Technical note: Applicability of physics-based and machine-learning-based algorithms of a geostationary satellite in retrieving the diurnal cycle of cloud base height
Two groups of retrieval algorithms, physics based and machine learning (ML) based, each consisting of two independent approaches, have been developed to retrieve cloud base height (CBH) and its diurnal cycle from Himawari-8 geostationary satellite observations. Validations have been conducted using...
Saved in:
| Published in | Atmospheric chemistry and physics Vol. 24; no. 24; pp. 14239 - 14256 |
|---|---|
| Main Authors | , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Katlenburg-Lindau
Copernicus GmbH
20.12.2024
Copernicus Publications |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1680-7324 1680-7316 1680-7324 |
| DOI | 10.5194/acp-24-14239-2024 |
Cover
| Abstract | Two groups of retrieval algorithms, physics based and machine learning (ML) based, each consisting of two independent approaches, have been developed to retrieve cloud base height (CBH) and its diurnal cycle from Himawari-8 geostationary satellite observations. Validations have been conducted using the joint CloudSat/Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) CBH products in 2017, ensuring independent assessments. Results show that the two ML-based algorithms exhibit markedly superior performance (the optimal method is with a correlation coefficient of R > 0.91 and an absolute bias of approximately 0.8 km) compared to the two physics-based algorithms. However, validations based on CBH data from the ground-based lidar at the Lijiang station in Yunnan Province and the cloud radar at the Nanjiao station in Beijing, China, explicitly present contradictory outcomes (R < 0.60). An identifiable issue arises with significant underestimations in the retrieved CBH by both ML-based algorithms, leading to an inability to capture the diurnal cycle characteristics of CBH. The strong consistence observed between CBH derived from ML-based algorithms and the spaceborne active sensors of CloudSat/CALIOP may be attributed to utilizing the same dataset for training and validation, sourced from the CloudSat/CALIOP products. In contrast, the CBH derived from the optimal physics-based algorithm demonstrates good agreement in diurnal variations in CBH with ground-based lidar/cloud radar observations during the daytime (with an R value of approximately 0.7). Therefore, the findings in this investigation from ground-based observations advocate for the more reliable and adaptable nature of physics-based algorithms in retrieving CBH from geostationary satellite measurements. Nevertheless, under ideal conditions, with an ample dataset of spaceborne cloud profiling radar observations encompassing the entire day for training purposes, the ML-based algorithms may hold promise for still delivering accurate CBH outputs. |
|---|---|
| AbstractList | Two groups of retrieval algorithms, physics based and machine learning (ML) based, each consisting of two independent approaches, have been developed to retrieve cloud base height (CBH) and its diurnal cycle from Himawari-8 geostationary satellite observations. Validations have been conducted using the joint CloudSat/Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) CBH products in 2017, ensuring independent assessments. Results show that the two ML-based algorithms exhibit markedly superior performance (the optimal method is with a correlation coefficient of R > 0.91 and an absolute bias of approximately 0.8 km) compared to the two physics-based algorithms. However, validations based on CBH data from the ground-based lidar at the Lijiang station in Yunnan Province and the cloud radar at the Nanjiao station in Beijing, China, explicitly present contradictory outcomes (R < 0.60). An identifiable issue arises with significant underestimations in the retrieved CBH by both ML-based algorithms, leading to an inability to capture the diurnal cycle characteristics of CBH. The strong consistence observed between CBH derived from ML-based algorithms and the spaceborne active sensors of CloudSat/CALIOP may be attributed to utilizing the same dataset for training and validation, sourced from the CloudSat/CALIOP products. In contrast, the CBH derived from the optimal physics-based algorithm demonstrates good agreement in diurnal variations in CBH with ground-based lidar/cloud radar observations during the daytime (with an R value of approximately 0.7). Therefore, the findings in this investigation from ground-based observations advocate for the more reliable and adaptable nature of physics-based algorithms in retrieving CBH from geostationary satellite measurements. Nevertheless, under ideal conditions, with an ample dataset of spaceborne cloud profiling radar observations encompassing the entire day for training purposes, the ML-based algorithms may hold promise for still delivering accurate CBH outputs. |
| Audience | Academic |
| Author | Li, Jun Zhang, Miao Chen, Binlong Liang, Yongen Wang, Mengyuan Min, Min Lin, Han Yao, Zhigang Xu, Na |
| Author_xml | – sequence: 1 givenname: Mengyuan surname: Wang fullname: Wang, Mengyuan – sequence: 2 givenname: Min orcidid: 0000-0003-1519-5069 surname: Min fullname: Min, Min – sequence: 3 givenname: Jun orcidid: 0000-0001-5504-9627 surname: Li fullname: Li, Jun – sequence: 4 givenname: Han surname: Lin fullname: Lin, Han – sequence: 5 givenname: Yongen surname: Liang fullname: Liang, Yongen – sequence: 6 givenname: Binlong orcidid: 0000-0002-2986-668X surname: Chen fullname: Chen, Binlong – sequence: 7 givenname: Zhigang surname: Yao fullname: Yao, Zhigang – sequence: 8 givenname: Na surname: Xu fullname: Xu, Na – sequence: 9 givenname: Miao surname: Zhang fullname: Zhang, Miao |
| BookMark | eNqNUsuO0zAUjdAgMTPwAewssWKRwa80CbtqxKPSSEgwrC3n5iZx5drBdhn6Q3wnTsurEgt0JT-uzzk69vFVceG8w6J4zuhNxVr5SsNcclkyyUVbcsrlo-KSrRpa1oLLi7_WT4qrGLeU8ooyeVl8v0eYnAFtifMJX5P1PNu87Yw16UD8QObpEA3EstMRe6JdT3YaJuOwtKiDM278dWRHH0yadnGhaTKij0kn450OBxJ1Qps1kRhHAqZg8GvmkjQh6c0-uOwADmBxIYP1-54ssmRCM07pafF40Dbis5_zdfH57Zv72_fl3Yd3m9v1XQlSVKnkFUqg_YBsEHXLBpCszq0OunZYdRIZsBbrBqgA1g-U1Vo2HAUAbbqKd1RcF5uTbu_1Vs3B7LJ35bVRx4YPo9IhmWxTUcFo3UnKGpCyo1WDtKkaUfcUKiFXkLX4SWvvZn140Nb-FmRULampnJriUh1TU0tqmfTiRJqD_7LHmNTWHx8nKsFkXeWhYX9Qo85OjBt8Chp2JoJaN5zWuYTIqJt_oHL1uDOQ_89gcv-M8PKMkDEJv6VR72NUm08fz7HshIXgYww4_MflfgBFiNSx |
| Cites_doi | 10.1016/j.atmosenv.2022.119065 10.1109/TGRS.2023.3256365 10.1175/JTECH-D-16-0110.1 10.1016/j.atmosenv.2019.01.012 10.1016/j.solener.2017.11.049 10.1175/2009JTECHA1223.1 10.1175/JCLI-D-13-00352.1 10.1109/TGRS.2018.2882803 10.1109/TGRS.2019.2923247 10.1175/2007WAF2006017.1 10.5194/acp-23-8959-2023 10.5194/acp-22-1453-2022 10.1007/s11222-016-9646-1 10.1007/s00376-017-7096-0 10.1016/j.jqsrt.2014.03.014 10.5194/amt-11-3177-2018 10.1175/2008JTECHA1221.1 10.1175/JTECH-D-16-0109.1 10.1080/01431161.2020.1854891 10.1007/s13351-017-6161-z 10.5194/acp-9-1767-2009 10.1073/pnas.1514044113 10.1175/BAMS-D-12-00117.1 10.5194/amt-9-711-2016 10.1002/qj.3803 10.2151/jmsj.2016-009 10.1007/s00376-019-8272-1 10.1175/JTECH-D-18-0079.1 10.1175/BAMS-83-12-1771 10.1175/JAMC-D-11-0203.1 10.1175/JTECH1671.1 10.1175/JAMC-D-14-0082.1 10.1002/2015GL064809 10.1002/jgrd.50579 10.1109/TGRS.2022.3140348 10.1016/j.isprsjprs.2020.01.011 10.1080/01431160110117391 10.1016/j.rse.2021.112305 10.1029/2007GL031361 10.5194/amt-4-117-2011 10.1109/TGRS.2022.3160450 10.1029/2011JD015970 10.1175/2009JTECHA1281.1 10.1175/2009JTECHA1231.1 10.1175/2008JAMC1882.1 10.1080/01431160500296800 10.5194/acp-21-11979-2021 10.1175/1520-0450(2000)039<2336:CBHEUA>2.0.CO;2 10.2151/jmsj.2018-001 10.1002/2014JD022310 10.1029/2002GL015835 10.1002/2013GL058970 10.1023/A:1010933404324 10.1109/TGRS.2016.2610522 10.1016/j.rse.2019.111616 10.1175/JAS-D-19-0301.1 10.1029/2007GL032591 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2 10.1016/j.rse.2022.112970 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2024 Copernicus GmbH 2024. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2024 Copernicus GmbH – notice: 2024. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION ISR 7QH 7TG 7TN 7UA 8FD 8FE 8FG ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BENPR BFMQW BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W GNUQQ H8D H96 HCIFZ KL. L.G L7M P5Z P62 PATMY PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PYCSY ADTOC UNPAY DOA |
| DOI | 10.5194/acp-24-14239-2024 |
| DatabaseName | CrossRef Gale In Context: Science Aqualine Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Water Resources Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Continental Europe Database Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Central Student Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Environmental Science Database Earth, Atmospheric & Aquatic Science Database Proquest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Environmental Science Collection Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China Water Resources Abstracts Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Applied & Life Sciences Aerospace Database ProQuest One Sustainability Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Continental Europe Database ProQuest SciTech Collection Aqualine Environmental Science Collection Advanced Technologies & Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Environmental Science Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Meteorology & Climatology Physics |
| EISSN | 1680-7324 |
| EndPage | 14256 |
| ExternalDocumentID | oai_doaj_org_article_03107b4018c44b058e085837d0c5346c 10.5194/acp-24-14239-2024 A820707033 10_5194_acp_24_14239_2024 |
| GroupedDBID | 23N 2WC 4P2 5GY 5VS 6J9 7XC 8FE 8FG 8FH 8R4 8R5 AAFWJ AAYXX ABUWG ACGFO ADBBV AENEX AEUYN AFKRA AFPKN AFRAH AHGZY AIAGR ALMA_UNASSIGNED_HOLDINGS ARAPS ATCPS BCNDV BENPR BFMQW BGLVJ BHPHI BKSAR BPHCQ CCPQU CITATION D1K E3Z EBS EDH EJD FD6 GROUPED_DOAJ GX1 H13 HCIFZ HH5 IAO IEA ISR ITC K6- KQ8 OK1 OVT P2P P62 PATMY PCBAR PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC PUEGO PYCSY Q2X RKB RNS TR2 XSB ~02 7QH 7TG 7TN 7UA 8FD AZQEC C1K DWQXO F1W GNUQQ H8D H96 KL. L.G L7M PKEHL PQEST PQUKI PRINS ADTOC C1A IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c435t-25e4c0dfe1f3791fc4175e4bcb9f6b4e1c19e78c03c1df017a482e3cc08b52b03 |
| IEDL.DBID | DOA |
| ISSN | 1680-7324 1680-7316 |
| IngestDate | Fri Oct 03 12:53:31 EDT 2025 Tue Aug 19 13:58:02 EDT 2025 Fri Jul 25 22:06:07 EDT 2025 Mon Oct 20 22:47:07 EDT 2025 Mon Oct 20 16:55:28 EDT 2025 Thu Oct 16 15:39:39 EDT 2025 Wed Oct 01 04:36:43 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 24 |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0 cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c435t-25e4c0dfe1f3791fc4175e4bcb9f6b4e1c19e78c03c1df017a482e3cc08b52b03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-1519-5069 0000-0001-5504-9627 0000-0002-2986-668X |
| OpenAccessLink | https://doaj.org/article/03107b4018c44b058e085837d0c5346c |
| PQID | 3147531481 |
| PQPubID | 105744 |
| PageCount | 18 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_03107b4018c44b058e085837d0c5346c unpaywall_primary_10_5194_acp_24_14239_2024 proquest_journals_3147531481 gale_infotracmisc_A820707033 gale_infotracacademiconefile_A820707033 gale_incontextgauss_ISR_A820707033 crossref_primary_10_5194_acp_24_14239_2024 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-12-20 |
| PublicationDateYYYYMMDD | 2024-12-20 |
| PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-20 day: 20 |
| PublicationDecade | 2020 |
| PublicationPlace | Katlenburg-Lindau |
| PublicationPlace_xml | – name: Katlenburg-Lindau |
| PublicationTitle | Atmospheric chemistry and physics |
| PublicationYear | 2024 |
| Publisher | Copernicus GmbH Copernicus Publications |
| Publisher_xml | – name: Copernicus GmbH – name: Copernicus Publications |
| References | ref13 ref57 ref12 ref56 ref15 ref59 ref14 ref58 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ref24 ref68 ref23 ref67 ref26 ref25 ref20 ref64 ref63 ref22 ref66 ref21 ref65 ref28 ref27 ref29 ref60 ref62 ref61 |
| References_xml | – ident: ref28 doi: 10.1016/j.atmosenv.2022.119065 – ident: ref29 doi: 10.1109/TGRS.2023.3256365 – ident: ref39 doi: 10.1175/JTECH-D-16-0110.1 – ident: ref66 doi: 10.1016/j.atmosenv.2019.01.012 – ident: ref34 doi: 10.1016/j.solener.2017.11.049 – ident: ref19 doi: 10.1175/2009JTECHA1223.1 – ident: ref59 doi: 10.1175/JCLI-D-13-00352.1 – ident: ref24 – ident: ref27 doi: 10.1109/TGRS.2018.2882803 – ident: ref57 doi: 10.1109/TGRS.2019.2923247 – ident: ref11 doi: 10.1175/2007WAF2006017.1 – ident: ref33 doi: 10.5194/acp-23-8959-2023 – ident: ref50 doi: 10.5194/acp-22-1453-2022 – ident: ref9 doi: 10.1007/s11222-016-9646-1 – ident: ref63 doi: 10.1007/s00376-017-7096-0 – ident: ref35 doi: 10.1016/j.jqsrt.2014.03.014 – ident: ref53 – ident: ref10 doi: 10.5194/amt-11-3177-2018 – ident: ref62 doi: 10.1175/2008JTECHA1221.1 – ident: ref2 – ident: ref46 doi: 10.1175/JTECH-D-16-0109.1 – ident: ref51 doi: 10.1080/01431161.2020.1854891 – ident: ref36 doi: 10.1007/s13351-017-6161-z – ident: ref32 doi: 10.5194/acp-9-1767-2009 – ident: ref40 – ident: ref44 doi: 10.1073/pnas.1514044113 – ident: ref49 doi: 10.1175/BAMS-D-12-00117.1 – ident: ref47 doi: 10.5194/amt-9-711-2016 – ident: ref16 doi: 10.1002/qj.3803 – ident: ref4 doi: 10.2151/jmsj.2016-009 – ident: ref20 doi: 10.1007/s00376-019-8272-1 – ident: ref15 doi: 10.1175/JTECH-D-18-0079.1 – ident: ref48 doi: 10.1175/BAMS-83-12-1771 – ident: ref3 doi: 10.1175/JAMC-D-11-0203.1 – ident: ref1 doi: 10.1175/JTECH1671.1 – ident: ref58 – ident: ref7 – ident: ref26 doi: 10.1175/JAMC-D-14-0082.1 – ident: ref64 doi: 10.1002/2015GL064809 – ident: ref6 doi: 10.1002/jgrd.50579 – ident: ref55 doi: 10.1109/TGRS.2022.3140348 – ident: ref56 doi: 10.1016/j.isprsjprs.2020.01.011 – ident: ref22 doi: 10.1080/01431160110117391 – ident: ref61 doi: 10.1016/j.rse.2021.112305 – ident: ref17 doi: 10.1029/2007GL031361 – ident: ref18 doi: 10.5194/amt-4-117-2011 – ident: ref38 doi: 10.1109/TGRS.2022.3160450 – ident: ref52 doi: 10.1029/2011JD015970 – ident: ref60 doi: 10.1175/2009JTECHA1281.1 – ident: ref41 doi: 10.1175/2009JTECHA1231.1 – ident: ref13 doi: 10.1175/2008JAMC1882.1 – ident: ref21 doi: 10.1080/01431160500296800 – ident: ref31 doi: 10.5194/acp-21-11979-2021 – ident: ref8 doi: 10.1175/1520-0450(2000)039<2336:CBHEUA>2.0.CO;2 – ident: ref23 doi: 10.2151/jmsj.2018-001 – ident: ref54 doi: 10.1002/2014JD022310 – ident: ref12 doi: 10.1029/2002GL015835 – ident: ref67 – ident: ref68 doi: 10.1002/2013GL058970 – ident: ref42 – ident: ref5 doi: 10.1023/A:1010933404324 – ident: ref43 doi: 10.1109/TGRS.2016.2610522 – ident: ref37 doi: 10.1016/j.rse.2019.111616 – ident: ref65 doi: 10.1175/JAS-D-19-0301.1 – ident: ref45 doi: 10.1029/2007GL032591 – ident: ref25 doi: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2 – ident: ref14 – ident: ref30 doi: 10.1016/j.rse.2022.112970 |
| SSID | ssj0025014 |
| Score | 2.459459 |
| Snippet | Two groups of retrieval algorithms, physics based and machine learning (ML) based, each consisting of two independent approaches, have been developed to... |
| SourceID | doaj unpaywall proquest gale crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database |
| StartPage | 14239 |
| SubjectTerms | Algorithms Artificial satellites Aviation CALIPSO (Pathfinder satellite) Climate change Clouds Comparative analysis Correlation coefficient Correlation coefficients Datasets Diurnal cycle Diurnal variations Geostationary satellites Ground-based observation Height Learning algorithms Lidar Machine learning Meteorological satellites Physics Radar Remote sensing Satellite observation Satellites Synchronous satellites Training Weather forecasting |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1ta9RAEF7qFVE_iFaL0SqLiIKydDfZu-QEkWtpqUIPqRb6bdm3XA-uyZnkkPtD_k5nNsnpIejHu0xCNrM7-8zLPkPIKy6dSZNUM6FzcFBS6Zgx2Osltw7AnPBS4Hnn8-no7FJ-vhpe7ZBpfxYGyyp7mxgMtSstxsgPEyEBWQN4Fx-X3xl2jcLsat9CQ3etFdyHQDF2i-zGyIw1ILtHJ9MvFxsXDLNo6IKNMs6wZ1Ob5wQUIw-1XbJYMoGMeDB3Yrm1UwVC_7_N9j1yZ1Us9fqHXiz-2JdOH5D7HaCkk3YGPCQ7vtgj0Tlg4bIKIXP6mh4v5gBMw689cjsUfdr6EfkZ4uqoJVqUjX9PJ202O9TLrmmZ0zbuUTPc6xzVhaM3ofjSs67bxKy_tJjBx2qub2q8TdOZL-s2ya-rNa114P1sPJ0XtAo9vDCOQQF8UjdvB2DX8Pp4s12UK0fxsfQ6xG0fk8vTk2_HZ6zr28AsgK-GxUMvLXe5F3mSjkVuJWAUL40143xkpBdWjH2aWZ5Y4XIwCVpmsU-s5ZkZxoYn-2RQlIV_QijPwXsHRJPFFky6jTMtR9wDhLLjlI-1iMjbXkdq2dJzKHBrUKEKFKpiqYJCFSo0IkeoxY0gMmuHP8pqprqFqpAqNTXgdWZWSsOHmQdQCl6843aYwCtE5CXOAYXcGQUW58z0qq7Vp68XagJoKkUTmkTkTSeUl02lre7OOsCgkG5rS_JgSxIWt92-3E811RmXWv1eChF5t5l-_x__038_7Bm5i1JYqxPzAzJoqpV_DoirMS-6ZfQLQqAo6A priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEA_n3oP64Pdh9ZQgoqB0L23TL9_Ww_MU7hB14XwKSZrsLu61Sz-Q9Q_y73Qm7Z6uCiL4tN10UjLMdPKb6WSGkMeMFyqNUukH0oKDkvLCVwp7vVhdAJgLDA_wvPPJaXI85W_P4rMd8npzFkZqPMmwMnW50F3TFwoeMsQOQn4QYL06dNg5Uvoh992IjyPjVWEvkd0kBlA-IrvT03eTT-huJRnzsT_Tj-uQ9983Ab384TlbO5Qr5P-7ub5KLnflSq6_yOXyp_3o6DqZbzjp01A-j7tWjfXXX4o8_gdWb5BrA2alk37aTbJjylvEOwG4XdUuKk-f0MPlArCv-3ebfHMBexQ_LavWvKCT_jO5S8Rd08rSPqDS-LiJFlSWBT13WZ3GH9pYzDa3lrOqXrTz8wanSTozVdNnD8h6TRvpCoq2hi5KWrvmYBggoYBqabHol63XsGicrJdVV1B8LJ27gPAdMj169fHw2B8aQvgaUF3rh7HhmhXWBDZK88BqDuDHcKVVbhPFTaCD3KSZZpEOCgu2RvIsNJHWLFNxqFi0R0ZlVZq7hDKb5AiVslDDXqHDTPKEGcBmOk9ZLgOPPNsogVj1dT8E-EuoMQLEIUIunDgEisMjL1FNLgixZLcbAJmKQaYCa7CmCtzZTHOuWJwZQLtZlBZMxxEswSOPUMkEFuUoMetnJrumEW8-vBcTgGkp2ubII08HIlu1tdRyOEQBTGEdry3K_S1KsBp6-_ZGl8VgtRoRBRy8V3CQgf3nF_r9d_7v_RP1fXIFfzAnKGT7ZNTWnXkAyK5VD4e39juMb0Zj priority: 102 providerName: Unpaywall |
| Title | Technical note: Applicability of physics-based and machine-learning-based algorithms of a geostationary satellite in retrieving the diurnal cycle of cloud base height |
| URI | https://www.proquest.com/docview/3147531481 https://acp.copernicus.org/articles/24/14239/2024/acp-24-14239-2024.pdf https://doaj.org/article/03107b4018c44b058e085837d0c5346c |
| UnpaywallVersion | publishedVersion |
| Volume | 24 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1680-7324 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0025014 issn: 1680-7324 databaseCode: HH5 dateStart: 20010101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1680-7324 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0025014 issn: 1680-7324 databaseCode: KQ8 dateStart: 20010101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1680-7324 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0025014 issn: 1680-7324 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1680-7324 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0025014 issn: 1680-7324 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVPQU databaseName: Continental Europe Database customDbUrl: eissn: 1680-7324 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0025014 issn: 1680-7324 databaseCode: BFMQW dateStart: 20100415 isFulltext: true titleUrlDefault: https://search.proquest.com/conteurope providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1680-7324 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0025014 issn: 1680-7324 databaseCode: BENPR dateStart: 20100415 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1680-7324 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0025014 issn: 1680-7324 databaseCode: 8FG dateStart: 20100415 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwELZgPAAPiJ9aYVQWQiCBotmJ2yS8ddPKQGo1BhXjybIvTlepS6okFeo_xN_JnZNOq3jYC09REieyc-fz950vd4y9FSqzcRSbQJocCUqsssBaqvWSQ4ZgTjol6X_nyXR4OlNfLwYXN0p9UUxYmx64_XCHlLoytsgCElDKikHiECQgq8oEDCI1BLK-Ikm3ZKqjWrRbRlRrmIiAajO1-5mIVtShgVUQqkBS5jvUkVDtrEg-cf-_5vkhu78uVmbz2yyXN9af8WP2qAOOfNR2-Am744qnrDdBzFtW3jXO3_Hj5QIBqD97xv54rznJgBdl4z7xUbtX7aNhN7zMeevVqANayTJuioxf-dBKF3S1JObbW8t5WS2ay6uaHjN87sq63cI31YbXxmf1bBxfFLzyFbrIS8ERWvJs0XYbNthpehiW5Trj9Fp-6b2yz9lsfPLj-DToqjIEgNCqCcKBUyCy3Mk8ilOZg0IE4pQFm-ZDq5wEmbo4ARGBzHKc8EYloYsARGIHoRXRC7ZXlIXbZ1zkyM0RryQhoMGGMDFqKBwCJEhjkRrZYx-2ktGrNvmGRtJCYtQoRh0q7cWoSYw9dkSyu25IebP9BdQm3WmTvk2beuwNSV5TZoyCQm_mZl3X-sv3cz1CrBSTgYx67H3XKC-byoDp_mTAQVEyrZ2WBzstcerC7u2tgunOdNQ6kgopJLJUHP7Ha6W7ffwv_8f4X7EH9C6K1wnFAdtrqrV7jairsX12Nxl_7rN7RyfTs3M6jifffvb9tMOz2fRs9OsvWvor4A |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwELfGJjR4QDBABAZYiD8SUzQ7cZsEaULd2NSytUJjk_ZmHMfpKnVJSVJN_UJ8DD4bd05SqJDgaY-J_8jWne9-dz7fEfKaiSQO_EC5XKVgoAQiceMYa72kOgEwx43g-N55OOr2z8Xni87FGvnZvoXBsMpWJlpBneQafeS7PheArAG884-z7y5WjcLb1baEhmpKKyR7NsVY87Dj2CyuwYQr9wafgN5vPO_o8Oyg7zZVBlwNUKFyvY4RmiWp4akfRDzVAjSqEbGOo7QbC8M1j0wQauZrnqTAwEqEnvG1ZmHc8WLmw7y3yIbwRQTG38b-4ejL6dLkw1s7NPm6IXOxRlR9rwqoSewqPXM94XLMwAe86okVzWgLCPytJu6SzXk2U4trNZ3-oQeP7pN7DYClvZrjHpA1k20RZwjYOy-si56-pQfTCQBh-7VFbtsgU10-JD-sHx-5gmZ5ZT7QXn17buNzFzRPae1nKV3UrQlVWUKvbLCncZvqFuO2aToG4lSXVyUOU3Rs8rIOKlDFgpbK5hmtDJ1ktLA1w9BvQgHs0mRSb0AvYPk4WE_zeUJxWnpp_cSPyPmNUPAxWc_yzDwhlKXdCBFU6GlQIdoLlegyA5BNRwGLFHfI-5ZGclanA5FgRiFBJRBUekJagkokqEP2kYrLjpjJ2_7Ii7FsBIPE1KxBDFZuqIWIWSc0AIJDP0iY7viwBIe8Qh6QmKsjw2CgsZqXpRx8PZU9QG8BimzfIe-aTmleFUqr5m0FbArTe6303F7pCcJErza3rCYbYVbK30fPITtL9vv__p_-e7KXZLN_NjyRJ4PR8TNyB0dgnJDHtsl6VczNc0B7VfyiOVKUfLvpU_wLbuJmpg |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLZGJ24PXAaIwAALcZFAWePEbVIkhLqNamV0GpeJvRnbcbqKLilNqqn8IH4Ef4U_wzlOUihI8LQHHtvYVux8Puc7PsfnEPLA47EKg1C6TCZgoIQ8dpXCWi-JjoHMMcMZ3nce7LV3Dvirw9bhCvlW34XBsMpaJlpBHWcaz8ibAePArIG8s2ZShUXsb_deTD67WEEKPa11OY0SIrtmfgLmW_68vw3f-qHv916-39pxqwoDrgaaULh-y3DtxYlhSRB2WKI5aFPDlVadpK24YZp1TBhpL9AsTgC8kke-CbT2ItXylRfAuGfIaoRJ0BpkdbM3ePNhYe6hxw7NvXbkuVgfqvSpAmPiTaknrs9dhtn3AKc-X9KKtnjAnyriIjk_SydyfiLH4190YO8y-V6vXhn68mljVqgN_eW3xJL_5_JeIZcqak675V66SlZMukacAVgV2dQ6H-gjujUeAcW3v9bIWRs-q_Nr5Kv1UCDeaZoV5hntlnEBNvJ4TrOElidIuYusIaYyjemxDWM1blW3Y1g_Gg9hLYqj4xy7STo0WV6GS8jpnObSZlAtDB2ldGqroeGJEAUaT-NROQE9h9fHznqczWKKw9IjewJ-nRycygLeII00S81NQr2k3UFuGPkalKP2I8nbngEyqjsAXskc8qRGoJiUiU4EGIgIVwFwFT4XFq4C4eqQTcTooiHmKLd_ZNOhqESewKSzoQL7PdKcK68VGaD3URDGnm4F8AoOuY8IF5iFJEXADeUsz0X_3VvRBV4aojIKHPK4apRkxVRqWd0agUlh4rKllutLLUFM6uXHNfBFJaZz8RP1Dnm62Fz_nv-tvw92j5yDzSNe9_d2b5ML2AEDoHxvnTSK6czcARpbqLuVvKDk42nvoR_cPK2T |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEA_n3oP64Pdh9ZQgoqB0L23TL9_Ww_MU7hB14XwKSZrsLu61Sz-Q9Q_y73Qm7Z6uCiL4tN10UjLMdPKb6WSGkMeMFyqNUukH0oKDkvLCVwp7vVhdAJgLDA_wvPPJaXI85W_P4rMd8npzFkZqPMmwMnW50F3TFwoeMsQOQn4QYL06dNg5Uvoh992IjyPjVWEvkd0kBlA-IrvT03eTT-huJRnzsT_Tj-uQ9983Ab384TlbO5Qr5P-7ub5KLnflSq6_yOXyp_3o6DqZbzjp01A-j7tWjfXXX4o8_gdWb5BrA2alk37aTbJjylvEOwG4XdUuKk-f0MPlArCv-3ebfHMBexQ_LavWvKCT_jO5S8Rd08rSPqDS-LiJFlSWBT13WZ3GH9pYzDa3lrOqXrTz8wanSTozVdNnD8h6TRvpCoq2hi5KWrvmYBggoYBqabHol63XsGicrJdVV1B8LJ27gPAdMj169fHw2B8aQvgaUF3rh7HhmhXWBDZK88BqDuDHcKVVbhPFTaCD3KSZZpEOCgu2RvIsNJHWLFNxqFi0R0ZlVZq7hDKb5AiVslDDXqHDTPKEGcBmOk9ZLgOPPNsogVj1dT8E-EuoMQLEIUIunDgEisMjL1FNLgixZLcbAJmKQaYCa7CmCtzZTHOuWJwZQLtZlBZMxxEswSOPUMkEFuUoMetnJrumEW8-vBcTgGkp2ubII08HIlu1tdRyOEQBTGEdry3K_S1KsBp6-_ZGl8VgtRoRBRy8V3CQgf3nF_r9d_7v_RP1fXIFfzAnKGT7ZNTWnXkAyK5VD4e39juMb0Zj |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Technical+note%3A+Applicability+of+physics-based+and+machine-learning-based+algorithms+of+a+geostationary+satellite+in+retrieving+the+diurnal+cycle+of+cloud+base+height&rft.jtitle=Atmospheric+chemistry+and+physics&rft.au=M.+Wang&rft.au=M.+Min&rft.au=J.+Li&rft.au=H.+Lin&rft.date=2024-12-20&rft.pub=Copernicus+Publications&rft.issn=1680-7316&rft.eissn=1680-7324&rft.volume=24&rft.spage=14239&rft.epage=14256&rft_id=info:doi/10.5194%2Facp-24-14239-2024&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_03107b4018c44b058e085837d0c5346c |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1680-7324&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1680-7324&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1680-7324&client=summon |