Analytic resolution of time-domain half-space Green's functions for internal loads by a displacement potential-Laplace-Hankel-Cagniard transform method
A refined yet compact analytical formulation is presented for the time-domain elastodynamic response of a three-dimensional half-space subject to an arbitrary internal or surface force distribution. By integrating Laplace and Hankel transforms into a method of displacement potentials and Cagniard...
Saved in:
Published in | Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences Vol. 476; no. 2235; p. 20190610 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
England
The Royal Society Publishing
01.03.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 1364-5021 1471-2946 |
DOI | 10.1098/rspa.2019.0610 |
Cover
Abstract | A refined yet compact analytical formulation is presented for the time-domain elastodynamic response of a three-dimensional half-space subject to an arbitrary internal or surface force distribution. By integrating Laplace and Hankel transforms into a method of displacement potentials and Cagniard's inversion concept, it is shown that the solution can be derived in a straightforward manner for the generalized classical wave propagation problem. For the canonical case of a buried point load with a step time function, the response is proved to be naturally reducible with the aid of a parametrized Bessel function integral representation to six wave-group integrals on finite contours in the complex plane that stay away from all branch points and the Rayleigh pole except possibly at the starting point of the contours. On the latter occasions, the possible singularities of the integrals can be rigorously extracted by an extended method of asymptotic decomposition, rendering the residual numerical computation a simple exercise. With the new solution format, the arrival time of each wave group is derivable by simple criteria on the contour. Typical results for the time-domain response for an internal point force as well as the degenerate case of a surface point source are included for comparison and illustrations. |
---|---|
AbstractList | A refined yet compact analytical formulation is presented for the time-domain elastodynamic response of a three-dimensional half-space subject to an arbitrary internal or surface force distribution. By integrating Laplace and Hankel transforms into a method of displacement potentials and Cagniard's inversion concept, it is shown that the solution can be derived in a straightforward manner for the generalized classical wave propagation problem. For the canonical case of a buried point load with a step time function, the response is proved to be naturally reducible with the aid of a parametrized Bessel function integral representation to six wave-group integrals on finite contours in the complex plane that stay away from all branch points and the Rayleigh pole except possibly at the starting point of the contours. On the latter occasions, the possible singularities of the integrals can be rigorously extracted by an extended method of asymptotic decomposition, rendering the residual numerical computation a simple exercise. With the new solution format, the arrival time of each wave group is derivable by simple criteria on the contour. Typical results for the time-domain response for an internal point force as well as the degenerate case of a surface point source are included for comparison and illustrations. A refined yet compact analytical formulation is presented for the time-domain elastodynamic response of a three-dimensional half-space subject to an arbitrary internal or surface force distribution. By integrating Laplace and Hankel transforms into a method of displacement potentials and Cagniard's inversion concept, it is shown that the solution can be derived in a straightforward manner for the generalized classical wave propagation problem. For the canonical case of a buried point load with a step time function, the response is proved to be naturally reducible with the aid of a parametrized Bessel function integral representation to six wave-group integrals on finite contours in the complex plane that stay away from all branch points and the Rayleigh pole except possibly at the starting point of the contours. On the latter occasions, the possible singularities of the integrals can be rigorously extracted by an extended method of asymptotic decomposition, rendering the residual numerical computation a simple exercise. With the new solution format, the arrival time of each wave group is derivable by simple criteria on the contour. Typical results for the time-domain response for an internal point force as well as the degenerate case of a surface point source are included for comparison and illustrations.A refined yet compact analytical formulation is presented for the time-domain elastodynamic response of a three-dimensional half-space subject to an arbitrary internal or surface force distribution. By integrating Laplace and Hankel transforms into a method of displacement potentials and Cagniard's inversion concept, it is shown that the solution can be derived in a straightforward manner for the generalized classical wave propagation problem. For the canonical case of a buried point load with a step time function, the response is proved to be naturally reducible with the aid of a parametrized Bessel function integral representation to six wave-group integrals on finite contours in the complex plane that stay away from all branch points and the Rayleigh pole except possibly at the starting point of the contours. On the latter occasions, the possible singularities of the integrals can be rigorously extracted by an extended method of asymptotic decomposition, rendering the residual numerical computation a simple exercise. With the new solution format, the arrival time of each wave group is derivable by simple criteria on the contour. Typical results for the time-domain response for an internal point force as well as the degenerate case of a surface point source are included for comparison and illustrations. |
Author | Pak, Ronald Y. S. Bai, Xiaoyong |
AuthorAffiliation | Department of Civil, Environmental and Architectural Engineering, University of Colorado , Boulder, CO 80309-0428 , USA |
AuthorAffiliation_xml | – name: Department of Civil, Environmental and Architectural Engineering, University of Colorado , Boulder, CO 80309-0428 , USA |
Author_xml | – sequence: 1 givenname: Ronald Y. S. orcidid: 0000-0003-4529-5538 surname: Pak fullname: Pak, Ronald Y. S. organization: Department of Civil, Environmental and Architectural Engineering, University of Colorado, Boulder, CO 80309-0428, USA – sequence: 2 givenname: Xiaoyong surname: Bai fullname: Bai, Xiaoyong organization: Department of Civil, Environmental and Architectural Engineering, University of Colorado, Boulder, CO 80309-0428, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32269485$$D View this record in MEDLINE/PubMed |
BookMark | eNp1UUuLFDEQbmTFfejVo-Sml4xJOv26CMvg7goDXvQcqpPqnWg6aZPMwvwS_67pfYgKnqqo-h5FfefViQ8eq-o1ZxvOhv59TAtsBOPDhrWcPavOuOw4FYNsT0pft5I2TPDT6jylb4yxoem7F9VpLUQ7yL45q35eenDHbDWJmII7ZBs8CRPJdkZqwgzWkz24iRYfjeQ6Ivq3iUwHr1do6UIk1meMRYe4ACaR8UiAGJsWVygz-kyWkEux4OgO7qf0Bvx3dHQLt95CNCRH8KlozWTGvA_mZfV8Apfw1WO9qL5effyyvaG7z9eftpc7qmUtM0WpjRbYMTZ1DRtRTyh6XYuRjwyFGcxYi8kgSGnarimLARve16Mo34K25_VF9eFBdzmMMxpdzozg1BLtDPGoAlj198bbvboNd6rjohkGWQTePQrE8OOAKavZJo3OgcdwSErUfc9YU_MV-uZPr98mT2kUgHwA6BhSijgpbTOsfy7W1inO1Bq6WkNXa-hqDb3QNv_QnpT_Q_gFlE-0LQ |
CitedBy_id | crossref_primary_10_1061_IJGNAI_GMENG_8725 crossref_primary_10_2478_ama_2023_0012 crossref_primary_10_1098_rspa_2023_0515 |
Cites_doi | 10.1098/rsta.1904.0013 10.1115/1.3564708 10.1111/j.1365-246X.1974.tb02446.x 10.1115/1.3172945 10.1090/S0033-569X-07-01074-X 10.1111/j.1365-246X.1972.tb02347.x 10.1093/qjmam/54.1.13 10.1098/rspa.1993.0059 10.1016/j.enganabound.2018.04.009 10.1061/(ASCE)0733-9399(2002)128:4(449) 10.1016/0955-7997(91)90020-T 10.1007/s00466-013-0949-1 10.1007/BF02920068 10.1073/pnas.41.9.629 10.1785/BSSA0640020473 10.1098/rspa.1956.0055 10.1121/1.1908753 10.1111/j.1365-246X.1990.tb05684.x 10.1017/CBO9780511616877 10.1115/1.3644041 10.1063/1.1745385 10.1190/1.1438044 10.1098/rspa.2012.0462 10.1016/0165-2125(82)90014-2 10.1098/rsta.1949.0005 10.1073/pnas.41.7.469 10.1002/nme.1620371409 10.1093/imamat/2.4.299 10.1016/S0020-7683(98)00035-3 10.1002/eqe.1075 |
ContentType | Journal Article |
Copyright | 2020 The Author(s). 2020 The Author(s) 2020 |
Copyright_xml | – notice: 2020 The Author(s). – notice: 2020 The Author(s) 2020 |
DBID | AAYXX CITATION NPM 7X8 5PM |
DOI | 10.1098/rspa.2019.0610 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | CrossRef PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Mathematics |
DocumentTitleAlternate | Dynamic T-D Half-space Green's function |
EISSN | 1471-2946 |
ExternalDocumentID | PMC7125994 32269485 10_1098_rspa_2019_0610 |
Genre | Journal Article |
GrantInformation_xml | – fundername: ; grantid: N00014-11-1-0691 |
GroupedDBID | 18M 4.4 5VS AACGO AANCE AAWIL AAYXX ABBHK ABFAN ABPLY ABTLG ABXSQ ABYWD ACGFO ACHIC ACIPV ACIWK ACMTB ACNCT ACQIA ACRPL ACTMH ADBBV ADNMO ADODI ADQXQ ADULT AEUPB AEXZC AFVYC AGLNM AGPVY AGQPQ AIHAF AJZGM ALMA_UNASSIGNED_HOLDINGS ALMYZ ALRMG AQVQM AS~ BGBPD BTFSW CAG CITATION COF DCCCD DQDLB DSRWC EBS ECEWR EJD FEDTE FRP H13 HGD HQ3 HQ6 HTVGU IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JMS JPM JSG JST K-O KQ8 MRS MV1 NSAHA RNS ROL RRY SA0 TR2 V1E W8F WHG XSW YF5 ZCG ZE2 ~02 NPM 7X8 5PM |
ID | FETCH-LOGICAL-c434t-e4cdc2e700f750becfe28c32b1b0e2d9db32fdea44d675c329e5183b2061a6813 |
ISSN | 1364-5021 |
IngestDate | Thu Aug 21 18:15:22 EDT 2025 Fri Jul 11 13:29:17 EDT 2025 Thu Apr 03 07:08:44 EDT 2025 Tue Jul 01 04:05:49 EDT 2025 Thu Apr 24 23:05:51 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2235 |
Keywords | Laplace and Hankel transforms asymptotic decomposition Cagniard method Bessel function integral representation wave propagation half-space Green's function |
Language | English |
License | 2020 The Author(s). Published by the Royal Society. All rights reserved. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c434t-e4cdc2e700f750becfe28c32b1b0e2d9db32fdea44d675c329e5183b2061a6813 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 In memory of J. Miklowitz, E. Sternberg and J. K. Knowles. |
ORCID | 0000-0003-4529-5538 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/7125994 |
PMID | 32269485 |
PQID | 2388005314 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7125994 proquest_miscellaneous_2388005314 pubmed_primary_32269485 crossref_citationtrail_10_1098_rspa_2019_0610 crossref_primary_10_1098_rspa_2019_0610 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-03-01 |
PublicationDateYYYYMMDD | 2020-03-01 |
PublicationDate_xml | – month: 03 year: 2020 text: 2020-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences |
PublicationTitleAlternate | Proc Math Phys Eng Sci |
PublicationYear | 2020 |
Publisher | The Royal Society Publishing |
Publisher_xml | – name: The Royal Society Publishing |
References | e_1_3_6_30_2 e_1_3_6_31_2 Graff KF (e_1_3_6_38_2) 1975 e_1_3_6_10_2 Cagniard L (e_1_3_6_13_2) 1939 e_1_3_6_19_2 e_1_3_6_14_2 e_1_3_6_12_2 e_1_3_6_39_2 e_1_3_6_11_2 e_1_3_6_18_2 e_1_3_6_33_2 e_1_3_6_17_2 e_1_3_6_16_2 e_1_3_6_35_2 e_1_3_6_15_2 e_1_3_6_36_2 Kennett BLN (e_1_3_6_4_2) 2013 e_1_3_6_40_2 e_1_3_6_20_2 e_1_3_6_21_2 Aki K (e_1_3_6_2_2) 2002 e_1_3_6_5_2 Mooney HM (e_1_3_6_23_2) 1974; 64 e_1_3_6_9_2 e_1_3_6_8_2 Watson GN (e_1_3_6_37_2) 1944 e_1_3_6_6_2 Miklowitz J (e_1_3_6_3_2) 1978 Widder DV (e_1_3_6_34_2) 1941 Wolf JP (e_1_3_6_7_2) 1985 e_1_3_6_26_2 e_1_3_6_27_2 e_1_3_6_28_2 e_1_3_6_29_2 e_1_3_6_22_2 e_1_3_6_24_2 Gurtin ME (e_1_3_6_32_2) 1984 e_1_3_6_25_2 |
References_xml | – ident: e_1_3_6_12_2 doi: 10.1098/rsta.1904.0013 – volume-title: Quantitative seismology, theory and methods year: 2002 ident: e_1_3_6_2_2 – ident: e_1_3_6_22_2 doi: 10.1115/1.3564708 – volume-title: The linear theory of elasticity, mechanics of solids year: 1984 ident: e_1_3_6_32_2 – ident: e_1_3_6_25_2 doi: 10.1111/j.1365-246X.1974.tb02446.x – ident: e_1_3_6_29_2 doi: 10.1115/1.3172945 – volume-title: Wave motion in elastic solids year: 1975 ident: e_1_3_6_38_2 – ident: e_1_3_6_33_2 doi: 10.1090/S0033-569X-07-01074-X – volume-title: The Laplace transform year: 1941 ident: e_1_3_6_34_2 – ident: e_1_3_6_6_2 doi: 10.1111/j.1365-246X.1972.tb02347.x – ident: e_1_3_6_31_2 doi: 10.1093/qjmam/54.1.13 – volume-title: A treatise on the theory of Bessel functions year: 1944 ident: e_1_3_6_37_2 – ident: e_1_3_6_39_2 doi: 10.1098/rspa.1993.0059 – volume-title: Dynamic soil-structure interaction year: 1985 ident: e_1_3_6_7_2 – ident: e_1_3_6_11_2 doi: 10.1016/j.enganabound.2018.04.009 – ident: e_1_3_6_30_2 doi: 10.1061/(ASCE)0733-9399(2002)128:4(449) – ident: e_1_3_6_8_2 doi: 10.1016/0955-7997(91)90020-T – ident: e_1_3_6_10_2 doi: 10.1007/s00466-013-0949-1 – ident: e_1_3_6_15_2 doi: 10.1007/BF02920068 – ident: e_1_3_6_19_2 doi: 10.1073/pnas.41.9.629 – volume: 64 start-page: 473 year: 1974 ident: e_1_3_6_23_2 article-title: Some numerical solutions for Lamb's problem publication-title: Bull. Seism. Soc. Am. doi: 10.1785/BSSA0640020473 – ident: e_1_3_6_17_2 doi: 10.1098/rspa.1956.0055 – ident: e_1_3_6_20_2 doi: 10.1121/1.1908753 – ident: e_1_3_6_28_2 doi: 10.1111/j.1365-246X.1990.tb05684.x – ident: e_1_3_6_5_2 doi: 10.1017/CBO9780511616877 – ident: e_1_3_6_21_2 doi: 10.1115/1.3644041 – ident: e_1_3_6_35_2 doi: 10.1063/1.1745385 – ident: e_1_3_6_14_2 doi: 10.1190/1.1438044 – ident: e_1_3_6_24_2 doi: 10.1098/rspa.2012.0462 – ident: e_1_3_6_26_2 doi: 10.1016/0165-2125(82)90014-2 – ident: e_1_3_6_16_2 doi: 10.1098/rsta.1949.0005 – ident: e_1_3_6_18_2 doi: 10.1073/pnas.41.7.469 – ident: e_1_3_6_40_2 doi: 10.1002/nme.1620371409 – volume-title: Reflexion et refraction des ondes seismiques progressives year: 1939 ident: e_1_3_6_13_2 – volume-title: The theory of elastic waves and wave guides year: 1978 ident: e_1_3_6_3_2 – volume-title: Seismic wave propagation in stratified media year: 2013 ident: e_1_3_6_4_2 – ident: e_1_3_6_27_2 doi: 10.1093/imamat/2.4.299 – ident: e_1_3_6_36_2 doi: 10.1016/S0020-7683(98)00035-3 – ident: e_1_3_6_9_2 doi: 10.1002/eqe.1075 |
SSID | ssj0009587 |
Score | 2.3245263 |
Snippet | A refined yet compact analytical formulation is presented for the time-domain elastodynamic response of a three-dimensional half-space subject to an arbitrary... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 20190610 |
Title | Analytic resolution of time-domain half-space Green's functions for internal loads by a displacement potential-Laplace-Hankel-Cagniard transform method |
URI | https://www.ncbi.nlm.nih.gov/pubmed/32269485 https://www.proquest.com/docview/2388005314 https://pubmed.ncbi.nlm.nih.gov/PMC7125994 |
Volume | 476 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1471-2946 dateEnd: 20230930 omitProxy: true ssIdentifier: ssj0009587 issn: 1364-5021 databaseCode: KQ8 dateStart: 20150930 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKeIEHxMat3GQkxECVS5o4SfM4pk0VlAFSK5WnyHEcqOiSsqQP44_wO_iHnGM7lzIQg5coSqyk6vnic_Hn7xDyVCboiLOISVxb5xIbuSepz_zU9zLc_DjKsKD_9iSYzPnrhb_o9X50WEubKhnKb7_dV_I_VoVrYFfcJfsPlm0eChfgHOwLR7AwHC9lY60oYkSY6xfpNf_lqWJpcQpJP_ZKyRjMGvD5aoqNrs-jMzMMuEzT0Y0Q9GBViLTEeFTguo1ma2mqwLqokFMkVmwq9FU2EfkXtWKH4lO-xDpEVYe_tiN1N-R937jIsiYkmJqFJYwOBwdm01CtH6tbENiSiznH4r5qhRMH1m036QCEwYYljnXuwce2nPvKNNteLEVxXlgfbUsckM82HC87K3sBZ75jtlLX0zY3fWMsPiHK8bvzMG6RDwxh9oKTcCLc-HAGI5HaFw3rgdtq3Cfv4uP5dBrPjhazZ-uvDBuV4YK-7dpyhVx1wyDAphlvPow7Os-6J2Pzixud0PHL7Rdux0EXkptfObqdoGd2k9yw2Qo9MNDbJT2V75HrranKPbJrvUNJn1sJ8xe3yPcambRFJi0y2kEmbZFJNTL3S9rgkgKWaI1LqnFJk3MqaBeX9K-4pA0uqcHlbTI_PpodTphtAcIk93jFFJepdFXoOBmEtjDfZModS89NRomj3DRKE8_NUiU4TyHzhRuR8sFJJS78xSIYj7w7ZCcvcnWP0JGAZCeLRCTdkMvIiWQiHRX6SRgo4ciwT1htkFhafXxs07KKDU9jHKMBYzRgjAbsk_1m_Noow_xx5JPavjFM3rgiJ3JVbMrYRSkmdIO8T-4aezfPAk8boHRTn4RbSGgGoDD89p18-VkLxIeQtUQRv3-J9z4g19ov7iHZqc426hGE2VXyWAP7Jzeg3hY |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analytic+resolution+of+time-domain+half-space+Green%27s+functions+for+internal+loads+by+a+displacement+potential-Laplace-Hankel-Cagniard+transform+method&rft.jtitle=Proceedings+of+the+Royal+Society.+A%2C+Mathematical%2C+physical%2C+and+engineering+sciences&rft.au=Pak%2C+Ronald+Y+S&rft.au=Bai%2C+Xiaoyong&rft.date=2020-03-01&rft.issn=1364-5021&rft.volume=476&rft.issue=2235&rft.spage=20190610&rft_id=info:doi/10.1098%2Frspa.2019.0610&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1364-5021&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1364-5021&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1364-5021&client=summon |