Explainable artificial intelligence in skin cancer recognition: A systematic review
Due to their ability to solve complex problems, deep neural networks (DNNs) are becoming increasingly popular in medical applications. However, decision-making by such algorithms is essentially a black-box process that renders it difficult for physicians to judge whether the decisions are reliable....
Saved in:
Published in | European journal of cancer (1990) Vol. 167; pp. 54 - 69 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.05.2022
Elsevier Science Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 0959-8049 1879-0852 1879-0852 |
DOI | 10.1016/j.ejca.2022.02.025 |
Cover
Abstract | Due to their ability to solve complex problems, deep neural networks (DNNs) are becoming increasingly popular in medical applications. However, decision-making by such algorithms is essentially a black-box process that renders it difficult for physicians to judge whether the decisions are reliable. The use of explainable artificial intelligence (XAI) is often suggested as a solution to this problem.
We investigate how XAI is used for skin cancer detection: how is it used during the development of new DNNs? What kinds of visualisations are commonly used? Are there systematic evaluations of XAI with dermatologists or dermatopathologists?
Google Scholar, PubMed, IEEE Explore, Science Direct and Scopus were searched for peer-reviewed studies published between January 2017 and October 2021 applying XAI to dermatological images: the search terms histopathological image, whole-slide image, clinical image, dermoscopic image, skin, dermatology, explainable, interpretable and XAI were used in various combinations. Only studies concerned with skin cancer were included.
37 publications fulfilled our inclusion criteria. Most studies (19/37) simply applied existing XAI methods to their classifier to interpret its decision-making. Some studies (4/37) proposed new XAI methods or improved upon existing techniques. 14/37 studies addressed specific questions such as bias detection and impact of XAI on man-machine-interactions. However, only three of them evaluated the performance and confidence of humans using CAD systems with XAI.
XAI is commonly applied during the development of DNNs for skin cancer detection. However, a systematic and rigorous evaluation of its usefulness in this scenario is lacking.
•No evaluation of explainable artificial intelligence (XAI) for skin cancer detection has been conducted to this date.•Overview of 37 studies using XAI on dermatological and dermato histological data.•Analysis of the usage of XAI to inform research on its role as part of computer-aided diagnosis (CAD) systems. |
---|---|
AbstractList | Due to their ability to solve complex problems, deep neural networks (DNNs) are becoming increasingly popular in medical applications. However, decision-making by such algorithms is essentially a black-box process that renders it difficult for physicians to judge whether the decisions are reliable. The use of explainable artificial intelligence (XAI) is often suggested as a solution to this problem. We investigate how XAI is used for skin cancer detection: how is it used during the development of new DNNs? What kinds of visualisations are commonly used? Are there systematic evaluations of XAI with dermatologists or dermatopathologists?BACKGROUNDDue to their ability to solve complex problems, deep neural networks (DNNs) are becoming increasingly popular in medical applications. However, decision-making by such algorithms is essentially a black-box process that renders it difficult for physicians to judge whether the decisions are reliable. The use of explainable artificial intelligence (XAI) is often suggested as a solution to this problem. We investigate how XAI is used for skin cancer detection: how is it used during the development of new DNNs? What kinds of visualisations are commonly used? Are there systematic evaluations of XAI with dermatologists or dermatopathologists?Google Scholar, PubMed, IEEE Explore, Science Direct and Scopus were searched for peer-reviewed studies published between January 2017 and October 2021 applying XAI to dermatological images: the search terms histopathological image, whole-slide image, clinical image, dermoscopic image, skin, dermatology, explainable, interpretable and XAI were used in various combinations. Only studies concerned with skin cancer were included.METHODSGoogle Scholar, PubMed, IEEE Explore, Science Direct and Scopus were searched for peer-reviewed studies published between January 2017 and October 2021 applying XAI to dermatological images: the search terms histopathological image, whole-slide image, clinical image, dermoscopic image, skin, dermatology, explainable, interpretable and XAI were used in various combinations. Only studies concerned with skin cancer were included.37 publications fulfilled our inclusion criteria. Most studies (19/37) simply applied existing XAI methods to their classifier to interpret its decision-making. Some studies (4/37) proposed new XAI methods or improved upon existing techniques. 14/37 studies addressed specific questions such as bias detection and impact of XAI on man-machine-interactions. However, only three of them evaluated the performance and confidence of humans using CAD systems with XAI.RESULTS37 publications fulfilled our inclusion criteria. Most studies (19/37) simply applied existing XAI methods to their classifier to interpret its decision-making. Some studies (4/37) proposed new XAI methods or improved upon existing techniques. 14/37 studies addressed specific questions such as bias detection and impact of XAI on man-machine-interactions. However, only three of them evaluated the performance and confidence of humans using CAD systems with XAI.XAI is commonly applied during the development of DNNs for skin cancer detection. However, a systematic and rigorous evaluation of its usefulness in this scenario is lacking.CONCLUSIONXAI is commonly applied during the development of DNNs for skin cancer detection. However, a systematic and rigorous evaluation of its usefulness in this scenario is lacking. Background: Due to their ability to solve complex problems, deep neural networks (DNNs) are becoming increasingly popular in medical applications. However, decision-making by such algorithms is essentially a black-box process that renders it difficult for physicians to judge whether the decisions are reliable. The use of explainable artificial intelligence (XAI) is often suggested as a solution to this problem. We investigate how XAI is used for skin cancer detection: how is it used during the development of new DNNs? What kinds of visualisations are commonly used? Are there systematic evaluations of XAI with dermatologists or dermatopathologists? Methods: Google Scholar, PubMed, IEEE Explore, Science Direct and Scopus were searched for peer-reviewed studies published between January 2017 and October 2021 applying XAI to dermatological images: the search terms histopathological image, whole-slide image, clinical image, dermoscopic image, skin, dermatology, explainable, interpretable and XAI were used in various combinations. Only studies concerned with skin cancer were included. Results: 37 publications fulfilled our inclusion criteria. Most studies (19/37) simply applied existing XAI methods to their classifier to interpret its decision-making. Some studies (4/37) proposed new XAI methods or improved upon existing techniques. 14/37 studies addressed specific questions such as bias detection and impact of XAI on man-machine-interactions. However, only three of them evaluated the performance and confidence of humans using CAD systems with XAI. Conclusion: XAI is commonly applied during the development of DNNs for skin cancer detection. However, a systematic and rigorous evaluation of its usefulness in this scenario is lacking. Due to their ability to solve complex problems, deep neural networks (DNNs) are becoming increasingly popular in medical applications. However, decision-making by such algorithms is essentially a black-box process that renders it difficult for physicians to judge whether the decisions are reliable. The use of explainable artificial intelligence (XAI) is often suggested as a solution to this problem. We investigate how XAI is used for skin cancer detection: how is it used during the development of new DNNs? What kinds of visualisations are commonly used? Are there systematic evaluations of XAI with dermatologists or dermatopathologists? Google Scholar, PubMed, IEEE Explore, Science Direct and Scopus were searched for peer-reviewed studies published between January 2017 and October 2021 applying XAI to dermatological images: the search terms histopathological image, whole-slide image, clinical image, dermoscopic image, skin, dermatology, explainable, interpretable and XAI were used in various combinations. Only studies concerned with skin cancer were included. 37 publications fulfilled our inclusion criteria. Most studies (19/37) simply applied existing XAI methods to their classifier to interpret its decision-making. Some studies (4/37) proposed new XAI methods or improved upon existing techniques. 14/37 studies addressed specific questions such as bias detection and impact of XAI on man-machine-interactions. However, only three of them evaluated the performance and confidence of humans using CAD systems with XAI. XAI is commonly applied during the development of DNNs for skin cancer detection. However, a systematic and rigorous evaluation of its usefulness in this scenario is lacking. •No evaluation of explainable artificial intelligence (XAI) for skin cancer detection has been conducted to this date.•Overview of 37 studies using XAI on dermatological and dermato histological data.•Analysis of the usage of XAI to inform research on its role as part of computer-aided diagnosis (CAD) systems. Due to their ability to solve complex problems, deep neural networks (DNNs) are becoming increasingly popular in medical applications. However, decision-making by such algorithms is essentially a black-box process that renders it difficult for physicians to judge whether the decisions are reliable. The use of explainable artificial intelligence (XAI) is often suggested as a solution to this problem. We investigate how XAI is used for skin cancer detection: how is it used during the development of new DNNs? What kinds of visualisations are commonly used? Are there systematic evaluations of XAI with dermatologists or dermatopathologists? Google Scholar, PubMed, IEEE Explore, Science Direct and Scopus were searched for peer-reviewed studies published between January 2017 and October 2021 applying XAI to dermatological images: the search terms histopathological image, whole-slide image, clinical image, dermoscopic image, skin, dermatology, explainable, interpretable and XAI were used in various combinations. Only studies concerned with skin cancer were included. 37 publications fulfilled our inclusion criteria. Most studies (19/37) simply applied existing XAI methods to their classifier to interpret its decision-making. Some studies (4/37) proposed new XAI methods or improved upon existing techniques. 14/37 studies addressed specific questions such as bias detection and impact of XAI on man-machine-interactions. However, only three of them evaluated the performance and confidence of humans using CAD systems with XAI. XAI is commonly applied during the development of DNNs for skin cancer detection. However, a systematic and rigorous evaluation of its usefulness in this scenario is lacking. |
Author | Krieghoff-Henning, Eva Meier, Friedegund Berking, Carola Kather, Jakob N. Schlaak, Max Sergon, Mildred Sondermann, Wiebke Brinker, Titus J. Heinzerling, Lucie Haggenmüller, Sarah Ghoreschi, Kamran Goebeler, Matthias Gellrich, Frank F. Poch, Gabriela Heppt, Markus V. Hauschild, Axel Schlager, Justin G. Hilke, Franz J. Schadendorf, Dirk Hobelsberger, Sarah Kutzner, Heinz Erdmann, Michael Kurz, Alexander Maron, Roman C. Schilling, Bastian Fröhling, Stefan Lipka, Daniel B. French, Lars E. Hauser, Katja Hekler, Achim Haferkamp, Sebastian Utikal, Jochen S. von Kalle, Christof |
Author_xml | – sequence: 1 givenname: Katja orcidid: 0000-0001-9390-3505 surname: Hauser fullname: Hauser, Katja organization: Digital Biomarkers for Oncology Group, National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Heidelberg, Germany – sequence: 2 givenname: Alexander surname: Kurz fullname: Kurz, Alexander organization: Digital Biomarkers for Oncology Group, National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Heidelberg, Germany – sequence: 3 givenname: Sarah surname: Haggenmüller fullname: Haggenmüller, Sarah organization: Digital Biomarkers for Oncology Group, National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Heidelberg, Germany – sequence: 4 givenname: Roman C. surname: Maron fullname: Maron, Roman C. organization: Digital Biomarkers for Oncology Group, National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Heidelberg, Germany – sequence: 5 givenname: Christof surname: von Kalle fullname: von Kalle, Christof organization: Department of Clinical-Translational Sciences, Charité University Medicine and Berlin Institute of Health (BIH), Berlin, Germany – sequence: 6 givenname: Jochen S. surname: Utikal fullname: Utikal, Jochen S. organization: Department of Dermatology, Heidelberg University, Mannheim, Germany – sequence: 7 givenname: Friedegund orcidid: 0000-0003-4340-9706 surname: Meier fullname: Meier, Friedegund organization: Skin Cancer Center at the University Cancer Centre and National Center for Tumor Diseases Dresden, Department of Dermatology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany – sequence: 8 givenname: Sarah orcidid: 0000-0001-5703-324X surname: Hobelsberger fullname: Hobelsberger, Sarah organization: Skin Cancer Center at the University Cancer Centre and National Center for Tumor Diseases Dresden, Department of Dermatology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany – sequence: 9 givenname: Frank F. orcidid: 0000-0002-2164-4644 surname: Gellrich fullname: Gellrich, Frank F. organization: Skin Cancer Center at the University Cancer Centre and National Center for Tumor Diseases Dresden, Department of Dermatology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany – sequence: 10 givenname: Mildred orcidid: 0000-0003-4303-2101 surname: Sergon fullname: Sergon, Mildred organization: Skin Cancer Center at the University Cancer Centre and National Center for Tumor Diseases Dresden, Department of Dermatology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany – sequence: 11 givenname: Axel orcidid: 0000-0002-1212-9587 surname: Hauschild fullname: Hauschild, Axel organization: Department of Dermatology, University Hospital (UKSH), Kiel, Germany – sequence: 12 givenname: Lars E. surname: French fullname: French, Lars E. organization: Department of Dermatology and Allergy, University Hospital, LMU Munich, Munich, Germany – sequence: 13 givenname: Lucie surname: Heinzerling fullname: Heinzerling, Lucie organization: Department of Dermatology and Allergy, University Hospital, LMU Munich, Munich, Germany – sequence: 14 givenname: Justin G. surname: Schlager fullname: Schlager, Justin G. organization: Department of Dermatology and Allergy, University Hospital, LMU Munich, Munich, Germany – sequence: 15 givenname: Kamran orcidid: 0000-0002-5526-7517 surname: Ghoreschi fullname: Ghoreschi, Kamran organization: Department of Dermatology, Venereology and Allergology, Charité – Universitätsmedizin Berlin, Berlin, Germany – sequence: 16 givenname: Max orcidid: 0000-0002-1663-8098 surname: Schlaak fullname: Schlaak, Max organization: Department of Dermatology, Venereology and Allergology, Charité – Universitätsmedizin Berlin, Berlin, Germany – sequence: 17 givenname: Franz J. orcidid: 0000-0002-6564-454X surname: Hilke fullname: Hilke, Franz J. organization: Department of Dermatology, Venereology and Allergology, Charité – Universitätsmedizin Berlin, Berlin, Germany – sequence: 18 givenname: Gabriela orcidid: 0000-0003-3948-2505 surname: Poch fullname: Poch, Gabriela organization: Department of Dermatology, Venereology and Allergology, Charité – Universitätsmedizin Berlin, Berlin, Germany – sequence: 19 givenname: Heinz orcidid: 0000-0001-6248-3050 surname: Kutzner fullname: Kutzner, Heinz organization: Dermatopathology Laboratory, Friedrichshafen, Germany – sequence: 20 givenname: Carola surname: Berking fullname: Berking, Carola organization: Department of Dermatology, University Hospital Erlangen, Comprehensive Cancer Center Erlangen - EMN, Friedrich-Alexander University Erlangen, Nuremberg, Germany – sequence: 21 givenname: Markus V. orcidid: 0000-0003-4603-1825 surname: Heppt fullname: Heppt, Markus V. organization: Department of Dermatology, University Hospital Erlangen, Comprehensive Cancer Center Erlangen - EMN, Friedrich-Alexander University Erlangen, Nuremberg, Germany – sequence: 22 givenname: Michael orcidid: 0000-0001-7136-6489 surname: Erdmann fullname: Erdmann, Michael organization: Department of Dermatology, University Hospital Erlangen, Comprehensive Cancer Center Erlangen - EMN, Friedrich-Alexander University Erlangen, Nuremberg, Germany – sequence: 23 givenname: Sebastian surname: Haferkamp fullname: Haferkamp, Sebastian organization: Department of Dermatology, University Hospital Regensburg, Regensburg, Germany – sequence: 24 givenname: Dirk surname: Schadendorf fullname: Schadendorf, Dirk organization: Department of Dermatology, University Hospital Essen, Essen, Germany – sequence: 25 givenname: Wiebke orcidid: 0000-0002-3684-3523 surname: Sondermann fullname: Sondermann, Wiebke organization: Department of Dermatology, University Hospital Essen, Essen, Germany – sequence: 26 givenname: Matthias orcidid: 0000-0001-7095-9848 surname: Goebeler fullname: Goebeler, Matthias organization: Department of Dermatology, University Hospital Würzburg, Würzburg, Germany – sequence: 27 givenname: Bastian orcidid: 0000-0001-8859-4103 surname: Schilling fullname: Schilling, Bastian organization: Department of Dermatology, University Hospital Würzburg, Würzburg, Germany – sequence: 28 givenname: Jakob N. orcidid: 0000-0002-3730-5348 surname: Kather fullname: Kather, Jakob N. organization: Division of Translational Medical Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany – sequence: 29 givenname: Stefan surname: Fröhling fullname: Fröhling, Stefan organization: National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Heidelberg, Germany – sequence: 30 givenname: Daniel B. orcidid: 0000-0001-5081-7869 surname: Lipka fullname: Lipka, Daniel B. organization: National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Heidelberg, Germany – sequence: 31 givenname: Achim surname: Hekler fullname: Hekler, Achim organization: Digital Biomarkers for Oncology Group, National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Heidelberg, Germany – sequence: 32 givenname: Eva orcidid: 0000-0001-8381-3100 surname: Krieghoff-Henning fullname: Krieghoff-Henning, Eva organization: Digital Biomarkers for Oncology Group, National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Heidelberg, Germany – sequence: 33 givenname: Titus J. orcidid: 0000-0002-3620-5919 surname: Brinker fullname: Brinker, Titus J. email: titus.brinker@dkfz.de organization: Digital Biomarkers for Oncology Group, National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Heidelberg, Germany |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35390650$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc9q3DAQxkVJaTZpX6CHYuilF29HtmVLoZcQ0j8Q6CU9i7Esh3G08lbSpt236bP0ySqzyWUPKQwSQr9vZvi-M3biZ28Ze8thzYG3H6e1nQyuK6iqNSwlXrAVl50qQYrqhK1ACVVKaNQpO4txAoBONvCKndaiVtAKWLHb699bh-Sxd7bAkGgkQ-gK8sk6R3fWG_v3D_ki3ufDYH6GIlgz33lKNPuL4rKI-5jsBhOZ_PNA9tdr9nJEF-2bx_uc_fh8fXv1tbz5_uXb1eVNaZpapFJy5FaIakSUAnnXDR1iw-vB9qbHFqqu7QW0WNU4tkM34jgq0deNUj2A4nV9zj4c-m7D_HNnY9Ibiibvjd7Ou6irtpFSKWjajL4_Qqd5F3zeLlNdniR5B5l690jt-o0d9DbQBsNeP_mVAXkATJhjDHbUhhIuRqSA5DQHvUSjJ71Eo5doNCwlsrQ6kj51f1b06SCy2cZsbdDR0JLJQDmEpIeZnpdfHMmNI08G3b3d_0_8D1TluzY |
CitedBy_id | crossref_primary_10_1016_j_bspc_2024_107101 crossref_primary_10_3390_diagnostics13193147 crossref_primary_10_3389_fmed_2024_1445318 crossref_primary_10_3390_ai6010002 crossref_primary_10_1093_bib_bbaf018 crossref_primary_10_1016_j_compbiomed_2024_108742 crossref_primary_10_1002_ctm2_1299 crossref_primary_10_1111_ajd_14222 crossref_primary_10_1002_hcs2_121 crossref_primary_10_1002_der2_70018 crossref_primary_10_1007_s11864_023_01065_4 crossref_primary_10_1016_j_imu_2024_101587 crossref_primary_10_1049_ipr2_13219 crossref_primary_10_1007_s40042_024_01069_9 crossref_primary_10_1007_s41870_023_01713_w crossref_primary_10_2196_42129 crossref_primary_10_1097_DSS_0000000000004297 crossref_primary_10_1016_j_neunet_2024_106335 crossref_primary_10_3390_asi8020035 crossref_primary_10_1016_S2667_0623_22_01090_X crossref_primary_10_1007_s41666_023_00127_4 crossref_primary_10_1109_ACCESS_2024_3395988 crossref_primary_10_3390_cancers15010042 crossref_primary_10_1007_s00424_024_02997_y crossref_primary_10_1016_j_ijmedinf_2024_105689 crossref_primary_10_1016_j_jid_2023_10_004 crossref_primary_10_1007_s00403_024_02884_7 crossref_primary_10_1109_ACCESS_2023_3345225 crossref_primary_10_7717_peerj_cs_2630 crossref_primary_10_1016_j_jid_2023_11_007 crossref_primary_10_1016_j_clindermatol_2023_12_013 crossref_primary_10_1016_j_icte_2024_12_001 crossref_primary_10_1038_s41598_023_35370_7 crossref_primary_10_1038_s41467_023_43095_4 crossref_primary_10_1016_j_artmed_2023_102616 crossref_primary_10_3390_make6030098 crossref_primary_10_69719_ros_v7iesp__820 crossref_primary_10_1002_ped4_70001 crossref_primary_10_1007_s11912_023_01376_7 crossref_primary_10_1007_s12065_024_00977_w crossref_primary_10_1016_j_ejca_2022_07_002 crossref_primary_10_18705_2782_3806_2022_2_6_23_32 crossref_primary_10_1002_2056_4538_70023 crossref_primary_10_1016_j_clindermatol_2024_06_016 crossref_primary_10_1016_j_cmpb_2024_108228 crossref_primary_10_3390_info15120783 crossref_primary_10_1002_jvc2_580 crossref_primary_10_1016_j_jaad_2024_04_033 crossref_primary_10_3390_diagnostics13182869 crossref_primary_10_1002_ail2_77 crossref_primary_10_1001_jamadermatol_2023_3518 crossref_primary_10_1016_j_ejca_2024_115199 crossref_primary_10_1016_j_chb_2023_108102 crossref_primary_10_1111_jdv_19521 crossref_primary_10_2196_39862 crossref_primary_10_1016_j_jdent_2022_104378 crossref_primary_10_3390_diagnostics13040671 crossref_primary_10_1016_j_procs_2024_05_026 crossref_primary_10_1001_jamadermatol_2023_5550 crossref_primary_10_32604_cmes_2024_051363 crossref_primary_10_3390_a15110438 crossref_primary_10_4103_idoj_idoj_462_23 crossref_primary_10_1109_ACCESS_2023_3291610 crossref_primary_10_3390_cancers15051492 crossref_primary_10_1016_j_compbiomed_2023_106624 crossref_primary_10_1038_s43856_024_00598_5 crossref_primary_10_1016_j_jnlest_2023_100231 crossref_primary_10_3390_computation13030078 crossref_primary_10_3389_fmed_2024_1487270 crossref_primary_10_1002_cai2_136 crossref_primary_10_1109_ACCESS_2024_3373195 |
Cites_doi | 10.1016/j.ejca.2019.06.012 10.1016/j.ejca.2021.06.047 10.1109/ACCESS.2018.2877587 10.1038/s41598-020-62724-2 10.1038/s41591-020-0842-3 10.1109/TMI.2020.2972964 10.1016/j.jid.2018.01.028 10.1038/nature21056 10.1109/ACCESS.2020.2997710 10.1016/j.ejca.2019.05.023 10.1111/bjd.17189 10.1038/s42256-019-0048-x 10.1109/JBHI.2021.3052044 10.1016/j.ejca.2019.04.001 10.1109/TMI.2019.2893944 10.1016/j.ejca.2019.04.021 10.1001/jamadermatol.2019.1735 10.1016/j.jaad.2021.02.009 10.1038/s41591-021-01461-z 10.1007/s00530-021-00787-5 10.1016/S2589-7500(21)00208-9 10.1016/j.cels.2020.11.013 10.1016/j.cels.2021.05.003 10.1016/j.media.2020.101915 10.1016/j.ejca.2021.06.049 10.1088/1361-6560/ab86d3 10.1111/srt.12822 10.1371/journal.pone.0130140 10.2196/18091 10.3322/canjclin.35.3.130 10.1109/5.726791 10.1038/s41591-020-0942-0 10.1038/s42256-019-0052-1 10.1038/s42256-020-00265-z 10.7717/peerj-cs.622 10.1038/s41591-019-0508-1 10.1016/j.ejca.2019.07.019 10.1371/journal.pmed.1003381 10.1016/j.patcog.2020.107413 10.1016/j.eswa.2015.04.034 10.1038/sdata.2018.161 10.1109/34.895972 10.1016/j.ejca.2019.02.005 10.1016/j.ejca.2019.06.013 10.1016/j.ejca.2020.11.020 10.1038/s41467-021-21896-9 |
ContentType | Journal Article |
Copyright | 2022 The Author(s) Copyright © 2022 The Author(s). Published by Elsevier Ltd.. All rights reserved. Copyright Elsevier Science Ltd. May 2022 |
Copyright_xml | – notice: 2022 The Author(s) – notice: Copyright © 2022 The Author(s). Published by Elsevier Ltd.. All rights reserved. – notice: Copyright Elsevier Science Ltd. May 2022 |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7TO 7U7 C1K H94 K9. NAPCQ 7X8 |
DOI | 10.1016/j.ejca.2022.02.025 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Oncogenes and Growth Factors Abstracts Toxicology Abstracts Environmental Sciences and Pollution Management AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium Oncogenes and Growth Factors Abstracts Toxicology Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic AIDS and Cancer Research Abstracts MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1879-0852 |
EndPage | 69 |
ExternalDocumentID | 35390650 10_1016_j_ejca_2022_02_025 S095980492200123X |
Genre | Research Support, Non-U.S. Gov't Systematic Review Journal Article |
GroupedDBID | --- --K --M .1- .55 .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29G 3O- 4.4 457 4G. 53G 5GY 5RE 5VS 6PF 7-5 71M 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAWTL AAXKI AAXUO AAYWO ABBQC ABFNM ABGSF ABJNI ABLJU ABMAC ABMZM ABOCM ABUDA ABWVN ABXDB ACDAQ ACIEU ACIUM ACPRK ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADUVX AEBSH AEHWI AEIPS AEKER AENEX AEUPX AEVXI AFFNX AFJKZ AFPUW AFRAH AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGRDE AGUBO AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HED HMK HMO HVGLF HZ~ IHE J1W K-O KOM M29 M41 MO0 N9A O-L O9- OAUVE OC~ OO- OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAE SCC SDF SDG SDP SEL SES SEW SPCBC SSH SSU SSZ T5K UV1 WUQ X7M XPP Z5R ZGI ZXP ~G- 6I. AACTN AAFTH AAIAV ABLVK ABYKQ AFCTW AFKWA AHPSJ AJBFU AJOXV AMFUW DOVZS EFLBG LCYCR RIG ZA5 AAYXX AGRNS CITATION CGR CUY CVF ECM EIF NPM 7TO 7U7 C1K H94 K9. NAPCQ 7X8 ACLOT ~HD |
ID | FETCH-LOGICAL-c435t-81a1e552faa85a177d7aa413debcba60276b506a23af6d7faff95b3499b009133 |
IEDL.DBID | AIKHN |
ISSN | 0959-8049 1879-0852 |
IngestDate | Sun Sep 28 03:08:27 EDT 2025 Fri Jul 25 22:41:51 EDT 2025 Mon Jul 21 06:06:29 EDT 2025 Tue Jul 01 02:57:08 EDT 2025 Thu Apr 24 23:03:08 EDT 2025 Fri Feb 23 02:41:15 EST 2024 Tue Aug 26 19:28:12 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Systematic review Dermatology Skin neoplasms Artificial intelligence Man-machine systems |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. Copyright © 2022 The Author(s). Published by Elsevier Ltd.. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c435t-81a1e552faa85a177d7aa413debcba60276b506a23af6d7faff95b3499b009133 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 content type line 14 ObjectType-Feature-3 ObjectType-Evidence Based Healthcare-1 ObjectType-Article-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 ObjectType-Undefined-4 |
ORCID | 0000-0003-4303-2101 0000-0002-1663-8098 0000-0001-6248-3050 0000-0002-3730-5348 0000-0001-8381-3100 0000-0002-5526-7517 0000-0001-9390-3505 0000-0001-8859-4103 0000-0002-2164-4644 0000-0002-3620-5919 0000-0003-4340-9706 0000-0001-7136-6489 0000-0002-3684-3523 0000-0003-4603-1825 0000-0002-6564-454X 0000-0001-7095-9848 0000-0001-5703-324X 0000-0003-3948-2505 0000-0002-1212-9587 0000-0001-5081-7869 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S095980492200123X |
PMID | 35390650 |
PQID | 2672768170 |
PQPubID | 2047469 |
PageCount | 16 |
ParticipantIDs | proquest_miscellaneous_2648899046 proquest_journals_2672768170 pubmed_primary_35390650 crossref_citationtrail_10_1016_j_ejca_2022_02_025 crossref_primary_10_1016_j_ejca_2022_02_025 elsevier_sciencedirect_doi_10_1016_j_ejca_2022_02_025 elsevier_clinicalkey_doi_10_1016_j_ejca_2022_02_025 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2022 2022-05-00 20220501 |
PublicationDateYYYYMMDD | 2022-05-01 |
PublicationDate_xml | – month: 05 year: 2022 text: May 2022 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Oxford |
PublicationTitle | European journal of cancer (1990) |
PublicationTitleAlternate | Eur J Cancer |
PublicationYear | 2022 |
Publisher | Elsevier Ltd Elsevier Science Ltd |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier Science Ltd |
References | Li, Zhuang, Wang (bib87) 2020 Bach, Binder, Montavon (bib84) 2015; 10 Wang, Yin, Wang (bib89) 2021 Codella, Gutman, Celebi (bib40) 2018 Zhou, Khosla, Lapedriza (bib19) 2016 Pfau, Young, Wei, Keiser (bib44) 2019 Maron, Schlager, Haggenmüller (bib13) 2021; 155 Zintgraf, Cohen, Adel, Welling (bib85) 2017 Zhang, Xie, Xia, Shen (bib91) 2019; 38 Selvaraju, Cogswell, Das (bib18) 2017 Ge, Demyanov, Chakravorty (bib33) 2017 Zhang, Xie, Xing (bib62) 2017 Yuan, Shen, Luna (bib28) 2021; 12 Rumelhart, Hinton, Williams (bib79) 1985 Campanella, Hanna, Geneslaw (bib56) 2019; 25 Chen, Alvin Liu, Gomez (bib29) 2021 Yan, Kawahara, Hamarneh (bib42) 2019 Barata, Celebi, Marques (bib36) 2021; 110 Simonyan, Zisserman (bib77) 2014 Tan, Le (bib102) 2019 Lecun, Bottou, Bengio, Haffner (bib71) 1998; 86 Maron, Utikal, Hekler (bib10) 2020; 22 Cai, Reif, Hegde (bib63) 2019 Rieger, Singh, Murdoch, Yu (bib45) 2020 Kim, Wattenberg, Gilmer (bib59) 2018 Thomas, Lefevre, Baxter, Hamilton (bib60) 2021; 68 Liu, Zoph, Neumann, Shlens (bib74) 2018 Hägele, Seegerer, Lapuschkin (bib47) 2020; 10 Tschandl, Argenziano, Razmara, Yap (bib16) 2019; 181 He, Zhang, Ren, Sun (bib75) 2015 Sundararajan, Taly, Yan (bib81) 2017 Tagaris, Sdraka, Stafylopatis (bib80) 2019 Sadeghi, Chilana, Yap (bib50) 2020; 26 Codella, Lin, Halpern (bib52) 2018 Chowdhury, Bajwa, Chakraborti (bib66) 2021 Brinker, Hekler, Enk (bib4) 2019; 111 Zaritsky, Jamieson, Welf (bib27) 2021; 12 Smilkov, Thorat, Kim (bib82) 2017 Brinker, Hekler, Enk (bib5) 2019; 119 Maron, Haggenmüller, von Kalle (bib14) 2021; 145 Singh, Lee, Coz (bib41) 2020 Yang, Xie, Fan (bib90) 2018; 6 Wohlin (bib26) 2014 Han, Moon, Kim (bib12) 2020; 17 Li, Wu, Chen, Jiang (bib53) 2019; 2019 Brinker, Schmitt, Krieghoff-Henning (bib9) 2022; 86 Haggenmüller, Maron, Hekler (bib11) 2021; 156 Barata, Santiago (bib38) 2021 Giotis, Molders, Land (bib97) 2015; 42 Adebayo, Gilmer, Muelly (bib24) 2018 Shinde, Tupe-Waghmare, Chougule (bib88) 2021; 7 Szegedy, Liu, Jia (bib72) 2015 Ghassemi, Oakden-Rayner, Beam (bib21) 2021; 3 Menegola, Fornaciali, Pires (bib98) 2017 Pocevičiūtė, Eilertsen, Lundström (bib64) 2020 Tschandl, Rinner, Apalla (bib17) 2020; 26 Huang, Liu, van der Maaten, Weinberger (bib67) 2016 Esteva, Kuprel, Novoa (bib1) 2017; 542 DermNet NZ [WWW document]. DermNet NZ. URL dermnetnz.org [accessed on 29 December 2021]. Jiang, Li, Jin (bib57) 2021; 25 Lundberg, Lee (bib83) 2017 Murabayashi, Iyatomi (bib30) 2019 Chen, Bei, Rudin (bib37) 2020; 2 Friedman, Rigel, Kopf (bib54) 1985; 35 Van der Maaten, Hinton (bib86) 2008; 9 Kawahara, Daneshvar, Argenziano, Hamarneh (bib34) 2018 Liu, Jain, Eng (bib94) 2020; 26 Argenziano, Soyer, De Giorgio, Piccolo (bib99) Young, Booth, Simpson (bib46) 2019 Ballerini, Fisher, Aldridge, Rees (bib95) 2013 MacKie (bib55) 1986 Zhang, Chen, McGough (bib61) 2019; 1 Lee, Cho, Im (bib68) 2021 Han, Kim, Lim (bib93) 2018; 138 Shorfuzzaman (bib69) 2021 Brinker, Hekler, Enk (bib2) 2019; 113 (bib15) 2020 Lage, Chen, He (bib22) 2019 Lucieri, Bajwa, Alexander Braun (bib49) 2020 Maron, Weichenthal, Utikal (bib3) 2019; 119 Van Molle, De Strooper, Verbelen (bib48) 2018 Codella, Rotemberg, Tschandl (bib101) 2019 Sixt, Granz, Landgraf (bib25) 2019 Tschandl, Rosendahl, Kittler (bib100) 2018; 5 Kundu (bib20) 2021; 27 Chollet (bib78) 2017 Rudin (bib23) 2019; 1 Diao, Wang, Chui (bib31) 2021; 12 Winkler, Fink, Toberer (bib43) 2019; 155 Xie, Zhang, Xia, Shen (bib35) 2020; 39 Howard, Zhu, Chen, Kalenichenko (bib73) 2017 Zunair, Ben Hamza (bib92) 2020; 65 Hekler, Utikal, Enk (bib7) 2019; 118 Springenberg, Dosovitskiy, Brox, Riedmiller (bib58) 2014 Smeulders, Worring, Santini (bib32) 2000; 22 Nunnari, Kadir, Sonntag (bib39) 2021 Krizhevsky, Sutskever, Hinton (bib65) 2012; 25 Wei, Ding, Hu (bib70) 2020; 8 Hekler, Utikal, Enk (bib8) 2019; 115 Sadeghi, Chilana, Atkins (bib51) 2018 Hekler, Utikal, Enk (bib6) 2019; 120 Hu, Shen, Sun (bib76) 2018 Barata (10.1016/j.ejca.2022.02.025_bib36) 2021; 110 Liu (10.1016/j.ejca.2022.02.025_bib94) 2020; 26 Murabayashi (10.1016/j.ejca.2022.02.025_bib30) 2019 Argenziano (10.1016/j.ejca.2022.02.025_bib99) Zunair (10.1016/j.ejca.2022.02.025_bib92) 2020; 65 Brinker (10.1016/j.ejca.2022.02.025_bib4) 2019; 111 Pfau (10.1016/j.ejca.2022.02.025_bib44) 2019 Smilkov (10.1016/j.ejca.2022.02.025_bib82) 2017 Han (10.1016/j.ejca.2022.02.025_bib93) 2018; 138 Springenberg (10.1016/j.ejca.2022.02.025_bib58) 2014 Jiang (10.1016/j.ejca.2022.02.025_bib57) 2021; 25 Hekler (10.1016/j.ejca.2022.02.025_bib6) 2019; 120 Maron (10.1016/j.ejca.2022.02.025_bib13) 2021; 155 Thomas (10.1016/j.ejca.2022.02.025_bib60) 2021; 68 Codella (10.1016/j.ejca.2022.02.025_bib40) 2018 Young (10.1016/j.ejca.2022.02.025_bib46) 2019 Yang (10.1016/j.ejca.2022.02.025_bib90) 2018; 6 Lucieri (10.1016/j.ejca.2022.02.025_bib49) 2020 Lecun (10.1016/j.ejca.2022.02.025_bib71) 1998; 86 Sadeghi (10.1016/j.ejca.2022.02.025_bib50) 2020; 26 Kim (10.1016/j.ejca.2022.02.025_bib59) 2018 Pocevičiūtė (10.1016/j.ejca.2022.02.025_bib64) 2020 Esteva (10.1016/j.ejca.2022.02.025_bib1) 2017; 542 Howard (10.1016/j.ejca.2022.02.025_bib73) 2017 Codella (10.1016/j.ejca.2022.02.025_bib52) 2018 Rieger (10.1016/j.ejca.2022.02.025_bib45) 2020 Giotis (10.1016/j.ejca.2022.02.025_bib97) 2015; 42 Chollet (10.1016/j.ejca.2022.02.025_bib78) 2017 Tschandl (10.1016/j.ejca.2022.02.025_bib16) 2019; 181 Van Molle (10.1016/j.ejca.2022.02.025_bib48) 2018 Diao (10.1016/j.ejca.2022.02.025_bib31) 2021; 12 Maron (10.1016/j.ejca.2022.02.025_bib3) 2019; 119 Yan (10.1016/j.ejca.2022.02.025_bib42) 2019 Li (10.1016/j.ejca.2022.02.025_bib87) 2020 Shinde (10.1016/j.ejca.2022.02.025_bib88) 2021; 7 Tschandl (10.1016/j.ejca.2022.02.025_bib100) 2018; 5 Szegedy (10.1016/j.ejca.2022.02.025_bib72) 2015 Sundararajan (10.1016/j.ejca.2022.02.025_bib81) 2017 Sixt (10.1016/j.ejca.2022.02.025_bib25) 2019 Selvaraju (10.1016/j.ejca.2022.02.025_bib18) 2017 Maron (10.1016/j.ejca.2022.02.025_bib14) 2021; 145 Zhang (10.1016/j.ejca.2022.02.025_bib62) 2017 Rumelhart (10.1016/j.ejca.2022.02.025_bib79) 1985 Zhang (10.1016/j.ejca.2022.02.025_bib61) 2019; 1 Friedman (10.1016/j.ejca.2022.02.025_bib54) 1985; 35 Shorfuzzaman (10.1016/j.ejca.2022.02.025_bib69) 2021 Nunnari (10.1016/j.ejca.2022.02.025_bib39) 2021 He (10.1016/j.ejca.2022.02.025_bib75) 2015 Chen (10.1016/j.ejca.2022.02.025_bib37) 2020; 2 Lee (10.1016/j.ejca.2022.02.025_bib68) 2021 Yuan (10.1016/j.ejca.2022.02.025_bib28) 2021; 12 Menegola (10.1016/j.ejca.2022.02.025_bib98) 2017 Li (10.1016/j.ejca.2022.02.025_bib53) 2019; 2019 Haggenmüller (10.1016/j.ejca.2022.02.025_bib11) 2021; 156 Tagaris (10.1016/j.ejca.2022.02.025_bib80) 2019 Chowdhury (10.1016/j.ejca.2022.02.025_bib66) 2021 Kawahara (10.1016/j.ejca.2022.02.025_bib34) 2018 Zhou (10.1016/j.ejca.2022.02.025_bib19) 2016 Ballerini (10.1016/j.ejca.2022.02.025_bib95) 2013 Lundberg (10.1016/j.ejca.2022.02.025_bib83) 2017 Brinker (10.1016/j.ejca.2022.02.025_bib9) 2022; 86 Zaritsky (10.1016/j.ejca.2022.02.025_bib27) 2021; 12 Smeulders (10.1016/j.ejca.2022.02.025_bib32) 2000; 22 Van der Maaten (10.1016/j.ejca.2022.02.025_bib86) 2008; 9 Ghassemi (10.1016/j.ejca.2022.02.025_bib21) 2021; 3 Brinker (10.1016/j.ejca.2022.02.025_bib2) 2019; 113 Simonyan (10.1016/j.ejca.2022.02.025_bib77) 2014 Barata (10.1016/j.ejca.2022.02.025_bib38) 2021 Han (10.1016/j.ejca.2022.02.025_bib12) 2020; 17 Rudin (10.1016/j.ejca.2022.02.025_bib23) 2019; 1 Hägele (10.1016/j.ejca.2022.02.025_bib47) 2020; 10 Wang (10.1016/j.ejca.2022.02.025_bib89) 2021 Zhang (10.1016/j.ejca.2022.02.025_bib91) 2019; 38 Xie (10.1016/j.ejca.2022.02.025_bib35) 2020; 39 Wei (10.1016/j.ejca.2022.02.025_bib70) 2020; 8 Bach (10.1016/j.ejca.2022.02.025_bib84) 2015; 10 Chen (10.1016/j.ejca.2022.02.025_bib29) 2021 Tan (10.1016/j.ejca.2022.02.025_bib102) 2019 Brinker (10.1016/j.ejca.2022.02.025_bib5) 2019; 119 Kundu (10.1016/j.ejca.2022.02.025_bib20) 2021; 27 Singh (10.1016/j.ejca.2022.02.025_bib41) 2020 Cai (10.1016/j.ejca.2022.02.025_bib63) 2019 Wohlin (10.1016/j.ejca.2022.02.025_bib26) 2014 MacKie (10.1016/j.ejca.2022.02.025_bib55) 1986 Huang (10.1016/j.ejca.2022.02.025_bib67) 2016 Hekler (10.1016/j.ejca.2022.02.025_bib8) 2019; 115 Krizhevsky (10.1016/j.ejca.2022.02.025_bib65) 2012; 25 Liu (10.1016/j.ejca.2022.02.025_bib74) Hu (10.1016/j.ejca.2022.02.025_bib76) 2018 Hekler (10.1016/j.ejca.2022.02.025_bib7) 2019; 118 Campanella (10.1016/j.ejca.2022.02.025_bib56) 2019; 25 Winkler (10.1016/j.ejca.2022.02.025_bib43) 2019; 155 Sadeghi (10.1016/j.ejca.2022.02.025_bib51) 2018 Zintgraf (10.1016/j.ejca.2022.02.025_bib85) 2017 Codella (10.1016/j.ejca.2022.02.025_bib101) 2019 Ge (10.1016/j.ejca.2022.02.025_bib33) 2017 Adebayo (10.1016/j.ejca.2022.02.025_bib24) 2018 Lage (10.1016/j.ejca.2022.02.025_bib22) 2019 Maron (10.1016/j.ejca.2022.02.025_bib10) 2020; 22 10.1016/j.ejca.2022.02.025_bib96 Tschandl (10.1016/j.ejca.2022.02.025_bib17) 2020; 26 |
References_xml | – volume: 145 start-page: 81 year: 2021 end-page: 91 ident: bib14 article-title: Robustness of convolutional neural networks in recognition of pigmented skin lesions publication-title: Eur J Cancer – year: 2015 ident: bib75 article-title: Deep residual learning for image recognition publication-title: arXiv [cs.CV] – volume: 181 start-page: 155 year: 2019 end-page: 165 ident: bib16 article-title: Diagnostic accuracy of content-based dermatoscopic image retrieval with deep classification features publication-title: Br J Dermatol – year: 1986 ident: bib55 article-title: An illustrated guide to the recognition of early malignant melanoma – volume: 68 start-page: 101915 year: 2021 ident: bib60 article-title: Interpretable deep learning systems for multi-class segmentation and classification of non-melanoma skin cancer publication-title: Med Image Anal – volume: 26 start-page: 1229 year: 2020 end-page: 1234 ident: bib17 article-title: Human–computer collaboration for skin cancer recognition publication-title: Nat Med – year: 2019 ident: bib44 article-title: Global saliency: aggregating saliency maps to assess dataset artefact bias publication-title: arXiv [cs.CV] – volume: 35 start-page: 130 year: 1985 end-page: 151 ident: bib54 article-title: Early detection of malignant melanoma: the role of physician examination and self-examination of the skin publication-title: CA A Cancer J Clin – year: 2018 ident: bib34 article-title: 7-Point checklist and skin lesion classification using multi-task multi-modal neural nets publication-title: IEEE J Biomed Health Inf – year: 2014 ident: bib77 article-title: Very deep convolutional networks for large-scale image recognition publication-title: arXiv [cs.CV] – volume: 86 start-page: 2278 year: 1998 end-page: 2324 ident: bib71 article-title: Gradient-based learning applied to document recognition publication-title: Proc IEEE – year: 2017 ident: bib73 article-title: Mobilenets: efficient convolutional neural networks for mobile vision applications publication-title: arXiv preprint arXiv – start-page: 2921 year: 2016 end-page: 2929 ident: bib19 article-title: Learning deep features for discriminative localization publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition – volume: 12 start-page: 128 year: 2021 ident: bib28 article-title: CellBox: interpretable machine learning for perturbation biology with application to the design of cancer combination therapy publication-title: Cell Syst – start-page: 250 year: 2017 end-page: 258 ident: bib33 article-title: Skin disease recognition using deep saliency features and multimodal learning of dermoscopy and clinical images publication-title: Medical image computing and computer assisted intervention − MICCAI 2017 – year: 2021 ident: bib69 article-title: An explainable stacked ensemble of deep learning models for improved melanoma skin cancer detection publication-title: Multimed Syst – volume: 12 start-page: 733 year: 2021 end-page: 747.e6 ident: bib27 article-title: Interpretable deep learning uncovers cellular properties in label-free live cell images that are predictive of highly metastatic melanoma publication-title: Cell Syst – start-page: 1 year: 2019 end-page: 14 ident: bib63 article-title: Human-centered tools for coping with imperfect algorithms during medical decision-making publication-title: Proceedings of the 2019 CHI conference on human factors in computing systems – volume: 42 start-page: 6578 year: 2015 end-page: 6585 ident: bib97 article-title: MED-NODE: a computer-assisted melanoma diagnosis system using non-dermoscopic images publication-title: Expert Syst Appl – volume: 9 year: 2008 ident: bib86 article-title: Visualizing data using t-SNE publication-title: J Mach Learn Res – year: 2016 ident: bib67 article-title: Densely connected convolutional networks publication-title: arXiv [cs.CV] – start-page: 63 year: 2013 end-page: 86 ident: bib95 article-title: A color and texture based hierarchical K-NN approach to the classification of non-melanoma skin lesions publication-title: Color medical image analysis – volume: 120 start-page: 114 year: 2019 end-page: 121 ident: bib6 article-title: Superior skin cancer classification by the combination of human and artificial intelligence publication-title: Eur J Cancer – volume: 118 start-page: 91 year: 2019 end-page: 96 ident: bib7 article-title: Deep learning outperformed 11 pathologists in the classification of histopathological melanoma images publication-title: Eur J Cancer – start-page: 15252 year: 2021 end-page: 15261 ident: bib68 article-title: DRANet: disentangling representation and adaptation networks for unsupervised cross-domain adaptation publication-title: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition – start-page: 7132 year: 2018 end-page: 7141 ident: bib76 article-title: Squeeze-and-Excitation networks publication-title: 2018 IEEE/CVF conference on computer vision and pattern recognition – start-page: 618 year: 2017 end-page: 626 ident: bib18 article-title: Grad-cam: visual explanations from deep networks via gradient-based localization publication-title: Proceedings of the IEEE international conference on computer vision – volume: 119 start-page: 11 year: 2019 end-page: 17 ident: bib5 article-title: Deep neural networks are superior to dermatologists in melanoma image classification publication-title: Eur J Cancer – volume: 7 start-page: e622 year: 2021 ident: bib88 article-title: Predictive and discriminative localization of pathology using high resolution class activation maps with CNNs publication-title: PeerJ Comput Sci – start-page: 56 year: 2020 end-page: 88 ident: bib64 article-title: Survey of XAI in digital pathology publication-title: Artificial intelligence and machine learning for digital pathology: state-of-the-art and future challenges – start-page: 2668 year: 2018 end-page: 2677 ident: bib59 article-title: Interpretability beyond feature attribution: quantitative testing with Concept activation vectors (TCAV) publication-title: Proceedings of the 35th international conference on machine learning – start-page: 297 year: 2017 end-page: 300 ident: bib98 article-title: Knowledge transfer for melanoma screening with deep learning publication-title: 2017 IEEE 14th international symposium on biomedical imaging (ISBI 2017) – volume: 542 start-page: 115 year: 2017 end-page: 118 ident: bib1 article-title: Dermatologist-level classification of skin cancer with deep neural networks publication-title: Nature – volume: 27 start-page: 1328 year: 2021 ident: bib20 article-title: AI in medicine must be explainable publication-title: Nat Med – volume: 1 start-page: 236 year: 2019 end-page: 245 ident: bib61 article-title: Pathologist-level interpretable whole-slide cancer diagnosis with deep learning publication-title: Nat Mach Intellig – year: 2020 ident: bib15 article-title: WHITE PAPER on Artificial Intelligence - a European approach to excellence and trust. Brussels, 19.2 – volume: 3 start-page: e745 year: 2021 end-page: e750 ident: bib21 article-title: The false hope of current approaches to explainable artificial intelligence in health care publication-title: Lancet Digit Health – volume: 6 start-page: 65130 year: 2018 end-page: 65138 ident: bib90 article-title: Classification for dermoscopy images using convolutional neural networks based on region average pooling publication-title: IEEE Access – volume: 2019 start-page: 2797 year: 2019 end-page: 2800 ident: bib53 article-title: From deep learning towards finding skin lesion biomarkers publication-title: Conf Proc IEEE Eng Med Biol Soc – volume: 156 start-page: 202 year: 2021 end-page: 216 ident: bib11 article-title: Skin cancer classification via convolutional neural networks: systematic review of studies involving human experts publication-title: Eur J Cancer – start-page: 3319 year: 2017 end-page: 3328 ident: bib81 article-title: Axiomatic attribution for deep networks publication-title: Proceedings of the 34th international conference on machine learning – volume: 38 start-page: 2092 year: 2019 end-page: 2103 ident: bib91 article-title: Attention residual learning for skin lesion classification publication-title: IEEE Trans Med Imag – year: 2017 ident: bib85 article-title: Visualizing deep neural network decisions: prediction difference analysis publication-title: arXiv [cs.CV] – start-page: 4768 year: 2017 end-page: 4777 ident: bib83 article-title: A unified approach to interpreting model predictions publication-title: Proceedings of the 31st international conference on neural information processing systems – year: 2018 ident: bib74 article-title: Progressive neural architecture search – year: 2021 ident: bib89 article-title: Interpretability-based multimodal convolutional neural networks for skin lesion diagnosis – start-page: 4853 year: 2019 end-page: 4857 ident: bib30 article-title: Towards explainable melanoma diagnosis: prediction of clinical indicators using semi-supervised and multi-task learning publication-title: 2019 IEEE international conference on big data – year: 2017 ident: bib82 article-title: SmoothGrad: removing noise by adding noise publication-title: arXiv [cs.LG] – start-page: 550 year: 2021 end-page: 559 ident: bib38 article-title: Improving the explainability of skin cancer diagnosis using CBIR publication-title: Medical image computing and computer assisted intervention – MICCAI 2021 – start-page: 1 year: 2015 end-page: 9 ident: bib72 article-title: Going deeper with convolutions publication-title: 2015 IEEE conference on computer vision and pattern recognition (CVPR) – volume: 115 start-page: 79 year: 2019 end-page: 83 ident: bib8 article-title: Pathologist-level classification of histopathological melanoma images with deep neural networks publication-title: Eur J Cancer – start-page: 8116 year: 2020 end-page: 8126 ident: bib45 article-title: Interpretations are useful: penalizing explanations to align neural networks with prior knowledge publication-title: Proceedings of the 37th international conference on machine learning – year: 2019 ident: bib22 article-title: An evaluation of the human-interpretability of explanation publication-title: arXiv [cs.LG] – start-page: 141 year: 2018 end-page: 148 ident: bib51 article-title: How users perceive content-based image retrieval for identifying skin images publication-title: Understanding and interpreting machine learning in medical image computing applications – volume: 86 start-page: 640 year: 2022 end-page: 642 ident: bib9 article-title: Diagnostic performance of artificial intelligence for histologic melanoma recognition compared to 18 international expert pathologists publication-title: J Am Acad Dermatol – ident: bib99 article-title: Interactive atlas of dermoscopy. 2000 – year: 1985 ident: bib79 article-title: Learning internal representations by error propagation – start-page: 793 year: 2019 end-page: 804 ident: bib42 article-title: Melanoma recognition via visual attention publication-title: Information processing in medical imaging – volume: 111 start-page: 148 year: 2019 end-page: 154 ident: bib4 article-title: A convolutional neural network trained with dermoscopic images performed on par with 145 dermatologists in a clinical melanoma image classification task publication-title: Eur J Cancer – start-page: 168 year: 2018 end-page: 172 ident: bib40 article-title: Skin lesion analysis toward melanoma detection: a challenge at the 2017 International symposium on biomedical imaging (ISBI), hosted by the international skin imaging collaboration (ISIC) publication-title: 2018 IEEE 15th international symposium on biomedical imaging – volume: 25 start-page: 1483 year: 2021 end-page: 1494 ident: bib57 article-title: A visually interpretable deep learning framework for histopathological image-based skin cancer diagnosis publication-title: IEEE J Biomed Health Inf – volume: 113 start-page: 47 year: 2019 end-page: 54 ident: bib2 article-title: Deep learning outperformed 136 of 157 dermatologists in a head-to-head dermoscopic melanoma image classification task publication-title: Eur J Cancer – year: 2019 ident: bib101 article-title: Skin lesion analysis toward melanoma detection 2018: a challenge hosted by the international skin imaging collaboration (ISIC) publication-title: arXiv [cs.CV] – volume: 1 start-page: 206 year: 2019 end-page: 215 ident: bib23 article-title: Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead publication-title: Nat Mach Intellig – start-page: 1 year: 2014 end-page: 10 ident: bib26 article-title: Guidelines for snowballing in systematic literature studies and a replication in software engineering publication-title: Proceedings of the 18th international conference on evaluation and assessment in software engineering – start-page: 97 year: 2018 end-page: 105 ident: bib52 article-title: Collaborative human-AI (CHAI): evidence-based interpretable melanoma classification in dermoscopic images publication-title: Understanding and interpreting machine learning in medical image computing applications – volume: 39 start-page: 2482 year: 2020 end-page: 2493 ident: bib35 article-title: A mutual bootstrapping model for automated skin lesion segmentation and classification publication-title: IEEE Trans Med Imag – year: 2014 ident: bib58 article-title: Striving for simplicity: the all convolutional net publication-title: arXiv [cs.LG] – start-page: 1996 year: 2020 end-page: 2000 ident: bib87 article-title: Fusing metadata and dermoscopy images for skin disease diagnosis publication-title: 2020 IEEE 17th international symposium on biomedical imaging (ISBI) – volume: 138 start-page: 1529 year: 2018 end-page: 1538 ident: bib93 article-title: Classification of the clinical images for benign and malignant cutaneous tumors using a deep learning algorithm publication-title: J Invest Dermatol – start-page: 1 year: 2020 end-page: 10 ident: bib49 article-title: On interpretability of deep learning based skin lesion classifiers using Concept activation vectors publication-title: 2020 international joint conference on neural networks (IJCNN) – volume: 155 start-page: 191 year: 2021 end-page: 199 ident: bib13 article-title: A benchmark for neural network robustness in skin cancer classification publication-title: Eur J Cancer – volume: 26 start-page: 900 year: 2020 end-page: 908 ident: bib94 article-title: A deep learning system for differential diagnosis of skin diseases publication-title: Nat Med – volume: 10 start-page: 6423 year: 2020 ident: bib47 article-title: Resolving challenges in deep learning-based analyses of histopathological images using explanation methods publication-title: Sci Rep – volume: 10 year: 2015 ident: bib84 article-title: On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation publication-title: PLoS One – start-page: 4514 year: 2019 end-page: 4518 ident: bib80 article-title: High-resolution class Activation mapping publication-title: 2019 IEEE international conference on image processing (ICIP) – volume: 110 start-page: 107413 year: 2021 ident: bib36 article-title: Explainable skin lesion diagnosis using taxonomies publication-title: Pattern Recogn – volume: 26 start-page: 503 year: 2020 end-page: 512 ident: bib50 article-title: Using content-based image retrieval of dermoscopic images for interpretation and education: a pilot study publication-title: Skin Res Technol – volume: 5 start-page: 180161 year: 2018 ident: bib100 article-title: The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions publication-title: Sci Data – volume: 119 start-page: 57 year: 2019 end-page: 65 ident: bib3 article-title: Systematic outperformance of 112 dermatologists in multiclass skin cancer image classification by convolutional neural networks publication-title: Eur J Cancer – volume: 17 year: 2020 ident: bib12 article-title: Assessment of deep neural networks for the diagnosis of benign and malignant skin neoplasms in comparison with dermatologists: a retrospective validation study publication-title: PLoS Med – start-page: 3 year: 2021 end-page: 17 ident: bib66 article-title: Exploring the correlation between deep learned and clinical features in melanoma detection publication-title: Medical image understanding and analysis – start-page: 6428 year: 2017 end-page: 6436 ident: bib62 article-title: Mdnet: a semantically and visually interpretable medical image diagnosis network publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition – volume: 155 start-page: 1135 year: 2019 end-page: 1141 ident: bib43 article-title: Association between surgical skin markings in dermoscopic images and diagnostic performance of a deep learning convolutional neural network for melanoma recognition publication-title: JAMA Dermatol – volume: 12 start-page: 1613 year: 2021 ident: bib31 article-title: Human-interpretable image features derived from densely mapped cancer pathology slides predict diverse molecular phenotypes publication-title: Nat Commun – year: 2020 ident: bib41 article-title: Agreement between saliency maps and human-labeled regions of interest: applications to skin disease classification publication-title: 2020 IEEE/CVF conference on computer vision and pattern recognition workshops (CVPRW) – volume: 25 start-page: 1097 year: 2012 end-page: 1105 ident: bib65 article-title: Imagenet classification with deep convolutional neural networks publication-title: Adv Neural Inf Process Syst – start-page: 115 year: 2018 end-page: 123 ident: bib48 article-title: Visualizing convolutional neural networks to improve decision support for skin lesion classification publication-title: Understanding and interpreting machine learning in medical image computing applications – year: 2018 ident: bib24 article-title: Sanity checks for saliency maps publication-title: arXiv [cs.CV] – reference: DermNet NZ [WWW document]. DermNet NZ. URL dermnetnz.org [accessed on 29 December 2021]. – volume: 65 start-page: 135005 year: 2020 ident: bib92 article-title: Melanoma detection using adversarial training and deep transfer learning publication-title: Phys Med Biol – volume: 22 start-page: 1349 year: 2000 end-page: 1380 ident: bib32 article-title: Content-based image retrieval at the end of the early years publication-title: IEEE Trans Pattern Anal Mach Intell – volume: 2 start-page: 772 year: 2020 end-page: 782 ident: bib37 article-title: Concept whitening for interpretable image recognition publication-title: Nat Mach Intellig – volume: 25 start-page: 1301 year: 2019 end-page: 1309 ident: bib56 article-title: Clinical-grade computational pathology using weakly supervised deep learning on whole slide images publication-title: Nat Med – start-page: 241 year: 2021 end-page: 253 ident: bib39 article-title: On the overlap between grad-CAM saliency maps and explainable visual features in skin cancer images publication-title: Machine learning and knowledge extraction – year: 2019 ident: bib102 article-title: EfficientNet: rethinking model scaling for convolutional neural networks publication-title: ICML – start-page: 48 year: 2019 end-page: 55 ident: bib46 article-title: Deep neural network or dermatologist? publication-title: Interpretability of machine intelligence in medical image computing and multimodal learning for clinical decision support – year: 2017 ident: bib78 article-title: Xception: deep learning with depthwise separable convolutions publication-title: Proceedings of the IEEE conference on 2017 – volume: 8 start-page: 99633 year: 2020 end-page: 99647 ident: bib70 article-title: Automatic skin cancer detection in dermoscopy images based on ensemble lightweight deep learning network publication-title: IEEE Access – volume: 22 year: 2020 ident: bib10 article-title: Artificial intelligence and its effect on dermatologists' accuracy in dermoscopic melanoma image classification: web-based survey study publication-title: J Med Internet Res – year: 2021 ident: bib29 article-title: An interpretable Algorithm for uveal melanoma subtyping from whole slide cytology images publication-title: arXiv [cs.CV] – year: 2019 ident: bib25 article-title: When explanations lie: why modified BP attribution fails – year: 2014 ident: 10.1016/j.ejca.2022.02.025_bib77 article-title: Very deep convolutional networks for large-scale image recognition publication-title: arXiv [cs.CV] – volume: 9 year: 2008 ident: 10.1016/j.ejca.2022.02.025_bib86 article-title: Visualizing data using t-SNE publication-title: J Mach Learn Res – year: 2019 ident: 10.1016/j.ejca.2022.02.025_bib25 – volume: 118 start-page: 91 year: 2019 ident: 10.1016/j.ejca.2022.02.025_bib7 article-title: Deep learning outperformed 11 pathologists in the classification of histopathological melanoma images publication-title: Eur J Cancer doi: 10.1016/j.ejca.2019.06.012 – volume: 155 start-page: 191 year: 2021 ident: 10.1016/j.ejca.2022.02.025_bib13 article-title: A benchmark for neural network robustness in skin cancer classification publication-title: Eur J Cancer doi: 10.1016/j.ejca.2021.06.047 – start-page: 168 year: 2018 ident: 10.1016/j.ejca.2022.02.025_bib40 article-title: Skin lesion analysis toward melanoma detection: a challenge at the 2017 International symposium on biomedical imaging (ISBI), hosted by the international skin imaging collaboration (ISIC) – year: 2017 ident: 10.1016/j.ejca.2022.02.025_bib73 article-title: Mobilenets: efficient convolutional neural networks for mobile vision applications publication-title: arXiv preprint arXiv – volume: 6 start-page: 65130 year: 2018 ident: 10.1016/j.ejca.2022.02.025_bib90 article-title: Classification for dermoscopy images using convolutional neural networks based on region average pooling publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2877587 – volume: 10 start-page: 6423 year: 2020 ident: 10.1016/j.ejca.2022.02.025_bib47 article-title: Resolving challenges in deep learning-based analyses of histopathological images using explanation methods publication-title: Sci Rep doi: 10.1038/s41598-020-62724-2 – volume: 26 start-page: 900 year: 2020 ident: 10.1016/j.ejca.2022.02.025_bib94 article-title: A deep learning system for differential diagnosis of skin diseases publication-title: Nat Med doi: 10.1038/s41591-020-0842-3 – start-page: 48 year: 2019 ident: 10.1016/j.ejca.2022.02.025_bib46 article-title: Deep neural network or dermatologist? – volume: 39 start-page: 2482 year: 2020 ident: 10.1016/j.ejca.2022.02.025_bib35 article-title: A mutual bootstrapping model for automated skin lesion segmentation and classification publication-title: IEEE Trans Med Imag doi: 10.1109/TMI.2020.2972964 – volume: 138 start-page: 1529 year: 2018 ident: 10.1016/j.ejca.2022.02.025_bib93 article-title: Classification of the clinical images for benign and malignant cutaneous tumors using a deep learning algorithm publication-title: J Invest Dermatol doi: 10.1016/j.jid.2018.01.028 – volume: 542 start-page: 115 year: 2017 ident: 10.1016/j.ejca.2022.02.025_bib1 article-title: Dermatologist-level classification of skin cancer with deep neural networks publication-title: Nature doi: 10.1038/nature21056 – start-page: 2668 year: 2018 ident: 10.1016/j.ejca.2022.02.025_bib59 article-title: Interpretability beyond feature attribution: quantitative testing with Concept activation vectors (TCAV) – start-page: 141 year: 2018 ident: 10.1016/j.ejca.2022.02.025_bib51 article-title: How users perceive content-based image retrieval for identifying skin images – year: 2018 ident: 10.1016/j.ejca.2022.02.025_bib24 article-title: Sanity checks for saliency maps publication-title: arXiv [cs.CV] – start-page: 6428 year: 2017 ident: 10.1016/j.ejca.2022.02.025_bib62 article-title: Mdnet: a semantically and visually interpretable medical image diagnosis network – volume: 8 start-page: 99633 year: 2020 ident: 10.1016/j.ejca.2022.02.025_bib70 article-title: Automatic skin cancer detection in dermoscopy images based on ensemble lightweight deep learning network publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2997710 – start-page: 56 year: 2020 ident: 10.1016/j.ejca.2022.02.025_bib64 article-title: Survey of XAI in digital pathology – year: 2019 ident: 10.1016/j.ejca.2022.02.025_bib44 article-title: Global saliency: aggregating saliency maps to assess dataset artefact bias publication-title: arXiv [cs.CV] – start-page: 4514 year: 2019 ident: 10.1016/j.ejca.2022.02.025_bib80 article-title: High-resolution class Activation mapping – volume: 119 start-page: 11 year: 2019 ident: 10.1016/j.ejca.2022.02.025_bib5 article-title: Deep neural networks are superior to dermatologists in melanoma image classification publication-title: Eur J Cancer doi: 10.1016/j.ejca.2019.05.023 – year: 2018 ident: 10.1016/j.ejca.2022.02.025_bib34 article-title: 7-Point checklist and skin lesion classification using multi-task multi-modal neural nets publication-title: IEEE J Biomed Health Inf – volume: 181 start-page: 155 year: 2019 ident: 10.1016/j.ejca.2022.02.025_bib16 article-title: Diagnostic accuracy of content-based dermatoscopic image retrieval with deep classification features publication-title: Br J Dermatol doi: 10.1111/bjd.17189 – year: 2017 ident: 10.1016/j.ejca.2022.02.025_bib85 article-title: Visualizing deep neural network decisions: prediction difference analysis publication-title: arXiv [cs.CV] – start-page: 97 year: 2018 ident: 10.1016/j.ejca.2022.02.025_bib52 article-title: Collaborative human-AI (CHAI): evidence-based interpretable melanoma classification in dermoscopic images – volume: 1 start-page: 206 year: 2019 ident: 10.1016/j.ejca.2022.02.025_bib23 article-title: Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead publication-title: Nat Mach Intellig doi: 10.1038/s42256-019-0048-x – start-page: 241 year: 2021 ident: 10.1016/j.ejca.2022.02.025_bib39 article-title: On the overlap between grad-CAM saliency maps and explainable visual features in skin cancer images – start-page: 115 year: 2018 ident: 10.1016/j.ejca.2022.02.025_bib48 article-title: Visualizing convolutional neural networks to improve decision support for skin lesion classification – volume: 25 start-page: 1483 year: 2021 ident: 10.1016/j.ejca.2022.02.025_bib57 article-title: A visually interpretable deep learning framework for histopathological image-based skin cancer diagnosis publication-title: IEEE J Biomed Health Inf doi: 10.1109/JBHI.2021.3052044 – start-page: 63 year: 2013 ident: 10.1016/j.ejca.2022.02.025_bib95 article-title: A color and texture based hierarchical K-NN approach to the classification of non-melanoma skin lesions – volume: 113 start-page: 47 year: 2019 ident: 10.1016/j.ejca.2022.02.025_bib2 article-title: Deep learning outperformed 136 of 157 dermatologists in a head-to-head dermoscopic melanoma image classification task publication-title: Eur J Cancer doi: 10.1016/j.ejca.2019.04.001 – start-page: 1996 year: 2020 ident: 10.1016/j.ejca.2022.02.025_bib87 article-title: Fusing metadata and dermoscopy images for skin disease diagnosis – volume: 38 start-page: 2092 year: 2019 ident: 10.1016/j.ejca.2022.02.025_bib91 article-title: Attention residual learning for skin lesion classification publication-title: IEEE Trans Med Imag doi: 10.1109/TMI.2019.2893944 – volume: 115 start-page: 79 year: 2019 ident: 10.1016/j.ejca.2022.02.025_bib8 article-title: Pathologist-level classification of histopathological melanoma images with deep neural networks publication-title: Eur J Cancer doi: 10.1016/j.ejca.2019.04.021 – volume: 155 start-page: 1135 year: 2019 ident: 10.1016/j.ejca.2022.02.025_bib43 article-title: Association between surgical skin markings in dermoscopic images and diagnostic performance of a deep learning convolutional neural network for melanoma recognition publication-title: JAMA Dermatol doi: 10.1001/jamadermatol.2019.1735 – volume: 86 start-page: 640 year: 2022 ident: 10.1016/j.ejca.2022.02.025_bib9 article-title: Diagnostic performance of artificial intelligence for histologic melanoma recognition compared to 18 international expert pathologists publication-title: J Am Acad Dermatol doi: 10.1016/j.jaad.2021.02.009 – start-page: 550 year: 2021 ident: 10.1016/j.ejca.2022.02.025_bib38 article-title: Improving the explainability of skin cancer diagnosis using CBIR – volume: 27 start-page: 1328 year: 2021 ident: 10.1016/j.ejca.2022.02.025_bib20 article-title: AI in medicine must be explainable publication-title: Nat Med doi: 10.1038/s41591-021-01461-z – start-page: 3 year: 2021 ident: 10.1016/j.ejca.2022.02.025_bib66 article-title: Exploring the correlation between deep learned and clinical features in melanoma detection – year: 2021 ident: 10.1016/j.ejca.2022.02.025_bib69 article-title: An explainable stacked ensemble of deep learning models for improved melanoma skin cancer detection publication-title: Multimed Syst doi: 10.1007/s00530-021-00787-5 – year: 2017 ident: 10.1016/j.ejca.2022.02.025_bib78 article-title: Xception: deep learning with depthwise separable convolutions – start-page: 4768 year: 2017 ident: 10.1016/j.ejca.2022.02.025_bib83 article-title: A unified approach to interpreting model predictions – start-page: 297 year: 2017 ident: 10.1016/j.ejca.2022.02.025_bib98 article-title: Knowledge transfer for melanoma screening with deep learning – start-page: 1 year: 2015 ident: 10.1016/j.ejca.2022.02.025_bib72 article-title: Going deeper with convolutions – volume: 3 start-page: e745 year: 2021 ident: 10.1016/j.ejca.2022.02.025_bib21 article-title: The false hope of current approaches to explainable artificial intelligence in health care publication-title: Lancet Digit Health doi: 10.1016/S2589-7500(21)00208-9 – volume: 12 start-page: 128 year: 2021 ident: 10.1016/j.ejca.2022.02.025_bib28 article-title: CellBox: interpretable machine learning for perturbation biology with application to the design of cancer combination therapy publication-title: Cell Syst doi: 10.1016/j.cels.2020.11.013 – volume: 2019 start-page: 2797 year: 2019 ident: 10.1016/j.ejca.2022.02.025_bib53 article-title: From deep learning towards finding skin lesion biomarkers publication-title: Conf Proc IEEE Eng Med Biol Soc – volume: 12 start-page: 733 year: 2021 ident: 10.1016/j.ejca.2022.02.025_bib27 article-title: Interpretable deep learning uncovers cellular properties in label-free live cell images that are predictive of highly metastatic melanoma publication-title: Cell Syst doi: 10.1016/j.cels.2021.05.003 – start-page: 793 year: 2019 ident: 10.1016/j.ejca.2022.02.025_bib42 article-title: Melanoma recognition via visual attention – year: 2021 ident: 10.1016/j.ejca.2022.02.025_bib89 – volume: 68 start-page: 101915 year: 2021 ident: 10.1016/j.ejca.2022.02.025_bib60 article-title: Interpretable deep learning systems for multi-class segmentation and classification of non-melanoma skin cancer publication-title: Med Image Anal doi: 10.1016/j.media.2020.101915 – year: 2019 ident: 10.1016/j.ejca.2022.02.025_bib22 article-title: An evaluation of the human-interpretability of explanation publication-title: arXiv [cs.LG] – volume: 156 start-page: 202 year: 2021 ident: 10.1016/j.ejca.2022.02.025_bib11 article-title: Skin cancer classification via convolutional neural networks: systematic review of studies involving human experts publication-title: Eur J Cancer doi: 10.1016/j.ejca.2021.06.049 – year: 2021 ident: 10.1016/j.ejca.2022.02.025_bib29 article-title: An interpretable Algorithm for uveal melanoma subtyping from whole slide cytology images publication-title: arXiv [cs.CV] – volume: 65 start-page: 135005 year: 2020 ident: 10.1016/j.ejca.2022.02.025_bib92 article-title: Melanoma detection using adversarial training and deep transfer learning publication-title: Phys Med Biol doi: 10.1088/1361-6560/ab86d3 – volume: 26 start-page: 503 year: 2020 ident: 10.1016/j.ejca.2022.02.025_bib50 article-title: Using content-based image retrieval of dermoscopic images for interpretation and education: a pilot study publication-title: Skin Res Technol doi: 10.1111/srt.12822 – volume: 10 year: 2015 ident: 10.1016/j.ejca.2022.02.025_bib84 article-title: On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation publication-title: PLoS One doi: 10.1371/journal.pone.0130140 – volume: 22 year: 2020 ident: 10.1016/j.ejca.2022.02.025_bib10 article-title: Artificial intelligence and its effect on dermatologists' accuracy in dermoscopic melanoma image classification: web-based survey study publication-title: J Med Internet Res doi: 10.2196/18091 – start-page: 1 year: 2020 ident: 10.1016/j.ejca.2022.02.025_bib49 article-title: On interpretability of deep learning based skin lesion classifiers using Concept activation vectors – start-page: 250 year: 2017 ident: 10.1016/j.ejca.2022.02.025_bib33 article-title: Skin disease recognition using deep saliency features and multimodal learning of dermoscopy and clinical images – volume: 35 start-page: 130 year: 1985 ident: 10.1016/j.ejca.2022.02.025_bib54 article-title: Early detection of malignant melanoma: the role of physician examination and self-examination of the skin publication-title: CA A Cancer J Clin doi: 10.3322/canjclin.35.3.130 – year: 2015 ident: 10.1016/j.ejca.2022.02.025_bib75 article-title: Deep residual learning for image recognition publication-title: arXiv [cs.CV] – start-page: 4853 year: 2019 ident: 10.1016/j.ejca.2022.02.025_bib30 article-title: Towards explainable melanoma diagnosis: prediction of clinical indicators using semi-supervised and multi-task learning – start-page: 8116 year: 2020 ident: 10.1016/j.ejca.2022.02.025_bib45 article-title: Interpretations are useful: penalizing explanations to align neural networks with prior knowledge – volume: 86 start-page: 2278 year: 1998 ident: 10.1016/j.ejca.2022.02.025_bib71 article-title: Gradient-based learning applied to document recognition publication-title: Proc IEEE doi: 10.1109/5.726791 – ident: 10.1016/j.ejca.2022.02.025_bib99 – start-page: 15252 year: 2021 ident: 10.1016/j.ejca.2022.02.025_bib68 article-title: DRANet: disentangling representation and adaptation networks for unsupervised cross-domain adaptation – start-page: 3319 year: 2017 ident: 10.1016/j.ejca.2022.02.025_bib81 article-title: Axiomatic attribution for deep networks – year: 2016 ident: 10.1016/j.ejca.2022.02.025_bib67 article-title: Densely connected convolutional networks publication-title: arXiv [cs.CV] – volume: 26 start-page: 1229 year: 2020 ident: 10.1016/j.ejca.2022.02.025_bib17 article-title: Human–computer collaboration for skin cancer recognition publication-title: Nat Med doi: 10.1038/s41591-020-0942-0 – start-page: 2921 year: 2016 ident: 10.1016/j.ejca.2022.02.025_bib19 article-title: Learning deep features for discriminative localization – volume: 1 start-page: 236 year: 2019 ident: 10.1016/j.ejca.2022.02.025_bib61 article-title: Pathologist-level interpretable whole-slide cancer diagnosis with deep learning publication-title: Nat Mach Intellig doi: 10.1038/s42256-019-0052-1 – year: 2020 ident: 10.1016/j.ejca.2022.02.025_bib41 article-title: Agreement between saliency maps and human-labeled regions of interest: applications to skin disease classification – year: 2019 ident: 10.1016/j.ejca.2022.02.025_bib102 article-title: EfficientNet: rethinking model scaling for convolutional neural networks publication-title: ICML – volume: 2 start-page: 772 year: 2020 ident: 10.1016/j.ejca.2022.02.025_bib37 article-title: Concept whitening for interpretable image recognition publication-title: Nat Mach Intellig doi: 10.1038/s42256-020-00265-z – volume: 7 start-page: e622 year: 2021 ident: 10.1016/j.ejca.2022.02.025_bib88 article-title: Predictive and discriminative localization of pathology using high resolution class activation maps with CNNs publication-title: PeerJ Comput Sci doi: 10.7717/peerj-cs.622 – year: 1985 ident: 10.1016/j.ejca.2022.02.025_bib79 – volume: 25 start-page: 1301 year: 2019 ident: 10.1016/j.ejca.2022.02.025_bib56 article-title: Clinical-grade computational pathology using weakly supervised deep learning on whole slide images publication-title: Nat Med doi: 10.1038/s41591-019-0508-1 – year: 2014 ident: 10.1016/j.ejca.2022.02.025_bib58 article-title: Striving for simplicity: the all convolutional net publication-title: arXiv [cs.LG] – year: 2017 ident: 10.1016/j.ejca.2022.02.025_bib82 article-title: SmoothGrad: removing noise by adding noise publication-title: arXiv [cs.LG] – volume: 120 start-page: 114 year: 2019 ident: 10.1016/j.ejca.2022.02.025_bib6 article-title: Superior skin cancer classification by the combination of human and artificial intelligence publication-title: Eur J Cancer doi: 10.1016/j.ejca.2019.07.019 – volume: 17 year: 2020 ident: 10.1016/j.ejca.2022.02.025_bib12 article-title: Assessment of deep neural networks for the diagnosis of benign and malignant skin neoplasms in comparison with dermatologists: a retrospective validation study publication-title: PLoS Med doi: 10.1371/journal.pmed.1003381 – volume: 110 start-page: 107413 year: 2021 ident: 10.1016/j.ejca.2022.02.025_bib36 article-title: Explainable skin lesion diagnosis using taxonomies publication-title: Pattern Recogn doi: 10.1016/j.patcog.2020.107413 – volume: 42 start-page: 6578 year: 2015 ident: 10.1016/j.ejca.2022.02.025_bib97 article-title: MED-NODE: a computer-assisted melanoma diagnosis system using non-dermoscopic images publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2015.04.034 – volume: 5 start-page: 180161 year: 2018 ident: 10.1016/j.ejca.2022.02.025_bib100 article-title: The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions publication-title: Sci Data doi: 10.1038/sdata.2018.161 – volume: 22 start-page: 1349 year: 2000 ident: 10.1016/j.ejca.2022.02.025_bib32 article-title: Content-based image retrieval at the end of the early years publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/34.895972 – start-page: 1 year: 2019 ident: 10.1016/j.ejca.2022.02.025_bib63 article-title: Human-centered tools for coping with imperfect algorithms during medical decision-making – start-page: 7132 year: 2018 ident: 10.1016/j.ejca.2022.02.025_bib76 article-title: Squeeze-and-Excitation networks – start-page: 1 year: 2014 ident: 10.1016/j.ejca.2022.02.025_bib26 article-title: Guidelines for snowballing in systematic literature studies and a replication in software engineering – ident: 10.1016/j.ejca.2022.02.025_bib74 – ident: 10.1016/j.ejca.2022.02.025_bib96 – year: 1986 ident: 10.1016/j.ejca.2022.02.025_bib55 – volume: 111 start-page: 148 year: 2019 ident: 10.1016/j.ejca.2022.02.025_bib4 article-title: A convolutional neural network trained with dermoscopic images performed on par with 145 dermatologists in a clinical melanoma image classification task publication-title: Eur J Cancer doi: 10.1016/j.ejca.2019.02.005 – volume: 119 start-page: 57 year: 2019 ident: 10.1016/j.ejca.2022.02.025_bib3 article-title: Systematic outperformance of 112 dermatologists in multiclass skin cancer image classification by convolutional neural networks publication-title: Eur J Cancer doi: 10.1016/j.ejca.2019.06.013 – volume: 145 start-page: 81 year: 2021 ident: 10.1016/j.ejca.2022.02.025_bib14 article-title: Robustness of convolutional neural networks in recognition of pigmented skin lesions publication-title: Eur J Cancer doi: 10.1016/j.ejca.2020.11.020 – volume: 12 start-page: 1613 year: 2021 ident: 10.1016/j.ejca.2022.02.025_bib31 article-title: Human-interpretable image features derived from densely mapped cancer pathology slides predict diverse molecular phenotypes publication-title: Nat Commun doi: 10.1038/s41467-021-21896-9 – volume: 25 start-page: 1097 year: 2012 ident: 10.1016/j.ejca.2022.02.025_bib65 article-title: Imagenet classification with deep convolutional neural networks publication-title: Adv Neural Inf Process Syst – start-page: 618 year: 2017 ident: 10.1016/j.ejca.2022.02.025_bib18 article-title: Grad-cam: visual explanations from deep networks via gradient-based localization – year: 2019 ident: 10.1016/j.ejca.2022.02.025_bib101 article-title: Skin lesion analysis toward melanoma detection 2018: a challenge hosted by the international skin imaging collaboration (ISIC) publication-title: arXiv [cs.CV] |
SSID | ssj0007840 |
Score | 2.6522124 |
SecondaryResourceType | review_article |
Snippet | Due to their ability to solve complex problems, deep neural networks (DNNs) are becoming increasingly popular in medical applications. However, decision-making... Background: Due to their ability to solve complex problems, deep neural networks (DNNs) are becoming increasingly popular in medical applications. However,... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 54 |
SubjectTerms | Algorithms Artificial Intelligence Artificial neural networks Cancer Decision making Dermatology Explainable artificial intelligence Humans Man-machine systems Medical imaging Neural networks Neural Networks, Computer Performance evaluation Physicians Search engines Skin cancer Skin neoplasms Skin Neoplasms - diagnosis Systematic review |
Title | Explainable artificial intelligence in skin cancer recognition: A systematic review |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S095980492200123X https://dx.doi.org/10.1016/j.ejca.2022.02.025 https://www.ncbi.nlm.nih.gov/pubmed/35390650 https://www.proquest.com/docview/2672768170 https://www.proquest.com/docview/2648899046 |
Volume | 167 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8QwEB50F8QX8XZ1lQi-Sd3tkR6-LaKsir6osG8hSVNYla7o-upv8bf4y5xp0qrgAUIp9BhIJsnMN8kcAHt5lhod5YUXJVTCrKAyL3mmPMN5UCgdIQSpHGQv4-FNdDbioxk4qmNhyK3SyX4r0ytp7d70HDd7D-Nx74p2sFIEuEFQAYPRLLQD1PZpC9qD0_PhZSOQk7SKi7Q7XkjgYmesm5e51ZR-KAiq1J1UMft7_fQT_qz00MkiLDgAyQa2jUswY8plmLtwR-QrcE1edS4kilFPbIoINv6Ue_PtdVyypzu8aRr0R9a4EU3KQzZgH-mdmQ1tWYWbk-Pro6HnSid4GvHP1Et96VfsljLl0k-SPJES9VVulFYyRls0VrwfyyCURZwnhSyKjKsQzR9chhnarWvQKiel2QCWcqNx2felNDIyfj9VSumQF5LzPEHrsAN-zTChXV5xKm9xL2oHsltBTBbEZNGni3dgv6F5sFk1fv07rMdB1PGiKOEECv1fqXhD9WVG_UnXrYdauPX8JAI6sI4pmWEHdpvPuBLpeEWWZvJM_6AwROUexR1Yt1Ok6VzIw4zA8OY_G7UF8_RkPS270Jo-PpttRENTtQOzBy_-jpvz71OECOo |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxEB6FRIJeKsqjTYHiSr2hVbIP76O3CIGSBnJpkHKzbK9XSqg2iCT_h9_CL-vM2ruAVECqtNrD2iOtx57xjD3zDcCPPEuNjvLCixIqYVZQmZc8U57hPCiUjtAEqQJkJ_HwJvo147MWnNe5MBRW6XS_1emVtnZfeo6bvbv5vPebTrBSNHCDoDIMZlvQiaiodRs6g9F4OGkUcpJWeZH2xAsJXO6MDfMyC03wQ0FQQXdSxex_70-v2Z_VPnS5Cx-dAckG9h8_QcuUe7B97a7I92FKUXUuJYrRSCxEBJs_w958fJiXbHWLL02Tfs-aMKJl-ZMN2BO8M7OpLQdwc3kxPR96rnSCp9H-WXupL_2K3VKmXPpJkidS4n6VG6WVjNEXjRXvxzIIZRHnSSGLIuMqRPcHxTBDv_UQ2uWyNF-ApdxoFPu-lEZGxu-nSikd8kJynifoHXbBrxkmtMMVp_IWf0QdQLYQxGRBTBZ9engXzhqaO4uq8WbvsJ4HUeeLooYTqPTfpOIN1YsV9S7dcT3VwsnzSgR0YR0TmGEXvjfNKIl0vSJLs9xQH1SGuLlHcRc-2yXSDC7kYUbG8Nf__KlT2BlOr6_E1WgyPoIP1GKjLo-hvb7fmBO0jNbqm1v5fwGP9ArQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Explainable+artificial+intelligence%C2%A0in+skin+cancer+recognition%3A+A+systematic+review&rft.jtitle=European+journal+of+cancer+%281990%29&rft.au=Hauser%2C+Katja&rft.au=Kurz%2C+Alexander&rft.au=Haggenm%C3%BCller%2C+Sarah&rft.au=Maron%2C+Roman+C.&rft.date=2022-05-01&rft.issn=0959-8049&rft.volume=167&rft.spage=54&rft.epage=69&rft_id=info:doi/10.1016%2Fj.ejca.2022.02.025&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ejca_2022_02_025 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0959-8049&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0959-8049&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0959-8049&client=summon |