Assessment for Alzheimer’s Disease Advancement Using Classification Models with Rules
Pre-diagnosis of common dementia conditions such as Alzheimer’s disease (AD) in the initial stages is crucial to help in early intervention, treatment plan design, disease management, and for providing quicker healthcare access. Current assessments are often stressful, invasive, and unavailable in m...
Saved in:
| Published in | Applied sciences Vol. 13; no. 22; p. 12152 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Basel
MDPI AG
01.11.2023
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2076-3417 2076-3417 |
| DOI | 10.3390/app132212152 |
Cover
| Abstract | Pre-diagnosis of common dementia conditions such as Alzheimer’s disease (AD) in the initial stages is crucial to help in early intervention, treatment plan design, disease management, and for providing quicker healthcare access. Current assessments are often stressful, invasive, and unavailable in most countries worldwide. In addition, many cognitive assessments are time-consuming and rarely cover all cognitive domains involved in dementia diagnosis. Therefore, the design and implementation of an intelligent method for dementia signs of progression from a few cognitive items in a manner that is accessible, easy, affordable, quick to perform, and does not require special and expensive resources is desirable. This paper investigates the issue of dementia progression by proposing a new classification algorithm called Alzheimer’s Disease Class Rules (AD-CR). The AD-CR algorithm learns models from the distinctive feature subsets that contain rules with low overlapping among their cognitive items yet are easily interpreted by clinicians during clinical assessment. An empirical evaluation of the Disease Neuroimaging Initiative data repository (ADNI) datasets shows that the AD-CR algorithm offers good performance (accuracy, sensitivity, etc.) when compared with other machine learning algorithms. The AD-CR algorithm was superior in comparison to the other algorithms overall since it reached a performance above 92%, 92.38% accuracy, 91.30% sensitivity, and 93.50% specificity when processing data subsets with cognitive and demographic attributes. |
|---|---|
| AbstractList | Pre-diagnosis of common dementia conditions such as Alzheimer’s disease (AD) in the initial stages is crucial to help in early intervention, treatment plan design, disease management, and for providing quicker healthcare access. Current assessments are often stressful, invasive, and unavailable in most countries worldwide. In addition, many cognitive assessments are time-consuming and rarely cover all cognitive domains involved in dementia diagnosis. Therefore, the design and implementation of an intelligent method for dementia signs of progression from a few cognitive items in a manner that is accessible, easy, affordable, quick to perform, and does not require special and expensive resources is desirable. This paper investigates the issue of dementia progression by proposing a new classification algorithm called Alzheimer’s Disease Class Rules (AD-CR). The AD-CR algorithm learns models from the distinctive feature subsets that contain rules with low overlapping among their cognitive items yet are easily interpreted by clinicians during clinical assessment. An empirical evaluation of the Disease Neuroimaging Initiative data repository (ADNI) datasets shows that the AD-CR algorithm offers good performance (accuracy, sensitivity, etc.) when compared with other machine learning algorithms. The AD-CR algorithm was superior in comparison to the other algorithms overall since it reached a performance above 92%, 92.38% accuracy, 91.30% sensitivity, and 93.50% specificity when processing data subsets with cognitive and demographic attributes. |
| Audience | Academic |
| Author | Thabtah, Fadi Peebles, David |
| Author_xml | – sequence: 1 givenname: Fadi surname: Thabtah fullname: Thabtah, Fadi – sequence: 2 givenname: David orcidid: 0000-0003-1008-9275 surname: Peebles fullname: Peebles, David |
| BookMark | eNp9kd1u1DAQhSNUJErpHQ8QiVtS_JfYuYyWv0pFSKiIS2vWGW-9SuLgyVKVK16D1-NJcHcRFATYF7ZG3zk6M_OwOJrihEXxmLMzKVv2DOaZSyG44LW4VxwLpptKKq6P7vwfFKdEW5ZPy6Xh7Lj40BEh0YjTUvqYym74fIVhxPTty1cqnwdCICy7_hNMDvfUewrTplwNQBR8cLCEOJVvYo8DlddhuSrf7QakR8V9DwPh6Y_3pLh8-eJy9bq6ePvqfNVdVE5JtVQIa32bxXElPddS61oxpdq16SUw34LRa-xBGW6U8IhMOOEawY3DRoGUJ8X5wbaPsLVzCiOkGxsh2H0hpo2FtAQ3oDW17NFo9K1wSitjuGu8lgy8VMrUbfaqDl67aYabaxiGn4ac2dsZ27szzvyTAz-n-HGHtNht3KUpd2uFaUWra6GaX9QGcogw-bgkcGMgZzutleSNFjpTZ3-h8u1xDC4v2odc_00gDgKXIlFCb11Y9rvIwjD8K_HTP0T_bfA7ofe3EA |
| CitedBy_id | crossref_primary_10_3233_JAD_230620 crossref_primary_10_3390_app142210266 crossref_primary_10_7717_peerj_cs_2437 |
| Cites_doi | 10.1177/1460458218824711 10.1002/gps.4868 10.1002/trc2.12020 10.1186/s12911-018-0710-y 10.2307/2347628 10.1145/1656274.1656278 10.1155/2022/9211477 10.1080/13803395.2015.1067290 10.1007/BF00962234 10.1176/ajp.141.11.1356 10.1186/s12911-017-0451-3 10.3390/app10207013 10.3390/healthcare10102045 10.1007/s13755-020-00114-8 10.1007/978-3-030-32281-6_1 10.1080/13854046.2018.1454511 10.1007/BF00153759 10.1002/gps.5179 10.7717/peerj.6543 10.3389/fnins.2022.867664 10.3390/app13063612 10.1016/j.eswa.2014.03.019 10.1186/s12911-022-02004-3 10.1155/2017/1850909 10.3399/bjgpopen18X101589 10.3390/ijerph17176270 10.3233/JAD-170991 10.1097/00002093-199700112-00003 10.3233/IDT-220054 10.1504/IJBHR.2022.122019 10.5220/0007949902960303 10.1016/0022-3956(75)90026-6 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS ADTOC UNPAY DOA |
| DOI | 10.3390/app132212152 |
| DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Unpaywall for CDI: Periodical Content Unpaywall Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Sciences (General) |
| EISSN | 2076-3417 |
| ExternalDocumentID | oai_doaj_org_article_853de87ef92c474881c6f730af344859 10.3390/app132212152 A774316727 10_3390_app132212152 |
| GroupedDBID | .4S 2XV 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ADBBV ADMLS AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ARCSS BCNDV BENPR CCPQU CITATION CZ9 D1I D1J D1K GROUPED_DOAJ IAO IGS ITC K6- K6V KC. KQ8 L6V LK5 LK8 M7R MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC TUS ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS PUEGO ADTOC IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c434t-eab70913c143f17377540449b8d3a0f9a87beda481842fee02c2c6218ce64a33 |
| IEDL.DBID | UNPAY |
| ISSN | 2076-3417 |
| IngestDate | Tue Oct 14 19:01:15 EDT 2025 Sun Oct 26 04:16:41 EDT 2025 Sun Sep 07 03:50:26 EDT 2025 Tue Jun 17 22:19:07 EDT 2025 Mon Oct 20 17:11:01 EDT 2025 Thu Oct 16 04:31:42 EDT 2025 Thu Apr 24 23:02:31 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 22 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c434t-eab70913c143f17377540449b8d3a0f9a87beda481842fee02c2c6218ce64a33 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-1008-9275 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.mdpi.com/2076-3417/13/22/12152/pdf?version=1699458471 |
| PQID | 2892975246 |
| PQPubID | 2032433 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_853de87ef92c474881c6f730af344859 unpaywall_primary_10_3390_app132212152 proquest_journals_2892975246 gale_infotracmisc_A774316727 gale_infotracacademiconefile_A774316727 crossref_citationtrail_10_3390_app132212152 crossref_primary_10_3390_app132212152 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-11-01 |
| PublicationDateYYYYMMDD | 2023-11-01 |
| PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Applied sciences |
| PublicationYear | 2023 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Yang (ref_46) 2019; 34 Mohs (ref_20) 1997; 11 Rosen (ref_9) 1984; 141 ref_14 Wessels (ref_12) 2015; 2 ref_35 ref_34 ref_11 Abdelhamid (ref_44) 2014; 41 Folstein (ref_10) 1975; 12 ref_31 Aha (ref_39) 1991; 6 Holmes (ref_33) 2009; 11 ref_18 Jammeh (ref_28) 2018; 2 Gaines (ref_41) 1995; 5 ref_16 Rumelhart (ref_37) 1986; Volume 1 ref_38 Alghamedy (ref_5) 2022; 2022 ref_15 Das (ref_24) 2019; 7 Thabtah (ref_22) 2020; 8 Thabtah (ref_29) 2022; 16 Monllau (ref_21) 2007; 22 Pickett (ref_4) 2018; 33 Nogueira (ref_45) 2018; 32 ref_25 ref_47 Battista (ref_8) 2017; 2017 Jutten (ref_13) 2020; 6 (ref_36) 1992; 41 ref_43 ref_42 ref_40 ref_1 Goodman (ref_48) 2016; 38 Marinescu (ref_23) 2019; Volume 11843 Chen (ref_32) 2022; 16 ref_3 ref_2 ref_26 Thabtah (ref_30) 2022; 8 Weakley (ref_27) 2015; 37 Thabtah (ref_17) 2020; 26 Zhu (ref_7) 2020; 2020 Kueper (ref_19) 2018; 63 ref_6 |
| References_xml | – volume: 26 start-page: 264 year: 2020 ident: ref_17 article-title: A new machine learning model based on induction of rules for autism detection publication-title: Health Inform. J. doi: 10.1177/1460458218824711 – ident: ref_3 – volume: 33 start-page: 900 year: 2018 ident: ref_4 article-title: A roadmap to advance dementia research in prevention, diagnosis, intervention, and care by 2025 publication-title: Int. J. Geriatr. Psychiatry doi: 10.1002/gps.4868 – ident: ref_34 – ident: ref_47 – volume: 6 start-page: e12020 year: 2020 ident: ref_13 article-title: The Cognitive-Functional Composite is sensitive to clinical progression in early dementia: Longitudinal findings from the Catch-Cog study cohort publication-title: Alzheimer’s Dement. Transl. Res. Clin. Interv. doi: 10.1002/trc2.12020 – volume: 22 start-page: 493 year: 2007 ident: ref_21 article-title: Diagnostic value and functional correlations of the ADAS-Cog scale in Alzheimer’s disease: Data on NORMACODEM project publication-title: Neurologia – ident: ref_11 doi: 10.1186/s12911-018-0710-y – volume: 41 start-page: 191 year: 1992 ident: ref_36 article-title: Ridge estimators in logistic regression publication-title: Appl. Stat. doi: 10.2307/2347628 – volume: 11 start-page: 10 year: 2009 ident: ref_33 article-title: The WEKA Data Mining Software: An Update publication-title: ACM SIGKDD Explor. Newsl. doi: 10.1145/1656274.1656278 – volume: Volume 1 start-page: 318 year: 1986 ident: ref_37 article-title: Learning internal representations by error propagation publication-title: Parallel Distributed Processing: Explorations in the Microstructure of Cognition – ident: ref_16 – ident: ref_40 – volume: 2022 start-page: 9211477 year: 2022 ident: ref_5 article-title: Machine Learning-Based Multimodel Computing for Medical Imaging for Classification and Detection of Alzheimer Disease publication-title: Comput. Intell. Neurosci. doi: 10.1155/2022/9211477 – ident: ref_42 – ident: ref_18 – ident: ref_35 – volume: 37 start-page: 899 year: 2015 ident: ref_27 article-title: Neuropsychological test selection for cognitive impairment classification: A machine learning approach publication-title: J. Clin. Exp. Neuropsychol. doi: 10.1080/13803395.2015.1067290 – volume: 38 start-page: 50 year: 2016 ident: ref_48 article-title: European Union regulations on algorithmic decision-making and a “right to explanation” publication-title: AI Mag. – volume: 5 start-page: 211 year: 1995 ident: ref_41 article-title: Induction of ripple-down rules applied to modeling large databases publication-title: J. Intell. Inf. Syst. doi: 10.1007/BF00962234 – volume: 141 start-page: 1356 year: 1984 ident: ref_9 article-title: A new rating scale for Alzheimer’s disease publication-title: Am. J. Psychiatry doi: 10.1176/ajp.141.11.1356 – ident: ref_26 doi: 10.1186/s12911-017-0451-3 – ident: ref_43 doi: 10.3390/app10207013 – ident: ref_6 doi: 10.3390/healthcare10102045 – volume: 2 start-page: 227 year: 2015 ident: ref_12 article-title: A combined measure of cognition and function for clinical trials: The integrated Alzheimer’s Disease Rating Scale (iADRS) publication-title: J. Prev. Alzheimers Dis. – volume: 8 start-page: 24 year: 2020 ident: ref_22 article-title: The correlation of everyday cognition test scores and the progression of Alzheimer’s disease: A data analytics study publication-title: Health Inf. Sci. Syst. doi: 10.1007/s13755-020-00114-8 – volume: Volume 11843 start-page: 1 year: 2019 ident: ref_23 article-title: TADPOLE challenge: Accurate Alzheimer’s disease prediction through crowdsourced forecasting of future data publication-title: Predictive Intelligence in Medicine doi: 10.1007/978-3-030-32281-6_1 – ident: ref_25 – volume: 32 start-page: 46 year: 2018 ident: ref_45 article-title: Validation study of the Alzheimer’s disease assessment scale—Cognitive subscale (ADAS-Cog) for the Portuguese patients with mild cognitive impairment and Alzheimer’s disease publication-title: Clin. Neuropsychol. doi: 10.1080/13854046.2018.1454511 – volume: 6 start-page: 37 year: 1991 ident: ref_39 article-title: Instance-based learning algorithms publication-title: Mach. Learn. doi: 10.1007/BF00153759 – volume: 34 start-page: 1658 year: 2019 ident: ref_46 article-title: Validation study of the Alzheimer’s Disease Assessment Scale-Cognitive Subscale for people with mild cognitive impairment and Alzheimer’s disease in Chinese communities publication-title: Int. J. Geriatr. Psychiatry doi: 10.1002/gps.5179 – ident: ref_2 – volume: 7 start-page: e6543 year: 2019 ident: ref_24 article-title: An interpretable machine learning model for diagnosis of Alzheimer’s disease publication-title: PeerJ doi: 10.7717/peerj.6543 – volume: 16 start-page: 867664 year: 2022 ident: ref_32 article-title: A dominant set-informed interpretable fuzzy system for automated diagnosis of dementia publication-title: Front. Neurosci. doi: 10.3389/fnins.2022.867664 – ident: ref_15 doi: 10.3390/app13063612 – volume: 41 start-page: 5948 year: 2014 ident: ref_44 article-title: Phishing detection based Associative Classification data mining publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2014.03.019 – ident: ref_31 doi: 10.1186/s12911-022-02004-3 – volume: 2017 start-page: 1850909 year: 2017 ident: ref_8 article-title: Optimizing neuropsychological assessments for cognitive, behavioral, and functional impairment classification: A machine learning study publication-title: Behav. Neurol. doi: 10.1155/2017/1850909 – volume: 2 start-page: bjgpopen18X101589 year: 2018 ident: ref_28 article-title: Machine-learning based identification of undiagnosed dementia in primary care: A feasibility study publication-title: BJGP Open doi: 10.3399/bjgpopen18X101589 – ident: ref_1 doi: 10.3390/ijerph17176270 – volume: 2020 start-page: 5629090 year: 2020 ident: ref_7 article-title: Machine learning for the preliminary diagnosis of dementia publication-title: Sci. Program. – ident: ref_38 – volume: 63 start-page: 423 year: 2018 ident: ref_19 article-title: The Alzheimer’s Disease Assessment Scale–Cognitive Subscale (ADAS-Cog): Modifications and responsiveness in pre-dementia populations. A Narrative Review publication-title: J. Alzheimers Dis. doi: 10.3233/JAD-170991 – volume: 11 start-page: S13 year: 1997 ident: ref_20 article-title: Development of cognitive instruments for use in clinical trials of antidementia drugs: Additions to the Alzheimer’s Disease Assessment Scale that broaden its scope. The Alzheimer’s Disease Cooperative Society publication-title: Alzheimer Dis. Assoc. Disord. doi: 10.1097/00002093-199700112-00003 – volume: 16 start-page: 615 year: 2022 ident: ref_29 article-title: Detection of Dementia Progression from Functional Activities Data Using Machine Learning Techniques publication-title: Intell. Decis. Technol. doi: 10.3233/IDT-220054 – volume: 8 start-page: 104 year: 2022 ident: ref_30 article-title: Common dementia screening procedures: DSM-5 fulfilment and mapping to cognitive domains publication-title: Int. J. Behav. Healthc. Res. doi: 10.1504/IJBHR.2022.122019 – ident: ref_14 doi: 10.5220/0007949902960303 – volume: 12 start-page: 189 year: 1975 ident: ref_10 article-title: “Ini-mental state”. A practical method for grading the cognitive state of patients for the clinician publication-title: J. Psychiatr. Res. doi: 10.1016/0022-3956(75)90026-6 |
| SSID | ssj0000913810 |
| Score | 2.2945786 |
| Snippet | Pre-diagnosis of common dementia conditions such as Alzheimer’s disease (AD) in the initial stages is crucial to help in early intervention, treatment plan... |
| SourceID | doaj unpaywall proquest gale crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 12152 |
| SubjectTerms | Accuracy Advertising executives Algorithms Alzheimer's disease Alzheimer’s disease (AD) Biomarkers Classification Cognition & reasoning Data mining Datasets Dementia Diagnostic imaging Machine learning Medical imaging Medical research Medicine, Experimental Neuroimaging neuropsychological assessments Neuropsychology |
| SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NTtwwEB4hLoUD4q8iLVQ-FGhVRezG3jg-pj8IIcEBgcrNchxbIKXbFdkVak99jb4eT9IZO6yyqlouXJM52OOZzHzxzDcAb_kw96NKmdTLTKRCVC4tKl6nlheSsLYznBqFz87zkytxej267o36opqwSA8cFXeE4aR2hXReZVZINLehzT2apfEckcUotO4NCtUDU-EbrIZEXRUr3TnieroPJuBFZArZQgwKVP1_f5BX4cVsPDE_7k3T9CLO8TqsdakiK-MSN2DJjTdhtUcguAkbnWu27F3HH_1-C76Wc7ZNhikpK5ufN-72m7t7-PW7ZZ_jjQwr4-V_kAp1AyzMx6TKoXBYjKakNS2jH7XsYta4dhsuj79cfjpJu_kJqRVcTFNnKkmKsJgT-aHkRHY3EEJVRc3NwCtTyMrVRmDMFpl3bpDZzOYY863LheH8JSyPv4_dDjCTe2-MVbUUTiDiRJSlrLG2sAoRhqkS-PCoUG07bnEacdFoxBikft1XfwL7c-lJ5NT4h9xHOpu5DDFhhwdoH7qzD_2UfSRwSCeryV9xSbjq2HaAGyPmK11KGdgAMpnA7oIk-pldfP1oG7rz81YjXKXW5EzkCRzM7eW_u3r1HLt6DSs09z42Re7C8vRu5vYwO5pWb4Ij_AH_Sgo_ priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NbtQwEB6V7QF6QLSASCnIB36Fou7a3jg5IJRCqwqJFaqK6M1yHBuQ0t1lsysEJ16D1-NJmHF-2BWi12QUOR7PeD575huAR2KU-HGRmdgrLmMpCxenhShjK1JFWNsZQYXC7ybJ6Qf59mJ8sQWTrhaG0io7nxgcdTmzdEZ-iMCAikC5TF7Nv8bUNYpuV7sWGqZtrVC-DBRj12CbEzPWALaPjifvz_pTF2LBTEfDJgNeIN6ne2ICZESywDf2pkDh_6-j3oHrq-ncfP9mqmptJzq5BTfbEJLljc53YctN92BnjVhwD3Zbk63Zs5ZX-vlt-Jj3LJwMQ1WWVz8-uy-XbvH756-avWlualjeJAUEqZBPwELfTMooCkpk1D2tqhkd4LKzVeXqO3B-cnz--jRu-yrEVgq5jJ0pFE2ExVjJj5QgEryhlFmRlsIMfWZSVbjSSNzLJffODbnlNsFYwLpEGiHuwmA6m7p7wEzivTE2K5V0EpEooq_Moi5SmyHyMEUEL7oJ1bblHKfWF5VG7EHTr9enP4LHvfS84dr4j9wR6aaXIYbs8GC2-KRbg9MYhpQuVc5n3EqFbmpkE4_uzHiBiHScRfCUNKvJjnFIOOqmHAF_jBixdK5UYAngKoKDDUm0P7v5ulsburX_Wv9drRE86dfLlX-1f_V37sMN6nTflEEewGC5WLkHGA8ti4ftIv8DBdwJIA priority: 102 providerName: ProQuest |
| Title | Assessment for Alzheimer’s Disease Advancement Using Classification Models with Rules |
| URI | https://www.proquest.com/docview/2892975246 https://www.mdpi.com/2076-3417/13/22/12152/pdf?version=1699458471 https://doaj.org/article/853de87ef92c474881c6f730af344859 |
| UnpaywallVersion | publishedVersion |
| Volume | 13 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: KQ8 dateStart: 20110101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: ADMLS dateStart: 20120901 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: 8FG dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fb9MwED9B-wB7ADaYyBiVH_grlLWx3Th5QhmsTEhU07QJeIocx4aJrKuaFsSe-Bp8PT4JZ8epWhAIidfkEtny3fl-9t3vAB6wKDbDIpWhEZSHnBc6TApWhoolwmJtLZktFH4zjg9P-et3wzabsPZplQjFz5yTpgiyQ3Szoh-xPqV9y4RA-9PSPP_sD5OiOE3dTR8CoG48xHC8A93T8VH23jaVaz9vEt4Zwnt7LWzxl_vT2lbkGPt_98sbcG0xmcqvX2RVrWw8o5tQtENu8k0-7S3mxZ66_IXN8b_mdAtu-LCUZI0ebcIVPdmCjRWywi3Y9G6gJk88V_XT2_A2WzJ7Egx_SVZdftRn53r249v3mrxsbn9I1iQaOCmXo0BcL06bpeQUg9iObFVN7KEwOV5Uur4DJ6ODkxeHoe_VECrO-DzUshCWYlRh_GUiwSyx3oDztEhKJgcmlYkodCk5xgecGq0HVFEVY3yhdMwlY9vQmVxM9F0gMjZGSpWWgmuO6BYRXaqkUolKEc3IIoBn7arlyvOY23YaVY54xq5xvrrGATxcSk8b_o4_yO1bBVjKWNZt9-Bi9iH3RpxjaFPqRGiTUsUFur5IxQZdpDQMUe4wDeCxVZ_c-gYcEo66KXHAiVmWrTwTwjEPUBHA7pok2rRaf90qYO59Sp0jNLZl0JTHATxaKuVfZ7Xzr4L34DpaJmuKLHehM58t9H2MtuZFD64mo1c96O4fjI-Oe-7Moudt7Cc7PiTw |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB5V7aH0gGgBESjgA-VHKGo29sbJoUIpbbWl7QpVi-jNchwHkMLustlVVU68Bg_Dy_AkzCTesCtEb70mlpXY8_fZM98APOOdqOhmifYLGQpfiMz6ccZz3_BYEta2mlOh8Fk_6n0Q7y66Fyvwa14LQ2mVc5tYG-p8ZOiMfBeBARWBhiJ6M_7mU9coul2dt9DQrrVCvldTjLnCjhN7dYkQrto7PsD93gnDo8PB257vugz4RnAx9a3OJJFjGowcio7kRAkXCJFkcc51UCQ6lpnNtUDPJsLC2iA0oYnQMxobCU3noegB1nCqBLHf2v5h__15e8hD88adoEm45zwJ6Fqa8B9xOoRLrrDuGPCvX9iA9dlwrK8udVkuOL6jO3DbRawsbURsE1bscAs2FngMt2DTWYiKvXQ01q_uwse0Jf1kGBmztPz-2X75aie_f_ys2EFzMcTSJgehHlWnL7C6TSclMNUyw6hZW1kxOi9m57PSVvdgcBMLfB9Wh6OhfQBMR0WhtUlyKaxA4ItgLzG49bFJEOjozIPX8wVVxlGcU6eNUiHUoeVXi8vvwU47etxQe_xn3D7tTTuGCLnrB6PJJ-X0W2HUk9tY2iIJjZBoFTsmKtB66oIjAO4mHrygnVVkNvCT8Kub6gf8MSLgUqmUNSlBKD3YXhqJ6m6WX89lQzlzU6m_yuHB81Zerv2rh9fP8xTWe4OzU3V63D95BLdQbXlTgbkNq9PJzD7GUGyaPXECz0DdsIr9ASgLRKI |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbhMxEB5VRQJ6QLSAWCjgA-VHaNWN7ax3DwgFQmgpVAgV0Zvl9dqAtCQhm6gqJ16DR-F1eBJm9o9EiN56TUarXXv-PnvmG4D7ohf7fpaa0CsuQykzFyaZyEMrEkVY2xlBjcJvD-O9D_L1cf94DX61vTBUVtn6xMpR5xNLZ-S7CAyoCZTLeNc3ZRHvhqNn028hTZCim9Z2nEatIgfu9AThW_l0f4h7vcP56OXRi72wmTAQWinkPHQmU0SMaTFr8D0liA4ukjLNklyYyKcmUZnLjcSoJrl3LuKW2xijonWxNHQWit7_giISd2pSH73qjnfoqUkvqkvthUgjupAm5EdsDnwlCFazAv6NCBtwaTGemtMTUxRLIW90Fa40uSob1Mq1CWtuvAUbSwyGW7DZ-IaSPWoIrB9fg4-Dju6TYU7MBsX3z-7LVzf7_eNnyYb1lRAb1NUHlVRVuMCqAZ1UulRpC6MxbUXJ6KSYvV8UrrwOR-exvDdgfTwZu5vATOy9MTbNlXQSIS_CvNQaaxObIsQxWQBP2gXVtiE3pxkbhUaQQ8uvl5c_gJ1OelqTevxH7jntTSdDVNzVD5PZJ91YtsZ8J3eJcj7lVir0hz0be_SbxguEvv00gIe0s5ocBr4SvnXd94AfRtRbeqBURUfAVQDbK5Jo6Hb171Y3dONoSv3XLAJ40OnLmV916-zn3IOLaFj6zf7hwW24jPYq6tbLbVifzxbuDuZg8-xupe0M9Dlb1x9BrEI8 |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB6h7QF6AFpABArygV-hdDe2N45PKPxUFRIVQq2AU2Q7NlRNt6vNLoieeA1ejydh7DirXRAIiWsyiWx5ZjyfPfMNwD2W5W6spUqdoDzlXNu00KxODSuEx9pWMV8o_Pog3z_ir96P-2zCNqZVIhQ_Dk6aIshO0c2KYcaGlA49EwIdTmv39HM8TMpyKcNNHwKgjXyM4fgANo4O3pQffFO5_vMu4Z0hvPfXwh5_hT-tbUWBsf93v7wJFxeTqfr6RTXNysazdwV0P-Qu3-RkdzHXu-b8FzbH_5rTVbgcw1JSdnq0BRfsZBs2V8gKt2EruoGWPIpc1Y-vwbtyyexJMPwlZXP-yR6f2tmPb99b8qK7_SFll2gQpEKOAgm9OH2WUlAM4juyNS3xh8Lk7aKx7XU43Ht5-Hw_jb0aUsMZn6dWaeEpRg3GXy4TzBPrjTiXuqiZGjmpCqFtrTjGB5w6a0fUUJNjfGFszhVjN2AwOZvYm0BU7pxSRtaCW47oFhGdNMqYwkhEM0on8KRftcpEHnPfTqOpEM_4Na5W1ziB-0vpacff8Qe5Z14BljKedTs8OJt9rKIRVxja1LYQ1klquEDXl5ncoYtUjiHKHcsEHnr1qbxvwCHhqLsSB5yYZ9mqSiEC8wAVCeysSaJNm_XXvQJW0ae0FUJjXwZNeZ7Ag6VS_nVWt_5V8DZcQstkXZHlDgzms4W9g9HWXN-N9vQTg28hew |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assessment+for+Alzheimer%E2%80%99s+Disease+Advancement+Using+Classification+Models+with+Rules&rft.jtitle=Applied+sciences&rft.au=Thabtah%2C+Fadi&rft.au=Peebles%2C+David&rft.date=2023-11-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=13&rft.issue=22&rft.spage=12152&rft_id=info:doi/10.3390%2Fapp132212152&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon |