.1093/sysbio/syp027
– ident: e_1_3_7_24_2
  doi: 10.1186/s40537-021-00444-8
– ident: e_1_3_7_2_2
  doi: 10.1371/journal.pbio.1001127
– ident: e_1_3_7_15_2
  doi: 10.1186/s40168-018-0521-5
– ident: e_1_3_7_27_2
  doi: 10.1093/bioinformatics/btad701
– ident: e_1_3_7_30_2
  doi: 10.1098/rstb.2023.0124
– ident: e_1_3_7_19_2
  doi: 10.1371/journal.pone.0066213
– ident: e_1_3_7_26_2
SSID ssj0009574
Score 2.46565
Snippet DNA-based identification is vital for classifying biological specimens, yet methods to quantify the uncertainty of sequence-based taxonomic assignments are...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 20230124
SubjectTerms Algorithms
Animals
Classification - methods
Computer Graphics
DNA Barcoding, Taxonomic - methods
Title PROTAX-GPU: a scalable probabilistic taxonomic classification system for DNA barcodes
URI https://www.ncbi.nlm.nih.gov/pubmed/38705180
https://www.proquest.com/docview/3051423677
https://pubmed.ncbi.nlm.nih.gov/PMC11070247
https://doi.org/10.1098/rstb.2023.0124
UnpaywallVersion publishedVersion
Volume 379
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1471-2970
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009574
  issn: 1471-2970
  databaseCode: KQ8
  dateStart: 18870101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1471-2970
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009574
  issn: 1471-2970
  databaseCode: KQ8
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVBFR
  databaseName: Free Medical Journals - Free Access to All
  customDbUrl:
  eissn: 1471-2970
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0009574
  issn: 1471-2970
  databaseCode: DIK
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1471-2970
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009574
  issn: 1471-2970
  databaseCode: GX1
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1471-2970
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0009574
  issn: 1471-2970
  databaseCode: RPM
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED9BJz5egJWv8jEZCYnx4OIljuPwVgHbAFEqtEjdU2Q7jjZRpRNtBeOv5y5OI7oJjTxFysVxfD77Z93d7wBe2tLGmZPkdLeSS5sKbqKs5LbyqVZOeWeaaIuxOszlp2kybQNkKRdmw3-f6TcIgeyQSnwPcSWV12FLJYi5e7CVjyej44ZIT6FJyzikEaV7PMpS0bEzXmxgc_e5BCkvR0beWtVn5vynmc3-2nb278LBusMh2uT7cIWfcb8vcDle_Uf34E6LPNkoTJVtuObrPtwItSjP-3DzS-tl78N2a_ALttuyUr--D_nk29ej0ZQfTPK3zLAF6payrhhVpGlYeonwmS3Nr5DozBzBcopDalTPAmM0Q4jM3o9HzKJ9zUu_eAD5_oejd4e8rcnAUaHJkmufeWGdEKWuIqe9pPhU5YSutFCeEod0YhJtCGhkpkpLlWkhXZIaKZyKXPwQevW89o-B2VLgS3FW4SUTF2nn09ilTkSVp-pnA-BrXRWuJSynuhmzIjjOdUFDWdBQFjSUA3jVyZ8Fqo5_Sr5Yq75AayIXian9fLUoYqKDJ1K7dACPwlTo2opxaUv2tBiA3pgknQAxdW8-qU9PGsZuOmQjGMJGd7v5dEUfn_y_6FO4jfeSAtgi-Qx6yx8r_xyh0tLu4CHh4-ed1lr-AMZ-DwI
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9swED-6lK19WddsbbMvNBise1Cm2rIk7y2sXwyWhVFD9mQkWaalwSlNQtf99dNZjllaRucng8-yrLuTf-bufgfw3hQmTi3HoLvhlBvJqI7SgprSSSWscFbX2RZDcZrxr-Nk3CTIYi3MSvw-VZ88BDJ9bPHd9zspfwTrIvGYuwPr2XA0-FkT6Qnv0jwOZUTygEapZC07490BVr8-9yDl_czIjUV1pW9v9GTy12fneAtOlhMO2SaX_YV_jP19h8vx4Td6Bk8b5EkGwVS2Yc1VXXgcelHeduHJtybK3oXtxuFnZL9hpf74HLLRj-9ngzE9GWWfiSYzr1usuiLYkaZm6UXCZzLXv0KhM7EIyzEPqVY9CYzRxENkcjgcEOP9a1q42QvIjo_OvpzSpicD9QpN5lS51DFjGStUGVnlOOanCstUqZhwWDikEp0ojUAj1aUsRKoYt4nUnFkR2XgHOtW0cntATMH8TXFa-oMnNlLWydhKy6LSYfezHtClrnLbEJZj34xJHgLnKselzHEpc1zKHnxo5a8CVcc_Jd8tVZ97b8IQia7cdDHLY6SDR1I72YPdYArtWLHf2pIDxXqgVoykFUCm7tUr1cV5zdiNP9keDPlB91t7emCOL_9f9BVs-nOOCWwRfw2d-fXCvfFQaW7eNn7yB3I3Dgk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PROTAX-GPU%3A+a+scalable+probabilistic+taxonomic+classification+system+for+DNA+barcodes&rft.jtitle=Philosophical+transactions+of+the+Royal+Society+of+London.+Series+B.+Biological+sciences&rft.au=Li%2C+Roy&rft.au=Ratnasingham%2C+Sujeevan&rft.au=Zarubiieva%2C+Iuliia&rft.au=Somervuo%2C+Panu&rft.date=2024-06-24&rft.pub=The+Royal+Society&rft.issn=0962-8436&rft.eissn=1471-2970&rft.volume=379&rft.issue=1904&rft_id=info:doi/10.1098%2Frstb.2023.0124&rft.externalDocID=PMC11070247
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0962-8436&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0962-8436&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0962-8436&client=summon