Annual maps of forest and evergreen forest in the contiguous United States during 2015–2017 from analyses of PALSAR-2 and Landsat images
Annual forest maps at a high spatial resolution are necessary for forest management and conservation. Large uncertainties remain in existing forest maps because of different forest definitions, satellite datasets, in situ training datasets, and mapping algorithms. In this study, we generated annual...
Saved in:
| Published in | Earth system science data Vol. 16; no. 10; pp. 4619 - 4639 |
|---|---|
| Main Authors | , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Katlenburg-Lindau
Copernicus GmbH
11.10.2024
Copernicus Publications |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1866-3516 1866-3508 1866-3516 |
| DOI | 10.5194/essd-16-4619-2024 |
Cover
| Abstract | Annual forest maps at a high spatial resolution are necessary for forest management and conservation. Large uncertainties remain in existing forest maps because of different forest definitions, satellite datasets, in situ training datasets, and mapping algorithms. In this study, we generated annual maps of forest and evergreen forest at a 30 m resolution in the contiguous United States (CONUS) during 2015–2017 by integrating microwave data (Phased Array type L-band Synthetic Aperture Radar – PALSAR-2) and optical data (Landsat) using knowledge-based algorithms. The resultant PALSAR-2/Landsat-based forest maps (PL-Forest) were compared with five major forest datasets from the CONUS: (1) the Landsat tree canopy cover from the Global Forest Watch dataset (GFW-Forest), (2) the Landsat Vegetation Continuous Field dataset (Landsat VCF-Forest), (3) the National Land Cover Database 2016 (NLCD-Forest), (4) the Japan Aerospace Exploration Agency forest maps (JAXA-Forest), and (5) the Forest Inventory and Analysis (FIA) data from the U.S. Department of Agriculture (USDA) Forest Service (FIA-Forest). The forest structure data (tree canopy height and canopy coverage) derived from the lidar observations of the Geoscience Laser Altimetry System (GLAS) on board NASA's Ice, Cloud, and land Elevation Satellite (ICESat-1) were used to assess the five forest cover datasets derived from satellite images. Using the forest definition of the Food and Agricultural Organization (FAO) of the United Nations, more forest pixels from the PL-Forest maps meet the FAO's forest definition than the GFW-Forest, Landsat VCF-Forest, and JAXA-Forest datasets. Forest area estimates from PL-Forest were close to those from the FIA-Forest statistics, higher than GFW-Forest and NLCD-Forest, and lower than Landsat VCF-Forest, which highlights the potential of using both the PL-Forest and FIA-Forest datasets to support the FAO's Global Forest Resources Assessment. Furthermore, the PALSAR-2/Landsat-based annual evergreen forest maps (PL-Evergreen Forest) showed reasonable consistency with the NLCD product. The comparison of the most widely used forest datasets offered insights to employ appropriate products for relevant research and management activities across local to regional and national scales. The datasets generated in this study are available at https://doi.org/10.6084/m9.figshare.21270261 (Wang, 2024). The improved annual maps of forest and evergreen forest at 30 m over the CONUS can be used to support forest management, conservation, and resource assessments. |
|---|---|
| AbstractList | Annual forest maps at a high spatial resolution are necessary for forest management and conservation. Large uncertainties remain in existing forest maps because of different forest definitions, satellite datasets, in situ training datasets, and mapping algorithms. In this study, we generated annual maps of forest and evergreen forest at a 30 m resolution in the contiguous United States (CONUS) during 2015–2017 by integrating microwave data (Phased Array type L-band Synthetic Aperture Radar – PALSAR-2) and optical data (Landsat) using knowledge-based algorithms. The resultant PALSAR-2/Landsat-based forest maps (PL-Forest) were compared with five major forest datasets from the CONUS: (1) the Landsat tree canopy cover from the Global Forest Watch dataset (GFW-Forest), (2) the Landsat Vegetation Continuous Field dataset (Landsat VCF-Forest), (3) the National Land Cover Database 2016 (NLCD-Forest), (4) the Japan Aerospace Exploration Agency forest maps (JAXA-Forest), and (5) the Forest Inventory and Analysis (FIA) data from the U.S. Department of Agriculture (USDA) Forest Service (FIA-Forest). The forest structure data (tree canopy height and canopy coverage) derived from the lidar observations of the Geoscience Laser Altimetry System (GLAS) on board NASA's Ice, Cloud, and land Elevation Satellite (ICESat-1) were used to assess the five forest cover datasets derived from satellite images. Using the forest definition of the Food and Agricultural Organization (FAO) of the United Nations, more forest pixels from the PL-Forest maps meet the FAO's forest definition than the GFW-Forest, Landsat VCF-Forest, and JAXA-Forest datasets. Forest area estimates from PL-Forest were close to those from the FIA-Forest statistics, higher than GFW-Forest and NLCD-Forest, and lower than Landsat VCF-Forest, which highlights the potential of using both the PL-Forest and FIA-Forest datasets to support the FAO's Global Forest Resources Assessment. Furthermore, the PALSAR-2/Landsat-based annual evergreen forest maps (PL-Evergreen Forest) showed reasonable consistency with the NLCD product. The comparison of the most widely used forest datasets offered insights to employ appropriate products for relevant research and management activities across local to regional and national scales. The datasets generated in this study are available at https://doi.org/10.6084/m9.figshare.21270261 (Wang, 2024). The improved annual maps of forest and evergreen forest at 30 m over the CONUS can be used to support forest management, conservation, and resource assessments. Annual forest maps at a high spatial resolution are necessary for forest management and conservation. Large uncertainties remain in existing forest maps because of different forest definitions, satellite datasets, in situ training datasets, and mapping algorithms. In this study, we generated annual maps of forest and evergreen forest at a 30 m resolution in the contiguous United States (CONUS) during 2015-2017 by integrating microwave data (Phased Array type L-band Synthetic Aperture Radar - PALSAR-2) and optical data (Landsat) using knowledge-based algorithms. The resultant PALSAR-2/Landsat-based forest maps (PL-Forest) were compared with five major forest datasets from the CONUS: (1) the Landsat tree canopy cover from the Global Forest Watch dataset (GFW-Forest), (2) the Landsat Vegetation Continuous Field dataset (Landsat VCF-Forest), (3) the National Land Cover Database 2016 (NLCD-Forest), (4) the Japan Aerospace Exploration Agency forest maps (JAXA-Forest), and (5) the Forest Inventory and Analysis (FIA) data from the U.S. Department of Agriculture (USDA) Forest Service (FIA-Forest). The forest structure data (tree canopy height and canopy coverage) derived from the lidar observations of the Geoscience Laser Altimetry System (GLAS) on board NASA's Ice, Cloud, and land Elevation Satellite (ICESat-1) were used to assess the five forest cover datasets derived from satellite images. Using the forest definition of the Food and Agricultural Organization (FAO) of the United Nations, more forest pixels from the PL-Forest maps meet the FAO's forest definition than the GFW-Forest, Landsat VCF-Forest, and JAXA-Forest datasets. Forest area estimates from PL-Forest were close to those from the FIA-Forest statistics, higher than GFW-Forest and NLCD-Forest, and lower than Landsat VCF-Forest, which highlights the potential of using both the PL-Forest and FIA-Forest datasets to support the FAO's Global Forest Resources Assessment. Furthermore, the PALSAR-2/Landsat-based annual evergreen forest maps (PL-Evergreen Forest) showed reasonable consistency with the NLCD product. The comparison of the most widely used forest datasets offered insights to employ appropriate products for relevant research and management activities across local to regional and national scales. The datasets generated in this study are available at Annual forest maps at a high spatial resolution are necessary for forest management and conservation. Large uncertainties remain in existing forest maps because of different forest definitions, satellite datasets, in situ training datasets, and mapping algorithms. In this study, we generated annual maps of forest and evergreen forest at a 30 m resolution in the contiguous United States (CONUS) during 2015–2017 by integrating microwave data (Phased Array type L-band Synthetic Aperture Radar – PALSAR-2) and optical data (Landsat) using knowledge-based algorithms. The resultant PALSAR-2/Landsat-based forest maps (PL-Forest) were compared with five major forest datasets from the CONUS: (1) the Landsat tree canopy cover from the Global Forest Watch dataset (GFW-Forest), (2) the Landsat Vegetation Continuous Field dataset (Landsat VCF-Forest), (3) the National Land Cover Database 2016 (NLCD-Forest), (4) the Japan Aerospace Exploration Agency forest maps (JAXA-Forest), and (5) the Forest Inventory and Analysis (FIA) data from the U.S. Department of Agriculture (USDA) Forest Service (FIA-Forest). The forest structure data (tree canopy height and canopy coverage) derived from the lidar observations of the Geoscience Laser Altimetry System (GLAS) on board NASA's Ice, Cloud, and land Elevation Satellite (ICESat-1) were used to assess the five forest cover datasets derived from satellite images. Using the forest definition of the Food and Agricultural Organization (FAO) of the United Nations, more forest pixels from the PL-Forest maps meet the FAO's forest definition than the GFW-Forest, Landsat VCF-Forest, and JAXA-Forest datasets. Forest area estimates from PL-Forest were close to those from the FIA-Forest statistics, higher than GFW-Forest and NLCD-Forest, and lower than Landsat VCF-Forest, which highlights the potential of using both the PL-Forest and FIA-Forest datasets to support the FAO's Global Forest Resources Assessment. Furthermore, the PALSAR-2/Landsat-based annual evergreen forest maps (PL-Evergreen Forest) showed reasonable consistency with the NLCD product. The comparison of the most widely used forest datasets offered insights to employ appropriate products for relevant research and management activities across local to regional and national scales. The datasets generated in this study are available at https://doi.org/10.6084/m9.figshare.21270261 (Wang, 2024). The improved annual maps of forest and evergreen forest at 30 m over the CONUS can be used to support forest management, conservation, and resource assessments. |
| Audience | Academic |
| Author | Yang, Xuebin Xiao, Xiangming Wu, Xiaocui Biradar, Chandrashekhar Dong, Jinwei Zhang, Geli Hu, Yang Qin, Yuanwei Wang, Jie |
| Author_xml | – sequence: 1 givenname: Jie orcidid: 0000-0003-1866-3999 surname: Wang fullname: Wang, Jie – sequence: 2 givenname: Xiangming surname: Xiao fullname: Xiao, Xiangming – sequence: 3 givenname: Yuanwei surname: Qin fullname: Qin, Yuanwei – sequence: 4 givenname: Jinwei surname: Dong fullname: Dong, Jinwei – sequence: 5 givenname: Geli surname: Zhang fullname: Zhang, Geli – sequence: 6 givenname: Xuebin surname: Yang fullname: Yang, Xuebin – sequence: 7 givenname: Xiaocui surname: Wu fullname: Wu, Xiaocui – sequence: 8 givenname: Chandrashekhar surname: Biradar fullname: Biradar, Chandrashekhar – sequence: 9 givenname: Yang surname: Hu fullname: Hu, Yang |
| BookMark | eNqNkc9u1DAQxiNUJNrCA3CzxIlDSsaOnfi4qviz0kqglp4trz0OWWXtxU4oe-PMlTfkSXB2oWIlDsjSjDX65jf2fBfFmQ8ei-I5VFccZP0KU7IliLIWIEta0fpRcQ6tECXjIM7-uj8pLlLaVJWooeHnxfeF95MeyFbvEgmOuBAxjUR7S_ALxi4i-j_F3pPxExIT_Nh3U5gSufP9iJbcjnrEROwUe98RWgH_-e1HTg1xMWwzTA_7hAf-h8XqdnFT0sOEVQ5JZ_BWd5ieFo-dHhI--50vi7s3rz9evytX798urxer0tSMj2VtjZFrI7hYs7VoOLfaCUEBDFKoreRcCC65bOqK0tY2IKQVDKhjLXLtGLsslkeuDXqjdjFPj3sVdK8OhRA7pePYmwEVOM0qpsGhretG0pa1aycMs8ikMK3JLHpkTX6n9_d6GB6AUKnZGTU7o0Co2Rk1O5ObXhybdjF8nvJm1SZMMS8pKQbAKZNVDg-qTueX9N6FMWqz7ZNRixZAZkfZzLr6hyofi9s-O4Wuz_WThpcnDbOb-HXs9JSSWt7enGrhqDUxpBTR_cfnfgHwA8jL |
| Cites_doi | 10.1093/jofore/fvz073 10.1016/j.rse.2014.10.001 10.1016/j.rse.2019.111262 10.1016/j.rse.2002.08.002 10.1016/j.rse.2016.04.008 10.1007/s10021-004-0243-3 10.3390/rs11242971 10.1016/j.isprsjprs.2020.02.019 10.1038/nature23285 10.1016/j.jag.2010.11.005 10.1016/j.rse.2014.09.034 10.1016/j.rse.2012.03.012 10.1111/j.1654-109X.2004.tb00606.x 10.1126/science.1217962 10.1038/s41477-019-0495-8 10.1007/s10661-018-6649-8 10.1073/pnas.1315126111 10.1073/pnas.1211658109 10.1016/j.rse.2014.04.014 10.2737/FS-RU-307 10.1016/j.isprsjprs.2014.09.002 10.1007/s10021-015-9937-y 10.1080/17538947.2013.786146 10.1126/science.1155121 10.1016/j.foreco.2015.06.014 10.1080/01431160010014251 10.1016/j.rse.2017.09.005 10.1111/gcb.14748 10.1016/j.rse.2016.01.006 10.14358/PERS.74.11.1379 10.1126/science.1111772 10.3390/rs8110933 10.1016/0924-2716(90)90057-I 10.1038/srep20880 10.1016/j.rse.2013.01.012 10.1016/j.rse.2019.01.038 10.3390/rs8080657 10.1016/j.rse.2013.04.025 10.1016/j.rse.2016.01.017 10.1016/j.foreco.2021.119371 10.1126/science.1244693 10.1016/j.rse.2009.08.016 10.1016/j.rse.2017.10.034 10.4060/ca9825en 10.1111/nph.13147 10.1038/nclimate2816 10.1126/sciadv.aax7906 10.1002/joc.1475 10.1016/j.foreco.2018.10.061 10.1579/0044-7447-32.7.469 10.1038/s41893-019-0336-9 10.1175/1087-3562(2003)007<0001:GPTCAA>2.0.CO;2 10.1016/j.jag.2015.07.001 10.1080/01431161.2012.748992 10.1109/TGRS.2009.2023909 10.1016/j.rse.2011.01.020 10.5194/essd-16-321-2024 10.34133/2021/9784657 10.1109/JSTARS.2018.2795595 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2024 Copernicus GmbH 2024. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2024 Copernicus GmbH – notice: 2024. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION ISR 7SN 7TG 7TN 7UA 8FD 8FE 8FG ABJCF ABUWG AEUYN AFKRA AZQEC BENPR BFMQW BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W H8D H96 HCIFZ KL. L.G L6V L7M M7S PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS ADTOC UNPAY DOA |
| DOI | 10.5194/essd-16-4619-2024 |
| DatabaseName | CrossRef Gale In Context: Science Ecology Abstracts Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Water Resources Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central ProQuest Central Essentials - QC ProQuest Central Continental Europe Database ProQuest Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Advanced Technologies Database with Aerospace Engineering Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China Water Resources Abstracts Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Applied & Life Sciences Aerospace Database ProQuest One Sustainability ProQuest Engineering Collection Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Natural Science Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Engineering Database ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Continental Europe Database ProQuest SciTech Collection Ecology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geology |
| EISSN | 1866-3516 |
| EndPage | 4639 |
| ExternalDocumentID | oai_doaj_org_article_1fa303a1fed44792838bf6c3de396c8c 10.5194/essd-16-4619-2024 A811918634 10_5194_essd_16_4619_2024 |
| GeographicLocations | United States--US Asia Japan |
| GeographicLocations_xml | – name: United States--US – name: Asia – name: Japan |
| GroupedDBID | 5VS 8FE 8FG 8FH 8R4 8R5 AAFWJ AAYXX ABDBF ABJCF ABUWG ACIWK ACPRK ACUHS ADBBV AEGXH AENEX AEUYN AFKRA AFPKN AFRAH AHGZY ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR BFMQW BGLVJ BHPHI BKSAR BPHCQ CCPQU CITATION ESX GROUPED_DOAJ H13 HCIFZ IAO IEA IGS ISR ITC KQ8 L6V LK5 M7R M7S OK1 PCBAR PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC PTHSS PUEGO Q2X RKB RNS TR2 TUS ZBA 7SN 7TG 7TN 7UA 8FD AZQEC C1K DWQXO F1W H8D H96 KL. L.G L7M PKEHL PQEST PQUKI PRINS ADTOC C1A IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c435t-4dcc9bc656b3b6755daf66211ce214d955665959740228d7169d6312f38e5af33 |
| IEDL.DBID | DOA |
| ISSN | 1866-3516 1866-3508 |
| IngestDate | Fri Oct 03 12:53:37 EDT 2025 Sun Sep 07 10:49:58 EDT 2025 Fri Jul 25 10:45:23 EDT 2025 Mon Oct 20 22:48:31 EDT 2025 Mon Oct 20 16:58:33 EDT 2025 Thu Oct 16 15:47:27 EDT 2025 Wed Oct 01 01:50:36 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0 cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c435t-4dcc9bc656b3b6755daf66211ce214d955665959740228d7169d6312f38e5af33 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-1866-3999 |
| OpenAccessLink | https://doaj.org/article/1fa303a1fed44792838bf6c3de396c8c |
| PQID | 3115239052 |
| PQPubID | 105729 |
| PageCount | 21 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_1fa303a1fed44792838bf6c3de396c8c unpaywall_primary_10_5194_essd_16_4619_2024 proquest_journals_3115239052 gale_infotracmisc_A811918634 gale_infotracacademiconefile_A811918634 gale_incontextgauss_ISR_A811918634 crossref_primary_10_5194_essd_16_4619_2024 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-10-11 |
| PublicationDateYYYYMMDD | 2024-10-11 |
| PublicationDate_xml | – month: 10 year: 2024 text: 2024-10-11 day: 11 |
| PublicationDecade | 2020 |
| PublicationPlace | Katlenburg-Lindau |
| PublicationPlace_xml | – name: Katlenburg-Lindau |
| PublicationTitle | Earth system science data |
| PublicationYear | 2024 |
| Publisher | Copernicus GmbH Copernicus Publications |
| Publisher_xml | – name: Copernicus GmbH – name: Copernicus Publications |
| References | ref13 ref57 ref12 ref56 ref15 ref59 ref14 ref58 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref64 ref63 ref22 ref66 ref21 ref65 ref28 ref27 ref29 ref60 ref62 ref61 |
| References_xml | – ident: ref5 – ident: ref22 doi: 10.1093/jofore/fvz073 – ident: ref42 doi: 10.1016/j.rse.2014.10.001 – ident: ref59 doi: 10.1016/j.rse.2019.111262 – ident: ref56 doi: 10.1016/j.rse.2002.08.002 – ident: ref64 doi: 10.1016/j.rse.2016.04.008 – ident: ref18 doi: 10.1007/s10021-004-0243-3 – ident: ref25 doi: 10.3390/rs11242971 – ident: ref21 doi: 10.1016/j.isprsjprs.2020.02.019 – ident: ref2 doi: 10.1038/nature23285 – ident: ref60 doi: 10.1016/j.jag.2010.11.005 – ident: ref30 doi: 10.1016/j.rse.2014.09.034 – ident: ref55 doi: 10.1016/j.rse.2012.03.012 – ident: ref58 doi: 10.1111/j.1654-109X.2004.tb00606.x – ident: ref20 doi: 10.1126/science.1217962 – ident: ref31 doi: 10.1038/s41477-019-0495-8 – ident: ref53 doi: 10.1007/s10661-018-6649-8 – ident: ref34 doi: 10.1073/pnas.1315126111 – ident: ref65 – ident: ref47 doi: 10.1073/pnas.1211658109 – ident: ref52 doi: 10.1016/j.rse.2014.04.014 – ident: ref11 doi: 10.2737/FS-RU-307 – ident: ref7 doi: 10.1016/j.isprsjprs.2014.09.002 – ident: ref63 doi: 10.1007/s10021-015-9937-y – ident: ref48 doi: 10.1080/17538947.2013.786146 – ident: ref3 doi: 10.1126/science.1155121 – ident: ref26 doi: 10.1016/j.foreco.2015.06.014 – ident: ref1 doi: 10.1080/01431160010014251 – ident: ref38 doi: 10.1016/j.rse.2017.09.005 – ident: ref23 doi: 10.1111/gcb.14748 – ident: ref32 doi: 10.1016/j.rse.2016.01.006 – ident: ref44 doi: 10.14358/PERS.74.11.1379 – ident: ref33 – ident: ref13 doi: 10.1126/science.1111772 – ident: ref37 doi: 10.3390/rs8110933 – ident: ref28 doi: 10.1016/0924-2716(90)90057-I – ident: ref36 doi: 10.1038/srep20880 – ident: ref24 doi: 10.1016/j.rse.2013.01.012 – ident: ref66 doi: 10.1016/j.rse.2019.01.038 – ident: ref16 doi: 10.3390/rs8080657 – ident: ref61 doi: 10.1016/j.rse.2013.04.025 – ident: ref29 doi: 10.1016/j.rse.2016.01.017 – ident: ref9 doi: 10.1016/j.foreco.2021.119371 – ident: ref17 doi: 10.1126/science.1244693 – ident: ref14 doi: 10.1016/j.rse.2009.08.016 – ident: ref43 doi: 10.1016/j.rse.2017.10.034 – ident: ref12 doi: 10.4060/ca9825en – ident: ref45 doi: 10.1111/nph.13147 – ident: ref4 – ident: ref49 doi: 10.1038/nclimate2816 – ident: ref54 doi: 10.1126/sciadv.aax7906 – ident: ref8 doi: 10.1002/joc.1475 – ident: ref27 doi: 10.1016/j.foreco.2018.10.061 – ident: ref57 doi: 10.1579/0044-7447-32.7.469 – ident: ref39 doi: 10.1038/s41893-019-0336-9 – ident: ref19 doi: 10.1175/1087-3562(2003)007<0001:GPTCAA>2.0.CO;2 – ident: ref62 doi: 10.1016/j.jag.2015.07.001 – ident: ref15 doi: 10.1080/01431161.2012.748992 – ident: ref51 doi: 10.1109/TGRS.2009.2023909 – ident: ref46 doi: 10.1016/j.rse.2011.01.020 – ident: ref41 doi: 10.5194/essd-16-321-2024 – ident: ref40 doi: 10.34133/2021/9784657 – ident: ref6 doi: 10.1109/JSTARS.2018.2795595 – ident: ref10 – ident: ref35 – ident: ref50 doi: 10.1038/nclimate2816 |
| SSID | ssj0064175 |
| Score | 2.32744 |
| Snippet | Annual forest maps at a high spatial resolution are necessary for forest management and conservation. Large uncertainties remain in existing forest maps... |
| SourceID | doaj unpaywall proquest gale crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database |
| StartPage | 4619 |
| SubjectTerms | Algorithms Altimetry Annual Canopies Canopy Climate change Comparative analysis Computer centers Coniferous forests Conservation Datasets Decision trees Earth resources technology satellites Environmental protection Forest management Forest products Forest resources International organizations Japanese space program Land cover Land use Landsat Lidar Lidar observations Phased arrays Plant cover Protection and preservation Radar arrays Radar data Regions Remote sensing SAR (radar) Satellite imagery Satellites Sensors Spatial discrimination Spatial resolution Statistical analysis Sustainable forestry Synthetic aperture radar Time series Vegetation |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LaxRBEG7iBtEcxCdujNKIIChNth_TO3MQ2UhilLiEjYHcmp5-LIFkZt3ZQXLz7NV_6C-xah7RRdDTwmxR86jqqq9mur4i5IUKEAFVMmYQIB1TMmYs59YzrJh9FqMfNVNLPk314an6eJacbZBp3wuD2yr7mNgEal86fEe-i6wwAgr0RLxdfGE4NQq_rvYjNGw3WsG_aSjGbpBNgcxYA7K5tz89nvWxWSveUO8iyxuTgE3a75yAYtQuBBbPuGYKrhJ8R6i1TNUQ-v8dtrfIrbpY2Kuv9uLij7x0cJfc6QAlnbQecI9shOI-ufm-Gdh79YB8bwn06aVdVLSMFDAqKKS28DSAF89x201_8LygAAcp7l4_n9dlXdEWkdIWkdK2pZFCMk9-fvsBP2OK3SmgDIlNQqP_eHJ0Mpkx0ZzhCPuILSi-hKhVPSSnB_uf3x2ybv4CcwCiVkx557LcAeLLZQ6FReJt1BoqRhcEVz5LAAomGVYkSKLjkXfHa8lFlGlIbJTyERkUZREeE6pUnioo7lTiIUo4lQmRh5GIIwsIIY_pkLzqn7VZtDQbBsoTNIxBwxiuDRrGoGGGZA-tcS2IDNnNgXI5N92CMzxayM6Wx-CVGmeAotI8aid9kJl2qRuS52hLgxwYBW6ymdu6qsyHk5mZpMh6l2oJZ3rZCcVytbTOdj0LcFNIm7UmubMmCYvUrf_du4zpgkRlfrv0kLy-dqP_3__2v5U9IbdRChMs5ztksFrW4Skgp1X-rFsOvwCbmhLv priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEF_0iqgPfounVRYRBGXrbfbjksdTrFVqKa0H9WnZz6PY5o4mQeqTz776H_qXOJPkSk8F9SkhmWyyu7MzvyEzvyXkiYxgAaUaMzCQnkmRCua4DQwj5lCkFEbtriXvd_TWVL47UAc9WTTWwpz7fw_YQr6A5R4Y10zCszCjmbxI1rQC2D0ga9Od3clHDKhyrZlQ7e5z_TnX3R_MP7ex4oNaqv7fDfJVcrkpF_b0sz06OudxNq93uVpVS1SIiSafNprabfgvv9A4_lNnbpBrPe6kk05RbpILsbxFLr1p9_U9vU2-dTz79NguKjpPFKAsfB21ZaARlH2G2TnLi4clBdRIMcn9cNbMm4p2wJV2wJV2lY8UfL768fU7HMYUi1igMeQ_iW37u5Pt_ckey9o3bGO5sYWGj8G4VXfIdPP1h1dbrN-mgXnAWjWTwfvCeQCGTjiIP1SwSWsILH3MuAyFAsSoCgxckGsnID1P0IJnSeRR2STEXTIo52W8R6iULpcQA0oVwJh4WWSZi6MsjSwACZfyIXm2nDiz6Ng4DEQxOLgGB9dwbXBwDQ7ukLzEqT0TRCLt9gJMienXpeHJghO3PMUg5bgAsJW7pL0IURTa535IHqNiGKTKKDEXZ2abqjJv9_fMJEdyvFwLeNPTXijN6xPrbV_aAJ1Cdq0VyfUVSVjLfvX2Uv9Mb0sqg3xImShGKhuS52c6-ff-3_8v6QfkCh7QLXO-Tgb1SRMfAt6q3aN-pf0EnxUfIA priority: 102 providerName: Unpaywall |
| Title | Annual maps of forest and evergreen forest in the contiguous United States during 2015–2017 from analyses of PALSAR-2 and Landsat images |
| URI | https://www.proquest.com/docview/3115239052 https://doi.org/10.5194/essd-16-4619-2024 https://doaj.org/article/1fa303a1fed44792838bf6c3de396c8c |
| UnpaywallVersion | publishedVersion |
| Volume | 16 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1866-3516 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0064175 issn: 1866-3508 databaseCode: KQ8 dateStart: 20090101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: Directory of Open Access Journals customDbUrl: eissn: 1866-3516 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0064175 issn: 1866-3508 databaseCode: DOA dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1866-3516 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0064175 issn: 1866-3508 databaseCode: ABDBF dateStart: 20100701 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVPQU databaseName: Continental Europe Database customDbUrl: eissn: 1866-3516 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0064175 issn: 1866-3508 databaseCode: BFMQW dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/conteurope providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1866-3516 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0064175 issn: 1866-3508 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1866-3516 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0064175 issn: 1866-3508 databaseCode: 8FG dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pb9MwFLZgCAEHxE9RGJWFkJBA1uLYSeNjCusGGlXVUWmcLMc_qklbWi2t0G6cufIf8pfwXpxOqzjswilKYr3YeS_f-55ifybkrfSAgDIbMABIy6QIilXcOIYVs1MhuKTdteTrOD-cyS8n2cm1rb5wTliUB44vbo8HAyhrePBOyoGCbFhUIbfCeaFyW1hE36RQm2IqYnAueSuxi2puTAAHif8zga3IPQAQx3jOJPQGYiSVWxmpFe7_F54fkHvremkuf5izs2v5Z_SIPOyIIy1jhx-TW75-Qu4etBvzXj4lv6JQPj03y4YuAgUuCgapqR31EK1znF6zuXhaU6B9FGepn87XUPrTyDxpZJ40Ll2kkLSzPz9_w2FAcRUKGEMBE9_an5RHx-WUpe0TjnC9sAHD54BOzTMyG-1_-3jIun0WmAWytGLSWasqC8yuEhUUEJkzIc-hMrQ-5dKpDChfprDyQLEch_o6Lhc8DaLwmQlCPCc79aL2LwiVsiokFHEyc4AGVqo0rXyShsQAE6hC0SPvN-9aL6OchoYyBB2j0TGa5xodo9ExPTJEb1w1RCXs9gLEh-7iQ98UHz3yBn2pUeuixsk0c7NuGv35eKrLAtXtilzAk951jcJidWGs6dYmwKBQHmur5e5WS_gY7fbtTcjoDgwajYJGqVBJlvbIh6swunn8L__H-F-R-2gL0y3nu2RndbH2r4FHrao-uV2MDvrkTjn8NBzBcbg_nkz77YcEZ7PxpPz-F5-KGyw |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5VrVDhUPEUoQVWCIQEWjVerzf2oUIptCQ0jaq0lXpb1vuIKrV2iBNVuXHmyv_hx_BLmPGjECHBqSdL9nose3ZmvlnvfEPIS-HAA4qow8BBGiZCn7A00JZhxmwT72277FpyOJS9U_HpLDpbIT-aWhjcVtn4xNJR29zgGvk2ssJwSNAj_m7yhWHXKPy72rTQ0HVrBbtTUozVhR0HbnEFKVyx0_8A-n7F-f7eyfseq7sMMANQYcaENSZJDeCaNEwBPkdWeykhLzKOB8ImEQCeKEHcjVQxFtllrAwD7sPYRdrjgiiEgDURigSSv7XdveHRqIkFUgQl1S-yyrEQsFD1XxVQk9gGR2ZZIJmArwJzlYulyFg2EPg7TNwh6_NsohdX-uLijzi4f5ds1ACWdqsZd4-suOw-ufWxbBC8eEC-VYT99FJPCpp7CpgYBFKdWerAasa4zac5eZ5RgJ8Ud8ufj-f5vKAVAqYVAqZVCSUF8BD9_PodDh2K1TAgDIlUXCn_qDs47o4YL58wwLplDYIvwUsWD8npjWjiEVnN8sw9JlSINBaQTIrIglcyIuE8dW3u2xoQSerjFnnTfGs1qWg9FKRDqBiFilGBVKgYhYppkV3UxvVAZOQuT-TTsaoNXAVeAxrQgXdWiE4CqC1OvTShdWEiTWxa5AXqUiHnRoabesZ6XhSqfzxS3RhZ9mIZwpNe14N8Pptqo-saCXgppOlaGrm1NBKcglm-3EwZVTulQv02oRZ5ez2N_v_-T_4t7DlZ750cDtSgPzzYJLfxDgzuQbBFVmfTuXsKqG2WPqtNg5LPN22NvwC98035 |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtNAFB1VrXgteCMCBUYIhASaJh6PHXuBUEoJDU2r0lLR3TCeR1TR2iGOVYUVa7b8Db_Cji_hXj8KAQlWXbCK5EzGmsmZM-fac88l5IGwwIAi6DIgSM2E72KWeMowjJhN7JzplFVLNrfC9T3xaj_YXyBfm1wYPFbZcGJJ1CbT-Iy8ja4wHAL0gLddfSxie63_bPyBYQUpfNPalNOoILJhZ8cQvuVPB2vwXz_kvP_izfN1VlcYYBpkwpQJo3WcaNA0iZ-AdA6McmEIMZG23BMmDkDsBDFqbrSJMegsY0Lf486PbKAcPgwF-l-K0ARtkSyt9jdfv232gVB4pc0vOsoxH3RQ9U4VFJNoA4kZ5oVMwIwATrmY2xXL4gF_bhEXyLkiHavZsTo8_GUP7F8i35rZq46-vF8ppsmK_vibseT_Ob2XycVamtNetZaukAWbXiVnXpalj2fXyOeqFAE9UuOcZo6C2ofhUZUaaoEPRniAqbl4kFIQ1hTzAA5GRVbktNL2tNL2tEoOpSCLgu-fvsBHl2KeD3SGFjG27H-7N9zt7TBe3mGIGdkKOj4C_s-vk71TmYgbZDHNUnuTUCGSSECYLAIDfKtFzHliO9x1FGitxEUt8rhBkhxXhiUSAj2EnUTYSS-UCDuJsGuRVcTaSUP0Gi8vZJORrKlLek6BzlGes0aIbgx6NEpcqH1j_TjUkW6R-4hUiW4iKQJnpIo8l4PdHdmL0D8wCn2406O6kcumE6VVnf0Bg0IDsrmWy3Mtge70_NcNgGVNt7n8id4WeXKySP49_lt_7-weOQuLQA4HWxu3yXn8AaoWz1smi9NJYe-AHJ0md-t1T8m7014LPwDqtJOG |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEF_0iqgPfounVRYRBGXrbfbjksdTrFVqKa0H9WnZz6PY5o4mQeqTz776H_qXOJPkSk8F9SkhmWyyu7MzvyEzvyXkiYxgAaUaMzCQnkmRCua4DQwj5lCkFEbtriXvd_TWVL47UAc9WTTWwpz7fw_YQr6A5R4Y10zCszCjmbxI1rQC2D0ga9Od3clHDKhyrZlQ7e5z_TnX3R_MP7ex4oNaqv7fDfJVcrkpF_b0sz06OudxNq93uVpVS1SIiSafNprabfgvv9A4_lNnbpBrPe6kk05RbpILsbxFLr1p9_U9vU2-dTz79NguKjpPFKAsfB21ZaARlH2G2TnLi4clBdRIMcn9cNbMm4p2wJV2wJV2lY8UfL768fU7HMYUi1igMeQ_iW37u5Pt_ckey9o3bGO5sYWGj8G4VXfIdPP1h1dbrN-mgXnAWjWTwfvCeQCGTjiIP1SwSWsILH3MuAyFAsSoCgxckGsnID1P0IJnSeRR2STEXTIo52W8R6iULpcQA0oVwJh4WWSZi6MsjSwACZfyIXm2nDiz6Ng4DEQxOLgGB9dwbXBwDQ7ukLzEqT0TRCLt9gJMienXpeHJghO3PMUg5bgAsJW7pL0IURTa535IHqNiGKTKKDEXZ2abqjJv9_fMJEdyvFwLeNPTXijN6xPrbV_aAJ1Cdq0VyfUVSVjLfvX2Uv9Mb0sqg3xImShGKhuS52c6-ff-3_8v6QfkCh7QLXO-Tgb1SRMfAt6q3aN-pf0EnxUfIA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Annual+maps+of+forest+and+evergreen+forest+in+the+contiguous+United+States+during+2015-2017+from+analyses+of+PALSAR-2+and+Landsat+images&rft.jtitle=Earth+system+science+data&rft.au=Wang%2C+Jie&rft.au=Xiao%2C+Xiangming&rft.au=Qin%2C+Yuanwei&rft.au=Dong%2C+Jinwei&rft.date=2024-10-11&rft.pub=Copernicus+GmbH&rft.issn=1866-3508&rft.volume=16&rft.issue=10&rft.spage=4619&rft_id=info:doi/10.5194%2Fessd-16-4619-2024&rft.externalDBID=ISR&rft.externalDocID=A811918634 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1866-3516&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1866-3516&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1866-3516&client=summon |