Assessment for Alzheimer’s Disease Advancement Using Classification Models with Rules

Pre-diagnosis of common dementia conditions such as Alzheimer’s disease (AD) in the initial stages is crucial to help in early intervention, treatment plan design, disease management, and for providing quicker healthcare access. Current assessments are often stressful, invasive, and unavailable in m...

Full description

Saved in:
Bibliographic Details
Published inApplied sciences Vol. 13; no. 22; p. 12152
Main Authors Thabtah, Fadi, Peebles, David
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.11.2023
Subjects
Online AccessGet full text
ISSN2076-3417
2076-3417
DOI10.3390/app132212152

Cover

Abstract Pre-diagnosis of common dementia conditions such as Alzheimer’s disease (AD) in the initial stages is crucial to help in early intervention, treatment plan design, disease management, and for providing quicker healthcare access. Current assessments are often stressful, invasive, and unavailable in most countries worldwide. In addition, many cognitive assessments are time-consuming and rarely cover all cognitive domains involved in dementia diagnosis. Therefore, the design and implementation of an intelligent method for dementia signs of progression from a few cognitive items in a manner that is accessible, easy, affordable, quick to perform, and does not require special and expensive resources is desirable. This paper investigates the issue of dementia progression by proposing a new classification algorithm called Alzheimer’s Disease Class Rules (AD-CR). The AD-CR algorithm learns models from the distinctive feature subsets that contain rules with low overlapping among their cognitive items yet are easily interpreted by clinicians during clinical assessment. An empirical evaluation of the Disease Neuroimaging Initiative data repository (ADNI) datasets shows that the AD-CR algorithm offers good performance (accuracy, sensitivity, etc.) when compared with other machine learning algorithms. The AD-CR algorithm was superior in comparison to the other algorithms overall since it reached a performance above 92%, 92.38% accuracy, 91.30% sensitivity, and 93.50% specificity when processing data subsets with cognitive and demographic attributes.
AbstractList Pre-diagnosis of common dementia conditions such as Alzheimer’s disease (AD) in the initial stages is crucial to help in early intervention, treatment plan design, disease management, and for providing quicker healthcare access. Current assessments are often stressful, invasive, and unavailable in most countries worldwide. In addition, many cognitive assessments are time-consuming and rarely cover all cognitive domains involved in dementia diagnosis. Therefore, the design and implementation of an intelligent method for dementia signs of progression from a few cognitive items in a manner that is accessible, easy, affordable, quick to perform, and does not require special and expensive resources is desirable. This paper investigates the issue of dementia progression by proposing a new classification algorithm called Alzheimer’s Disease Class Rules (AD-CR). The AD-CR algorithm learns models from the distinctive feature subsets that contain rules with low overlapping among their cognitive items yet are easily interpreted by clinicians during clinical assessment. An empirical evaluation of the Disease Neuroimaging Initiative data repository (ADNI) datasets shows that the AD-CR algorithm offers good performance (accuracy, sensitivity, etc.) when compared with other machine learning algorithms. The AD-CR algorithm was superior in comparison to the other algorithms overall since it reached a performance above 92%, 92.38% accuracy, 91.30% sensitivity, and 93.50% specificity when processing data subsets with cognitive and demographic attributes.
Audience Academic
Author Thabtah, Fadi
Peebles, David
Author_xml – sequence: 1
  givenname: Fadi
  surname: Thabtah
  fullname: Thabtah, Fadi
– sequence: 2
  givenname: David
  orcidid: 0000-0003-1008-9275
  surname: Peebles
  fullname: Peebles, David
BookMark eNp9kd1u1DAQhSNUJErpHQ8QiVtS_JfYuYyWv0pFSKiIS2vWGW-9SuLgyVKVK16D1-NJcHcRFATYF7ZG3zk6M_OwOJrihEXxmLMzKVv2DOaZSyG44LW4VxwLpptKKq6P7vwfFKdEW5ZPy6Xh7Lj40BEh0YjTUvqYym74fIVhxPTty1cqnwdCICy7_hNMDvfUewrTplwNQBR8cLCEOJVvYo8DlddhuSrf7QakR8V9DwPh6Y_3pLh8-eJy9bq6ePvqfNVdVE5JtVQIa32bxXElPddS61oxpdq16SUw34LRa-xBGW6U8IhMOOEawY3DRoGUJ8X5wbaPsLVzCiOkGxsh2H0hpo2FtAQ3oDW17NFo9K1wSitjuGu8lgy8VMrUbfaqDl67aYabaxiGn4ac2dsZ27szzvyTAz-n-HGHtNht3KUpd2uFaUWra6GaX9QGcogw-bgkcGMgZzutleSNFjpTZ3-h8u1xDC4v2odc_00gDgKXIlFCb11Y9rvIwjD8K_HTP0T_bfA7ofe3EA
CitedBy_id crossref_primary_10_3233_JAD_230620
crossref_primary_10_3390_app142210266
crossref_primary_10_7717_peerj_cs_2437
Cites_doi 10.1177/1460458218824711
10.1002/gps.4868
10.1002/trc2.12020
10.1186/s12911-018-0710-y
10.2307/2347628
10.1145/1656274.1656278
10.1155/2022/9211477
10.1080/13803395.2015.1067290
10.1007/BF00962234
10.1176/ajp.141.11.1356
10.1186/s12911-017-0451-3
10.3390/app10207013
10.3390/healthcare10102045
10.1007/s13755-020-00114-8
10.1007/978-3-030-32281-6_1
10.1080/13854046.2018.1454511
10.1007/BF00153759
10.1002/gps.5179
10.7717/peerj.6543
10.3389/fnins.2022.867664
10.3390/app13063612
10.1016/j.eswa.2014.03.019
10.1186/s12911-022-02004-3
10.1155/2017/1850909
10.3399/bjgpopen18X101589
10.3390/ijerph17176270
10.3233/JAD-170991
10.1097/00002093-199700112-00003
10.3233/IDT-220054
10.1504/IJBHR.2022.122019
10.5220/0007949902960303
10.1016/0022-3956(75)90026-6
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
UNPAY
DOA
DOI 10.3390/app132212152
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Unpaywall for CDI: Periodical Content
Unpaywall
Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database


CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_853de87ef92c474881c6f730af344859
10.3390/app132212152
A774316727
10_3390_app132212152
GroupedDBID .4S
2XV
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
IGS
ITC
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PUEGO
ADTOC
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c434t-eab70913c143f17377540449b8d3a0f9a87beda481842fee02c2c6218ce64a33
IEDL.DBID UNPAY
ISSN 2076-3417
IngestDate Tue Oct 14 19:01:15 EDT 2025
Sun Oct 26 04:16:41 EDT 2025
Sun Sep 07 03:50:26 EDT 2025
Tue Jun 17 22:19:07 EDT 2025
Mon Oct 20 17:11:01 EDT 2025
Thu Oct 16 04:31:42 EDT 2025
Thu Apr 24 23:02:31 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 22
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c434t-eab70913c143f17377540449b8d3a0f9a87beda481842fee02c2c6218ce64a33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1008-9275
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.mdpi.com/2076-3417/13/22/12152/pdf?version=1699458471
PQID 2892975246
PQPubID 2032433
ParticipantIDs doaj_primary_oai_doaj_org_article_853de87ef92c474881c6f730af344859
unpaywall_primary_10_3390_app132212152
proquest_journals_2892975246
gale_infotracmisc_A774316727
gale_infotracacademiconefile_A774316727
crossref_citationtrail_10_3390_app132212152
crossref_primary_10_3390_app132212152
PublicationCentury 2000
PublicationDate 2023-11-01
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied sciences
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Yang (ref_46) 2019; 34
Mohs (ref_20) 1997; 11
Rosen (ref_9) 1984; 141
ref_14
Wessels (ref_12) 2015; 2
ref_35
ref_34
ref_11
Abdelhamid (ref_44) 2014; 41
Folstein (ref_10) 1975; 12
ref_31
Aha (ref_39) 1991; 6
Holmes (ref_33) 2009; 11
ref_18
Jammeh (ref_28) 2018; 2
Gaines (ref_41) 1995; 5
ref_16
Rumelhart (ref_37) 1986; Volume 1
ref_38
Alghamedy (ref_5) 2022; 2022
ref_15
Das (ref_24) 2019; 7
Thabtah (ref_22) 2020; 8
Thabtah (ref_29) 2022; 16
Monllau (ref_21) 2007; 22
Pickett (ref_4) 2018; 33
Nogueira (ref_45) 2018; 32
ref_25
ref_47
Battista (ref_8) 2017; 2017
Jutten (ref_13) 2020; 6
(ref_36) 1992; 41
ref_43
ref_42
ref_40
ref_1
Goodman (ref_48) 2016; 38
Marinescu (ref_23) 2019; Volume 11843
Chen (ref_32) 2022; 16
ref_3
ref_2
ref_26
Thabtah (ref_30) 2022; 8
Weakley (ref_27) 2015; 37
Thabtah (ref_17) 2020; 26
Zhu (ref_7) 2020; 2020
Kueper (ref_19) 2018; 63
ref_6
References_xml – volume: 26
  start-page: 264
  year: 2020
  ident: ref_17
  article-title: A new machine learning model based on induction of rules for autism detection
  publication-title: Health Inform. J.
  doi: 10.1177/1460458218824711
– ident: ref_3
– volume: 33
  start-page: 900
  year: 2018
  ident: ref_4
  article-title: A roadmap to advance dementia research in prevention, diagnosis, intervention, and care by 2025
  publication-title: Int. J. Geriatr. Psychiatry
  doi: 10.1002/gps.4868
– ident: ref_34
– ident: ref_47
– volume: 6
  start-page: e12020
  year: 2020
  ident: ref_13
  article-title: The Cognitive-Functional Composite is sensitive to clinical progression in early dementia: Longitudinal findings from the Catch-Cog study cohort
  publication-title: Alzheimer’s Dement. Transl. Res. Clin. Interv.
  doi: 10.1002/trc2.12020
– volume: 22
  start-page: 493
  year: 2007
  ident: ref_21
  article-title: Diagnostic value and functional correlations of the ADAS-Cog scale in Alzheimer’s disease: Data on NORMACODEM project
  publication-title: Neurologia
– ident: ref_11
  doi: 10.1186/s12911-018-0710-y
– volume: 41
  start-page: 191
  year: 1992
  ident: ref_36
  article-title: Ridge estimators in logistic regression
  publication-title: Appl. Stat.
  doi: 10.2307/2347628
– volume: 11
  start-page: 10
  year: 2009
  ident: ref_33
  article-title: The WEKA Data Mining Software: An Update
  publication-title: ACM SIGKDD Explor. Newsl.
  doi: 10.1145/1656274.1656278
– volume: Volume 1
  start-page: 318
  year: 1986
  ident: ref_37
  article-title: Learning internal representations by error propagation
  publication-title: Parallel Distributed Processing: Explorations in the Microstructure of Cognition
– ident: ref_16
– ident: ref_40
– volume: 2022
  start-page: 9211477
  year: 2022
  ident: ref_5
  article-title: Machine Learning-Based Multimodel Computing for Medical Imaging for Classification and Detection of Alzheimer Disease
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2022/9211477
– ident: ref_42
– ident: ref_18
– ident: ref_35
– volume: 37
  start-page: 899
  year: 2015
  ident: ref_27
  article-title: Neuropsychological test selection for cognitive impairment classification: A machine learning approach
  publication-title: J. Clin. Exp. Neuropsychol.
  doi: 10.1080/13803395.2015.1067290
– volume: 38
  start-page: 50
  year: 2016
  ident: ref_48
  article-title: European Union regulations on algorithmic decision-making and a “right to explanation”
  publication-title: AI Mag.
– volume: 5
  start-page: 211
  year: 1995
  ident: ref_41
  article-title: Induction of ripple-down rules applied to modeling large databases
  publication-title: J. Intell. Inf. Syst.
  doi: 10.1007/BF00962234
– volume: 141
  start-page: 1356
  year: 1984
  ident: ref_9
  article-title: A new rating scale for Alzheimer’s disease
  publication-title: Am. J. Psychiatry
  doi: 10.1176/ajp.141.11.1356
– ident: ref_26
  doi: 10.1186/s12911-017-0451-3
– ident: ref_43
  doi: 10.3390/app10207013
– ident: ref_6
  doi: 10.3390/healthcare10102045
– volume: 2
  start-page: 227
  year: 2015
  ident: ref_12
  article-title: A combined measure of cognition and function for clinical trials: The integrated Alzheimer’s Disease Rating Scale (iADRS)
  publication-title: J. Prev. Alzheimers Dis.
– volume: 8
  start-page: 24
  year: 2020
  ident: ref_22
  article-title: The correlation of everyday cognition test scores and the progression of Alzheimer’s disease: A data analytics study
  publication-title: Health Inf. Sci. Syst.
  doi: 10.1007/s13755-020-00114-8
– volume: Volume 11843
  start-page: 1
  year: 2019
  ident: ref_23
  article-title: TADPOLE challenge: Accurate Alzheimer’s disease prediction through crowdsourced forecasting of future data
  publication-title: Predictive Intelligence in Medicine
  doi: 10.1007/978-3-030-32281-6_1
– ident: ref_25
– volume: 32
  start-page: 46
  year: 2018
  ident: ref_45
  article-title: Validation study of the Alzheimer’s disease assessment scale—Cognitive subscale (ADAS-Cog) for the Portuguese patients with mild cognitive impairment and Alzheimer’s disease
  publication-title: Clin. Neuropsychol.
  doi: 10.1080/13854046.2018.1454511
– volume: 6
  start-page: 37
  year: 1991
  ident: ref_39
  article-title: Instance-based learning algorithms
  publication-title: Mach. Learn.
  doi: 10.1007/BF00153759
– volume: 34
  start-page: 1658
  year: 2019
  ident: ref_46
  article-title: Validation study of the Alzheimer’s Disease Assessment Scale-Cognitive Subscale for people with mild cognitive impairment and Alzheimer’s disease in Chinese communities
  publication-title: Int. J. Geriatr. Psychiatry
  doi: 10.1002/gps.5179
– ident: ref_2
– volume: 7
  start-page: e6543
  year: 2019
  ident: ref_24
  article-title: An interpretable machine learning model for diagnosis of Alzheimer’s disease
  publication-title: PeerJ
  doi: 10.7717/peerj.6543
– volume: 16
  start-page: 867664
  year: 2022
  ident: ref_32
  article-title: A dominant set-informed interpretable fuzzy system for automated diagnosis of dementia
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2022.867664
– ident: ref_15
  doi: 10.3390/app13063612
– volume: 41
  start-page: 5948
  year: 2014
  ident: ref_44
  article-title: Phishing detection based Associative Classification data mining
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2014.03.019
– ident: ref_31
  doi: 10.1186/s12911-022-02004-3
– volume: 2017
  start-page: 1850909
  year: 2017
  ident: ref_8
  article-title: Optimizing neuropsychological assessments for cognitive, behavioral, and functional impairment classification: A machine learning study
  publication-title: Behav. Neurol.
  doi: 10.1155/2017/1850909
– volume: 2
  start-page: bjgpopen18X101589
  year: 2018
  ident: ref_28
  article-title: Machine-learning based identification of undiagnosed dementia in primary care: A feasibility study
  publication-title: BJGP Open
  doi: 10.3399/bjgpopen18X101589
– ident: ref_1
  doi: 10.3390/ijerph17176270
– volume: 2020
  start-page: 5629090
  year: 2020
  ident: ref_7
  article-title: Machine learning for the preliminary diagnosis of dementia
  publication-title: Sci. Program.
– ident: ref_38
– volume: 63
  start-page: 423
  year: 2018
  ident: ref_19
  article-title: The Alzheimer’s Disease Assessment Scale–Cognitive Subscale (ADAS-Cog): Modifications and responsiveness in pre-dementia populations. A Narrative Review
  publication-title: J. Alzheimers Dis.
  doi: 10.3233/JAD-170991
– volume: 11
  start-page: S13
  year: 1997
  ident: ref_20
  article-title: Development of cognitive instruments for use in clinical trials of antidementia drugs: Additions to the Alzheimer’s Disease Assessment Scale that broaden its scope. The Alzheimer’s Disease Cooperative Society
  publication-title: Alzheimer Dis. Assoc. Disord.
  doi: 10.1097/00002093-199700112-00003
– volume: 16
  start-page: 615
  year: 2022
  ident: ref_29
  article-title: Detection of Dementia Progression from Functional Activities Data Using Machine Learning Techniques
  publication-title: Intell. Decis. Technol.
  doi: 10.3233/IDT-220054
– volume: 8
  start-page: 104
  year: 2022
  ident: ref_30
  article-title: Common dementia screening procedures: DSM-5 fulfilment and mapping to cognitive domains
  publication-title: Int. J. Behav. Healthc. Res.
  doi: 10.1504/IJBHR.2022.122019
– ident: ref_14
  doi: 10.5220/0007949902960303
– volume: 12
  start-page: 189
  year: 1975
  ident: ref_10
  article-title: “Ini-mental state”. A practical method for grading the cognitive state of patients for the clinician
  publication-title: J. Psychiatr. Res.
  doi: 10.1016/0022-3956(75)90026-6
SSID ssj0000913810
Score 2.2945786
Snippet Pre-diagnosis of common dementia conditions such as Alzheimer’s disease (AD) in the initial stages is crucial to help in early intervention, treatment plan...
SourceID doaj
unpaywall
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 12152
SubjectTerms Accuracy
Advertising executives
Algorithms
Alzheimer's disease
Alzheimer’s disease (AD)
Biomarkers
Classification
Cognition & reasoning
Data mining
Datasets
Dementia
Diagnostic imaging
Machine learning
Medical imaging
Medical research
Medicine, Experimental
Neuroimaging
neuropsychological assessments
Neuropsychology
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NTtwwEB4hLoUD4q8iLVQ-FGhVRezG3jg-pj8IIcEBgcrNchxbIKXbFdkVak99jb4eT9IZO6yyqlouXJM52OOZzHzxzDcAb_kw96NKmdTLTKRCVC4tKl6nlheSsLYznBqFz87zkytxej267o36opqwSA8cFXeE4aR2hXReZVZINLehzT2apfEckcUotO4NCtUDU-EbrIZEXRUr3TnieroPJuBFZArZQgwKVP1_f5BX4cVsPDE_7k3T9CLO8TqsdakiK-MSN2DJjTdhtUcguAkbnWu27F3HH_1-C76Wc7ZNhikpK5ufN-72m7t7-PW7ZZ_jjQwr4-V_kAp1AyzMx6TKoXBYjKakNS2jH7XsYta4dhsuj79cfjpJu_kJqRVcTFNnKkmKsJgT-aHkRHY3EEJVRc3NwCtTyMrVRmDMFpl3bpDZzOYY863LheH8JSyPv4_dDjCTe2-MVbUUTiDiRJSlrLG2sAoRhqkS-PCoUG07bnEacdFoxBikft1XfwL7c-lJ5NT4h9xHOpu5DDFhhwdoH7qzD_2UfSRwSCeryV9xSbjq2HaAGyPmK11KGdgAMpnA7oIk-pldfP1oG7rz81YjXKXW5EzkCRzM7eW_u3r1HLt6DSs09z42Re7C8vRu5vYwO5pWb4Ij_AH_Sgo_
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NbtQwEB6V7QF6QLSASCnIB36Fou7a3jg5IJRCqwqJFaqK6M1yHBuQ0t1lsysEJ16D1-NJmHF-2BWi12QUOR7PeD575huAR2KU-HGRmdgrLmMpCxenhShjK1JFWNsZQYXC7ybJ6Qf59mJ8sQWTrhaG0io7nxgcdTmzdEZ-iMCAikC5TF7Nv8bUNYpuV7sWGqZtrVC-DBRj12CbEzPWALaPjifvz_pTF2LBTEfDJgNeIN6ne2ICZESywDf2pkDh_6-j3oHrq-ncfP9mqmptJzq5BTfbEJLljc53YctN92BnjVhwD3Zbk63Zs5ZX-vlt-Jj3LJwMQ1WWVz8-uy-XbvH756-avWlualjeJAUEqZBPwELfTMooCkpk1D2tqhkd4LKzVeXqO3B-cnz--jRu-yrEVgq5jJ0pFE2ExVjJj5QgEryhlFmRlsIMfWZSVbjSSNzLJffODbnlNsFYwLpEGiHuwmA6m7p7wEzivTE2K5V0EpEooq_Moi5SmyHyMEUEL7oJ1bblHKfWF5VG7EHTr9enP4LHvfS84dr4j9wR6aaXIYbs8GC2-KRbg9MYhpQuVc5n3EqFbmpkE4_uzHiBiHScRfCUNKvJjnFIOOqmHAF_jBixdK5UYAngKoKDDUm0P7v5ulsburX_Wv9drRE86dfLlX-1f_V37sMN6nTflEEewGC5WLkHGA8ti4ftIv8DBdwJIA
  priority: 102
  providerName: ProQuest
Title Assessment for Alzheimer’s Disease Advancement Using Classification Models with Rules
URI https://www.proquest.com/docview/2892975246
https://www.mdpi.com/2076-3417/13/22/12152/pdf?version=1699458471
https://doaj.org/article/853de87ef92c474881c6f730af344859
UnpaywallVersion publishedVersion
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: KQ8
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: ADMLS
  dateStart: 20120901
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: 8FG
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fb9MwED9B-wB7ADaYyBiVH_grlLWx3Th5QhmsTEhU07QJeIocx4aJrKuaFsSe-Bp8PT4JZ8epWhAIidfkEtny3fl-9t3vAB6wKDbDIpWhEZSHnBc6TApWhoolwmJtLZktFH4zjg9P-et3wzabsPZplQjFz5yTpgiyQ3Szoh-xPqV9y4RA-9PSPP_sD5OiOE3dTR8CoG48xHC8A93T8VH23jaVaz9vEt4Zwnt7LWzxl_vT2lbkGPt_98sbcG0xmcqvX2RVrWw8o5tQtENu8k0-7S3mxZ66_IXN8b_mdAtu-LCUZI0ebcIVPdmCjRWywi3Y9G6gJk88V_XT2_A2WzJ7Egx_SVZdftRn53r249v3mrxsbn9I1iQaOCmXo0BcL06bpeQUg9iObFVN7KEwOV5Uur4DJ6ODkxeHoe_VECrO-DzUshCWYlRh_GUiwSyx3oDztEhKJgcmlYkodCk5xgecGq0HVFEVY3yhdMwlY9vQmVxM9F0gMjZGSpWWgmuO6BYRXaqkUolKEc3IIoBn7arlyvOY23YaVY54xq5xvrrGATxcSk8b_o4_yO1bBVjKWNZt9-Bi9iH3RpxjaFPqRGiTUsUFur5IxQZdpDQMUe4wDeCxVZ_c-gYcEo66KXHAiVmWrTwTwjEPUBHA7pok2rRaf90qYO59Sp0jNLZl0JTHATxaKuVfZ7Xzr4L34DpaJmuKLHehM58t9H2MtuZFD64mo1c96O4fjI-Oe-7Moudt7Cc7PiTw
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB5V7aH0gGgBESjgA-VHKGo29sbJoUIpbbWl7QpVi-jNchwHkMLustlVVU68Bg_Dy_AkzCTesCtEb70mlpXY8_fZM98APOOdqOhmifYLGQpfiMz6ccZz3_BYEta2mlOh8Fk_6n0Q7y66Fyvwa14LQ2mVc5tYG-p8ZOiMfBeBARWBhiJ6M_7mU9coul2dt9DQrrVCvldTjLnCjhN7dYkQrto7PsD93gnDo8PB257vugz4RnAx9a3OJJFjGowcio7kRAkXCJFkcc51UCQ6lpnNtUDPJsLC2iA0oYnQMxobCU3noegB1nCqBLHf2v5h__15e8hD88adoEm45zwJ6Fqa8B9xOoRLrrDuGPCvX9iA9dlwrK8udVkuOL6jO3DbRawsbURsE1bscAs2FngMt2DTWYiKvXQ01q_uwse0Jf1kGBmztPz-2X75aie_f_ys2EFzMcTSJgehHlWnL7C6TSclMNUyw6hZW1kxOi9m57PSVvdgcBMLfB9Wh6OhfQBMR0WhtUlyKaxA4ItgLzG49bFJEOjozIPX8wVVxlGcU6eNUiHUoeVXi8vvwU47etxQe_xn3D7tTTuGCLnrB6PJJ-X0W2HUk9tY2iIJjZBoFTsmKtB66oIjAO4mHrygnVVkNvCT8Kub6gf8MSLgUqmUNSlBKD3YXhqJ6m6WX89lQzlzU6m_yuHB81Zerv2rh9fP8xTWe4OzU3V63D95BLdQbXlTgbkNq9PJzD7GUGyaPXECz0DdsIr9ASgLRKI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbhMxEB5VRQJ6QLSAWCjgA-VHaNWN7ax3DwgFQmgpVAgV0Zvl9dqAtCQhm6gqJ16DR-F1eBJm9o9EiN56TUarXXv-PnvmG4D7ohf7fpaa0CsuQykzFyaZyEMrEkVY2xlBjcJvD-O9D_L1cf94DX61vTBUVtn6xMpR5xNLZ-S7CAyoCZTLeNc3ZRHvhqNn028hTZCim9Z2nEatIgfu9AThW_l0f4h7vcP56OXRi72wmTAQWinkPHQmU0SMaTFr8D0liA4ukjLNklyYyKcmUZnLjcSoJrl3LuKW2xijonWxNHQWit7_giISd2pSH73qjnfoqUkvqkvthUgjupAm5EdsDnwlCFazAv6NCBtwaTGemtMTUxRLIW90Fa40uSob1Mq1CWtuvAUbSwyGW7DZ-IaSPWoIrB9fg4-Dju6TYU7MBsX3z-7LVzf7_eNnyYb1lRAb1NUHlVRVuMCqAZ1UulRpC6MxbUXJ6KSYvV8UrrwOR-exvDdgfTwZu5vATOy9MTbNlXQSIS_CvNQaaxObIsQxWQBP2gXVtiE3pxkbhUaQQ8uvl5c_gJ1OelqTevxH7jntTSdDVNzVD5PZJ91YtsZ8J3eJcj7lVir0hz0be_SbxguEvv00gIe0s5ocBr4SvnXd94AfRtRbeqBURUfAVQDbK5Jo6Hb171Y3dONoSv3XLAJ40OnLmV916-zn3IOLaFj6zf7hwW24jPYq6tbLbVifzxbuDuZg8-xupe0M9Dlb1x9BrEI8
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB6h7QF6AFpABArygV-hdDe2N45PKPxUFRIVQq2AU2Q7NlRNt6vNLoieeA1ejydh7DirXRAIiWsyiWx5ZjyfPfMNwD2W5W6spUqdoDzlXNu00KxODSuEx9pWMV8o_Pog3z_ir96P-2zCNqZVIhQ_Dk6aIshO0c2KYcaGlA49EwIdTmv39HM8TMpyKcNNHwKgjXyM4fgANo4O3pQffFO5_vMu4Z0hvPfXwh5_hT-tbUWBsf93v7wJFxeTqfr6RTXNysazdwV0P-Qu3-RkdzHXu-b8FzbH_5rTVbgcw1JSdnq0BRfsZBs2V8gKt2EruoGWPIpc1Y-vwbtyyexJMPwlZXP-yR6f2tmPb99b8qK7_SFll2gQpEKOAgm9OH2WUlAM4juyNS3xh8Lk7aKx7XU43Ht5-Hw_jb0aUsMZn6dWaeEpRg3GXy4TzBPrjTiXuqiZGjmpCqFtrTjGB5w6a0fUUJNjfGFszhVjN2AwOZvYm0BU7pxSRtaCW47oFhGdNMqYwkhEM0on8KRftcpEHnPfTqOpEM_4Na5W1ziB-0vpacff8Qe5Z14BljKedTs8OJt9rKIRVxja1LYQ1klquEDXl5ncoYtUjiHKHcsEHnr1qbxvwCHhqLsSB5yYZ9mqSiEC8wAVCeysSaJNm_XXvQJW0ae0FUJjXwZNeZ7Ag6VS_nVWt_5V8DZcQstkXZHlDgzms4W9g9HWXN-N9vQTg28hew
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assessment+for+Alzheimer%E2%80%99s+Disease+Advancement+Using+Classification+Models+with+Rules&rft.jtitle=Applied+sciences&rft.au=Thabtah%2C+Fadi&rft.au=Peebles%2C+David&rft.date=2023-11-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=13&rft.issue=22&rft.spage=12152&rft_id=info:doi/10.3390%2Fapp132212152&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon