Annual maps of forest and evergreen forest in the contiguous United States during 2015–2017 from analyses of PALSAR-2 and Landsat images

Annual forest maps at a high spatial resolution are necessary for forest management and conservation. Large uncertainties remain in existing forest maps because of different forest definitions, satellite datasets, in situ training datasets, and mapping algorithms. In this study, we generated annual...

Full description

Saved in:
Bibliographic Details
Published inEarth system science data Vol. 16; no. 10; pp. 4619 - 4639
Main Authors Wang, Jie, Xiao, Xiangming, Qin, Yuanwei, Dong, Jinwei, Zhang, Geli, Yang, Xuebin, Wu, Xiaocui, Biradar, Chandrashekhar, Hu, Yang
Format Journal Article
LanguageEnglish
Published Katlenburg-Lindau Copernicus GmbH 11.10.2024
Copernicus Publications
Subjects
Online AccessGet full text
ISSN1866-3516
1866-3508
1866-3516
DOI10.5194/essd-16-4619-2024

Cover

Abstract Annual forest maps at a high spatial resolution are necessary for forest management and conservation. Large uncertainties remain in existing forest maps because of different forest definitions, satellite datasets, in situ training datasets, and mapping algorithms. In this study, we generated annual maps of forest and evergreen forest at a 30 m resolution in the contiguous United States (CONUS) during 2015–2017 by integrating microwave data (Phased Array type L-band Synthetic Aperture Radar – PALSAR-2) and optical data (Landsat) using knowledge-based algorithms. The resultant PALSAR-2/Landsat-based forest maps (PL-Forest) were compared with five major forest datasets from the CONUS: (1) the Landsat tree canopy cover from the Global Forest Watch dataset (GFW-Forest), (2) the Landsat Vegetation Continuous Field dataset (Landsat VCF-Forest), (3) the National Land Cover Database 2016 (NLCD-Forest), (4) the Japan Aerospace Exploration Agency forest maps (JAXA-Forest), and (5) the Forest Inventory and Analysis (FIA) data from the U.S. Department of Agriculture (USDA) Forest Service (FIA-Forest). The forest structure data (tree canopy height and canopy coverage) derived from the lidar observations of the Geoscience Laser Altimetry System (GLAS) on board NASA's Ice, Cloud, and land Elevation Satellite (ICESat-1) were used to assess the five forest cover datasets derived from satellite images. Using the forest definition of the Food and Agricultural Organization (FAO) of the United Nations, more forest pixels from the PL-Forest maps meet the FAO's forest definition than the GFW-Forest, Landsat VCF-Forest, and JAXA-Forest datasets. Forest area estimates from PL-Forest were close to those from the FIA-Forest statistics, higher than GFW-Forest and NLCD-Forest, and lower than Landsat VCF-Forest, which highlights the potential of using both the PL-Forest and FIA-Forest datasets to support the FAO's Global Forest Resources Assessment. Furthermore, the PALSAR-2/Landsat-based annual evergreen forest maps (PL-Evergreen Forest) showed reasonable consistency with the NLCD product. The comparison of the most widely used forest datasets offered insights to employ appropriate products for relevant research and management activities across local to regional and national scales. The datasets generated in this study are available at https://doi.org/10.6084/m9.figshare.21270261 (Wang, 2024). The improved annual maps of forest and evergreen forest at 30 m over the CONUS can be used to support forest management, conservation, and resource assessments.
AbstractList Annual forest maps at a high spatial resolution are necessary for forest management and conservation. Large uncertainties remain in existing forest maps because of different forest definitions, satellite datasets, in situ training datasets, and mapping algorithms. In this study, we generated annual maps of forest and evergreen forest at a 30  m resolution in the contiguous United States (CONUS) during 2015–2017 by integrating microwave data (Phased Array type L-band Synthetic Aperture Radar – PALSAR-2) and optical data (Landsat) using knowledge-based algorithms. The resultant PALSAR-2/Landsat-based forest maps (PL-Forest) were compared with five major forest datasets from the CONUS: (1) the Landsat tree canopy cover from the Global Forest Watch dataset (GFW-Forest), (2) the Landsat Vegetation Continuous Field dataset (Landsat VCF-Forest), (3) the National Land Cover Database 2016 (NLCD-Forest), (4) the Japan Aerospace Exploration Agency forest maps (JAXA-Forest), and (5) the Forest Inventory and Analysis (FIA) data from the U.S. Department of Agriculture (USDA) Forest Service (FIA-Forest). The forest structure data (tree canopy height and canopy coverage) derived from the lidar observations of the Geoscience Laser Altimetry System (GLAS) on board NASA's Ice, Cloud, and land Elevation Satellite (ICESat-1) were used to assess the five forest cover datasets derived from satellite images. Using the forest definition of the Food and Agricultural Organization (FAO) of the United Nations, more forest pixels from the PL-Forest maps meet the FAO's forest definition than the GFW-Forest, Landsat VCF-Forest, and JAXA-Forest datasets. Forest area estimates from PL-Forest were close to those from the FIA-Forest statistics, higher than GFW-Forest and NLCD-Forest, and lower than Landsat VCF-Forest, which highlights the potential of using both the PL-Forest and FIA-Forest datasets to support the FAO's Global Forest Resources Assessment. Furthermore, the PALSAR-2/Landsat-based annual evergreen forest maps (PL-Evergreen Forest) showed reasonable consistency with the NLCD product. The comparison of the most widely used forest datasets offered insights to employ appropriate products for relevant research and management activities across local to regional and national scales. The datasets generated in this study are available at https://doi.org/10.6084/m9.figshare.21270261 (Wang, 2024). The improved annual maps of forest and evergreen forest at 30  m over the CONUS can be used to support forest management, conservation, and resource assessments.
Annual forest maps at a high spatial resolution are necessary for forest management and conservation. Large uncertainties remain in existing forest maps because of different forest definitions, satellite datasets, in situ training datasets, and mapping algorithms. In this study, we generated annual maps of forest and evergreen forest at a 30 m resolution in the contiguous United States (CONUS) during 2015-2017 by integrating microwave data (Phased Array type L-band Synthetic Aperture Radar - PALSAR-2) and optical data (Landsat) using knowledge-based algorithms. The resultant PALSAR-2/Landsat-based forest maps (PL-Forest) were compared with five major forest datasets from the CONUS: (1) the Landsat tree canopy cover from the Global Forest Watch dataset (GFW-Forest), (2) the Landsat Vegetation Continuous Field dataset (Landsat VCF-Forest), (3) the National Land Cover Database 2016 (NLCD-Forest), (4) the Japan Aerospace Exploration Agency forest maps (JAXA-Forest), and (5) the Forest Inventory and Analysis (FIA) data from the U.S. Department of Agriculture (USDA) Forest Service (FIA-Forest). The forest structure data (tree canopy height and canopy coverage) derived from the lidar observations of the Geoscience Laser Altimetry System (GLAS) on board NASA's Ice, Cloud, and land Elevation Satellite (ICESat-1) were used to assess the five forest cover datasets derived from satellite images. Using the forest definition of the Food and Agricultural Organization (FAO) of the United Nations, more forest pixels from the PL-Forest maps meet the FAO's forest definition than the GFW-Forest, Landsat VCF-Forest, and JAXA-Forest datasets. Forest area estimates from PL-Forest were close to those from the FIA-Forest statistics, higher than GFW-Forest and NLCD-Forest, and lower than Landsat VCF-Forest, which highlights the potential of using both the PL-Forest and FIA-Forest datasets to support the FAO's Global Forest Resources Assessment. Furthermore, the PALSAR-2/Landsat-based annual evergreen forest maps (PL-Evergreen Forest) showed reasonable consistency with the NLCD product. The comparison of the most widely used forest datasets offered insights to employ appropriate products for relevant research and management activities across local to regional and national scales. The datasets generated in this study are available at
Annual forest maps at a high spatial resolution are necessary for forest management and conservation. Large uncertainties remain in existing forest maps because of different forest definitions, satellite datasets, in situ training datasets, and mapping algorithms. In this study, we generated annual maps of forest and evergreen forest at a 30 m resolution in the contiguous United States (CONUS) during 2015–2017 by integrating microwave data (Phased Array type L-band Synthetic Aperture Radar – PALSAR-2) and optical data (Landsat) using knowledge-based algorithms. The resultant PALSAR-2/Landsat-based forest maps (PL-Forest) were compared with five major forest datasets from the CONUS: (1) the Landsat tree canopy cover from the Global Forest Watch dataset (GFW-Forest), (2) the Landsat Vegetation Continuous Field dataset (Landsat VCF-Forest), (3) the National Land Cover Database 2016 (NLCD-Forest), (4) the Japan Aerospace Exploration Agency forest maps (JAXA-Forest), and (5) the Forest Inventory and Analysis (FIA) data from the U.S. Department of Agriculture (USDA) Forest Service (FIA-Forest). The forest structure data (tree canopy height and canopy coverage) derived from the lidar observations of the Geoscience Laser Altimetry System (GLAS) on board NASA's Ice, Cloud, and land Elevation Satellite (ICESat-1) were used to assess the five forest cover datasets derived from satellite images. Using the forest definition of the Food and Agricultural Organization (FAO) of the United Nations, more forest pixels from the PL-Forest maps meet the FAO's forest definition than the GFW-Forest, Landsat VCF-Forest, and JAXA-Forest datasets. Forest area estimates from PL-Forest were close to those from the FIA-Forest statistics, higher than GFW-Forest and NLCD-Forest, and lower than Landsat VCF-Forest, which highlights the potential of using both the PL-Forest and FIA-Forest datasets to support the FAO's Global Forest Resources Assessment. Furthermore, the PALSAR-2/Landsat-based annual evergreen forest maps (PL-Evergreen Forest) showed reasonable consistency with the NLCD product. The comparison of the most widely used forest datasets offered insights to employ appropriate products for relevant research and management activities across local to regional and national scales. The datasets generated in this study are available at https://doi.org/10.6084/m9.figshare.21270261 (Wang, 2024). The improved annual maps of forest and evergreen forest at 30 m over the CONUS can be used to support forest management, conservation, and resource assessments.
Audience Academic
Author Yang, Xuebin
Xiao, Xiangming
Wu, Xiaocui
Biradar, Chandrashekhar
Dong, Jinwei
Zhang, Geli
Hu, Yang
Qin, Yuanwei
Wang, Jie
Author_xml – sequence: 1
  givenname: Jie
  orcidid: 0000-0003-1866-3999
  surname: Wang
  fullname: Wang, Jie
– sequence: 2
  givenname: Xiangming
  surname: Xiao
  fullname: Xiao, Xiangming
– sequence: 3
  givenname: Yuanwei
  surname: Qin
  fullname: Qin, Yuanwei
– sequence: 4
  givenname: Jinwei
  surname: Dong
  fullname: Dong, Jinwei
– sequence: 5
  givenname: Geli
  surname: Zhang
  fullname: Zhang, Geli
– sequence: 6
  givenname: Xuebin
  surname: Yang
  fullname: Yang, Xuebin
– sequence: 7
  givenname: Xiaocui
  surname: Wu
  fullname: Wu, Xiaocui
– sequence: 8
  givenname: Chandrashekhar
  surname: Biradar
  fullname: Biradar, Chandrashekhar
– sequence: 9
  givenname: Yang
  surname: Hu
  fullname: Hu, Yang
BookMark eNqNkc9u1DAQxiNUJNrCA3CzxIlDSsaOnfi4qviz0kqglp4trz0OWWXtxU4oe-PMlTfkSXB2oWIlDsjSjDX65jf2fBfFmQ8ei-I5VFccZP0KU7IliLIWIEta0fpRcQ6tECXjIM7-uj8pLlLaVJWooeHnxfeF95MeyFbvEgmOuBAxjUR7S_ALxi4i-j_F3pPxExIT_Nh3U5gSufP9iJbcjnrEROwUe98RWgH_-e1HTg1xMWwzTA_7hAf-h8XqdnFT0sOEVQ5JZ_BWd5ieFo-dHhI--50vi7s3rz9evytX798urxer0tSMj2VtjZFrI7hYs7VoOLfaCUEBDFKoreRcCC65bOqK0tY2IKQVDKhjLXLtGLsslkeuDXqjdjFPj3sVdK8OhRA7pePYmwEVOM0qpsGhretG0pa1aycMs8ikMK3JLHpkTX6n9_d6GB6AUKnZGTU7o0Co2Rk1O5ObXhybdjF8nvJm1SZMMS8pKQbAKZNVDg-qTueX9N6FMWqz7ZNRixZAZkfZzLr6hyofi9s-O4Wuz_WThpcnDbOb-HXs9JSSWt7enGrhqDUxpBTR_cfnfgHwA8jL
Cites_doi 10.1093/jofore/fvz073
10.1016/j.rse.2014.10.001
10.1016/j.rse.2019.111262
10.1016/j.rse.2002.08.002
10.1016/j.rse.2016.04.008
10.1007/s10021-004-0243-3
10.3390/rs11242971
10.1016/j.isprsjprs.2020.02.019
10.1038/nature23285
10.1016/j.jag.2010.11.005
10.1016/j.rse.2014.09.034
10.1016/j.rse.2012.03.012
10.1111/j.1654-109X.2004.tb00606.x
10.1126/science.1217962
10.1038/s41477-019-0495-8
10.1007/s10661-018-6649-8
10.1073/pnas.1315126111
10.1073/pnas.1211658109
10.1016/j.rse.2014.04.014
10.2737/FS-RU-307
10.1016/j.isprsjprs.2014.09.002
10.1007/s10021-015-9937-y
10.1080/17538947.2013.786146
10.1126/science.1155121
10.1016/j.foreco.2015.06.014
10.1080/01431160010014251
10.1016/j.rse.2017.09.005
10.1111/gcb.14748
10.1016/j.rse.2016.01.006
10.14358/PERS.74.11.1379
10.1126/science.1111772
10.3390/rs8110933
10.1016/0924-2716(90)90057-I
10.1038/srep20880
10.1016/j.rse.2013.01.012
10.1016/j.rse.2019.01.038
10.3390/rs8080657
10.1016/j.rse.2013.04.025
10.1016/j.rse.2016.01.017
10.1016/j.foreco.2021.119371
10.1126/science.1244693
10.1016/j.rse.2009.08.016
10.1016/j.rse.2017.10.034
10.4060/ca9825en
10.1111/nph.13147
10.1038/nclimate2816
10.1126/sciadv.aax7906
10.1002/joc.1475
10.1016/j.foreco.2018.10.061
10.1579/0044-7447-32.7.469
10.1038/s41893-019-0336-9
10.1175/1087-3562(2003)007<0001:GPTCAA>2.0.CO;2
10.1016/j.jag.2015.07.001
10.1080/01431161.2012.748992
10.1109/TGRS.2009.2023909
10.1016/j.rse.2011.01.020
10.5194/essd-16-321-2024
10.34133/2021/9784657
10.1109/JSTARS.2018.2795595
ContentType Journal Article
Copyright COPYRIGHT 2024 Copernicus GmbH
2024. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 Copernicus GmbH
– notice: 2024. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ISR
7SN
7TG
7TN
7UA
8FD
8FE
8FG
ABJCF
ABUWG
AEUYN
AFKRA
AZQEC
BENPR
BFMQW
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
H8D
H96
HCIFZ
KL.
L.G
L6V
L7M
M7S
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ADTOC
UNPAY
DOA
DOI 10.5194/essd-16-4619-2024
DatabaseName CrossRef
Gale In Context: Science
Ecology Abstracts
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Water Resources Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central
ProQuest Central Essentials - QC
ProQuest Central
Continental Europe Database
ProQuest Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Engineering Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Water Resources Abstracts
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
Aerospace Database
ProQuest One Sustainability
ProQuest Engineering Collection
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Engineering Database
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Continental Europe Database
ProQuest SciTech Collection
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
DatabaseTitleList
CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 1866-3516
EndPage 4639
ExternalDocumentID oai_doaj_org_article_1fa303a1fed44792838bf6c3de396c8c
10.5194/essd-16-4619-2024
A811918634
10_5194_essd_16_4619_2024
GeographicLocations United States--US
Asia
Japan
GeographicLocations_xml – name: United States--US
– name: Asia
– name: Japan
GroupedDBID 5VS
8FE
8FG
8FH
8R4
8R5
AAFWJ
AAYXX
ABDBF
ABJCF
ABUWG
ACIWK
ACPRK
ACUHS
ADBBV
AEGXH
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHGZY
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
BFMQW
BGLVJ
BHPHI
BKSAR
BPHCQ
CCPQU
CITATION
ESX
GROUPED_DOAJ
H13
HCIFZ
IAO
IEA
IGS
ISR
ITC
KQ8
L6V
LK5
M7R
M7S
OK1
PCBAR
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PTHSS
PUEGO
Q2X
RKB
RNS
TR2
TUS
ZBA
7SN
7TG
7TN
7UA
8FD
AZQEC
C1K
DWQXO
F1W
H8D
H96
KL.
L.G
L7M
PKEHL
PQEST
PQUKI
PRINS
ADTOC
C1A
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c435t-4dcc9bc656b3b6755daf66211ce214d955665959740228d7169d6312f38e5af33
IEDL.DBID DOA
ISSN 1866-3516
1866-3508
IngestDate Fri Oct 03 12:53:37 EDT 2025
Sun Sep 07 10:49:58 EDT 2025
Fri Jul 25 10:45:23 EDT 2025
Mon Oct 20 22:48:31 EDT 2025
Mon Oct 20 16:58:33 EDT 2025
Thu Oct 16 15:47:27 EDT 2025
Wed Oct 01 01:50:36 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License https://creativecommons.org/licenses/by/4.0
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c435t-4dcc9bc656b3b6755daf66211ce214d955665959740228d7169d6312f38e5af33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1866-3999
OpenAccessLink https://doaj.org/article/1fa303a1fed44792838bf6c3de396c8c
PQID 3115239052
PQPubID 105729
PageCount 21
ParticipantIDs doaj_primary_oai_doaj_org_article_1fa303a1fed44792838bf6c3de396c8c
unpaywall_primary_10_5194_essd_16_4619_2024
proquest_journals_3115239052
gale_infotracmisc_A811918634
gale_infotracacademiconefile_A811918634
gale_incontextgauss_ISR_A811918634
crossref_primary_10_5194_essd_16_4619_2024
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-10-11
PublicationDateYYYYMMDD 2024-10-11
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-11
  day: 11
PublicationDecade 2020
PublicationPlace Katlenburg-Lindau
PublicationPlace_xml – name: Katlenburg-Lindau
PublicationTitle Earth system science data
PublicationYear 2024
Publisher Copernicus GmbH
Copernicus Publications
Publisher_xml – name: Copernicus GmbH
– name: Copernicus Publications
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref64
ref63
ref22
ref66
ref21
ref65
ref28
ref27
ref29
ref60
ref62
ref61
References_xml – ident: ref5
– ident: ref22
  doi: 10.1093/jofore/fvz073
– ident: ref42
  doi: 10.1016/j.rse.2014.10.001
– ident: ref59
  doi: 10.1016/j.rse.2019.111262
– ident: ref56
  doi: 10.1016/j.rse.2002.08.002
– ident: ref64
  doi: 10.1016/j.rse.2016.04.008
– ident: ref18
  doi: 10.1007/s10021-004-0243-3
– ident: ref25
  doi: 10.3390/rs11242971
– ident: ref21
  doi: 10.1016/j.isprsjprs.2020.02.019
– ident: ref2
  doi: 10.1038/nature23285
– ident: ref60
  doi: 10.1016/j.jag.2010.11.005
– ident: ref30
  doi: 10.1016/j.rse.2014.09.034
– ident: ref55
  doi: 10.1016/j.rse.2012.03.012
– ident: ref58
  doi: 10.1111/j.1654-109X.2004.tb00606.x
– ident: ref20
  doi: 10.1126/science.1217962
– ident: ref31
  doi: 10.1038/s41477-019-0495-8
– ident: ref53
  doi: 10.1007/s10661-018-6649-8
– ident: ref34
  doi: 10.1073/pnas.1315126111
– ident: ref65
– ident: ref47
  doi: 10.1073/pnas.1211658109
– ident: ref52
  doi: 10.1016/j.rse.2014.04.014
– ident: ref11
  doi: 10.2737/FS-RU-307
– ident: ref7
  doi: 10.1016/j.isprsjprs.2014.09.002
– ident: ref63
  doi: 10.1007/s10021-015-9937-y
– ident: ref48
  doi: 10.1080/17538947.2013.786146
– ident: ref3
  doi: 10.1126/science.1155121
– ident: ref26
  doi: 10.1016/j.foreco.2015.06.014
– ident: ref1
  doi: 10.1080/01431160010014251
– ident: ref38
  doi: 10.1016/j.rse.2017.09.005
– ident: ref23
  doi: 10.1111/gcb.14748
– ident: ref32
  doi: 10.1016/j.rse.2016.01.006
– ident: ref44
  doi: 10.14358/PERS.74.11.1379
– ident: ref33
– ident: ref13
  doi: 10.1126/science.1111772
– ident: ref37
  doi: 10.3390/rs8110933
– ident: ref28
  doi: 10.1016/0924-2716(90)90057-I
– ident: ref36
  doi: 10.1038/srep20880
– ident: ref24
  doi: 10.1016/j.rse.2013.01.012
– ident: ref66
  doi: 10.1016/j.rse.2019.01.038
– ident: ref16
  doi: 10.3390/rs8080657
– ident: ref61
  doi: 10.1016/j.rse.2013.04.025
– ident: ref29
  doi: 10.1016/j.rse.2016.01.017
– ident: ref9
  doi: 10.1016/j.foreco.2021.119371
– ident: ref17
  doi: 10.1126/science.1244693
– ident: ref14
  doi: 10.1016/j.rse.2009.08.016
– ident: ref43
  doi: 10.1016/j.rse.2017.10.034
– ident: ref12
  doi: 10.4060/ca9825en
– ident: ref45
  doi: 10.1111/nph.13147
– ident: ref4
– ident: ref49
  doi: 10.1038/nclimate2816
– ident: ref54
  doi: 10.1126/sciadv.aax7906
– ident: ref8
  doi: 10.1002/joc.1475
– ident: ref27
  doi: 10.1016/j.foreco.2018.10.061
– ident: ref57
  doi: 10.1579/0044-7447-32.7.469
– ident: ref39
  doi: 10.1038/s41893-019-0336-9
– ident: ref19
  doi: 10.1175/1087-3562(2003)007<0001:GPTCAA>2.0.CO;2
– ident: ref62
  doi: 10.1016/j.jag.2015.07.001
– ident: ref15
  doi: 10.1080/01431161.2012.748992
– ident: ref51
  doi: 10.1109/TGRS.2009.2023909
– ident: ref46
  doi: 10.1016/j.rse.2011.01.020
– ident: ref41
  doi: 10.5194/essd-16-321-2024
– ident: ref40
  doi: 10.34133/2021/9784657
– ident: ref6
  doi: 10.1109/JSTARS.2018.2795595
– ident: ref10
– ident: ref35
– ident: ref50
  doi: 10.1038/nclimate2816
SSID ssj0064175
Score 2.32744
Snippet Annual forest maps at a high spatial resolution are necessary for forest management and conservation. Large uncertainties remain in existing forest maps...
SourceID doaj
unpaywall
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 4619
SubjectTerms Algorithms
Altimetry
Annual
Canopies
Canopy
Climate change
Comparative analysis
Computer centers
Coniferous forests
Conservation
Datasets
Decision trees
Earth resources technology satellites
Environmental protection
Forest management
Forest products
Forest resources
International organizations
Japanese space program
Land cover
Land use
Landsat
Lidar
Lidar observations
Phased arrays
Plant cover
Protection and preservation
Radar arrays
Radar data
Regions
Remote sensing
SAR (radar)
Satellite imagery
Satellites
Sensors
Spatial discrimination
Spatial resolution
Statistical analysis
Sustainable forestry
Synthetic aperture radar
Time series
Vegetation
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LaxRBEG7iBtEcxCdujNKIIChNth_TO3MQ2UhilLiEjYHcmp5-LIFkZt3ZQXLz7NV_6C-xah7RRdDTwmxR86jqqq9mur4i5IUKEAFVMmYQIB1TMmYs59YzrJh9FqMfNVNLPk314an6eJacbZBp3wuD2yr7mNgEal86fEe-i6wwAgr0RLxdfGE4NQq_rvYjNGw3WsG_aSjGbpBNgcxYA7K5tz89nvWxWSveUO8iyxuTgE3a75yAYtQuBBbPuGYKrhJ8R6i1TNUQ-v8dtrfIrbpY2Kuv9uLij7x0cJfc6QAlnbQecI9shOI-ufm-Gdh79YB8bwn06aVdVLSMFDAqKKS28DSAF89x201_8LygAAcp7l4_n9dlXdEWkdIWkdK2pZFCMk9-fvsBP2OK3SmgDIlNQqP_eHJ0Mpkx0ZzhCPuILSi-hKhVPSSnB_uf3x2ybv4CcwCiVkx557LcAeLLZQ6FReJt1BoqRhcEVz5LAAomGVYkSKLjkXfHa8lFlGlIbJTyERkUZREeE6pUnioo7lTiIUo4lQmRh5GIIwsIIY_pkLzqn7VZtDQbBsoTNIxBwxiuDRrGoGGGZA-tcS2IDNnNgXI5N92CMzxayM6Wx-CVGmeAotI8aid9kJl2qRuS52hLgxwYBW6ymdu6qsyHk5mZpMh6l2oJZ3rZCcVytbTOdj0LcFNIm7UmubMmCYvUrf_du4zpgkRlfrv0kLy-dqP_3__2v5U9IbdRChMs5ztksFrW4Skgp1X-rFsOvwCbmhLv
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEF_0iqgPfounVRYRBGXrbfbjksdTrFVqKa0H9WnZz6PY5o4mQeqTz776H_qXOJPkSk8F9SkhmWyyu7MzvyEzvyXkiYxgAaUaMzCQnkmRCua4DQwj5lCkFEbtriXvd_TWVL47UAc9WTTWwpz7fw_YQr6A5R4Y10zCszCjmbxI1rQC2D0ga9Od3clHDKhyrZlQ7e5z_TnX3R_MP7ex4oNaqv7fDfJVcrkpF_b0sz06OudxNq93uVpVS1SIiSafNprabfgvv9A4_lNnbpBrPe6kk05RbpILsbxFLr1p9_U9vU2-dTz79NguKjpPFKAsfB21ZaARlH2G2TnLi4clBdRIMcn9cNbMm4p2wJV2wJV2lY8UfL768fU7HMYUi1igMeQ_iW37u5Pt_ckey9o3bGO5sYWGj8G4VXfIdPP1h1dbrN-mgXnAWjWTwfvCeQCGTjiIP1SwSWsILH3MuAyFAsSoCgxckGsnID1P0IJnSeRR2STEXTIo52W8R6iULpcQA0oVwJh4WWSZi6MsjSwACZfyIXm2nDiz6Ng4DEQxOLgGB9dwbXBwDQ7ukLzEqT0TRCLt9gJMienXpeHJghO3PMUg5bgAsJW7pL0IURTa535IHqNiGKTKKDEXZ2abqjJv9_fMJEdyvFwLeNPTXijN6xPrbV_aAJ1Cdq0VyfUVSVjLfvX2Uv9Mb0sqg3xImShGKhuS52c6-ff-3_8v6QfkCh7QLXO-Tgb1SRMfAt6q3aN-pf0EnxUfIA
  priority: 102
  providerName: Unpaywall
Title Annual maps of forest and evergreen forest in the contiguous United States during 2015–2017 from analyses of PALSAR-2 and Landsat images
URI https://www.proquest.com/docview/3115239052
https://doi.org/10.5194/essd-16-4619-2024
https://doaj.org/article/1fa303a1fed44792838bf6c3de396c8c
UnpaywallVersion publishedVersion
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1866-3516
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0064175
  issn: 1866-3508
  databaseCode: KQ8
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: Directory of Open Access Journals
  customDbUrl:
  eissn: 1866-3516
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0064175
  issn: 1866-3508
  databaseCode: DOA
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1866-3516
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0064175
  issn: 1866-3508
  databaseCode: ABDBF
  dateStart: 20100701
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVPQU
  databaseName: Continental Europe Database
  customDbUrl:
  eissn: 1866-3516
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0064175
  issn: 1866-3508
  databaseCode: BFMQW
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/conteurope
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1866-3516
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0064175
  issn: 1866-3508
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1866-3516
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0064175
  issn: 1866-3508
  databaseCode: 8FG
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pb9MwFLZgCAEHxE9RGJWFkJBA1uLYSeNjCusGGlXVUWmcLMc_qklbWi2t0G6cufIf8pfwXpxOqzjswilKYr3YeS_f-55ifybkrfSAgDIbMABIy6QIilXcOIYVs1MhuKTdteTrOD-cyS8n2cm1rb5wTliUB44vbo8HAyhrePBOyoGCbFhUIbfCeaFyW1hE36RQm2IqYnAueSuxi2puTAAHif8zga3IPQAQx3jOJPQGYiSVWxmpFe7_F54fkHvremkuf5izs2v5Z_SIPOyIIy1jhx-TW75-Qu4etBvzXj4lv6JQPj03y4YuAgUuCgapqR31EK1znF6zuXhaU6B9FGepn87XUPrTyDxpZJ40Ll2kkLSzPz9_w2FAcRUKGEMBE9_an5RHx-WUpe0TjnC9sAHD54BOzTMyG-1_-3jIun0WmAWytGLSWasqC8yuEhUUEJkzIc-hMrQ-5dKpDChfprDyQLEch_o6Lhc8DaLwmQlCPCc79aL2LwiVsiokFHEyc4AGVqo0rXyShsQAE6hC0SPvN-9aL6OchoYyBB2j0TGa5xodo9ExPTJEb1w1RCXs9gLEh-7iQ98UHz3yBn2pUeuixsk0c7NuGv35eKrLAtXtilzAk951jcJidWGs6dYmwKBQHmur5e5WS_gY7fbtTcjoDgwajYJGqVBJlvbIh6swunn8L__H-F-R-2gL0y3nu2RndbH2r4FHrao-uV2MDvrkTjn8NBzBcbg_nkz77YcEZ7PxpPz-F5-KGyw
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5VrVDhUPEUoQVWCIQEWjVerzf2oUIptCQ0jaq0lXpb1vuIKrV2iBNVuXHmyv_hx_BLmPGjECHBqSdL9nose3ZmvlnvfEPIS-HAA4qow8BBGiZCn7A00JZhxmwT72277FpyOJS9U_HpLDpbIT-aWhjcVtn4xNJR29zgGvk2ssJwSNAj_m7yhWHXKPy72rTQ0HVrBbtTUozVhR0HbnEFKVyx0_8A-n7F-f7eyfseq7sMMANQYcaENSZJDeCaNEwBPkdWeykhLzKOB8ImEQCeKEHcjVQxFtllrAwD7sPYRdrjgiiEgDURigSSv7XdveHRqIkFUgQl1S-yyrEQsFD1XxVQk9gGR2ZZIJmArwJzlYulyFg2EPg7TNwh6_NsohdX-uLijzi4f5ds1ACWdqsZd4-suOw-ufWxbBC8eEC-VYT99FJPCpp7CpgYBFKdWerAasa4zac5eZ5RgJ8Ud8ufj-f5vKAVAqYVAqZVCSUF8BD9_PodDh2K1TAgDIlUXCn_qDs47o4YL58wwLplDYIvwUsWD8npjWjiEVnN8sw9JlSINBaQTIrIglcyIuE8dW3u2xoQSerjFnnTfGs1qWg9FKRDqBiFilGBVKgYhYppkV3UxvVAZOQuT-TTsaoNXAVeAxrQgXdWiE4CqC1OvTShdWEiTWxa5AXqUiHnRoabesZ6XhSqfzxS3RhZ9mIZwpNe14N8Pptqo-saCXgppOlaGrm1NBKcglm-3EwZVTulQv02oRZ5ez2N_v_-T_4t7DlZ750cDtSgPzzYJLfxDgzuQbBFVmfTuXsKqG2WPqtNg5LPN22NvwC98035
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtNAFB1VrXgteCMCBUYIhASaJh6PHXuBUEoJDU2r0lLR3TCeR1TR2iGOVYUVa7b8Db_Cji_hXj8KAQlWXbCK5EzGmsmZM-fac88l5IGwwIAi6DIgSM2E72KWeMowjJhN7JzplFVLNrfC9T3xaj_YXyBfm1wYPFbZcGJJ1CbT-Iy8ja4wHAL0gLddfSxie63_bPyBYQUpfNPalNOoILJhZ8cQvuVPB2vwXz_kvP_izfN1VlcYYBpkwpQJo3WcaNA0iZ-AdA6McmEIMZG23BMmDkDsBDFqbrSJMegsY0Lf486PbKAcPgwF-l-K0ARtkSyt9jdfv232gVB4pc0vOsoxH3RQ9U4VFJNoA4kZ5oVMwIwATrmY2xXL4gF_bhEXyLkiHavZsTo8_GUP7F8i35rZq46-vF8ppsmK_vibseT_Ob2XycVamtNetZaukAWbXiVnXpalj2fXyOeqFAE9UuOcZo6C2ofhUZUaaoEPRniAqbl4kFIQ1hTzAA5GRVbktNL2tNL2tEoOpSCLgu-fvsBHl2KeD3SGFjG27H-7N9zt7TBe3mGIGdkKOj4C_s-vk71TmYgbZDHNUnuTUCGSSECYLAIDfKtFzHliO9x1FGitxEUt8rhBkhxXhiUSAj2EnUTYSS-UCDuJsGuRVcTaSUP0Gi8vZJORrKlLek6BzlGes0aIbgx6NEpcqH1j_TjUkW6R-4hUiW4iKQJnpIo8l4PdHdmL0D8wCn2406O6kcumE6VVnf0Bg0IDsrmWy3Mtge70_NcNgGVNt7n8id4WeXKySP49_lt_7-weOQuLQA4HWxu3yXn8AaoWz1smi9NJYe-AHJ0md-t1T8m7014LPwDqtJOG
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEF_0iqgPfounVRYRBGXrbfbjksdTrFVqKa0H9WnZz6PY5o4mQeqTz776H_qXOJPkSk8F9SkhmWyyu7MzvyEzvyXkiYxgAaUaMzCQnkmRCua4DQwj5lCkFEbtriXvd_TWVL47UAc9WTTWwpz7fw_YQr6A5R4Y10zCszCjmbxI1rQC2D0ga9Od3clHDKhyrZlQ7e5z_TnX3R_MP7ex4oNaqv7fDfJVcrkpF_b0sz06OudxNq93uVpVS1SIiSafNprabfgvv9A4_lNnbpBrPe6kk05RbpILsbxFLr1p9_U9vU2-dTz79NguKjpPFKAsfB21ZaARlH2G2TnLi4clBdRIMcn9cNbMm4p2wJV2wJV2lY8UfL768fU7HMYUi1igMeQ_iW37u5Pt_ckey9o3bGO5sYWGj8G4VXfIdPP1h1dbrN-mgXnAWjWTwfvCeQCGTjiIP1SwSWsILH3MuAyFAsSoCgxckGsnID1P0IJnSeRR2STEXTIo52W8R6iULpcQA0oVwJh4WWSZi6MsjSwACZfyIXm2nDiz6Ng4DEQxOLgGB9dwbXBwDQ7ukLzEqT0TRCLt9gJMienXpeHJghO3PMUg5bgAsJW7pL0IURTa535IHqNiGKTKKDEXZ2abqjJv9_fMJEdyvFwLeNPTXijN6xPrbV_aAJ1Cdq0VyfUVSVjLfvX2Uv9Mb0sqg3xImShGKhuS52c6-ff-3_8v6QfkCh7QLXO-Tgb1SRMfAt6q3aN-pf0EnxUfIA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Annual+maps+of+forest+and+evergreen+forest+in+the+contiguous+United+States+during+2015-2017+from+analyses+of+PALSAR-2+and+Landsat+images&rft.jtitle=Earth+system+science+data&rft.au=Wang%2C+Jie&rft.au=Xiao%2C+Xiangming&rft.au=Qin%2C+Yuanwei&rft.au=Dong%2C+Jinwei&rft.date=2024-10-11&rft.pub=Copernicus+GmbH&rft.issn=1866-3508&rft.volume=16&rft.issue=10&rft.spage=4619&rft_id=info:doi/10.5194%2Fessd-16-4619-2024&rft.externalDBID=ISR&rft.externalDocID=A811918634
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1866-3516&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1866-3516&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1866-3516&client=summon