PROTAX-GPU: a scalable probabilistic taxonomic classification system for DNA barcodes
DNA-based identification is vital for classifying biological specimens, yet methods to quantify the uncertainty of sequence-based taxonomic assignments are scarce. Challenges arise from noisy reference databases, including mislabelled entries and missing taxa. PROTAX addresses these issues with a pr...
Saved in:
| Published in | Philosophical transactions of the Royal Society of London. Series B. Biological sciences Vol. 379; no. 1904; p. 20230124 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
England
The Royal Society
24.06.2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0962-8436 1471-2970 1471-2970 |
| DOI | 10.1098/rstb.2023.0124 |
Cover
| Abstract | DNA-based identification is vital for classifying biological specimens, yet methods to quantify the uncertainty of sequence-based taxonomic assignments are scarce. Challenges arise from noisy reference databases, including mislabelled entries and missing taxa. PROTAX addresses these issues with a probabilistic approach to taxonomic classification, advancing on methods that rely solely on sequence similarity. It provides calibrated probabilistic assignments to a partially populated taxonomic hierarchy, accounting for taxa that lack references and incorrect taxonomic annotation. While effective on smaller scales, global application of PROTAX necessitates substantially larger reference libraries, a goal previously hindered by computational barriers. We introduce PROTAX-GPU, a scalable algorithm capable of leveraging the global Barcode of Life Data System (>14 million specimens) as a reference database. Using graphics processing units (GPU) to accelerate similarity and nearest-neighbour operations and the JAX library for Python integration, we achieve over a 1000 × speedup compared with the central processing unit (CPU)-based implementation without compromising PROTAX’s key benefits. PROTAX-GPU marks a significant stride towards real-time DNA barcoding, enabling quicker and more efficient species identification in environmental assessments. This capability opens up new avenues for real-time monitoring and analysis of biodiversity, advancing our ability to understand and respond to ecological dynamics.
This article is part of the theme issue ‘Towards a toolkit for global insect biodiversity monitoring’. |
|---|---|
| AbstractList | DNA-based identification is vital for classifying biological specimens, yet methods to quantify the uncertainty of sequence-based taxonomic assignments are scarce. Challenges arise from noisy reference databases, including mislabelled entries and missing taxa. PROTAX addresses these issues with a probabilistic approach to taxonomic classification, advancing on methods that rely solely on sequence similarity. It provides calibrated probabilistic assignments to a partially populated taxonomic hierarchy, accounting for taxa that lack references and incorrect taxonomic annotation. While effective on smaller scales, global application of PROTAX necessitates substantially larger reference libraries, a goal previously hindered by computational barriers. We introduce PROTAX-GPU, a scalable algorithm capable of leveraging the global Barcode of Life Data System (>14 million specimens) as a reference database. Using graphics processing units (GPU) to accelerate similarity and nearest-neighbour operations and the JAX library for Python integration, we achieve over a 1000 × speedup compared with the central processing unit (CPU)-based implementation without compromising PROTAX’s key benefits. PROTAX-GPU marks a significant stride towards real-time DNA barcoding, enabling quicker and more efficient species identification in environmental assessments. This capability opens up new avenues for real-time monitoring and analysis of biodiversity, advancing our ability to understand and respond to ecological dynamics.
This article is part of the theme issue ‘Towards a toolkit for global insect biodiversity monitoring’. DNA-based identification is vital for classifying biological specimens, yet methods to quantify the uncertainty of sequence-based taxonomic assignments are scarce. Challenges arise from noisy reference databases, including mislabelled entries and missing taxa. PROTAX addresses these issues with a probabilistic approach to taxonomic classification, advancing on methods that rely solely on sequence similarity. It provides calibrated probabilistic assignments to a partially populated taxonomic hierarchy, accounting for taxa that lack references and incorrect taxonomic annotation. While effective on smaller scales, global application of PROTAX necessitates substantially larger reference libraries, a goal previously hindered by computational barriers. We introduce PROTAX-GPU, a scalable algorithm capable of leveraging the global Barcode of Life Data System (>14 million specimens) as a reference database. Using graphics processing units (GPU) to accelerate similarity and nearest-neighbour operations and the JAX library for Python integration, we achieve over a 1000 × speedup compared with the central processing unit (CPU)-based implementation without compromising PROTAX's key benefits. PROTAX-GPU marks a significant stride towards real-time DNA barcoding, enabling quicker and more efficient species identification in environmental assessments. This capability opens up new avenues for real-time monitoring and analysis of biodiversity, advancing our ability to understand and respond to ecological dynamics. This article is part of the theme issue 'Towards a toolkit for global insect biodiversity monitoring'. DNA-based identification is vital for classifying biological specimens, yet methods to quantify the uncertainty of sequence-based taxonomic assignments are scarce. Challenges arise from noisy reference databases, including mislabelled entries and missing taxa. PROTAX addresses these issues with a probabilistic approach to taxonomic classification, advancing on methods that rely solely on sequence similarity. It provides calibrated probabilistic assignments to a partially populated taxonomic hierarchy, accounting for taxa that lack references and incorrect taxonomic annotation. While effective on smaller scales, global application of PROTAX necessitates substantially larger reference libraries, a goal previously hindered by computational barriers. We introduce PROTAX-GPU, a scalable algorithm capable of leveraging the global Barcode of Life Data System (>14 million specimens) as a reference database. Using graphics processing units (GPU) to accelerate similarity and nearest-neighbour operations and the JAX library for Python integration, we achieve over a 1000 × speedup compared with the central processing unit (CPU)-based implementation without compromising PROTAX's key benefits. PROTAX-GPU marks a significant stride towards real-time DNA barcoding, enabling quicker and more efficient species identification in environmental assessments. This capability opens up new avenues for real-time monitoring and analysis of biodiversity, advancing our ability to understand and respond to ecological dynamics. This article is part of the theme issue 'Towards a toolkit for global insect biodiversity monitoring'.DNA-based identification is vital for classifying biological specimens, yet methods to quantify the uncertainty of sequence-based taxonomic assignments are scarce. Challenges arise from noisy reference databases, including mislabelled entries and missing taxa. PROTAX addresses these issues with a probabilistic approach to taxonomic classification, advancing on methods that rely solely on sequence similarity. It provides calibrated probabilistic assignments to a partially populated taxonomic hierarchy, accounting for taxa that lack references and incorrect taxonomic annotation. While effective on smaller scales, global application of PROTAX necessitates substantially larger reference libraries, a goal previously hindered by computational barriers. We introduce PROTAX-GPU, a scalable algorithm capable of leveraging the global Barcode of Life Data System (>14 million specimens) as a reference database. Using graphics processing units (GPU) to accelerate similarity and nearest-neighbour operations and the JAX library for Python integration, we achieve over a 1000 × speedup compared with the central processing unit (CPU)-based implementation without compromising PROTAX's key benefits. PROTAX-GPU marks a significant stride towards real-time DNA barcoding, enabling quicker and more efficient species identification in environmental assessments. This capability opens up new avenues for real-time monitoring and analysis of biodiversity, advancing our ability to understand and respond to ecological dynamics. This article is part of the theme issue 'Towards a toolkit for global insect biodiversity monitoring'. |
| Author | Li, Roy Ratnasingham, Sujeevan Zarubiieva, Iuliia Taylor, Graham W. Somervuo, Panu |
| Author_xml | – sequence: 1 givenname: Roy surname: Li fullname: Li, Roy organization: Vector Institute for Artificial Intelligence, Toronto, Canada M5G 0C6, Department of Computer Science, University of Toronto, Toronto, Canada M5S 2E4 – sequence: 2 givenname: Sujeevan surname: Ratnasingham fullname: Ratnasingham, Sujeevan organization: Centre for Biodiversity Genomics, Guelph, Canada N1G 2W1 – sequence: 3 givenname: Iuliia surname: Zarubiieva fullname: Zarubiieva, Iuliia organization: Vector Institute for Artificial Intelligence, Toronto, Canada M5G 0C6, School of Engineering, University of Guelph, Guelph, Canada N1G 2W1 – sequence: 4 givenname: Panu surname: Somervuo fullname: Somervuo, Panu organization: Department of Biosciences, University of Helsinki, Helsinki 00014, Finland – sequence: 5 givenname: Graham W. orcidid: 0000-0001-5867-3652 surname: Taylor fullname: Taylor, Graham W. organization: Vector Institute for Artificial Intelligence, Toronto, Canada M5G 0C6, School of Engineering, University of Guelph, Guelph, Canada N1G 2W1 |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38705180$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkE1v1DAQhq2qqN0WrhyrHLlkO3ac2O4FrVooSBWtUFfiZk28DnXlxIvtBfbfk7DlqxLqaUaa90PzHJH9IQyWkJcU5hSUPI0pt3MGrJoDZXyPzCgXtGRKwD6ZgWpYKXnVHJKjlO4BQNWCH5DDSgqoqYQZWd58vL5dfCovb5ZnBRbJoMfW22IdQ4ut8y5lZ4qM38MQ-nEzHlNynTOYXRiKtE3Z9kUXYnHxYVG0GE1Y2fScPOvQJ_viYR6T5ds3t-fvyqvry_fni6vS8KrOpbTKQmsAVrJjRlrOVV01BmQnobFNZ4SssZYoqQKFnVg1SgI3tUAOpmGmOianu9zNsMbtN_Rer6PrMW41BT0B0hMgPQHSE6DR8XrnWG_a3q6MHXLEP66ATv97Gdyd_hy-akpBAONiTHj1kBDDl41NWfcuGes9DjZskq5GspxVjZikJ3-X_W75hX8U8J3AxJBStJ02Lv8kO3Y7__8n5o9sT3z9AyQMqVU |
| CitedBy_id | crossref_primary_10_1038_s44358_025_00022_3 crossref_primary_10_1098_rstb_2023_0118 crossref_primary_10_1098_rstb_2023_0101 crossref_primary_10_1098_rstb_2023_0124 |
| Cites_doi | 10.1111/1755-0998.13008 10.1111/j.1439-0469.1983.tb00285.x 10.1098/rspb.2002.2218 10.3390/d14060463 10.1111/j.1471-8286.2007.01678.x 10.1111/2041-210X.14009 10.1111/1755-0998.13510 10.1093/nar/gkv1276 10.1126/science.1122033 10.1109/ISSCC.2019.8662396 10.1093/sysbio/syaa026 10.1111/2041-210X.14104 10.1098/rstb.2005.1714 10.1093/bioinformatics/btu721 10.1046/j.1365-3008.2001.00201.x 10.3114/fuse.2022.09.04 10.1111/nph.15301 10.1371/journal.pbio.2002231 10.1093/bioinformatics/btw346 10.1093/sysbio/syp027 10.1186/s40537-021-00444-8 10.1371/journal.pbio.1001127 10.1186/s40168-018-0521-5 10.1093/bioinformatics/btad701 10.1098/rstb.2023.0124 10.1371/journal.pone.0066213 |
| ContentType | Journal Article |
| Copyright | 2024 The Authors. 2024 |
| Copyright_xml | – notice: 2024 The Authors. 2024 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM ADTOC UNPAY |
| DOI | 10.1098/rstb.2023.0124 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | CrossRef MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Sciences (General) Biology |
| DocumentTitleAlternate | PROTAX-GPU: a scalable probabilistic taxonomic classification system for DNA barcodes |
| EISSN | 1471-2970 |
| ExternalDocumentID | 10.1098/rstb.2023.0124 PMC11070247 38705180 10_1098_rstb_2023_0124 |
| Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: ; grantid: Food From Thought – fundername: ; grantid: 856506 – fundername: ; grantid: Canada CIFAR AI Chairs – fundername: ; grantid: RGPIN-2019-0437 – fundername: ; grantid: CRC-2021-00561 |
| GroupedDBID | --- -~X 0R~ 29O 2WC 4.4 53G AACGO AANCE AAYXX ABPLY ABTLG ACPRK ACSFO ADBBV AFRAH ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BTFSW CITATION DIK E3Z EBS F5P GX1 H13 HYE HZ~ JSG JST KQ8 MRS MV1 NSAHA O9- OK1 RPM RRY TN5 V1E W8F YNT ~02 CGR CUY CVF ECM EIF NPM 7X8 5PM AANZV ABBHK ABIEJ ABXSQ ACHIC ACMKX ACQIA ACRPL ADNMO ADQXQ ADTOC ADULT AEUPB AEXZC AGPVY AGQPQ AJZGM ALMYZ AQVQM AS~ BGBPD CAG COF DCCCD EJD HGD HQ3 HTVGU IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM K-O MVM ROL SA0 UNPAY WHG WOQ |
| ID | FETCH-LOGICAL-c435t-8e9e0bc00d8f2c8e449536c08f806e6fc785a58a81909af7d69804c57a40c62c3 |
| IEDL.DBID | UNPAY |
| ISSN | 0962-8436 1471-2970 |
| IngestDate | Sun Oct 26 03:28:35 EDT 2025 Tue Sep 30 17:08:51 EDT 2025 Thu Jul 10 22:17:11 EDT 2025 Mon Jul 21 05:33:28 EDT 2025 Tue Jul 01 03:25:41 EDT 2025 Thu Apr 24 22:51:40 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1904 |
| Keywords | taxonomic classification machine learning high-performance computing DNA barcoding |
| Language | English |
| License | Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and source are credited. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c435t-8e9e0bc00d8f2c8e449536c08f806e6fc785a58a81909af7d69804c57a40c62c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Electronic supplementary material is available online at https://doi.org/10.6084/m9.figshare.c.7159016. One contribution of 23 to a theme issue ‘Towards a toolkit for global insect biodiversity monitoring’. |
| ORCID | 0000-0001-5867-3652 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.1098/rstb.2023.0124 |
| PMID | 38705180 |
| PQID | 3051423677 |
| PQPubID | 23479 |
| ParticipantIDs | unpaywall_primary_10_1098_rstb_2023_0124 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11070247 proquest_miscellaneous_3051423677 pubmed_primary_38705180 crossref_citationtrail_10_1098_rstb_2023_0124 crossref_primary_10_1098_rstb_2023_0124 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-06-24 |
| PublicationDateYYYYMMDD | 2024-06-24 |
| PublicationDate_xml | – month: 06 year: 2024 text: 2024-06-24 day: 24 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Philosophical transactions of the Royal Society of London. Series B. Biological sciences |
| PublicationTitleAlternate | Philos Trans R Soc Lond B Biol Sci |
| PublicationYear | 2024 |
| Publisher | The Royal Society |
| Publisher_xml | – name: The Royal Society |
| References | e_1_3_7_20_2 e_1_3_7_22_2 e_1_3_7_21_2 e_1_3_7_24_2 e_1_3_7_23_2 e_1_3_7_26_2 e_1_3_7_25_2 e_1_3_7_28_2 e_1_3_7_27_2 e_1_3_7_9_2 Griswold C (e_1_3_7_5_2) 2009; 215 e_1_3_7_31_2 Ruppert KM (e_1_3_7_29_2) 2019; 17 e_1_3_7_30_2 e_1_3_7_10_2 e_1_3_7_11_2 e_1_3_7_12_2 e_1_3_7_13_2 e_1_3_7_14_2 e_1_3_7_15_2 e_1_3_7_16_2 e_1_3_7_17_2 e_1_3_7_18_2 e_1_3_7_19_2 e_1_3_7_2_2 e_1_3_7_4_2 e_1_3_7_3_2 e_1_3_7_6_2 e_1_3_7_8_2 e_1_3_7_7_2 |
| References_xml | – ident: e_1_3_7_12_2 doi: 10.1111/1755-0998.13008 – ident: e_1_3_7_31_2 – volume: 215 start-page: 77 year: 2009 ident: e_1_3_7_5_2 article-title: An extraordinary new family of spiders from caves in the Pacific Northwest (Araneae, Trogloraptoridae, new family) publication-title: Zookeys – ident: e_1_3_7_6_2 doi: 10.1111/j.1439-0469.1983.tb00285.x – ident: e_1_3_7_10_2 doi: 10.1098/rspb.2002.2218 – ident: e_1_3_7_28_2 doi: 10.3390/d14060463 – ident: e_1_3_7_8_2 doi: 10.1111/j.1471-8286.2007.01678.x – volume: 17 start-page: e00547 year: 2019 ident: e_1_3_7_29_2 article-title: Past, present, and future perspectives of environmental DNA (eDNA) metabarcoding: a systematic review in methods, monitoring, and applications of global eDNA publication-title: GECCO – ident: e_1_3_7_18_2 doi: 10.1111/2041-210X.14009 – ident: e_1_3_7_17_2 doi: 10.1111/1755-0998.13510 – ident: e_1_3_7_9_2 doi: 10.1093/nar/gkv1276 – ident: e_1_3_7_11_2 doi: 10.1126/science.1122033 – ident: e_1_3_7_25_2 doi: 10.1109/ISSCC.2019.8662396 – ident: e_1_3_7_3_2 doi: 10.1093/sysbio/syaa026 – ident: e_1_3_7_20_2 doi: 10.1111/2041-210X.14104 – ident: e_1_3_7_23_2 doi: 10.1098/rstb.2005.1714 – ident: e_1_3_7_13_2 doi: 10.1093/bioinformatics/btu721 – ident: e_1_3_7_21_2 doi: 10.1046/j.1365-3008.2001.00201.x – ident: e_1_3_7_4_2 doi: 10.3114/fuse.2022.09.04 – ident: e_1_3_7_16_2 doi: 10.1111/nph.15301 – ident: e_1_3_7_7_2 doi: 10.1371/journal.pbio.2002231 – ident: e_1_3_7_14_2 doi: 10.1093/bioinformatics/btw346 – ident: e_1_3_7_22_2 doi: 10.1093/sysbio/syp027 – ident: e_1_3_7_24_2 doi: 10.1186/s40537-021-00444-8 – ident: e_1_3_7_2_2 doi: 10.1371/journal.pbio.1001127 – ident: e_1_3_7_15_2 doi: 10.1186/s40168-018-0521-5 – ident: e_1_3_7_27_2 doi: 10.1093/bioinformatics/btad701 – ident: e_1_3_7_30_2 doi: 10.1098/rstb.2023.0124 – ident: e_1_3_7_19_2 doi: 10.1371/journal.pone.0066213 – ident: e_1_3_7_26_2 |
| SSID | ssj0009574 |
| Score | 2.46565 |
| Snippet | DNA-based identification is vital for classifying biological specimens, yet methods to quantify the uncertainty of sequence-based taxonomic assignments are... |
| SourceID | unpaywall pubmedcentral proquest pubmed crossref |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 20230124 |
| SubjectTerms | Algorithms Animals Classification - methods Computer Graphics DNA Barcoding, Taxonomic - methods |
| Title | PROTAX-GPU: a scalable probabilistic taxonomic classification system for DNA barcodes |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/38705180 https://www.proquest.com/docview/3051423677 https://pubmed.ncbi.nlm.nih.gov/PMC11070247 https://doi.org/10.1098/rstb.2023.0124 |
| UnpaywallVersion | publishedVersion |
| Volume | 379 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1471-2970 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009574 issn: 1471-2970 databaseCode: KQ8 dateStart: 18870101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1471-2970 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009574 issn: 1471-2970 databaseCode: KQ8 dateStart: 19970101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVBFR databaseName: Free Medical Journals - Free Access to All customDbUrl: eissn: 1471-2970 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0009574 issn: 1471-2970 databaseCode: DIK dateStart: 20010101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1471-2970 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009574 issn: 1471-2970 databaseCode: GX1 dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1471-2970 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0009574 issn: 1471-2970 databaseCode: RPM dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED9BJz5egJWv8jEZCYnx4OIljuPwVgHbAFEqtEjdU2Q7jjZRpRNtBeOv5y5OI7oJjTxFysVxfD77Z93d7wBe2tLGmZPkdLeSS5sKbqKs5LbyqVZOeWeaaIuxOszlp2kybQNkKRdmw3-f6TcIgeyQSnwPcSWV12FLJYi5e7CVjyej44ZIT6FJyzikEaV7PMpS0bEzXmxgc_e5BCkvR0beWtVn5vynmc3-2nb278LBusMh2uT7cIWfcb8vcDle_Uf34E6LPNkoTJVtuObrPtwItSjP-3DzS-tl78N2a_ALttuyUr--D_nk29ej0ZQfTPK3zLAF6payrhhVpGlYeonwmS3Nr5DozBzBcopDalTPAmM0Q4jM3o9HzKJ9zUu_eAD5_oejd4e8rcnAUaHJkmufeWGdEKWuIqe9pPhU5YSutFCeEod0YhJtCGhkpkpLlWkhXZIaKZyKXPwQevW89o-B2VLgS3FW4SUTF2nn09ilTkSVp-pnA-BrXRWuJSynuhmzIjjOdUFDWdBQFjSUA3jVyZ8Fqo5_Sr5Yq75AayIXian9fLUoYqKDJ1K7dACPwlTo2opxaUv2tBiA3pgknQAxdW8-qU9PGsZuOmQjGMJGd7v5dEUfn_y_6FO4jfeSAtgi-Qx6yx8r_xyh0tLu4CHh4-ed1lr-AMZ-DwI |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9swED-6lK19WddsbbMvNBise1Cm2rIk7y2sXwyWhVFD9mQkWaalwSlNQtf99dNZjllaRucng8-yrLuTf-bufgfw3hQmTi3HoLvhlBvJqI7SgprSSSWscFbX2RZDcZrxr-Nk3CTIYi3MSvw-VZ88BDJ9bPHd9zspfwTrIvGYuwPr2XA0-FkT6Qnv0jwOZUTygEapZC07490BVr8-9yDl_czIjUV1pW9v9GTy12fneAtOlhMO2SaX_YV_jP19h8vx4Td6Bk8b5EkGwVS2Yc1VXXgcelHeduHJtybK3oXtxuFnZL9hpf74HLLRj-9ngzE9GWWfiSYzr1usuiLYkaZm6UXCZzLXv0KhM7EIyzEPqVY9CYzRxENkcjgcEOP9a1q42QvIjo_OvpzSpicD9QpN5lS51DFjGStUGVnlOOanCstUqZhwWDikEp0ojUAj1aUsRKoYt4nUnFkR2XgHOtW0cntATMH8TXFa-oMnNlLWydhKy6LSYfezHtClrnLbEJZj34xJHgLnKselzHEpc1zKHnxo5a8CVcc_Jd8tVZ97b8IQia7cdDHLY6SDR1I72YPdYArtWLHf2pIDxXqgVoykFUCm7tUr1cV5zdiNP9keDPlB91t7emCOL_9f9BVs-nOOCWwRfw2d-fXCvfFQaW7eNn7yB3I3Dgk |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PROTAX-GPU%3A+a+scalable+probabilistic+taxonomic+classification+system+for+DNA+barcodes&rft.jtitle=Philosophical+transactions+of+the+Royal+Society+of+London.+Series+B.+Biological+sciences&rft.au=Li%2C+Roy&rft.au=Ratnasingham%2C+Sujeevan&rft.au=Zarubiieva%2C+Iuliia&rft.au=Somervuo%2C+Panu&rft.date=2024-06-24&rft.pub=The+Royal+Society&rft.issn=0962-8436&rft.eissn=1471-2970&rft.volume=379&rft.issue=1904&rft_id=info:doi/10.1098%2Frstb.2023.0124&rft.externalDocID=PMC11070247 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0962-8436&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0962-8436&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0962-8436&client=summon |