Explainable artificial intelligence in skin cancer recognition: A systematic review

Due to their ability to solve complex problems, deep neural networks (DNNs) are becoming increasingly popular in medical applications. However, decision-making by such algorithms is essentially a black-box process that renders it difficult for physicians to judge whether the decisions are reliable....

Full description

Saved in:
Bibliographic Details
Published inEuropean journal of cancer (1990) Vol. 167; pp. 54 - 69
Main Authors Hauser, Katja, Kurz, Alexander, Haggenmüller, Sarah, Maron, Roman C., von Kalle, Christof, Utikal, Jochen S., Meier, Friedegund, Hobelsberger, Sarah, Gellrich, Frank F., Sergon, Mildred, Hauschild, Axel, French, Lars E., Heinzerling, Lucie, Schlager, Justin G., Ghoreschi, Kamran, Schlaak, Max, Hilke, Franz J., Poch, Gabriela, Kutzner, Heinz, Berking, Carola, Heppt, Markus V., Erdmann, Michael, Haferkamp, Sebastian, Schadendorf, Dirk, Sondermann, Wiebke, Goebeler, Matthias, Schilling, Bastian, Kather, Jakob N., Fröhling, Stefan, Lipka, Daniel B., Hekler, Achim, Krieghoff-Henning, Eva, Brinker, Titus J.
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.05.2022
Elsevier Science Ltd
Subjects
Online AccessGet full text
ISSN0959-8049
1879-0852
1879-0852
DOI10.1016/j.ejca.2022.02.025

Cover

Abstract Due to their ability to solve complex problems, deep neural networks (DNNs) are becoming increasingly popular in medical applications. However, decision-making by such algorithms is essentially a black-box process that renders it difficult for physicians to judge whether the decisions are reliable. The use of explainable artificial intelligence (XAI) is often suggested as a solution to this problem. We investigate how XAI is used for skin cancer detection: how is it used during the development of new DNNs? What kinds of visualisations are commonly used? Are there systematic evaluations of XAI with dermatologists or dermatopathologists? Google Scholar, PubMed, IEEE Explore, Science Direct and Scopus were searched for peer-reviewed studies published between January 2017 and October 2021 applying XAI to dermatological images: the search terms histopathological image, whole-slide image, clinical image, dermoscopic image, skin, dermatology, explainable, interpretable and XAI were used in various combinations. Only studies concerned with skin cancer were included. 37 publications fulfilled our inclusion criteria. Most studies (19/37) simply applied existing XAI methods to their classifier to interpret its decision-making. Some studies (4/37) proposed new XAI methods or improved upon existing techniques. 14/37 studies addressed specific questions such as bias detection and impact of XAI on man-machine-interactions. However, only three of them evaluated the performance and confidence of humans using CAD systems with XAI. XAI is commonly applied during the development of DNNs for skin cancer detection. However, a systematic and rigorous evaluation of its usefulness in this scenario is lacking. •No evaluation of explainable artificial intelligence (XAI) for skin cancer detection has been conducted to this date.•Overview of 37 studies using XAI on dermatological and dermato histological data.•Analysis of the usage of XAI to inform research on its role as part of computer-aided diagnosis (CAD) systems.
AbstractList Due to their ability to solve complex problems, deep neural networks (DNNs) are becoming increasingly popular in medical applications. However, decision-making by such algorithms is essentially a black-box process that renders it difficult for physicians to judge whether the decisions are reliable. The use of explainable artificial intelligence (XAI) is often suggested as a solution to this problem. We investigate how XAI is used for skin cancer detection: how is it used during the development of new DNNs? What kinds of visualisations are commonly used? Are there systematic evaluations of XAI with dermatologists or dermatopathologists?BACKGROUNDDue to their ability to solve complex problems, deep neural networks (DNNs) are becoming increasingly popular in medical applications. However, decision-making by such algorithms is essentially a black-box process that renders it difficult for physicians to judge whether the decisions are reliable. The use of explainable artificial intelligence (XAI) is often suggested as a solution to this problem. We investigate how XAI is used for skin cancer detection: how is it used during the development of new DNNs? What kinds of visualisations are commonly used? Are there systematic evaluations of XAI with dermatologists or dermatopathologists?Google Scholar, PubMed, IEEE Explore, Science Direct and Scopus were searched for peer-reviewed studies published between January 2017 and October 2021 applying XAI to dermatological images: the search terms histopathological image, whole-slide image, clinical image, dermoscopic image, skin, dermatology, explainable, interpretable and XAI were used in various combinations. Only studies concerned with skin cancer were included.METHODSGoogle Scholar, PubMed, IEEE Explore, Science Direct and Scopus were searched for peer-reviewed studies published between January 2017 and October 2021 applying XAI to dermatological images: the search terms histopathological image, whole-slide image, clinical image, dermoscopic image, skin, dermatology, explainable, interpretable and XAI were used in various combinations. Only studies concerned with skin cancer were included.37 publications fulfilled our inclusion criteria. Most studies (19/37) simply applied existing XAI methods to their classifier to interpret its decision-making. Some studies (4/37) proposed new XAI methods or improved upon existing techniques. 14/37 studies addressed specific questions such as bias detection and impact of XAI on man-machine-interactions. However, only three of them evaluated the performance and confidence of humans using CAD systems with XAI.RESULTS37 publications fulfilled our inclusion criteria. Most studies (19/37) simply applied existing XAI methods to their classifier to interpret its decision-making. Some studies (4/37) proposed new XAI methods or improved upon existing techniques. 14/37 studies addressed specific questions such as bias detection and impact of XAI on man-machine-interactions. However, only three of them evaluated the performance and confidence of humans using CAD systems with XAI.XAI is commonly applied during the development of DNNs for skin cancer detection. However, a systematic and rigorous evaluation of its usefulness in this scenario is lacking.CONCLUSIONXAI is commonly applied during the development of DNNs for skin cancer detection. However, a systematic and rigorous evaluation of its usefulness in this scenario is lacking.
Background: Due to their ability to solve complex problems, deep neural networks (DNNs) are becoming increasingly popular in medical applications. However, decision-making by such algorithms is essentially a black-box process that renders it difficult for physicians to judge whether the decisions are reliable. The use of explainable artificial intelligence (XAI) is often suggested as a solution to this problem. We investigate how XAI is used for skin cancer detection: how is it used during the development of new DNNs? What kinds of visualisations are commonly used? Are there systematic evaluations of XAI with dermatologists or dermatopathologists? Methods: Google Scholar, PubMed, IEEE Explore, Science Direct and Scopus were searched for peer-reviewed studies published between January 2017 and October 2021 applying XAI to dermatological images: the search terms histopathological image, whole-slide image, clinical image, dermoscopic image, skin, dermatology, explainable, interpretable and XAI were used in various combinations. Only studies concerned with skin cancer were included. Results: 37 publications fulfilled our inclusion criteria. Most studies (19/37) simply applied existing XAI methods to their classifier to interpret its decision-making. Some studies (4/37) proposed new XAI methods or improved upon existing techniques. 14/37 studies addressed specific questions such as bias detection and impact of XAI on man-machine-interactions. However, only three of them evaluated the performance and confidence of humans using CAD systems with XAI. Conclusion: XAI is commonly applied during the development of DNNs for skin cancer detection. However, a systematic and rigorous evaluation of its usefulness in this scenario is lacking.
Due to their ability to solve complex problems, deep neural networks (DNNs) are becoming increasingly popular in medical applications. However, decision-making by such algorithms is essentially a black-box process that renders it difficult for physicians to judge whether the decisions are reliable. The use of explainable artificial intelligence (XAI) is often suggested as a solution to this problem. We investigate how XAI is used for skin cancer detection: how is it used during the development of new DNNs? What kinds of visualisations are commonly used? Are there systematic evaluations of XAI with dermatologists or dermatopathologists? Google Scholar, PubMed, IEEE Explore, Science Direct and Scopus were searched for peer-reviewed studies published between January 2017 and October 2021 applying XAI to dermatological images: the search terms histopathological image, whole-slide image, clinical image, dermoscopic image, skin, dermatology, explainable, interpretable and XAI were used in various combinations. Only studies concerned with skin cancer were included. 37 publications fulfilled our inclusion criteria. Most studies (19/37) simply applied existing XAI methods to their classifier to interpret its decision-making. Some studies (4/37) proposed new XAI methods or improved upon existing techniques. 14/37 studies addressed specific questions such as bias detection and impact of XAI on man-machine-interactions. However, only three of them evaluated the performance and confidence of humans using CAD systems with XAI. XAI is commonly applied during the development of DNNs for skin cancer detection. However, a systematic and rigorous evaluation of its usefulness in this scenario is lacking. •No evaluation of explainable artificial intelligence (XAI) for skin cancer detection has been conducted to this date.•Overview of 37 studies using XAI on dermatological and dermato histological data.•Analysis of the usage of XAI to inform research on its role as part of computer-aided diagnosis (CAD) systems.
Due to their ability to solve complex problems, deep neural networks (DNNs) are becoming increasingly popular in medical applications. However, decision-making by such algorithms is essentially a black-box process that renders it difficult for physicians to judge whether the decisions are reliable. The use of explainable artificial intelligence (XAI) is often suggested as a solution to this problem. We investigate how XAI is used for skin cancer detection: how is it used during the development of new DNNs? What kinds of visualisations are commonly used? Are there systematic evaluations of XAI with dermatologists or dermatopathologists? Google Scholar, PubMed, IEEE Explore, Science Direct and Scopus were searched for peer-reviewed studies published between January 2017 and October 2021 applying XAI to dermatological images: the search terms histopathological image, whole-slide image, clinical image, dermoscopic image, skin, dermatology, explainable, interpretable and XAI were used in various combinations. Only studies concerned with skin cancer were included. 37 publications fulfilled our inclusion criteria. Most studies (19/37) simply applied existing XAI methods to their classifier to interpret its decision-making. Some studies (4/37) proposed new XAI methods or improved upon existing techniques. 14/37 studies addressed specific questions such as bias detection and impact of XAI on man-machine-interactions. However, only three of them evaluated the performance and confidence of humans using CAD systems with XAI. XAI is commonly applied during the development of DNNs for skin cancer detection. However, a systematic and rigorous evaluation of its usefulness in this scenario is lacking.
Author Krieghoff-Henning, Eva
Meier, Friedegund
Berking, Carola
Kather, Jakob N.
Schlaak, Max
Sergon, Mildred
Sondermann, Wiebke
Brinker, Titus J.
Heinzerling, Lucie
Haggenmüller, Sarah
Ghoreschi, Kamran
Goebeler, Matthias
Gellrich, Frank F.
Poch, Gabriela
Heppt, Markus V.
Hauschild, Axel
Schlager, Justin G.
Hilke, Franz J.
Schadendorf, Dirk
Hobelsberger, Sarah
Kutzner, Heinz
Erdmann, Michael
Kurz, Alexander
Maron, Roman C.
Schilling, Bastian
Fröhling, Stefan
Lipka, Daniel B.
French, Lars E.
Hauser, Katja
Hekler, Achim
Haferkamp, Sebastian
Utikal, Jochen S.
von Kalle, Christof
Author_xml – sequence: 1
  givenname: Katja
  orcidid: 0000-0001-9390-3505
  surname: Hauser
  fullname: Hauser, Katja
  organization: Digital Biomarkers for Oncology Group, National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Heidelberg, Germany
– sequence: 2
  givenname: Alexander
  surname: Kurz
  fullname: Kurz, Alexander
  organization: Digital Biomarkers for Oncology Group, National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Heidelberg, Germany
– sequence: 3
  givenname: Sarah
  surname: Haggenmüller
  fullname: Haggenmüller, Sarah
  organization: Digital Biomarkers for Oncology Group, National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Heidelberg, Germany
– sequence: 4
  givenname: Roman C.
  surname: Maron
  fullname: Maron, Roman C.
  organization: Digital Biomarkers for Oncology Group, National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Heidelberg, Germany
– sequence: 5
  givenname: Christof
  surname: von Kalle
  fullname: von Kalle, Christof
  organization: Department of Clinical-Translational Sciences, Charité University Medicine and Berlin Institute of Health (BIH), Berlin, Germany
– sequence: 6
  givenname: Jochen S.
  surname: Utikal
  fullname: Utikal, Jochen S.
  organization: Department of Dermatology, Heidelberg University, Mannheim, Germany
– sequence: 7
  givenname: Friedegund
  orcidid: 0000-0003-4340-9706
  surname: Meier
  fullname: Meier, Friedegund
  organization: Skin Cancer Center at the University Cancer Centre and National Center for Tumor Diseases Dresden, Department of Dermatology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
– sequence: 8
  givenname: Sarah
  orcidid: 0000-0001-5703-324X
  surname: Hobelsberger
  fullname: Hobelsberger, Sarah
  organization: Skin Cancer Center at the University Cancer Centre and National Center for Tumor Diseases Dresden, Department of Dermatology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
– sequence: 9
  givenname: Frank F.
  orcidid: 0000-0002-2164-4644
  surname: Gellrich
  fullname: Gellrich, Frank F.
  organization: Skin Cancer Center at the University Cancer Centre and National Center for Tumor Diseases Dresden, Department of Dermatology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
– sequence: 10
  givenname: Mildred
  orcidid: 0000-0003-4303-2101
  surname: Sergon
  fullname: Sergon, Mildred
  organization: Skin Cancer Center at the University Cancer Centre and National Center for Tumor Diseases Dresden, Department of Dermatology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
– sequence: 11
  givenname: Axel
  orcidid: 0000-0002-1212-9587
  surname: Hauschild
  fullname: Hauschild, Axel
  organization: Department of Dermatology, University Hospital (UKSH), Kiel, Germany
– sequence: 12
  givenname: Lars E.
  surname: French
  fullname: French, Lars E.
  organization: Department of Dermatology and Allergy, University Hospital, LMU Munich, Munich, Germany
– sequence: 13
  givenname: Lucie
  surname: Heinzerling
  fullname: Heinzerling, Lucie
  organization: Department of Dermatology and Allergy, University Hospital, LMU Munich, Munich, Germany
– sequence: 14
  givenname: Justin G.
  surname: Schlager
  fullname: Schlager, Justin G.
  organization: Department of Dermatology and Allergy, University Hospital, LMU Munich, Munich, Germany
– sequence: 15
  givenname: Kamran
  orcidid: 0000-0002-5526-7517
  surname: Ghoreschi
  fullname: Ghoreschi, Kamran
  organization: Department of Dermatology, Venereology and Allergology, Charité – Universitätsmedizin Berlin, Berlin, Germany
– sequence: 16
  givenname: Max
  orcidid: 0000-0002-1663-8098
  surname: Schlaak
  fullname: Schlaak, Max
  organization: Department of Dermatology, Venereology and Allergology, Charité – Universitätsmedizin Berlin, Berlin, Germany
– sequence: 17
  givenname: Franz J.
  orcidid: 0000-0002-6564-454X
  surname: Hilke
  fullname: Hilke, Franz J.
  organization: Department of Dermatology, Venereology and Allergology, Charité – Universitätsmedizin Berlin, Berlin, Germany
– sequence: 18
  givenname: Gabriela
  orcidid: 0000-0003-3948-2505
  surname: Poch
  fullname: Poch, Gabriela
  organization: Department of Dermatology, Venereology and Allergology, Charité – Universitätsmedizin Berlin, Berlin, Germany
– sequence: 19
  givenname: Heinz
  orcidid: 0000-0001-6248-3050
  surname: Kutzner
  fullname: Kutzner, Heinz
  organization: Dermatopathology Laboratory, Friedrichshafen, Germany
– sequence: 20
  givenname: Carola
  surname: Berking
  fullname: Berking, Carola
  organization: Department of Dermatology, University Hospital Erlangen, Comprehensive Cancer Center Erlangen - EMN, Friedrich-Alexander University Erlangen, Nuremberg, Germany
– sequence: 21
  givenname: Markus V.
  orcidid: 0000-0003-4603-1825
  surname: Heppt
  fullname: Heppt, Markus V.
  organization: Department of Dermatology, University Hospital Erlangen, Comprehensive Cancer Center Erlangen - EMN, Friedrich-Alexander University Erlangen, Nuremberg, Germany
– sequence: 22
  givenname: Michael
  orcidid: 0000-0001-7136-6489
  surname: Erdmann
  fullname: Erdmann, Michael
  organization: Department of Dermatology, University Hospital Erlangen, Comprehensive Cancer Center Erlangen - EMN, Friedrich-Alexander University Erlangen, Nuremberg, Germany
– sequence: 23
  givenname: Sebastian
  surname: Haferkamp
  fullname: Haferkamp, Sebastian
  organization: Department of Dermatology, University Hospital Regensburg, Regensburg, Germany
– sequence: 24
  givenname: Dirk
  surname: Schadendorf
  fullname: Schadendorf, Dirk
  organization: Department of Dermatology, University Hospital Essen, Essen, Germany
– sequence: 25
  givenname: Wiebke
  orcidid: 0000-0002-3684-3523
  surname: Sondermann
  fullname: Sondermann, Wiebke
  organization: Department of Dermatology, University Hospital Essen, Essen, Germany
– sequence: 26
  givenname: Matthias
  orcidid: 0000-0001-7095-9848
  surname: Goebeler
  fullname: Goebeler, Matthias
  organization: Department of Dermatology, University Hospital Würzburg, Würzburg, Germany
– sequence: 27
  givenname: Bastian
  orcidid: 0000-0001-8859-4103
  surname: Schilling
  fullname: Schilling, Bastian
  organization: Department of Dermatology, University Hospital Würzburg, Würzburg, Germany
– sequence: 28
  givenname: Jakob N.
  orcidid: 0000-0002-3730-5348
  surname: Kather
  fullname: Kather, Jakob N.
  organization: Division of Translational Medical Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
– sequence: 29
  givenname: Stefan
  surname: Fröhling
  fullname: Fröhling, Stefan
  organization: National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Heidelberg, Germany
– sequence: 30
  givenname: Daniel B.
  orcidid: 0000-0001-5081-7869
  surname: Lipka
  fullname: Lipka, Daniel B.
  organization: National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Heidelberg, Germany
– sequence: 31
  givenname: Achim
  surname: Hekler
  fullname: Hekler, Achim
  organization: Digital Biomarkers for Oncology Group, National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Heidelberg, Germany
– sequence: 32
  givenname: Eva
  orcidid: 0000-0001-8381-3100
  surname: Krieghoff-Henning
  fullname: Krieghoff-Henning, Eva
  organization: Digital Biomarkers for Oncology Group, National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Heidelberg, Germany
– sequence: 33
  givenname: Titus J.
  orcidid: 0000-0002-3620-5919
  surname: Brinker
  fullname: Brinker, Titus J.
  email: titus.brinker@dkfz.de
  organization: Digital Biomarkers for Oncology Group, National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Heidelberg, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35390650$$D View this record in MEDLINE/PubMed
BookMark eNqFkc9q3DAQxkVJaTZpX6CHYuilF29HtmVLoZcQ0j8Q6CU9i7Esh3G08lbSpt236bP0ySqzyWUPKQwSQr9vZvi-M3biZ28Ze8thzYG3H6e1nQyuK6iqNSwlXrAVl50qQYrqhK1ACVVKaNQpO4txAoBONvCKndaiVtAKWLHb699bh-Sxd7bAkGgkQ-gK8sk6R3fWG_v3D_ki3ufDYH6GIlgz33lKNPuL4rKI-5jsBhOZ_PNA9tdr9nJEF-2bx_uc_fh8fXv1tbz5_uXb1eVNaZpapFJy5FaIakSUAnnXDR1iw-vB9qbHFqqu7QW0WNU4tkM34jgq0deNUj2A4nV9zj4c-m7D_HNnY9Ibiibvjd7Ou6irtpFSKWjajL4_Qqd5F3zeLlNdniR5B5l690jt-o0d9DbQBsNeP_mVAXkATJhjDHbUhhIuRqSA5DQHvUSjJ71Eo5doNCwlsrQ6kj51f1b06SCy2cZsbdDR0JLJQDmEpIeZnpdfHMmNI08G3b3d_0_8D1TluzY
CitedBy_id crossref_primary_10_1016_j_bspc_2024_107101
crossref_primary_10_3390_diagnostics13193147
crossref_primary_10_3389_fmed_2024_1445318
crossref_primary_10_3390_ai6010002
crossref_primary_10_1093_bib_bbaf018
crossref_primary_10_1016_j_compbiomed_2024_108742
crossref_primary_10_1002_ctm2_1299
crossref_primary_10_1111_ajd_14222
crossref_primary_10_1002_hcs2_121
crossref_primary_10_1002_der2_70018
crossref_primary_10_1007_s11864_023_01065_4
crossref_primary_10_1016_j_imu_2024_101587
crossref_primary_10_1049_ipr2_13219
crossref_primary_10_1007_s40042_024_01069_9
crossref_primary_10_1007_s41870_023_01713_w
crossref_primary_10_2196_42129
crossref_primary_10_1097_DSS_0000000000004297
crossref_primary_10_1016_j_neunet_2024_106335
crossref_primary_10_3390_asi8020035
crossref_primary_10_1016_S2667_0623_22_01090_X
crossref_primary_10_1007_s41666_023_00127_4
crossref_primary_10_1109_ACCESS_2024_3395988
crossref_primary_10_3390_cancers15010042
crossref_primary_10_1007_s00424_024_02997_y
crossref_primary_10_1016_j_ijmedinf_2024_105689
crossref_primary_10_1016_j_jid_2023_10_004
crossref_primary_10_1007_s00403_024_02884_7
crossref_primary_10_1109_ACCESS_2023_3345225
crossref_primary_10_7717_peerj_cs_2630
crossref_primary_10_1016_j_jid_2023_11_007
crossref_primary_10_1016_j_clindermatol_2023_12_013
crossref_primary_10_1016_j_icte_2024_12_001
crossref_primary_10_1038_s41598_023_35370_7
crossref_primary_10_1038_s41467_023_43095_4
crossref_primary_10_1016_j_artmed_2023_102616
crossref_primary_10_3390_make6030098
crossref_primary_10_69719_ros_v7iesp__820
crossref_primary_10_1002_ped4_70001
crossref_primary_10_1007_s11912_023_01376_7
crossref_primary_10_1007_s12065_024_00977_w
crossref_primary_10_1016_j_ejca_2022_07_002
crossref_primary_10_18705_2782_3806_2022_2_6_23_32
crossref_primary_10_1002_2056_4538_70023
crossref_primary_10_1016_j_clindermatol_2024_06_016
crossref_primary_10_1016_j_cmpb_2024_108228
crossref_primary_10_3390_info15120783
crossref_primary_10_1002_jvc2_580
crossref_primary_10_1016_j_jaad_2024_04_033
crossref_primary_10_3390_diagnostics13182869
crossref_primary_10_1002_ail2_77
crossref_primary_10_1001_jamadermatol_2023_3518
crossref_primary_10_1016_j_ejca_2024_115199
crossref_primary_10_1016_j_chb_2023_108102
crossref_primary_10_1111_jdv_19521
crossref_primary_10_2196_39862
crossref_primary_10_1016_j_jdent_2022_104378
crossref_primary_10_3390_diagnostics13040671
crossref_primary_10_1016_j_procs_2024_05_026
crossref_primary_10_1001_jamadermatol_2023_5550
crossref_primary_10_32604_cmes_2024_051363
crossref_primary_10_3390_a15110438
crossref_primary_10_4103_idoj_idoj_462_23
crossref_primary_10_1109_ACCESS_2023_3291610
crossref_primary_10_3390_cancers15051492
crossref_primary_10_1016_j_compbiomed_2023_106624
crossref_primary_10_1038_s43856_024_00598_5
crossref_primary_10_1016_j_jnlest_2023_100231
crossref_primary_10_3390_computation13030078
crossref_primary_10_3389_fmed_2024_1487270
crossref_primary_10_1002_cai2_136
crossref_primary_10_1109_ACCESS_2024_3373195
Cites_doi 10.1016/j.ejca.2019.06.012
10.1016/j.ejca.2021.06.047
10.1109/ACCESS.2018.2877587
10.1038/s41598-020-62724-2
10.1038/s41591-020-0842-3
10.1109/TMI.2020.2972964
10.1016/j.jid.2018.01.028
10.1038/nature21056
10.1109/ACCESS.2020.2997710
10.1016/j.ejca.2019.05.023
10.1111/bjd.17189
10.1038/s42256-019-0048-x
10.1109/JBHI.2021.3052044
10.1016/j.ejca.2019.04.001
10.1109/TMI.2019.2893944
10.1016/j.ejca.2019.04.021
10.1001/jamadermatol.2019.1735
10.1016/j.jaad.2021.02.009
10.1038/s41591-021-01461-z
10.1007/s00530-021-00787-5
10.1016/S2589-7500(21)00208-9
10.1016/j.cels.2020.11.013
10.1016/j.cels.2021.05.003
10.1016/j.media.2020.101915
10.1016/j.ejca.2021.06.049
10.1088/1361-6560/ab86d3
10.1111/srt.12822
10.1371/journal.pone.0130140
10.2196/18091
10.3322/canjclin.35.3.130
10.1109/5.726791
10.1038/s41591-020-0942-0
10.1038/s42256-019-0052-1
10.1038/s42256-020-00265-z
10.7717/peerj-cs.622
10.1038/s41591-019-0508-1
10.1016/j.ejca.2019.07.019
10.1371/journal.pmed.1003381
10.1016/j.patcog.2020.107413
10.1016/j.eswa.2015.04.034
10.1038/sdata.2018.161
10.1109/34.895972
10.1016/j.ejca.2019.02.005
10.1016/j.ejca.2019.06.013
10.1016/j.ejca.2020.11.020
10.1038/s41467-021-21896-9
ContentType Journal Article
Copyright 2022 The Author(s)
Copyright © 2022 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Copyright Elsevier Science Ltd. May 2022
Copyright_xml – notice: 2022 The Author(s)
– notice: Copyright © 2022 The Author(s). Published by Elsevier Ltd.. All rights reserved.
– notice: Copyright Elsevier Science Ltd. May 2022
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TO
7U7
C1K
H94
K9.
NAPCQ
7X8
DOI 10.1016/j.ejca.2022.02.025
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Oncogenes and Growth Factors Abstracts
Toxicology Abstracts
Environmental Sciences and Pollution Management
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Oncogenes and Growth Factors Abstracts
Toxicology Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
AIDS and Cancer Research Abstracts

MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1879-0852
EndPage 69
ExternalDocumentID 35390650
10_1016_j_ejca_2022_02_025
S095980492200123X
Genre Research Support, Non-U.S. Gov't
Systematic Review
Journal Article
GroupedDBID ---
--K
--M
.1-
.55
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29G
3O-
4.4
457
4G.
53G
5GY
5RE
5VS
6PF
7-5
71M
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAWTL
AAXKI
AAXUO
AAYWO
ABBQC
ABFNM
ABGSF
ABJNI
ABLJU
ABMAC
ABMZM
ABOCM
ABUDA
ABWVN
ABXDB
ACDAQ
ACIEU
ACIUM
ACPRK
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADUVX
AEBSH
AEHWI
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFFNX
AFJKZ
AFPUW
AFRAH
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HED
HMK
HMO
HVGLF
HZ~
IHE
J1W
K-O
KOM
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OC~
OO-
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPCBC
SSH
SSU
SSZ
T5K
UV1
WUQ
X7M
XPP
Z5R
ZGI
ZXP
~G-
6I.
AACTN
AAFTH
AAIAV
ABLVK
ABYKQ
AFCTW
AFKWA
AHPSJ
AJBFU
AJOXV
AMFUW
DOVZS
EFLBG
LCYCR
RIG
ZA5
AAYXX
AGRNS
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TO
7U7
C1K
H94
K9.
NAPCQ
7X8
ACLOT
~HD
ID FETCH-LOGICAL-c435t-81a1e552faa85a177d7aa413debcba60276b506a23af6d7faff95b3499b009133
IEDL.DBID AIKHN
ISSN 0959-8049
1879-0852
IngestDate Sun Sep 28 03:08:27 EDT 2025
Fri Jul 25 22:41:51 EDT 2025
Mon Jul 21 06:06:29 EDT 2025
Tue Jul 01 02:57:08 EDT 2025
Thu Apr 24 23:03:08 EDT 2025
Fri Feb 23 02:41:15 EST 2024
Tue Aug 26 19:28:12 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Systematic review
Dermatology
Skin neoplasms
Artificial intelligence
Man-machine systems
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2022 The Author(s). Published by Elsevier Ltd.. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c435t-81a1e552faa85a177d7aa413debcba60276b506a23af6d7faff95b3499b009133
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Feature-3
ObjectType-Evidence Based Healthcare-1
ObjectType-Article-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ObjectType-Undefined-4
ORCID 0000-0003-4303-2101
0000-0002-1663-8098
0000-0001-6248-3050
0000-0002-3730-5348
0000-0001-8381-3100
0000-0002-5526-7517
0000-0001-9390-3505
0000-0001-8859-4103
0000-0002-2164-4644
0000-0002-3620-5919
0000-0003-4340-9706
0000-0001-7136-6489
0000-0002-3684-3523
0000-0003-4603-1825
0000-0002-6564-454X
0000-0001-7095-9848
0000-0001-5703-324X
0000-0003-3948-2505
0000-0002-1212-9587
0000-0001-5081-7869
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S095980492200123X
PMID 35390650
PQID 2672768170
PQPubID 2047469
PageCount 16
ParticipantIDs proquest_miscellaneous_2648899046
proquest_journals_2672768170
pubmed_primary_35390650
crossref_citationtrail_10_1016_j_ejca_2022_02_025
crossref_primary_10_1016_j_ejca_2022_02_025
elsevier_sciencedirect_doi_10_1016_j_ejca_2022_02_025
elsevier_clinicalkey_doi_10_1016_j_ejca_2022_02_025
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2022
2022-05-00
20220501
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: May 2022
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle European journal of cancer (1990)
PublicationTitleAlternate Eur J Cancer
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier Science Ltd
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Science Ltd
References Li, Zhuang, Wang (bib87) 2020
Bach, Binder, Montavon (bib84) 2015; 10
Wang, Yin, Wang (bib89) 2021
Codella, Gutman, Celebi (bib40) 2018
Zhou, Khosla, Lapedriza (bib19) 2016
Pfau, Young, Wei, Keiser (bib44) 2019
Maron, Schlager, Haggenmüller (bib13) 2021; 155
Zintgraf, Cohen, Adel, Welling (bib85) 2017
Zhang, Xie, Xia, Shen (bib91) 2019; 38
Selvaraju, Cogswell, Das (bib18) 2017
Ge, Demyanov, Chakravorty (bib33) 2017
Zhang, Xie, Xing (bib62) 2017
Yuan, Shen, Luna (bib28) 2021; 12
Rumelhart, Hinton, Williams (bib79) 1985
Campanella, Hanna, Geneslaw (bib56) 2019; 25
Chen, Alvin Liu, Gomez (bib29) 2021
Yan, Kawahara, Hamarneh (bib42) 2019
Barata, Celebi, Marques (bib36) 2021; 110
Simonyan, Zisserman (bib77) 2014
Tan, Le (bib102) 2019
Lecun, Bottou, Bengio, Haffner (bib71) 1998; 86
Maron, Utikal, Hekler (bib10) 2020; 22
Cai, Reif, Hegde (bib63) 2019
Rieger, Singh, Murdoch, Yu (bib45) 2020
Kim, Wattenberg, Gilmer (bib59) 2018
Thomas, Lefevre, Baxter, Hamilton (bib60) 2021; 68
Liu, Zoph, Neumann, Shlens (bib74) 2018
Hägele, Seegerer, Lapuschkin (bib47) 2020; 10
Tschandl, Argenziano, Razmara, Yap (bib16) 2019; 181
He, Zhang, Ren, Sun (bib75) 2015
Sundararajan, Taly, Yan (bib81) 2017
Tagaris, Sdraka, Stafylopatis (bib80) 2019
Sadeghi, Chilana, Yap (bib50) 2020; 26
Codella, Lin, Halpern (bib52) 2018
Chowdhury, Bajwa, Chakraborti (bib66) 2021
Brinker, Hekler, Enk (bib4) 2019; 111
Zaritsky, Jamieson, Welf (bib27) 2021; 12
Smilkov, Thorat, Kim (bib82) 2017
Brinker, Hekler, Enk (bib5) 2019; 119
Maron, Haggenmüller, von Kalle (bib14) 2021; 145
Singh, Lee, Coz (bib41) 2020
Yang, Xie, Fan (bib90) 2018; 6
Wohlin (bib26) 2014
Han, Moon, Kim (bib12) 2020; 17
Li, Wu, Chen, Jiang (bib53) 2019; 2019
Brinker, Schmitt, Krieghoff-Henning (bib9) 2022; 86
Haggenmüller, Maron, Hekler (bib11) 2021; 156
Barata, Santiago (bib38) 2021
Giotis, Molders, Land (bib97) 2015; 42
Adebayo, Gilmer, Muelly (bib24) 2018
Shinde, Tupe-Waghmare, Chougule (bib88) 2021; 7
Szegedy, Liu, Jia (bib72) 2015
Ghassemi, Oakden-Rayner, Beam (bib21) 2021; 3
Menegola, Fornaciali, Pires (bib98) 2017
Pocevičiūtė, Eilertsen, Lundström (bib64) 2020
Tschandl, Rinner, Apalla (bib17) 2020; 26
Huang, Liu, van der Maaten, Weinberger (bib67) 2016
Esteva, Kuprel, Novoa (bib1) 2017; 542
DermNet NZ [WWW document]. DermNet NZ. URL dermnetnz.org [accessed on 29 December 2021].
Jiang, Li, Jin (bib57) 2021; 25
Lundberg, Lee (bib83) 2017
Murabayashi, Iyatomi (bib30) 2019
Chen, Bei, Rudin (bib37) 2020; 2
Friedman, Rigel, Kopf (bib54) 1985; 35
Van der Maaten, Hinton (bib86) 2008; 9
Kawahara, Daneshvar, Argenziano, Hamarneh (bib34) 2018
Liu, Jain, Eng (bib94) 2020; 26
Argenziano, Soyer, De Giorgio, Piccolo (bib99)
Young, Booth, Simpson (bib46) 2019
Ballerini, Fisher, Aldridge, Rees (bib95) 2013
MacKie (bib55) 1986
Zhang, Chen, McGough (bib61) 2019; 1
Lee, Cho, Im (bib68) 2021
Han, Kim, Lim (bib93) 2018; 138
Shorfuzzaman (bib69) 2021
Brinker, Hekler, Enk (bib2) 2019; 113
(bib15) 2020
Lage, Chen, He (bib22) 2019
Lucieri, Bajwa, Alexander Braun (bib49) 2020
Maron, Weichenthal, Utikal (bib3) 2019; 119
Van Molle, De Strooper, Verbelen (bib48) 2018
Codella, Rotemberg, Tschandl (bib101) 2019
Sixt, Granz, Landgraf (bib25) 2019
Tschandl, Rosendahl, Kittler (bib100) 2018; 5
Kundu (bib20) 2021; 27
Chollet (bib78) 2017
Rudin (bib23) 2019; 1
Diao, Wang, Chui (bib31) 2021; 12
Winkler, Fink, Toberer (bib43) 2019; 155
Xie, Zhang, Xia, Shen (bib35) 2020; 39
Howard, Zhu, Chen, Kalenichenko (bib73) 2017
Zunair, Ben Hamza (bib92) 2020; 65
Hekler, Utikal, Enk (bib7) 2019; 118
Springenberg, Dosovitskiy, Brox, Riedmiller (bib58) 2014
Smeulders, Worring, Santini (bib32) 2000; 22
Nunnari, Kadir, Sonntag (bib39) 2021
Krizhevsky, Sutskever, Hinton (bib65) 2012; 25
Wei, Ding, Hu (bib70) 2020; 8
Hekler, Utikal, Enk (bib8) 2019; 115
Sadeghi, Chilana, Atkins (bib51) 2018
Hekler, Utikal, Enk (bib6) 2019; 120
Hu, Shen, Sun (bib76) 2018
Barata (10.1016/j.ejca.2022.02.025_bib36) 2021; 110
Liu (10.1016/j.ejca.2022.02.025_bib94) 2020; 26
Murabayashi (10.1016/j.ejca.2022.02.025_bib30) 2019
Argenziano (10.1016/j.ejca.2022.02.025_bib99)
Zunair (10.1016/j.ejca.2022.02.025_bib92) 2020; 65
Brinker (10.1016/j.ejca.2022.02.025_bib4) 2019; 111
Pfau (10.1016/j.ejca.2022.02.025_bib44) 2019
Smilkov (10.1016/j.ejca.2022.02.025_bib82) 2017
Han (10.1016/j.ejca.2022.02.025_bib93) 2018; 138
Springenberg (10.1016/j.ejca.2022.02.025_bib58) 2014
Jiang (10.1016/j.ejca.2022.02.025_bib57) 2021; 25
Hekler (10.1016/j.ejca.2022.02.025_bib6) 2019; 120
Maron (10.1016/j.ejca.2022.02.025_bib13) 2021; 155
Thomas (10.1016/j.ejca.2022.02.025_bib60) 2021; 68
Codella (10.1016/j.ejca.2022.02.025_bib40) 2018
Young (10.1016/j.ejca.2022.02.025_bib46) 2019
Yang (10.1016/j.ejca.2022.02.025_bib90) 2018; 6
Lucieri (10.1016/j.ejca.2022.02.025_bib49) 2020
Lecun (10.1016/j.ejca.2022.02.025_bib71) 1998; 86
Sadeghi (10.1016/j.ejca.2022.02.025_bib50) 2020; 26
Kim (10.1016/j.ejca.2022.02.025_bib59) 2018
Pocevičiūtė (10.1016/j.ejca.2022.02.025_bib64) 2020
Esteva (10.1016/j.ejca.2022.02.025_bib1) 2017; 542
Howard (10.1016/j.ejca.2022.02.025_bib73) 2017
Codella (10.1016/j.ejca.2022.02.025_bib52) 2018
Rieger (10.1016/j.ejca.2022.02.025_bib45) 2020
Giotis (10.1016/j.ejca.2022.02.025_bib97) 2015; 42
Chollet (10.1016/j.ejca.2022.02.025_bib78) 2017
Tschandl (10.1016/j.ejca.2022.02.025_bib16) 2019; 181
Van Molle (10.1016/j.ejca.2022.02.025_bib48) 2018
Diao (10.1016/j.ejca.2022.02.025_bib31) 2021; 12
Maron (10.1016/j.ejca.2022.02.025_bib3) 2019; 119
Yan (10.1016/j.ejca.2022.02.025_bib42) 2019
Li (10.1016/j.ejca.2022.02.025_bib87) 2020
Shinde (10.1016/j.ejca.2022.02.025_bib88) 2021; 7
Tschandl (10.1016/j.ejca.2022.02.025_bib100) 2018; 5
Szegedy (10.1016/j.ejca.2022.02.025_bib72) 2015
Sundararajan (10.1016/j.ejca.2022.02.025_bib81) 2017
Sixt (10.1016/j.ejca.2022.02.025_bib25) 2019
Selvaraju (10.1016/j.ejca.2022.02.025_bib18) 2017
Maron (10.1016/j.ejca.2022.02.025_bib14) 2021; 145
Zhang (10.1016/j.ejca.2022.02.025_bib62) 2017
Rumelhart (10.1016/j.ejca.2022.02.025_bib79) 1985
Zhang (10.1016/j.ejca.2022.02.025_bib61) 2019; 1
Friedman (10.1016/j.ejca.2022.02.025_bib54) 1985; 35
Shorfuzzaman (10.1016/j.ejca.2022.02.025_bib69) 2021
Nunnari (10.1016/j.ejca.2022.02.025_bib39) 2021
He (10.1016/j.ejca.2022.02.025_bib75) 2015
Chen (10.1016/j.ejca.2022.02.025_bib37) 2020; 2
Lee (10.1016/j.ejca.2022.02.025_bib68) 2021
Yuan (10.1016/j.ejca.2022.02.025_bib28) 2021; 12
Menegola (10.1016/j.ejca.2022.02.025_bib98) 2017
Li (10.1016/j.ejca.2022.02.025_bib53) 2019; 2019
Haggenmüller (10.1016/j.ejca.2022.02.025_bib11) 2021; 156
Tagaris (10.1016/j.ejca.2022.02.025_bib80) 2019
Chowdhury (10.1016/j.ejca.2022.02.025_bib66) 2021
Kawahara (10.1016/j.ejca.2022.02.025_bib34) 2018
Zhou (10.1016/j.ejca.2022.02.025_bib19) 2016
Ballerini (10.1016/j.ejca.2022.02.025_bib95) 2013
Lundberg (10.1016/j.ejca.2022.02.025_bib83) 2017
Brinker (10.1016/j.ejca.2022.02.025_bib9) 2022; 86
Zaritsky (10.1016/j.ejca.2022.02.025_bib27) 2021; 12
Smeulders (10.1016/j.ejca.2022.02.025_bib32) 2000; 22
Van der Maaten (10.1016/j.ejca.2022.02.025_bib86) 2008; 9
Ghassemi (10.1016/j.ejca.2022.02.025_bib21) 2021; 3
Brinker (10.1016/j.ejca.2022.02.025_bib2) 2019; 113
Simonyan (10.1016/j.ejca.2022.02.025_bib77) 2014
Barata (10.1016/j.ejca.2022.02.025_bib38) 2021
Han (10.1016/j.ejca.2022.02.025_bib12) 2020; 17
Rudin (10.1016/j.ejca.2022.02.025_bib23) 2019; 1
Hägele (10.1016/j.ejca.2022.02.025_bib47) 2020; 10
Wang (10.1016/j.ejca.2022.02.025_bib89) 2021
Zhang (10.1016/j.ejca.2022.02.025_bib91) 2019; 38
Xie (10.1016/j.ejca.2022.02.025_bib35) 2020; 39
Wei (10.1016/j.ejca.2022.02.025_bib70) 2020; 8
Bach (10.1016/j.ejca.2022.02.025_bib84) 2015; 10
Chen (10.1016/j.ejca.2022.02.025_bib29) 2021
Tan (10.1016/j.ejca.2022.02.025_bib102) 2019
Brinker (10.1016/j.ejca.2022.02.025_bib5) 2019; 119
Kundu (10.1016/j.ejca.2022.02.025_bib20) 2021; 27
Singh (10.1016/j.ejca.2022.02.025_bib41) 2020
Cai (10.1016/j.ejca.2022.02.025_bib63) 2019
Wohlin (10.1016/j.ejca.2022.02.025_bib26) 2014
MacKie (10.1016/j.ejca.2022.02.025_bib55) 1986
Huang (10.1016/j.ejca.2022.02.025_bib67) 2016
Hekler (10.1016/j.ejca.2022.02.025_bib8) 2019; 115
Krizhevsky (10.1016/j.ejca.2022.02.025_bib65) 2012; 25
Liu (10.1016/j.ejca.2022.02.025_bib74)
Hu (10.1016/j.ejca.2022.02.025_bib76) 2018
Hekler (10.1016/j.ejca.2022.02.025_bib7) 2019; 118
Campanella (10.1016/j.ejca.2022.02.025_bib56) 2019; 25
Winkler (10.1016/j.ejca.2022.02.025_bib43) 2019; 155
Sadeghi (10.1016/j.ejca.2022.02.025_bib51) 2018
Zintgraf (10.1016/j.ejca.2022.02.025_bib85) 2017
Codella (10.1016/j.ejca.2022.02.025_bib101) 2019
Ge (10.1016/j.ejca.2022.02.025_bib33) 2017
Adebayo (10.1016/j.ejca.2022.02.025_bib24) 2018
Lage (10.1016/j.ejca.2022.02.025_bib22) 2019
Maron (10.1016/j.ejca.2022.02.025_bib10) 2020; 22
10.1016/j.ejca.2022.02.025_bib96
Tschandl (10.1016/j.ejca.2022.02.025_bib17) 2020; 26
References_xml – volume: 145
  start-page: 81
  year: 2021
  end-page: 91
  ident: bib14
  article-title: Robustness of convolutional neural networks in recognition of pigmented skin lesions
  publication-title: Eur J Cancer
– year: 2015
  ident: bib75
  article-title: Deep residual learning for image recognition
  publication-title: arXiv [cs.CV]
– volume: 181
  start-page: 155
  year: 2019
  end-page: 165
  ident: bib16
  article-title: Diagnostic accuracy of content-based dermatoscopic image retrieval with deep classification features
  publication-title: Br J Dermatol
– year: 1986
  ident: bib55
  article-title: An illustrated guide to the recognition of early malignant melanoma
– volume: 68
  start-page: 101915
  year: 2021
  ident: bib60
  article-title: Interpretable deep learning systems for multi-class segmentation and classification of non-melanoma skin cancer
  publication-title: Med Image Anal
– volume: 26
  start-page: 1229
  year: 2020
  end-page: 1234
  ident: bib17
  article-title: Human–computer collaboration for skin cancer recognition
  publication-title: Nat Med
– year: 2019
  ident: bib44
  article-title: Global saliency: aggregating saliency maps to assess dataset artefact bias
  publication-title: arXiv [cs.CV]
– volume: 35
  start-page: 130
  year: 1985
  end-page: 151
  ident: bib54
  article-title: Early detection of malignant melanoma: the role of physician examination and self-examination of the skin
  publication-title: CA A Cancer J Clin
– year: 2018
  ident: bib34
  article-title: 7-Point checklist and skin lesion classification using multi-task multi-modal neural nets
  publication-title: IEEE J Biomed Health Inf
– year: 2014
  ident: bib77
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: arXiv [cs.CV]
– volume: 86
  start-page: 2278
  year: 1998
  end-page: 2324
  ident: bib71
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proc IEEE
– year: 2017
  ident: bib73
  article-title: Mobilenets: efficient convolutional neural networks for mobile vision applications
  publication-title: arXiv preprint arXiv
– start-page: 2921
  year: 2016
  end-page: 2929
  ident: bib19
  article-title: Learning deep features for discriminative localization
  publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition
– volume: 12
  start-page: 128
  year: 2021
  ident: bib28
  article-title: CellBox: interpretable machine learning for perturbation biology with application to the design of cancer combination therapy
  publication-title: Cell Syst
– start-page: 250
  year: 2017
  end-page: 258
  ident: bib33
  article-title: Skin disease recognition using deep saliency features and multimodal learning of dermoscopy and clinical images
  publication-title: Medical image computing and computer assisted intervention − MICCAI 2017
– year: 2021
  ident: bib69
  article-title: An explainable stacked ensemble of deep learning models for improved melanoma skin cancer detection
  publication-title: Multimed Syst
– volume: 12
  start-page: 733
  year: 2021
  end-page: 747.e6
  ident: bib27
  article-title: Interpretable deep learning uncovers cellular properties in label-free live cell images that are predictive of highly metastatic melanoma
  publication-title: Cell Syst
– start-page: 1
  year: 2019
  end-page: 14
  ident: bib63
  article-title: Human-centered tools for coping with imperfect algorithms during medical decision-making
  publication-title: Proceedings of the 2019 CHI conference on human factors in computing systems
– volume: 42
  start-page: 6578
  year: 2015
  end-page: 6585
  ident: bib97
  article-title: MED-NODE: a computer-assisted melanoma diagnosis system using non-dermoscopic images
  publication-title: Expert Syst Appl
– volume: 9
  year: 2008
  ident: bib86
  article-title: Visualizing data using t-SNE
  publication-title: J Mach Learn Res
– year: 2016
  ident: bib67
  article-title: Densely connected convolutional networks
  publication-title: arXiv [cs.CV]
– start-page: 63
  year: 2013
  end-page: 86
  ident: bib95
  article-title: A color and texture based hierarchical K-NN approach to the classification of non-melanoma skin lesions
  publication-title: Color medical image analysis
– volume: 120
  start-page: 114
  year: 2019
  end-page: 121
  ident: bib6
  article-title: Superior skin cancer classification by the combination of human and artificial intelligence
  publication-title: Eur J Cancer
– volume: 118
  start-page: 91
  year: 2019
  end-page: 96
  ident: bib7
  article-title: Deep learning outperformed 11 pathologists in the classification of histopathological melanoma images
  publication-title: Eur J Cancer
– start-page: 15252
  year: 2021
  end-page: 15261
  ident: bib68
  article-title: DRANet: disentangling representation and adaptation networks for unsupervised cross-domain adaptation
  publication-title: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition
– start-page: 7132
  year: 2018
  end-page: 7141
  ident: bib76
  article-title: Squeeze-and-Excitation networks
  publication-title: 2018 IEEE/CVF conference on computer vision and pattern recognition
– start-page: 618
  year: 2017
  end-page: 626
  ident: bib18
  article-title: Grad-cam: visual explanations from deep networks via gradient-based localization
  publication-title: Proceedings of the IEEE international conference on computer vision
– volume: 119
  start-page: 11
  year: 2019
  end-page: 17
  ident: bib5
  article-title: Deep neural networks are superior to dermatologists in melanoma image classification
  publication-title: Eur J Cancer
– volume: 7
  start-page: e622
  year: 2021
  ident: bib88
  article-title: Predictive and discriminative localization of pathology using high resolution class activation maps with CNNs
  publication-title: PeerJ Comput Sci
– start-page: 56
  year: 2020
  end-page: 88
  ident: bib64
  article-title: Survey of XAI in digital pathology
  publication-title: Artificial intelligence and machine learning for digital pathology: state-of-the-art and future challenges
– start-page: 2668
  year: 2018
  end-page: 2677
  ident: bib59
  article-title: Interpretability beyond feature attribution: quantitative testing with Concept activation vectors (TCAV)
  publication-title: Proceedings of the 35th international conference on machine learning
– start-page: 297
  year: 2017
  end-page: 300
  ident: bib98
  article-title: Knowledge transfer for melanoma screening with deep learning
  publication-title: 2017 IEEE 14th international symposium on biomedical imaging (ISBI 2017)
– volume: 542
  start-page: 115
  year: 2017
  end-page: 118
  ident: bib1
  article-title: Dermatologist-level classification of skin cancer with deep neural networks
  publication-title: Nature
– volume: 27
  start-page: 1328
  year: 2021
  ident: bib20
  article-title: AI in medicine must be explainable
  publication-title: Nat Med
– volume: 1
  start-page: 236
  year: 2019
  end-page: 245
  ident: bib61
  article-title: Pathologist-level interpretable whole-slide cancer diagnosis with deep learning
  publication-title: Nat Mach Intellig
– year: 2020
  ident: bib15
  article-title: WHITE PAPER on Artificial Intelligence - a European approach to excellence and trust. Brussels, 19.2
– volume: 3
  start-page: e745
  year: 2021
  end-page: e750
  ident: bib21
  article-title: The false hope of current approaches to explainable artificial intelligence in health care
  publication-title: Lancet Digit Health
– volume: 6
  start-page: 65130
  year: 2018
  end-page: 65138
  ident: bib90
  article-title: Classification for dermoscopy images using convolutional neural networks based on region average pooling
  publication-title: IEEE Access
– volume: 2019
  start-page: 2797
  year: 2019
  end-page: 2800
  ident: bib53
  article-title: From deep learning towards finding skin lesion biomarkers
  publication-title: Conf Proc IEEE Eng Med Biol Soc
– volume: 156
  start-page: 202
  year: 2021
  end-page: 216
  ident: bib11
  article-title: Skin cancer classification via convolutional neural networks: systematic review of studies involving human experts
  publication-title: Eur J Cancer
– start-page: 3319
  year: 2017
  end-page: 3328
  ident: bib81
  article-title: Axiomatic attribution for deep networks
  publication-title: Proceedings of the 34th international conference on machine learning
– volume: 38
  start-page: 2092
  year: 2019
  end-page: 2103
  ident: bib91
  article-title: Attention residual learning for skin lesion classification
  publication-title: IEEE Trans Med Imag
– year: 2017
  ident: bib85
  article-title: Visualizing deep neural network decisions: prediction difference analysis
  publication-title: arXiv [cs.CV]
– start-page: 4768
  year: 2017
  end-page: 4777
  ident: bib83
  article-title: A unified approach to interpreting model predictions
  publication-title: Proceedings of the 31st international conference on neural information processing systems
– year: 2018
  ident: bib74
  article-title: Progressive neural architecture search
– year: 2021
  ident: bib89
  article-title: Interpretability-based multimodal convolutional neural networks for skin lesion diagnosis
– start-page: 4853
  year: 2019
  end-page: 4857
  ident: bib30
  article-title: Towards explainable melanoma diagnosis: prediction of clinical indicators using semi-supervised and multi-task learning
  publication-title: 2019 IEEE international conference on big data
– year: 2017
  ident: bib82
  article-title: SmoothGrad: removing noise by adding noise
  publication-title: arXiv [cs.LG]
– start-page: 550
  year: 2021
  end-page: 559
  ident: bib38
  article-title: Improving the explainability of skin cancer diagnosis using CBIR
  publication-title: Medical image computing and computer assisted intervention – MICCAI 2021
– start-page: 1
  year: 2015
  end-page: 9
  ident: bib72
  article-title: Going deeper with convolutions
  publication-title: 2015 IEEE conference on computer vision and pattern recognition (CVPR)
– volume: 115
  start-page: 79
  year: 2019
  end-page: 83
  ident: bib8
  article-title: Pathologist-level classification of histopathological melanoma images with deep neural networks
  publication-title: Eur J Cancer
– start-page: 8116
  year: 2020
  end-page: 8126
  ident: bib45
  article-title: Interpretations are useful: penalizing explanations to align neural networks with prior knowledge
  publication-title: Proceedings of the 37th international conference on machine learning
– year: 2019
  ident: bib22
  article-title: An evaluation of the human-interpretability of explanation
  publication-title: arXiv [cs.LG]
– start-page: 141
  year: 2018
  end-page: 148
  ident: bib51
  article-title: How users perceive content-based image retrieval for identifying skin images
  publication-title: Understanding and interpreting machine learning in medical image computing applications
– volume: 86
  start-page: 640
  year: 2022
  end-page: 642
  ident: bib9
  article-title: Diagnostic performance of artificial intelligence for histologic melanoma recognition compared to 18 international expert pathologists
  publication-title: J Am Acad Dermatol
– ident: bib99
  article-title: Interactive atlas of dermoscopy. 2000
– year: 1985
  ident: bib79
  article-title: Learning internal representations by error propagation
– start-page: 793
  year: 2019
  end-page: 804
  ident: bib42
  article-title: Melanoma recognition via visual attention
  publication-title: Information processing in medical imaging
– volume: 111
  start-page: 148
  year: 2019
  end-page: 154
  ident: bib4
  article-title: A convolutional neural network trained with dermoscopic images performed on par with 145 dermatologists in a clinical melanoma image classification task
  publication-title: Eur J Cancer
– start-page: 168
  year: 2018
  end-page: 172
  ident: bib40
  article-title: Skin lesion analysis toward melanoma detection: a challenge at the 2017 International symposium on biomedical imaging (ISBI), hosted by the international skin imaging collaboration (ISIC)
  publication-title: 2018 IEEE 15th international symposium on biomedical imaging
– volume: 25
  start-page: 1483
  year: 2021
  end-page: 1494
  ident: bib57
  article-title: A visually interpretable deep learning framework for histopathological image-based skin cancer diagnosis
  publication-title: IEEE J Biomed Health Inf
– volume: 113
  start-page: 47
  year: 2019
  end-page: 54
  ident: bib2
  article-title: Deep learning outperformed 136 of 157 dermatologists in a head-to-head dermoscopic melanoma image classification task
  publication-title: Eur J Cancer
– year: 2019
  ident: bib101
  article-title: Skin lesion analysis toward melanoma detection 2018: a challenge hosted by the international skin imaging collaboration (ISIC)
  publication-title: arXiv [cs.CV]
– volume: 1
  start-page: 206
  year: 2019
  end-page: 215
  ident: bib23
  article-title: Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead
  publication-title: Nat Mach Intellig
– start-page: 1
  year: 2014
  end-page: 10
  ident: bib26
  article-title: Guidelines for snowballing in systematic literature studies and a replication in software engineering
  publication-title: Proceedings of the 18th international conference on evaluation and assessment in software engineering
– start-page: 97
  year: 2018
  end-page: 105
  ident: bib52
  article-title: Collaborative human-AI (CHAI): evidence-based interpretable melanoma classification in dermoscopic images
  publication-title: Understanding and interpreting machine learning in medical image computing applications
– volume: 39
  start-page: 2482
  year: 2020
  end-page: 2493
  ident: bib35
  article-title: A mutual bootstrapping model for automated skin lesion segmentation and classification
  publication-title: IEEE Trans Med Imag
– year: 2014
  ident: bib58
  article-title: Striving for simplicity: the all convolutional net
  publication-title: arXiv [cs.LG]
– start-page: 1996
  year: 2020
  end-page: 2000
  ident: bib87
  article-title: Fusing metadata and dermoscopy images for skin disease diagnosis
  publication-title: 2020 IEEE 17th international symposium on biomedical imaging (ISBI)
– volume: 138
  start-page: 1529
  year: 2018
  end-page: 1538
  ident: bib93
  article-title: Classification of the clinical images for benign and malignant cutaneous tumors using a deep learning algorithm
  publication-title: J Invest Dermatol
– start-page: 1
  year: 2020
  end-page: 10
  ident: bib49
  article-title: On interpretability of deep learning based skin lesion classifiers using Concept activation vectors
  publication-title: 2020 international joint conference on neural networks (IJCNN)
– volume: 155
  start-page: 191
  year: 2021
  end-page: 199
  ident: bib13
  article-title: A benchmark for neural network robustness in skin cancer classification
  publication-title: Eur J Cancer
– volume: 26
  start-page: 900
  year: 2020
  end-page: 908
  ident: bib94
  article-title: A deep learning system for differential diagnosis of skin diseases
  publication-title: Nat Med
– volume: 10
  start-page: 6423
  year: 2020
  ident: bib47
  article-title: Resolving challenges in deep learning-based analyses of histopathological images using explanation methods
  publication-title: Sci Rep
– volume: 10
  year: 2015
  ident: bib84
  article-title: On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation
  publication-title: PLoS One
– start-page: 4514
  year: 2019
  end-page: 4518
  ident: bib80
  article-title: High-resolution class Activation mapping
  publication-title: 2019 IEEE international conference on image processing (ICIP)
– volume: 110
  start-page: 107413
  year: 2021
  ident: bib36
  article-title: Explainable skin lesion diagnosis using taxonomies
  publication-title: Pattern Recogn
– volume: 26
  start-page: 503
  year: 2020
  end-page: 512
  ident: bib50
  article-title: Using content-based image retrieval of dermoscopic images for interpretation and education: a pilot study
  publication-title: Skin Res Technol
– volume: 5
  start-page: 180161
  year: 2018
  ident: bib100
  article-title: The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions
  publication-title: Sci Data
– volume: 119
  start-page: 57
  year: 2019
  end-page: 65
  ident: bib3
  article-title: Systematic outperformance of 112 dermatologists in multiclass skin cancer image classification by convolutional neural networks
  publication-title: Eur J Cancer
– volume: 17
  year: 2020
  ident: bib12
  article-title: Assessment of deep neural networks for the diagnosis of benign and malignant skin neoplasms in comparison with dermatologists: a retrospective validation study
  publication-title: PLoS Med
– start-page: 3
  year: 2021
  end-page: 17
  ident: bib66
  article-title: Exploring the correlation between deep learned and clinical features in melanoma detection
  publication-title: Medical image understanding and analysis
– start-page: 6428
  year: 2017
  end-page: 6436
  ident: bib62
  article-title: Mdnet: a semantically and visually interpretable medical image diagnosis network
  publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition
– volume: 155
  start-page: 1135
  year: 2019
  end-page: 1141
  ident: bib43
  article-title: Association between surgical skin markings in dermoscopic images and diagnostic performance of a deep learning convolutional neural network for melanoma recognition
  publication-title: JAMA Dermatol
– volume: 12
  start-page: 1613
  year: 2021
  ident: bib31
  article-title: Human-interpretable image features derived from densely mapped cancer pathology slides predict diverse molecular phenotypes
  publication-title: Nat Commun
– year: 2020
  ident: bib41
  article-title: Agreement between saliency maps and human-labeled regions of interest: applications to skin disease classification
  publication-title: 2020 IEEE/CVF conference on computer vision and pattern recognition workshops (CVPRW)
– volume: 25
  start-page: 1097
  year: 2012
  end-page: 1105
  ident: bib65
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Adv Neural Inf Process Syst
– start-page: 115
  year: 2018
  end-page: 123
  ident: bib48
  article-title: Visualizing convolutional neural networks to improve decision support for skin lesion classification
  publication-title: Understanding and interpreting machine learning in medical image computing applications
– year: 2018
  ident: bib24
  article-title: Sanity checks for saliency maps
  publication-title: arXiv [cs.CV]
– reference: DermNet NZ [WWW document]. DermNet NZ. URL dermnetnz.org [accessed on 29 December 2021].
– volume: 65
  start-page: 135005
  year: 2020
  ident: bib92
  article-title: Melanoma detection using adversarial training and deep transfer learning
  publication-title: Phys Med Biol
– volume: 22
  start-page: 1349
  year: 2000
  end-page: 1380
  ident: bib32
  article-title: Content-based image retrieval at the end of the early years
  publication-title: IEEE Trans Pattern Anal Mach Intell
– volume: 2
  start-page: 772
  year: 2020
  end-page: 782
  ident: bib37
  article-title: Concept whitening for interpretable image recognition
  publication-title: Nat Mach Intellig
– volume: 25
  start-page: 1301
  year: 2019
  end-page: 1309
  ident: bib56
  article-title: Clinical-grade computational pathology using weakly supervised deep learning on whole slide images
  publication-title: Nat Med
– start-page: 241
  year: 2021
  end-page: 253
  ident: bib39
  article-title: On the overlap between grad-CAM saliency maps and explainable visual features in skin cancer images
  publication-title: Machine learning and knowledge extraction
– year: 2019
  ident: bib102
  article-title: EfficientNet: rethinking model scaling for convolutional neural networks
  publication-title: ICML
– start-page: 48
  year: 2019
  end-page: 55
  ident: bib46
  article-title: Deep neural network or dermatologist?
  publication-title: Interpretability of machine intelligence in medical image computing and multimodal learning for clinical decision support
– year: 2017
  ident: bib78
  article-title: Xception: deep learning with depthwise separable convolutions
  publication-title: Proceedings of the IEEE conference on 2017
– volume: 8
  start-page: 99633
  year: 2020
  end-page: 99647
  ident: bib70
  article-title: Automatic skin cancer detection in dermoscopy images based on ensemble lightweight deep learning network
  publication-title: IEEE Access
– volume: 22
  year: 2020
  ident: bib10
  article-title: Artificial intelligence and its effect on dermatologists' accuracy in dermoscopic melanoma image classification: web-based survey study
  publication-title: J Med Internet Res
– year: 2021
  ident: bib29
  article-title: An interpretable Algorithm for uveal melanoma subtyping from whole slide cytology images
  publication-title: arXiv [cs.CV]
– year: 2019
  ident: bib25
  article-title: When explanations lie: why modified BP attribution fails
– year: 2014
  ident: 10.1016/j.ejca.2022.02.025_bib77
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: arXiv [cs.CV]
– volume: 9
  year: 2008
  ident: 10.1016/j.ejca.2022.02.025_bib86
  article-title: Visualizing data using t-SNE
  publication-title: J Mach Learn Res
– year: 2019
  ident: 10.1016/j.ejca.2022.02.025_bib25
– volume: 118
  start-page: 91
  year: 2019
  ident: 10.1016/j.ejca.2022.02.025_bib7
  article-title: Deep learning outperformed 11 pathologists in the classification of histopathological melanoma images
  publication-title: Eur J Cancer
  doi: 10.1016/j.ejca.2019.06.012
– volume: 155
  start-page: 191
  year: 2021
  ident: 10.1016/j.ejca.2022.02.025_bib13
  article-title: A benchmark for neural network robustness in skin cancer classification
  publication-title: Eur J Cancer
  doi: 10.1016/j.ejca.2021.06.047
– start-page: 168
  year: 2018
  ident: 10.1016/j.ejca.2022.02.025_bib40
  article-title: Skin lesion analysis toward melanoma detection: a challenge at the 2017 International symposium on biomedical imaging (ISBI), hosted by the international skin imaging collaboration (ISIC)
– year: 2017
  ident: 10.1016/j.ejca.2022.02.025_bib73
  article-title: Mobilenets: efficient convolutional neural networks for mobile vision applications
  publication-title: arXiv preprint arXiv
– volume: 6
  start-page: 65130
  year: 2018
  ident: 10.1016/j.ejca.2022.02.025_bib90
  article-title: Classification for dermoscopy images using convolutional neural networks based on region average pooling
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2877587
– volume: 10
  start-page: 6423
  year: 2020
  ident: 10.1016/j.ejca.2022.02.025_bib47
  article-title: Resolving challenges in deep learning-based analyses of histopathological images using explanation methods
  publication-title: Sci Rep
  doi: 10.1038/s41598-020-62724-2
– volume: 26
  start-page: 900
  year: 2020
  ident: 10.1016/j.ejca.2022.02.025_bib94
  article-title: A deep learning system for differential diagnosis of skin diseases
  publication-title: Nat Med
  doi: 10.1038/s41591-020-0842-3
– start-page: 48
  year: 2019
  ident: 10.1016/j.ejca.2022.02.025_bib46
  article-title: Deep neural network or dermatologist?
– volume: 39
  start-page: 2482
  year: 2020
  ident: 10.1016/j.ejca.2022.02.025_bib35
  article-title: A mutual bootstrapping model for automated skin lesion segmentation and classification
  publication-title: IEEE Trans Med Imag
  doi: 10.1109/TMI.2020.2972964
– volume: 138
  start-page: 1529
  year: 2018
  ident: 10.1016/j.ejca.2022.02.025_bib93
  article-title: Classification of the clinical images for benign and malignant cutaneous tumors using a deep learning algorithm
  publication-title: J Invest Dermatol
  doi: 10.1016/j.jid.2018.01.028
– volume: 542
  start-page: 115
  year: 2017
  ident: 10.1016/j.ejca.2022.02.025_bib1
  article-title: Dermatologist-level classification of skin cancer with deep neural networks
  publication-title: Nature
  doi: 10.1038/nature21056
– start-page: 2668
  year: 2018
  ident: 10.1016/j.ejca.2022.02.025_bib59
  article-title: Interpretability beyond feature attribution: quantitative testing with Concept activation vectors (TCAV)
– start-page: 141
  year: 2018
  ident: 10.1016/j.ejca.2022.02.025_bib51
  article-title: How users perceive content-based image retrieval for identifying skin images
– year: 2018
  ident: 10.1016/j.ejca.2022.02.025_bib24
  article-title: Sanity checks for saliency maps
  publication-title: arXiv [cs.CV]
– start-page: 6428
  year: 2017
  ident: 10.1016/j.ejca.2022.02.025_bib62
  article-title: Mdnet: a semantically and visually interpretable medical image diagnosis network
– volume: 8
  start-page: 99633
  year: 2020
  ident: 10.1016/j.ejca.2022.02.025_bib70
  article-title: Automatic skin cancer detection in dermoscopy images based on ensemble lightweight deep learning network
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2997710
– start-page: 56
  year: 2020
  ident: 10.1016/j.ejca.2022.02.025_bib64
  article-title: Survey of XAI in digital pathology
– year: 2019
  ident: 10.1016/j.ejca.2022.02.025_bib44
  article-title: Global saliency: aggregating saliency maps to assess dataset artefact bias
  publication-title: arXiv [cs.CV]
– start-page: 4514
  year: 2019
  ident: 10.1016/j.ejca.2022.02.025_bib80
  article-title: High-resolution class Activation mapping
– volume: 119
  start-page: 11
  year: 2019
  ident: 10.1016/j.ejca.2022.02.025_bib5
  article-title: Deep neural networks are superior to dermatologists in melanoma image classification
  publication-title: Eur J Cancer
  doi: 10.1016/j.ejca.2019.05.023
– year: 2018
  ident: 10.1016/j.ejca.2022.02.025_bib34
  article-title: 7-Point checklist and skin lesion classification using multi-task multi-modal neural nets
  publication-title: IEEE J Biomed Health Inf
– volume: 181
  start-page: 155
  year: 2019
  ident: 10.1016/j.ejca.2022.02.025_bib16
  article-title: Diagnostic accuracy of content-based dermatoscopic image retrieval with deep classification features
  publication-title: Br J Dermatol
  doi: 10.1111/bjd.17189
– year: 2017
  ident: 10.1016/j.ejca.2022.02.025_bib85
  article-title: Visualizing deep neural network decisions: prediction difference analysis
  publication-title: arXiv [cs.CV]
– start-page: 97
  year: 2018
  ident: 10.1016/j.ejca.2022.02.025_bib52
  article-title: Collaborative human-AI (CHAI): evidence-based interpretable melanoma classification in dermoscopic images
– volume: 1
  start-page: 206
  year: 2019
  ident: 10.1016/j.ejca.2022.02.025_bib23
  article-title: Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead
  publication-title: Nat Mach Intellig
  doi: 10.1038/s42256-019-0048-x
– start-page: 241
  year: 2021
  ident: 10.1016/j.ejca.2022.02.025_bib39
  article-title: On the overlap between grad-CAM saliency maps and explainable visual features in skin cancer images
– start-page: 115
  year: 2018
  ident: 10.1016/j.ejca.2022.02.025_bib48
  article-title: Visualizing convolutional neural networks to improve decision support for skin lesion classification
– volume: 25
  start-page: 1483
  year: 2021
  ident: 10.1016/j.ejca.2022.02.025_bib57
  article-title: A visually interpretable deep learning framework for histopathological image-based skin cancer diagnosis
  publication-title: IEEE J Biomed Health Inf
  doi: 10.1109/JBHI.2021.3052044
– start-page: 63
  year: 2013
  ident: 10.1016/j.ejca.2022.02.025_bib95
  article-title: A color and texture based hierarchical K-NN approach to the classification of non-melanoma skin lesions
– volume: 113
  start-page: 47
  year: 2019
  ident: 10.1016/j.ejca.2022.02.025_bib2
  article-title: Deep learning outperformed 136 of 157 dermatologists in a head-to-head dermoscopic melanoma image classification task
  publication-title: Eur J Cancer
  doi: 10.1016/j.ejca.2019.04.001
– start-page: 1996
  year: 2020
  ident: 10.1016/j.ejca.2022.02.025_bib87
  article-title: Fusing metadata and dermoscopy images for skin disease diagnosis
– volume: 38
  start-page: 2092
  year: 2019
  ident: 10.1016/j.ejca.2022.02.025_bib91
  article-title: Attention residual learning for skin lesion classification
  publication-title: IEEE Trans Med Imag
  doi: 10.1109/TMI.2019.2893944
– volume: 115
  start-page: 79
  year: 2019
  ident: 10.1016/j.ejca.2022.02.025_bib8
  article-title: Pathologist-level classification of histopathological melanoma images with deep neural networks
  publication-title: Eur J Cancer
  doi: 10.1016/j.ejca.2019.04.021
– volume: 155
  start-page: 1135
  year: 2019
  ident: 10.1016/j.ejca.2022.02.025_bib43
  article-title: Association between surgical skin markings in dermoscopic images and diagnostic performance of a deep learning convolutional neural network for melanoma recognition
  publication-title: JAMA Dermatol
  doi: 10.1001/jamadermatol.2019.1735
– volume: 86
  start-page: 640
  year: 2022
  ident: 10.1016/j.ejca.2022.02.025_bib9
  article-title: Diagnostic performance of artificial intelligence for histologic melanoma recognition compared to 18 international expert pathologists
  publication-title: J Am Acad Dermatol
  doi: 10.1016/j.jaad.2021.02.009
– start-page: 550
  year: 2021
  ident: 10.1016/j.ejca.2022.02.025_bib38
  article-title: Improving the explainability of skin cancer diagnosis using CBIR
– volume: 27
  start-page: 1328
  year: 2021
  ident: 10.1016/j.ejca.2022.02.025_bib20
  article-title: AI in medicine must be explainable
  publication-title: Nat Med
  doi: 10.1038/s41591-021-01461-z
– start-page: 3
  year: 2021
  ident: 10.1016/j.ejca.2022.02.025_bib66
  article-title: Exploring the correlation between deep learned and clinical features in melanoma detection
– year: 2021
  ident: 10.1016/j.ejca.2022.02.025_bib69
  article-title: An explainable stacked ensemble of deep learning models for improved melanoma skin cancer detection
  publication-title: Multimed Syst
  doi: 10.1007/s00530-021-00787-5
– year: 2017
  ident: 10.1016/j.ejca.2022.02.025_bib78
  article-title: Xception: deep learning with depthwise separable convolutions
– start-page: 4768
  year: 2017
  ident: 10.1016/j.ejca.2022.02.025_bib83
  article-title: A unified approach to interpreting model predictions
– start-page: 297
  year: 2017
  ident: 10.1016/j.ejca.2022.02.025_bib98
  article-title: Knowledge transfer for melanoma screening with deep learning
– start-page: 1
  year: 2015
  ident: 10.1016/j.ejca.2022.02.025_bib72
  article-title: Going deeper with convolutions
– volume: 3
  start-page: e745
  year: 2021
  ident: 10.1016/j.ejca.2022.02.025_bib21
  article-title: The false hope of current approaches to explainable artificial intelligence in health care
  publication-title: Lancet Digit Health
  doi: 10.1016/S2589-7500(21)00208-9
– volume: 12
  start-page: 128
  year: 2021
  ident: 10.1016/j.ejca.2022.02.025_bib28
  article-title: CellBox: interpretable machine learning for perturbation biology with application to the design of cancer combination therapy
  publication-title: Cell Syst
  doi: 10.1016/j.cels.2020.11.013
– volume: 2019
  start-page: 2797
  year: 2019
  ident: 10.1016/j.ejca.2022.02.025_bib53
  article-title: From deep learning towards finding skin lesion biomarkers
  publication-title: Conf Proc IEEE Eng Med Biol Soc
– volume: 12
  start-page: 733
  year: 2021
  ident: 10.1016/j.ejca.2022.02.025_bib27
  article-title: Interpretable deep learning uncovers cellular properties in label-free live cell images that are predictive of highly metastatic melanoma
  publication-title: Cell Syst
  doi: 10.1016/j.cels.2021.05.003
– start-page: 793
  year: 2019
  ident: 10.1016/j.ejca.2022.02.025_bib42
  article-title: Melanoma recognition via visual attention
– year: 2021
  ident: 10.1016/j.ejca.2022.02.025_bib89
– volume: 68
  start-page: 101915
  year: 2021
  ident: 10.1016/j.ejca.2022.02.025_bib60
  article-title: Interpretable deep learning systems for multi-class segmentation and classification of non-melanoma skin cancer
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2020.101915
– year: 2019
  ident: 10.1016/j.ejca.2022.02.025_bib22
  article-title: An evaluation of the human-interpretability of explanation
  publication-title: arXiv [cs.LG]
– volume: 156
  start-page: 202
  year: 2021
  ident: 10.1016/j.ejca.2022.02.025_bib11
  article-title: Skin cancer classification via convolutional neural networks: systematic review of studies involving human experts
  publication-title: Eur J Cancer
  doi: 10.1016/j.ejca.2021.06.049
– year: 2021
  ident: 10.1016/j.ejca.2022.02.025_bib29
  article-title: An interpretable Algorithm for uveal melanoma subtyping from whole slide cytology images
  publication-title: arXiv [cs.CV]
– volume: 65
  start-page: 135005
  year: 2020
  ident: 10.1016/j.ejca.2022.02.025_bib92
  article-title: Melanoma detection using adversarial training and deep transfer learning
  publication-title: Phys Med Biol
  doi: 10.1088/1361-6560/ab86d3
– volume: 26
  start-page: 503
  year: 2020
  ident: 10.1016/j.ejca.2022.02.025_bib50
  article-title: Using content-based image retrieval of dermoscopic images for interpretation and education: a pilot study
  publication-title: Skin Res Technol
  doi: 10.1111/srt.12822
– volume: 10
  year: 2015
  ident: 10.1016/j.ejca.2022.02.025_bib84
  article-title: On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0130140
– volume: 22
  year: 2020
  ident: 10.1016/j.ejca.2022.02.025_bib10
  article-title: Artificial intelligence and its effect on dermatologists' accuracy in dermoscopic melanoma image classification: web-based survey study
  publication-title: J Med Internet Res
  doi: 10.2196/18091
– start-page: 1
  year: 2020
  ident: 10.1016/j.ejca.2022.02.025_bib49
  article-title: On interpretability of deep learning based skin lesion classifiers using Concept activation vectors
– start-page: 250
  year: 2017
  ident: 10.1016/j.ejca.2022.02.025_bib33
  article-title: Skin disease recognition using deep saliency features and multimodal learning of dermoscopy and clinical images
– volume: 35
  start-page: 130
  year: 1985
  ident: 10.1016/j.ejca.2022.02.025_bib54
  article-title: Early detection of malignant melanoma: the role of physician examination and self-examination of the skin
  publication-title: CA A Cancer J Clin
  doi: 10.3322/canjclin.35.3.130
– year: 2015
  ident: 10.1016/j.ejca.2022.02.025_bib75
  article-title: Deep residual learning for image recognition
  publication-title: arXiv [cs.CV]
– start-page: 4853
  year: 2019
  ident: 10.1016/j.ejca.2022.02.025_bib30
  article-title: Towards explainable melanoma diagnosis: prediction of clinical indicators using semi-supervised and multi-task learning
– start-page: 8116
  year: 2020
  ident: 10.1016/j.ejca.2022.02.025_bib45
  article-title: Interpretations are useful: penalizing explanations to align neural networks with prior knowledge
– volume: 86
  start-page: 2278
  year: 1998
  ident: 10.1016/j.ejca.2022.02.025_bib71
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proc IEEE
  doi: 10.1109/5.726791
– ident: 10.1016/j.ejca.2022.02.025_bib99
– start-page: 15252
  year: 2021
  ident: 10.1016/j.ejca.2022.02.025_bib68
  article-title: DRANet: disentangling representation and adaptation networks for unsupervised cross-domain adaptation
– start-page: 3319
  year: 2017
  ident: 10.1016/j.ejca.2022.02.025_bib81
  article-title: Axiomatic attribution for deep networks
– year: 2016
  ident: 10.1016/j.ejca.2022.02.025_bib67
  article-title: Densely connected convolutional networks
  publication-title: arXiv [cs.CV]
– volume: 26
  start-page: 1229
  year: 2020
  ident: 10.1016/j.ejca.2022.02.025_bib17
  article-title: Human–computer collaboration for skin cancer recognition
  publication-title: Nat Med
  doi: 10.1038/s41591-020-0942-0
– start-page: 2921
  year: 2016
  ident: 10.1016/j.ejca.2022.02.025_bib19
  article-title: Learning deep features for discriminative localization
– volume: 1
  start-page: 236
  year: 2019
  ident: 10.1016/j.ejca.2022.02.025_bib61
  article-title: Pathologist-level interpretable whole-slide cancer diagnosis with deep learning
  publication-title: Nat Mach Intellig
  doi: 10.1038/s42256-019-0052-1
– year: 2020
  ident: 10.1016/j.ejca.2022.02.025_bib41
  article-title: Agreement between saliency maps and human-labeled regions of interest: applications to skin disease classification
– year: 2019
  ident: 10.1016/j.ejca.2022.02.025_bib102
  article-title: EfficientNet: rethinking model scaling for convolutional neural networks
  publication-title: ICML
– volume: 2
  start-page: 772
  year: 2020
  ident: 10.1016/j.ejca.2022.02.025_bib37
  article-title: Concept whitening for interpretable image recognition
  publication-title: Nat Mach Intellig
  doi: 10.1038/s42256-020-00265-z
– volume: 7
  start-page: e622
  year: 2021
  ident: 10.1016/j.ejca.2022.02.025_bib88
  article-title: Predictive and discriminative localization of pathology using high resolution class activation maps with CNNs
  publication-title: PeerJ Comput Sci
  doi: 10.7717/peerj-cs.622
– year: 1985
  ident: 10.1016/j.ejca.2022.02.025_bib79
– volume: 25
  start-page: 1301
  year: 2019
  ident: 10.1016/j.ejca.2022.02.025_bib56
  article-title: Clinical-grade computational pathology using weakly supervised deep learning on whole slide images
  publication-title: Nat Med
  doi: 10.1038/s41591-019-0508-1
– year: 2014
  ident: 10.1016/j.ejca.2022.02.025_bib58
  article-title: Striving for simplicity: the all convolutional net
  publication-title: arXiv [cs.LG]
– year: 2017
  ident: 10.1016/j.ejca.2022.02.025_bib82
  article-title: SmoothGrad: removing noise by adding noise
  publication-title: arXiv [cs.LG]
– volume: 120
  start-page: 114
  year: 2019
  ident: 10.1016/j.ejca.2022.02.025_bib6
  article-title: Superior skin cancer classification by the combination of human and artificial intelligence
  publication-title: Eur J Cancer
  doi: 10.1016/j.ejca.2019.07.019
– volume: 17
  year: 2020
  ident: 10.1016/j.ejca.2022.02.025_bib12
  article-title: Assessment of deep neural networks for the diagnosis of benign and malignant skin neoplasms in comparison with dermatologists: a retrospective validation study
  publication-title: PLoS Med
  doi: 10.1371/journal.pmed.1003381
– volume: 110
  start-page: 107413
  year: 2021
  ident: 10.1016/j.ejca.2022.02.025_bib36
  article-title: Explainable skin lesion diagnosis using taxonomies
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2020.107413
– volume: 42
  start-page: 6578
  year: 2015
  ident: 10.1016/j.ejca.2022.02.025_bib97
  article-title: MED-NODE: a computer-assisted melanoma diagnosis system using non-dermoscopic images
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2015.04.034
– volume: 5
  start-page: 180161
  year: 2018
  ident: 10.1016/j.ejca.2022.02.025_bib100
  article-title: The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions
  publication-title: Sci Data
  doi: 10.1038/sdata.2018.161
– volume: 22
  start-page: 1349
  year: 2000
  ident: 10.1016/j.ejca.2022.02.025_bib32
  article-title: Content-based image retrieval at the end of the early years
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/34.895972
– start-page: 1
  year: 2019
  ident: 10.1016/j.ejca.2022.02.025_bib63
  article-title: Human-centered tools for coping with imperfect algorithms during medical decision-making
– start-page: 7132
  year: 2018
  ident: 10.1016/j.ejca.2022.02.025_bib76
  article-title: Squeeze-and-Excitation networks
– start-page: 1
  year: 2014
  ident: 10.1016/j.ejca.2022.02.025_bib26
  article-title: Guidelines for snowballing in systematic literature studies and a replication in software engineering
– ident: 10.1016/j.ejca.2022.02.025_bib74
– ident: 10.1016/j.ejca.2022.02.025_bib96
– year: 1986
  ident: 10.1016/j.ejca.2022.02.025_bib55
– volume: 111
  start-page: 148
  year: 2019
  ident: 10.1016/j.ejca.2022.02.025_bib4
  article-title: A convolutional neural network trained with dermoscopic images performed on par with 145 dermatologists in a clinical melanoma image classification task
  publication-title: Eur J Cancer
  doi: 10.1016/j.ejca.2019.02.005
– volume: 119
  start-page: 57
  year: 2019
  ident: 10.1016/j.ejca.2022.02.025_bib3
  article-title: Systematic outperformance of 112 dermatologists in multiclass skin cancer image classification by convolutional neural networks
  publication-title: Eur J Cancer
  doi: 10.1016/j.ejca.2019.06.013
– volume: 145
  start-page: 81
  year: 2021
  ident: 10.1016/j.ejca.2022.02.025_bib14
  article-title: Robustness of convolutional neural networks in recognition of pigmented skin lesions
  publication-title: Eur J Cancer
  doi: 10.1016/j.ejca.2020.11.020
– volume: 12
  start-page: 1613
  year: 2021
  ident: 10.1016/j.ejca.2022.02.025_bib31
  article-title: Human-interpretable image features derived from densely mapped cancer pathology slides predict diverse molecular phenotypes
  publication-title: Nat Commun
  doi: 10.1038/s41467-021-21896-9
– volume: 25
  start-page: 1097
  year: 2012
  ident: 10.1016/j.ejca.2022.02.025_bib65
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Adv Neural Inf Process Syst
– start-page: 618
  year: 2017
  ident: 10.1016/j.ejca.2022.02.025_bib18
  article-title: Grad-cam: visual explanations from deep networks via gradient-based localization
– year: 2019
  ident: 10.1016/j.ejca.2022.02.025_bib101
  article-title: Skin lesion analysis toward melanoma detection 2018: a challenge hosted by the international skin imaging collaboration (ISIC)
  publication-title: arXiv [cs.CV]
SSID ssj0007840
Score 2.6522124
SecondaryResourceType review_article
Snippet Due to their ability to solve complex problems, deep neural networks (DNNs) are becoming increasingly popular in medical applications. However, decision-making...
Background: Due to their ability to solve complex problems, deep neural networks (DNNs) are becoming increasingly popular in medical applications. However,...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 54
SubjectTerms Algorithms
Artificial Intelligence
Artificial neural networks
Cancer
Decision making
Dermatology
Explainable artificial intelligence
Humans
Man-machine systems
Medical imaging
Neural networks
Neural Networks, Computer
Performance evaluation
Physicians
Search engines
Skin cancer
Skin neoplasms
Skin Neoplasms - diagnosis
Systematic review
Title Explainable artificial intelligence in skin cancer recognition: A systematic review
URI https://www.clinicalkey.com/#!/content/1-s2.0-S095980492200123X
https://dx.doi.org/10.1016/j.ejca.2022.02.025
https://www.ncbi.nlm.nih.gov/pubmed/35390650
https://www.proquest.com/docview/2672768170
https://www.proquest.com/docview/2648899046
Volume 167
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8QwEB50F8QX8XZ1lQi-Sd3tkR6-LaKsir6osG8hSVNYla7o-upv8bf4y5xp0qrgAUIp9BhIJsnMN8kcAHt5lhod5YUXJVTCrKAyL3mmPMN5UCgdIQSpHGQv4-FNdDbioxk4qmNhyK3SyX4r0ytp7d70HDd7D-Nx74p2sFIEuEFQAYPRLLQD1PZpC9qD0_PhZSOQk7SKi7Q7XkjgYmesm5e51ZR-KAiq1J1UMft7_fQT_qz00MkiLDgAyQa2jUswY8plmLtwR-QrcE1edS4kilFPbIoINv6Ue_PtdVyypzu8aRr0R9a4EU3KQzZgH-mdmQ1tWYWbk-Pro6HnSid4GvHP1Et96VfsljLl0k-SPJES9VVulFYyRls0VrwfyyCURZwnhSyKjKsQzR9chhnarWvQKiel2QCWcqNx2felNDIyfj9VSumQF5LzPEHrsAN-zTChXV5xKm9xL2oHsltBTBbEZNGni3dgv6F5sFk1fv07rMdB1PGiKOEECv1fqXhD9WVG_UnXrYdauPX8JAI6sI4pmWEHdpvPuBLpeEWWZvJM_6AwROUexR1Yt1Ok6VzIw4zA8OY_G7UF8_RkPS270Jo-PpttRENTtQOzBy_-jpvz71OECOo
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxEB6FRIJeKsqjTYHiSr2hVbIP76O3CIGSBnJpkHKzbK9XSqg2iCT_h9_CL-vM2ruAVECqtNrD2iOtx57xjD3zDcCPPEuNjvLCixIqYVZQmZc8U57hPCiUjtAEqQJkJ_HwJvo147MWnNe5MBRW6XS_1emVtnZfeo6bvbv5vPebTrBSNHCDoDIMZlvQiaiodRs6g9F4OGkUcpJWeZH2xAsJXO6MDfMyC03wQ0FQQXdSxex_70-v2Z_VPnS5Cx-dAckG9h8_QcuUe7B97a7I92FKUXUuJYrRSCxEBJs_w958fJiXbHWLL02Tfs-aMKJl-ZMN2BO8M7OpLQdwc3kxPR96rnSCp9H-WXupL_2K3VKmXPpJkidS4n6VG6WVjNEXjRXvxzIIZRHnSSGLIuMqRPcHxTBDv_UQ2uWyNF-ApdxoFPu-lEZGxu-nSikd8kJynifoHXbBrxkmtMMVp_IWf0QdQLYQxGRBTBZ9engXzhqaO4uq8WbvsJ4HUeeLooYTqPTfpOIN1YsV9S7dcT3VwsnzSgR0YR0TmGEXvjfNKIl0vSJLs9xQH1SGuLlHcRc-2yXSDC7kYUbG8Nf__KlT2BlOr6_E1WgyPoIP1GKjLo-hvb7fmBO0jNbqm1v5fwGP9ArQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Explainable+artificial+intelligence%C2%A0in+skin+cancer+recognition%3A+A+systematic+review&rft.jtitle=European+journal+of+cancer+%281990%29&rft.au=Hauser%2C+Katja&rft.au=Kurz%2C+Alexander&rft.au=Haggenm%C3%BCller%2C+Sarah&rft.au=Maron%2C+Roman+C.&rft.date=2022-05-01&rft.issn=0959-8049&rft.volume=167&rft.spage=54&rft.epage=69&rft_id=info:doi/10.1016%2Fj.ejca.2022.02.025&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ejca_2022_02_025
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0959-8049&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0959-8049&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0959-8049&client=summon