Electromyography and mechanomyography signal recognition: Experimental analysis using multi-way array decomposition methods

In this study, we considered the problem of controlling a prosthetic hand with noisy electromyography (EMG) and mechanomyography (MMG) signals. Several dimensionality reduction methods were analyzed to assess their efficiency at classifying these signals, which were registered during the performance...

Full description

Saved in:
Bibliographic Details
Published inBiocybernetics and biomedical engineering Vol. 37; no. 1; pp. 103 - 113
Main Authors Wołczowski, Andrzej, Zdunek, Rafał
Format Journal Article
LanguageEnglish
Published Elsevier B.V 2017
Subjects
Online AccessGet full text
ISSN0208-5216
DOI10.1016/j.bbe.2016.09.004

Cover

Abstract In this study, we considered the problem of controlling a prosthetic hand with noisy electromyography (EMG) and mechanomyography (MMG) signals. Several dimensionality reduction methods were analyzed to assess their efficiency at classifying these signals, which were registered during the performance of grasping movements with various objects. Using the cross-validation technique, we compared various dimensionality reduction methods, such as principal components analysis, nonnegative matrix factorization, and some tensor decomposition models. The experimental results demonstrated that the highest classification accuracy (exceeding 95% for all subjects when classifying 11 grasping movements) and lowest computational complexity were obtained when higher-order singular value decomposition was applied to a multi-way array of multi-channel spectrograms, where the temporal EMG/MMG signals from all channels were concatenated.
AbstractList Abstract In this study, we considered the problem of controlling a prosthetic hand with noisy electromyography (EMG) and mechanomyography (MMG) signals. Several dimensionality reduction methods were analyzed to assess their efficiency at classifying these signals, which were registered during the performance of grasping movements with various objects. Using the cross-validation technique, we compared various dimensionality reduction methods, such as principal components analysis, nonnegative matrix factorization, and some tensor decomposition models. The experimental results demonstrated that the highest classification accuracy (exceeding 95% for all subjects when classifying 11 grasping movements) and lowest computational complexity were obtained when higher-order singular value decomposition was applied to a multi-way array of multi-channel spectrograms, where the temporal EMG/MMG signals from all channels were concatenated.
In this study, we considered the problem of controlling a prosthetic hand with noisy electromyography (EMG) and mechanomyography (MMG) signals. Several dimensionality reduction methods were analyzed to assess their efficiency at classifying these signals, which were registered during the performance of grasping movements with various objects. Using the cross-validation technique, we compared various dimensionality reduction methods, such as principal components analysis, nonnegative matrix factorization, and some tensor decomposition models. The experimental results demonstrated that the highest classification accuracy (exceeding 95% for all subjects when classifying 11 grasping movements) and lowest computational complexity were obtained when higher-order singular value decomposition was applied to a multi-way array of multi-channel spectrograms, where the temporal EMG/MMG signals from all channels were concatenated.
Author Wołczowski, Andrzej
Zdunek, Rafał
Author_xml – sequence: 1
  givenname: Andrzej
  surname: Wołczowski
  fullname: Wołczowski, Andrzej
– sequence: 2
  givenname: Rafał
  orcidid: 0000-0003-3323-6717
  surname: Zdunek
  fullname: Zdunek, Rafał
  email: Rafal.Zdunek@pwr.edu.pl
BookMark eNqFksFu1DAQhnMoUkvpA3DLkUvC2I7tDUhIqFoKUiUOlLPlOLO7XhI72A4l6svjsBxQJYoP9sgz32_N73lenDnvsCheEqgJEPH6WHcd1jSHNbQ1QHNWXACFTcUpEefFVYxHyEsQLhi7KB62A5oU_Lj4fdDTYSm168sRzUG7vy6j3Ts9lAGN3zubrHdvyu3PCYMd0aWc0Tm9RBvLOVq3L8d5SLa611kuhLz3GRwnH3-jWT4dfB9fFM92eoh49ee8LL5-2N5df6xuP998un5_W5mG8VRRzrXYtRswXYO8o8yQljQSZEsbEKxDJCApyo50hlPWMtFtesmxlf0OOhTssnh10p2C_z5jTGq00eAwaId-jopuWENayQXkUnIqNcHHGHCnptyiDosioFZ_1VFlf9Xqr4JWZX8zIx8xxia9NpqCtsOT5NsTibn7HxaDisaiM9jb7HRSvbdP0u8e0Wawzho9fMMF49HPIX9KVERFqkB9WadgHQIiGQCRMgu0_xb4z-O_ADcnw-I
CitedBy_id crossref_primary_10_1109_MSP_2021_3057042
crossref_primary_10_2139_ssrn_4073626
crossref_primary_10_1016_j_ifacol_2019_12_682
crossref_primary_10_1016_j_jocs_2024_102520
crossref_primary_10_1016_j_bbe_2017_11_001
crossref_primary_10_1016_j_bspc_2023_104731
crossref_primary_10_1142_S0219519419500854
crossref_primary_10_1016_j_image_2018_11_001
crossref_primary_10_1007_s13755_018_0050_4
crossref_primary_10_1016_j_bspc_2022_104508
crossref_primary_10_1088_1757_899X_881_1_012125
crossref_primary_10_3390_s21175983
crossref_primary_10_1016_j_bspc_2022_103959
crossref_primary_10_1007_s13755_017_0029_6
crossref_primary_10_1007_s41133_019_0020_7
crossref_primary_10_1109_LRA_2018_2890199
Cites_doi 10.1109/TBME.2008.2007967
10.1016/j.eswa.2011.06.043
10.1016/j.bspc.2007.09.002
10.1348/000711000159132
10.1137/07070111X
10.1587/nolta.1.37
10.1016/j.bspc.2014.12.005
10.1016/j.compbiomed.2015.04.023
10.1111/j.1468-0394.2009.00526.x
10.1016/j.csda.2011.11.012
10.1007/BF02289464
10.1016/j.sigpro.2005.05.032
10.1137/S0895479896305696
10.1109/LSP.2014.2337276
10.1007/BF02310791
10.1038/44565
10.1016/j.eswa.2012.01.102
ContentType Journal Article
Copyright 2017 Nałęcz Institute of Biocybernetics and Biomedical Engineering of the Polish Academy of Sciences
Nałęcz Institute of Biocybernetics and Biomedical Engineering of the Polish Academy of Sciences
Copyright_xml – notice: 2017 Nałęcz Institute of Biocybernetics and Biomedical Engineering of the Polish Academy of Sciences
– notice: Nałęcz Institute of Biocybernetics and Biomedical Engineering of the Polish Academy of Sciences
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.bbe.2016.09.004
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA


DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EndPage 113
ExternalDocumentID 10_1016_j_bbe_2016_09_004
S0208521617300177
1_s2_0_S0208521617300177
GroupedDBID --M
.1-
.FO
.~1
0R~
1P~
1~.
23N
4.4
457
4G.
53G
5GY
7-5
8P~
AABXZ
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABAOU
ABJNI
ABMAC
ABMXE
ABUDA
ABXDB
ABXRA
ACDAQ
ACGFS
ACLOT
ACNNM
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
AEBSH
AECPX
AEHWI
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AEZYN
AFJKZ
AFPUW
AFRHN
AFRZQ
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AHJVU
AHPOS
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJUYK
AKBMS
AKRWK
AKURH
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ARUGR
AXJTR
BAWUL
BJAXD
BKOJK
BLXMC
DIK
EBS
EFJIC
EFKBS
EFLBG
EJD
FDB
FIRID
FNPLU
FYGXN
GBLVA
HZ~
JJJVA
KOM
M41
MAGPM
MHUIS
MO0
MOBAO
O9-
O9.
OAUVE
OK~
P-8
P-9
PC.
ROL
SPC
SPCBC
SSG
SSM
SSN
SST
SSU
SSW
SSZ
T5K
Y2W
Z5R
~G-
AACTN
AFKWA
AJOXV
AMFUW
RIG
AADPK
AAIAV
ABYKQ
ACAZW
AJBFU
AAYXX
CITATION
7S9
L.6
ID FETCH-LOGICAL-c435t-255a6f980cb4e5b23c1914707924063bee1072e7b1bc523936b8d75e97df0be63
IEDL.DBID .~1
ISSN 0208-5216
IngestDate Sun Sep 28 06:52:34 EDT 2025
Thu Apr 24 23:03:20 EDT 2025
Wed Oct 01 02:54:36 EDT 2025
Fri Feb 23 02:23:44 EST 2024
Tue Feb 25 19:53:34 EST 2025
Tue Oct 14 19:31:03 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Mechanomyography
Biosignal processing
Electromyography
Supervised classification
Multi-array decomposition method
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c435t-255a6f980cb4e5b23c1914707924063bee1072e7b1bc523936b8d75e97df0be63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-3323-6717
PQID 2834197560
PQPubID 24069
PageCount 11
ParticipantIDs proquest_miscellaneous_2834197560
crossref_primary_10_1016_j_bbe_2016_09_004
crossref_citationtrail_10_1016_j_bbe_2016_09_004
elsevier_sciencedirect_doi_10_1016_j_bbe_2016_09_004
elsevier_clinicalkeyesjournals_1_s2_0_S0208521617300177
elsevier_clinicalkey_doi_10_1016_j_bbe_2016_09_004
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017
2017-00-00
20170101
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – year: 2017
  text: 2017
PublicationDecade 2010
PublicationTitle Biocybernetics and biomedical engineering
PublicationYear 2017
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Kolda, Bader (bib0060) 2009; 51
Cichocki, Zdunek, Phan, Amari (bib0015) 2009
Kim, Kim, Lee, Park (bib0055) 2016
De Lathauwer, de Moor, Vandewalle (bib0020) 2000; 21
Josse, Husson (bib0050) 2012; 56
Lee, Kim, Park (bib0075) 2013
Alkan, Gunay (bib0005) 2012; 39
Harshman (bib0035) 1970; vol. 16
Xie, Song (bib0135) 2013
Kurzynski, Krysmann, Trajdos, Wolczowski (bib0065) 2016; 69
Oliveira, Gizzi, Farina, Kersting (bib0090) 2014; 8
Phan, Cichocki (bib0095) 2010; 1
Stephen (bib0105) December 2013
Carroll, Chang (bib0010) 1970; 35
Theis, Garcia (bib0110) 2006; 86
Lee, Seung (bib0070) 1999; 401
Phinyomark, Phukpattaranont, Limsakul (bib0100) 2012; 39
Jiang, Englehart, Parker (bib0040) 2009; 56
Ulfarsson, Solo (bib0125) 2015; 22
Yazama, Mitsukura, Fukumi, Akamatsu (bib0140) 2003
Lucas, Gaufriau, Pascual, Doncarli, Farina (bib0080) 2008; 3
Timmerman, Kiers (bib0115) 2000; 53
Gokgoz, Subasi (bib0025) 2015; 18
Jolliffe (bib0045) 2002
Niegowski, Zivanovic (bib0085) August 2014
Tucker (bib0120) 1966; 31
Wolczowski, Kurzynski (bib0130) 2010; 27
Kolda (10.1016/j.bbe.2016.09.004_bib0060) 2009; 51
Yazama (10.1016/j.bbe.2016.09.004_bib0140) 2003
Ulfarsson (10.1016/j.bbe.2016.09.004_bib0125) 2015; 22
Wolczowski (10.1016/j.bbe.2016.09.004_bib0130) 2010; 27
Carroll (10.1016/j.bbe.2016.09.004_bib0010) 1970; 35
Kurzynski (10.1016/j.bbe.2016.09.004_bib0065) 2016; 69
De Lathauwer (10.1016/j.bbe.2016.09.004_bib0020) 2000; 21
Gokgoz (10.1016/j.bbe.2016.09.004_bib0025) 2015; 18
Jiang (10.1016/j.bbe.2016.09.004_bib0040) 2009; 56
Oliveira (10.1016/j.bbe.2016.09.004_bib0090) 2014; 8
Tucker (10.1016/j.bbe.2016.09.004_bib0120) 1966; 31
Lee (10.1016/j.bbe.2016.09.004_bib0075) 2013
Harshman (10.1016/j.bbe.2016.09.004_bib0035) 1970; vol. 16
Cichocki (10.1016/j.bbe.2016.09.004_bib0015) 2009
Jolliffe (10.1016/j.bbe.2016.09.004_bib0045) 2002
Kim (10.1016/j.bbe.2016.09.004_bib0055) 2016
Xie (10.1016/j.bbe.2016.09.004_bib0135) 2013
Theis (10.1016/j.bbe.2016.09.004_bib0110) 2006; 86
Alkan (10.1016/j.bbe.2016.09.004_bib0005) 2012; 39
Lucas (10.1016/j.bbe.2016.09.004_bib0080) 2008; 3
Niegowski (10.1016/j.bbe.2016.09.004_bib0085) 2014
Phan (10.1016/j.bbe.2016.09.004_bib0095) 2010; 1
Phinyomark (10.1016/j.bbe.2016.09.004_bib0100) 2012; 39
Timmerman (10.1016/j.bbe.2016.09.004_bib0115) 2000; 53
Stephen (10.1016/j.bbe.2016.09.004_bib0105) 2013
Lee (10.1016/j.bbe.2016.09.004_bib0070) 1999; 401
Josse (10.1016/j.bbe.2016.09.004_bib0050) 2012; 56
References_xml – volume: 401
  start-page: 788
  year: 1999
  end-page: 791
  ident: bib0070
  article-title: Learning the parts of objects by non-negative matrix factorization
  publication-title: Nature
– volume: 21
  start-page: 1253
  year: 2000
  end-page: 1278
  ident: bib0020
  article-title: A multilinear singular value decomposition
  publication-title: SIAM J Matrix Anal Appl
– start-page: 671
  year: 2013
  end-page: 683
  ident: bib0075
  article-title: Classification of grip configuration using surface EMG
  publication-title: Proc. 13th International Conference on Control, Automation and Systems (ICCAS 2013)
– volume: 8
  year: 2014
  ident: bib0090
  article-title: Motor modules of human locomotion: influence of EMG averaging, concatenation and number of gait cycles
  publication-title: Front Hum Neurosci
– volume: 39
  start-page: 44
  year: 2012
  end-page: 47
  ident: bib0005
  article-title: Identification of EMG signals using discriminant analysis and SVM classifier
  publication-title: Expert Syst Appl
– year: 2009
  ident: bib0015
  article-title: Nonnegative matrix and tensor factorizations: applications to exploratory multi-way data analysis and blind source separation
– volume: 31
  start-page: 279
  year: 1966
  end-page: 311
  ident: bib0120
  article-title: Some mathematical notes on three-mode factor analysis
  publication-title: Psychometrika
– volume: 1
  start-page: 37
  year: 2010
  end-page: 68
  ident: bib0095
  article-title: Tensor decompositions for feature extraction and classification of high dimensional datasets
  publication-title: IEICE Nonlinear Theory Appl
– start-page: 322
  year: 2013
  end-page: 325
  ident: bib0135
  article-title: Multi-domain feature extraction from surface EMG signals using nonnegative tensor factorization
  publication-title: Proc. 2013 IEEE International Conference on Bioinformatics and Biomedicine
– year: December 2013
  ident: bib0105
  article-title: EMG-EMG coherence analysis on the elbow and shoulder muscles (Master's thesis)
– volume: 56
  start-page: 1869
  year: 2012
  end-page: 1879
  ident: bib0050
  article-title: Selecting the number of components in principal component analysis using cross-validation approximations
  publication-title: Comput Stat Data Anal
– volume: 53
  start-page: 1
  year: 2000
  end-page: 16
  ident: bib0115
  article-title: Three mode principal components analysis: choosing the numbers of components and sensitivity to local optima
  publication-title: Br J Math Stat Psychol
– year: 2002
  ident: bib0045
  article-title: Principal component analysis. Springer series in statistics
– start-page: 671
  year: 2016
  end-page: 683
  ident: bib0055
  article-title: Robot hand synergy mapping using multi-factor model and EMG signal
  publication-title: Proc. 14-th International Symposium on Experimental Robotics (ISER 2014), volume 109 of Springer Tracts in Advanced Robotics
– volume: 39
  start-page: 7420
  year: 2012
  end-page: 7431
  ident: bib0100
  article-title: Feature reduction and selection for EMG signal classification
  publication-title: Expert Syst Appl
– volume: 51
  start-page: 455
  year: 2009
  end-page: 500
  ident: bib0060
  article-title: Tensor decompositions and applications
  publication-title: SIAM Rev
– volume: 18
  start-page: 138
  year: 2015
  end-page: 144
  ident: bib0025
  article-title: Comparison of decision tree algorithms for EMG signal classification using DWT
  publication-title: Biomed Signal Process Control
– volume: 27
  start-page: 53
  year: 2010
  end-page: 70
  ident: bib0130
  article-title: Human-machine interface in bioprosthesis control using EMG signal classification
  publication-title: Expert Syst
– volume: 22
  start-page: 239
  year: 2015
  end-page: 243
  ident: bib0125
  article-title: Selecting the number of principal components with SURE
  publication-title: IEEE Signal Process Lett
– volume: 86
  start-page: 603
  year: 2006
  end-page: 623
  ident: bib0110
  article-title: On the use of sparse signal decomposition in the analysis of multi-channel surface electromyograms
  publication-title: Signal Process
– volume: 56
  start-page: 1070
  year: 2009
  end-page: 1080
  ident: bib0040
  article-title: Extracting simultaneous and proportional neural control information for multiple-DOF prostheses from the surface electromyographic signal
  publication-title: IEEE Trans Biomed Eng
– start-page: 4212
  year: August 2014
  end-page: 4215
  ident: bib0085
  article-title: ECG-EMG separation by using enhanced non-negative matrix factorization.
  publication-title: Proc. 36-th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
– volume: 69
  start-page: 286
  year: 2016
  end-page: 297
  ident: bib0065
  article-title: Multiclassifier system with hybrid learning applied to the control of bioprosthetic hand
  publication-title: Comput Biol Med
– volume: 35
  start-page: 283
  year: 1970
  end-page: 319
  ident: bib0010
  article-title: Analysis of individual differences in multidimensional scaling via an n-way generalization of Eckart-Young decomposition
  publication-title: Psychometrika
– start-page: 2130
  year: 2003
  end-page: 2133
  ident: bib0140
  article-title: Recognition system for EMG signals by using non-negative matrix factorization
  publication-title: Proc. International Joint Conference on Neural Networks, vol. 3
– volume: 3
  start-page: 169
  year: 2008
  end-page: 174
  ident: bib0080
  article-title: Multi-channel surface EMG classification using support vector machines and signal-based wavelet optimization
  publication-title: Biomed Signal Process Control
– volume: vol. 16
  start-page: 1
  year: 1970
  end-page: 84
  ident: bib0035
  article-title: Foundations of the PARAFAC procedure: Models and conditions for an “explanatory”multimodal factor analysis
  publication-title: UCLA working papers in phonetics
– volume: 56
  start-page: 1070
  issue: 4
  year: 2009
  ident: 10.1016/j.bbe.2016.09.004_bib0040
  article-title: Extracting simultaneous and proportional neural control information for multiple-DOF prostheses from the surface electromyographic signal
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2008.2007967
– volume: 39
  start-page: 44
  issue: 1
  year: 2012
  ident: 10.1016/j.bbe.2016.09.004_bib0005
  article-title: Identification of EMG signals using discriminant analysis and SVM classifier
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2011.06.043
– volume: 3
  start-page: 169
  issue: 2
  year: 2008
  ident: 10.1016/j.bbe.2016.09.004_bib0080
  article-title: Multi-channel surface EMG classification using support vector machines and signal-based wavelet optimization
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2007.09.002
– volume: 53
  start-page: 1
  issue: 1
  year: 2000
  ident: 10.1016/j.bbe.2016.09.004_bib0115
  article-title: Three mode principal components analysis: choosing the numbers of components and sensitivity to local optima
  publication-title: Br J Math Stat Psychol
  doi: 10.1348/000711000159132
– start-page: 671
  year: 2016
  ident: 10.1016/j.bbe.2016.09.004_bib0055
  article-title: Robot hand synergy mapping using multi-factor model and EMG signal
– year: 2013
  ident: 10.1016/j.bbe.2016.09.004_bib0105
– start-page: 322
  year: 2013
  ident: 10.1016/j.bbe.2016.09.004_bib0135
  article-title: Multi-domain feature extraction from surface EMG signals using nonnegative tensor factorization
– volume: 51
  start-page: 455
  issue: 3
  year: 2009
  ident: 10.1016/j.bbe.2016.09.004_bib0060
  article-title: Tensor decompositions and applications
  publication-title: SIAM Rev
  doi: 10.1137/07070111X
– start-page: 671
  year: 2013
  ident: 10.1016/j.bbe.2016.09.004_bib0075
  article-title: Classification of grip configuration using surface EMG
– volume: 1
  start-page: 37
  issue: 1
  year: 2010
  ident: 10.1016/j.bbe.2016.09.004_bib0095
  article-title: Tensor decompositions for feature extraction and classification of high dimensional datasets
  publication-title: IEICE Nonlinear Theory Appl
  doi: 10.1587/nolta.1.37
– volume: 18
  start-page: 138
  year: 2015
  ident: 10.1016/j.bbe.2016.09.004_bib0025
  article-title: Comparison of decision tree algorithms for EMG signal classification using DWT
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2014.12.005
– volume: 69
  start-page: 286
  issue: 1
  year: 2016
  ident: 10.1016/j.bbe.2016.09.004_bib0065
  article-title: Multiclassifier system with hybrid learning applied to the control of bioprosthetic hand
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2015.04.023
– year: 2009
  ident: 10.1016/j.bbe.2016.09.004_bib0015
– volume: 27
  start-page: 53
  issue: 1
  year: 2010
  ident: 10.1016/j.bbe.2016.09.004_bib0130
  article-title: Human-machine interface in bioprosthesis control using EMG signal classification
  publication-title: Expert Syst
  doi: 10.1111/j.1468-0394.2009.00526.x
– volume: 8
  issue: 335
  year: 2014
  ident: 10.1016/j.bbe.2016.09.004_bib0090
  article-title: Motor modules of human locomotion: influence of EMG averaging, concatenation and number of gait cycles
  publication-title: Front Hum Neurosci
– volume: 56
  start-page: 1869
  issue: 6
  year: 2012
  ident: 10.1016/j.bbe.2016.09.004_bib0050
  article-title: Selecting the number of components in principal component analysis using cross-validation approximations
  publication-title: Comput Stat Data Anal
  doi: 10.1016/j.csda.2011.11.012
– volume: 31
  start-page: 279
  year: 1966
  ident: 10.1016/j.bbe.2016.09.004_bib0120
  article-title: Some mathematical notes on three-mode factor analysis
  publication-title: Psychometrika
  doi: 10.1007/BF02289464
– volume: vol. 16
  start-page: 1
  year: 1970
  ident: 10.1016/j.bbe.2016.09.004_bib0035
  article-title: Foundations of the PARAFAC procedure: Models and conditions for an “explanatory”multimodal factor analysis
– volume: 86
  start-page: 603
  issue: 3
  year: 2006
  ident: 10.1016/j.bbe.2016.09.004_bib0110
  article-title: On the use of sparse signal decomposition in the analysis of multi-channel surface electromyograms
  publication-title: Signal Process
  doi: 10.1016/j.sigpro.2005.05.032
– start-page: 2130
  year: 2003
  ident: 10.1016/j.bbe.2016.09.004_bib0140
  article-title: Recognition system for EMG signals by using non-negative matrix factorization
– volume: 21
  start-page: 1253
  year: 2000
  ident: 10.1016/j.bbe.2016.09.004_bib0020
  article-title: A multilinear singular value decomposition
  publication-title: SIAM J Matrix Anal Appl
  doi: 10.1137/S0895479896305696
– volume: 22
  start-page: 239
  issue: 2
  year: 2015
  ident: 10.1016/j.bbe.2016.09.004_bib0125
  article-title: Selecting the number of principal components with SURE
  publication-title: IEEE Signal Process Lett
  doi: 10.1109/LSP.2014.2337276
– volume: 35
  start-page: 283
  year: 1970
  ident: 10.1016/j.bbe.2016.09.004_bib0010
  article-title: Analysis of individual differences in multidimensional scaling via an n-way generalization of Eckart-Young decomposition
  publication-title: Psychometrika
  doi: 10.1007/BF02310791
– volume: 401
  start-page: 788
  year: 1999
  ident: 10.1016/j.bbe.2016.09.004_bib0070
  article-title: Learning the parts of objects by non-negative matrix factorization
  publication-title: Nature
  doi: 10.1038/44565
– volume: 39
  start-page: 7420
  issue: 8
  year: 2012
  ident: 10.1016/j.bbe.2016.09.004_bib0100
  article-title: Feature reduction and selection for EMG signal classification
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2012.01.102
– start-page: 4212
  year: 2014
  ident: 10.1016/j.bbe.2016.09.004_bib0085
  article-title: ECG-EMG separation by using enhanced non-negative matrix factorization.
– year: 2002
  ident: 10.1016/j.bbe.2016.09.004_bib0045
SSID ssj0000615633
Score 2.1659808
Snippet In this study, we considered the problem of controlling a prosthetic hand with noisy electromyography (EMG) and mechanomyography (MMG) signals. Several...
Abstract In this study, we considered the problem of controlling a prosthetic hand with noisy electromyography (EMG) and mechanomyography (MMG) signals....
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 103
SubjectTerms Advanced Basic Science
Biosignal processing
Electromyography
Internal Medicine
Mechanomyography
Multi-array decomposition method
Supervised classification
Title Electromyography and mechanomyography signal recognition: Experimental analysis using multi-way array decomposition methods
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0208521617300177
https://www.clinicalkey.es/playcontent/1-s2.0-S0208521617300177
https://dx.doi.org/10.1016/j.bbe.2016.09.004
https://www.proquest.com/docview/2834197560
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  issn: 0208-5216
  databaseCode: GBLVA
  dateStart: 20110101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0000615633
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect Freedom Collection Journals
  issn: 0208-5216
  databaseCode: AIKHN
  dateStart: 20110101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0000615633
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  issn: 0208-5216
  databaseCode: ACRLP
  dateStart: 20110101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0000615633
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  issn: 0208-5216
  databaseCode: .~1
  dateStart: 20110101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0000615633
  providerName: Elsevier
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  issn: 0208-5216
  databaseCode: DIK
  dateStart: 20040101
  customDbUrl:
  isFulltext: true
  dateEnd: 20241102
  titleUrlDefault: http://www.freemedicaljournals.com
  omitProxy: true
  ssIdentifier: ssj0000615633
  providerName: Flying Publisher
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  issn: 0208-5216
  databaseCode: AKRWK
  dateStart: 20110101
  customDbUrl:
  isFulltext: true
  mediaType: online
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000615633
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5SL3oQn1gfZQVPQuw-0uzGm5RKVfSihd7CJpsVRbfSrYgI_nZnstlSH1Twsoewk10yycwk-eYbQg6zuMOFjnMqwB1QlrKEJkpzypKcc6NSzSyq8uqa9wfsYtgZLpBunQuDsEpn-yubbq21a2m70Ww_39-3b2x5yRDj8whtLWaUMxZjFYPjj2B6zoIum1cV5eF9igL15aaFeSmFZJkBt2ynrlzbL-7pm6G23udslay4sNE7rf5sjSyYYp0sz5AJbpD3XlXR5unNsVB7aZF5TwZTe2caEbABPU2BQ6PixOvN0PyDVEVT4iEk_s6ziEP6mkJ34zE8M4ModAf18qoC1OUmGZz1brt96korUA3x0YTCRiLluUh8rZjpqDDSyPOGbHno4SNlDGwLQxOrQOkOsqRxlYBajYiz3FeGR1ukUYwKs008PwVRzjXuJFmooU-kZDMiD5TwRRo2iV-PqNSOdxzLXzzKGmD2IEEJEpUgfSFBCU1yNBV5rkg35r0c1mqSdTYp2D8JLmGeUPybkCndCi5lIMtQ-vLHLGsSNpX8MlH_-uBBPYMkLGC8lUkLM3opJcR3LBCwZPyd_3W9S5ZCjDXsudAeaUzGL2YfIqWJatml0CKLp-eX_etPp_kStg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5ROLQcEPShLs9U4oTkbuJ1nJgbQouW5wWQuFmx16moShZtFlUVEr-dGcdZLQ9RiUsOVmYSeeyZsf35G4DtYZZKZbOSKQwHTBQiZ7mxkom8lNKZwgqPqjw9k4NLcXSVXs3BfnsXhmCVwfc3Pt1769DSDb3Zvb2-7p778pKc8vMe-drsAyyIlGe0Avv5kEw3Wihmy6akPAowkmhPNz3Oyxhiy0ykpzsN9dpeiU_PPLUPPwfLsBTyxmiv-bUVmHPVZ1icYRP8Avf9pqTNzb9AQx0V1TC6cXS3d6aREBuoaYocGlW7UX-G5x-lGp6SiDDxvyIPOWR_C1Q3HuNz6AiGHrBeUVOBuv4Klwf9i_0BC7UVmMUEacJwJVHIUuWxNcKlhvcsEb0RXR6F-J5xDteF3GUmMTYlmjRpcrSrU9mwjI2TvW8wX40q9x2iuEBRKS0tJQW3qJM42ZwqE6NiVfAOxG2PahuIx6n-xR_dIsx-azSCJiPoWGk0Qgd2piK3DevGWy_z1ky6vU6KDlBjTHhLKHtNyNVhCtc60TXXsX4xzDogppJPRur_PvijHUEaZzAdyxSVG93VGhM8kSicM_Hq-1RvwcfBxemJPjk8O16DT5wSD79JtA7zk_Gd28C0aWI2_bR4BN4AFEs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electromyography+and+mechanomyography+signal+recognition%3A+Experimental+analysis+using+multi-way+array+decomposition+methods&rft.jtitle=Biocybernetics+and+biomedical+engineering&rft.au=Wo%C5%82czowski%2C+Andrzej&rft.au=Zdunek%2C+Rafa%C5%82&rft.date=2017&rft.issn=0208-5216&rft.volume=37&rft.issue=1&rft.spage=103&rft.epage=113&rft_id=info:doi/10.1016%2Fj.bbe.2016.09.004&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_bbe_2016_09_004
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F02085216%2FS0208521617X00028%2Fcov150h.gif