Analytic resolution of time-domain half-space Green's functions for internal loads by a displacement potential-Laplace-Hankel-Cagniard transform method

A refined yet compact analytical formulation is presented for the time-domain elastodynamic response of a three-dimensional half-space subject to an arbitrary internal or surface force distribution. By integrating Laplace and Hankel transforms into a method of displacement potentials and Cagniard�...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the Royal Society. A, Mathematical, physical, and engineering sciences Vol. 476; no. 2235; p. 20190610
Main Authors Pak, Ronald Y. S., Bai, Xiaoyong
Format Journal Article
LanguageEnglish
Published England The Royal Society Publishing 01.03.2020
Subjects
Online AccessGet full text
ISSN1364-5021
1471-2946
DOI10.1098/rspa.2019.0610

Cover

Abstract A refined yet compact analytical formulation is presented for the time-domain elastodynamic response of a three-dimensional half-space subject to an arbitrary internal or surface force distribution. By integrating Laplace and Hankel transforms into a method of displacement potentials and Cagniard's inversion concept, it is shown that the solution can be derived in a straightforward manner for the generalized classical wave propagation problem. For the canonical case of a buried point load with a step time function, the response is proved to be naturally reducible with the aid of a parametrized Bessel function integral representation to six wave-group integrals on finite contours in the complex plane that stay away from all branch points and the Rayleigh pole except possibly at the starting point of the contours. On the latter occasions, the possible singularities of the integrals can be rigorously extracted by an extended method of asymptotic decomposition, rendering the residual numerical computation a simple exercise. With the new solution format, the arrival time of each wave group is derivable by simple criteria on the contour. Typical results for the time-domain response for an internal point force as well as the degenerate case of a surface point source are included for comparison and illustrations.
AbstractList A refined yet compact analytical formulation is presented for the time-domain elastodynamic response of a three-dimensional half-space subject to an arbitrary internal or surface force distribution. By integrating Laplace and Hankel transforms into a method of displacement potentials and Cagniard's inversion concept, it is shown that the solution can be derived in a straightforward manner for the generalized classical wave propagation problem. For the canonical case of a buried point load with a step time function, the response is proved to be naturally reducible with the aid of a parametrized Bessel function integral representation to six wave-group integrals on finite contours in the complex plane that stay away from all branch points and the Rayleigh pole except possibly at the starting point of the contours. On the latter occasions, the possible singularities of the integrals can be rigorously extracted by an extended method of asymptotic decomposition, rendering the residual numerical computation a simple exercise. With the new solution format, the arrival time of each wave group is derivable by simple criteria on the contour. Typical results for the time-domain response for an internal point force as well as the degenerate case of a surface point source are included for comparison and illustrations.
A refined yet compact analytical formulation is presented for the time-domain elastodynamic response of a three-dimensional half-space subject to an arbitrary internal or surface force distribution. By integrating Laplace and Hankel transforms into a method of displacement potentials and Cagniard's inversion concept, it is shown that the solution can be derived in a straightforward manner for the generalized classical wave propagation problem. For the canonical case of a buried point load with a step time function, the response is proved to be naturally reducible with the aid of a parametrized Bessel function integral representation to six wave-group integrals on finite contours in the complex plane that stay away from all branch points and the Rayleigh pole except possibly at the starting point of the contours. On the latter occasions, the possible singularities of the integrals can be rigorously extracted by an extended method of asymptotic decomposition, rendering the residual numerical computation a simple exercise. With the new solution format, the arrival time of each wave group is derivable by simple criteria on the contour. Typical results for the time-domain response for an internal point force as well as the degenerate case of a surface point source are included for comparison and illustrations.A refined yet compact analytical formulation is presented for the time-domain elastodynamic response of a three-dimensional half-space subject to an arbitrary internal or surface force distribution. By integrating Laplace and Hankel transforms into a method of displacement potentials and Cagniard's inversion concept, it is shown that the solution can be derived in a straightforward manner for the generalized classical wave propagation problem. For the canonical case of a buried point load with a step time function, the response is proved to be naturally reducible with the aid of a parametrized Bessel function integral representation to six wave-group integrals on finite contours in the complex plane that stay away from all branch points and the Rayleigh pole except possibly at the starting point of the contours. On the latter occasions, the possible singularities of the integrals can be rigorously extracted by an extended method of asymptotic decomposition, rendering the residual numerical computation a simple exercise. With the new solution format, the arrival time of each wave group is derivable by simple criteria on the contour. Typical results for the time-domain response for an internal point force as well as the degenerate case of a surface point source are included for comparison and illustrations.
Author Pak, Ronald Y. S.
Bai, Xiaoyong
AuthorAffiliation Department of Civil, Environmental and Architectural Engineering, University of Colorado , Boulder, CO 80309-0428 , USA
AuthorAffiliation_xml – name: Department of Civil, Environmental and Architectural Engineering, University of Colorado , Boulder, CO 80309-0428 , USA
Author_xml – sequence: 1
  givenname: Ronald Y. S.
  orcidid: 0000-0003-4529-5538
  surname: Pak
  fullname: Pak, Ronald Y. S.
  organization: Department of Civil, Environmental and Architectural Engineering, University of Colorado, Boulder, CO 80309-0428, USA
– sequence: 2
  givenname: Xiaoyong
  surname: Bai
  fullname: Bai, Xiaoyong
  organization: Department of Civil, Environmental and Architectural Engineering, University of Colorado, Boulder, CO 80309-0428, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32269485$$D View this record in MEDLINE/PubMed
BookMark eNp1UUuLFDEQbmTFfejVo-Sml4xJOv26CMvg7goDXvQcqpPqnWg6aZPMwvwS_67pfYgKnqqo-h5FfefViQ8eq-o1ZxvOhv59TAtsBOPDhrWcPavOuOw4FYNsT0pft5I2TPDT6jylb4yxoem7F9VpLUQ7yL45q35eenDHbDWJmII7ZBs8CRPJdkZqwgzWkz24iRYfjeQ6Ivq3iUwHr1do6UIk1meMRYe4ACaR8UiAGJsWVygz-kyWkEux4OgO7qf0Bvx3dHQLt95CNCRH8KlozWTGvA_mZfV8Apfw1WO9qL5effyyvaG7z9eftpc7qmUtM0WpjRbYMTZ1DRtRTyh6XYuRjwyFGcxYi8kgSGnarimLARve16Mo34K25_VF9eFBdzmMMxpdzozg1BLtDPGoAlj198bbvboNd6rjohkGWQTePQrE8OOAKavZJo3OgcdwSErUfc9YU_MV-uZPr98mT2kUgHwA6BhSijgpbTOsfy7W1inO1Bq6WkNXa-hqDb3QNv_QnpT_Q_gFlE-0LQ
CitedBy_id crossref_primary_10_1061_IJGNAI_GMENG_8725
crossref_primary_10_2478_ama_2023_0012
crossref_primary_10_1098_rspa_2023_0515
Cites_doi 10.1098/rsta.1904.0013
10.1115/1.3564708
10.1111/j.1365-246X.1974.tb02446.x
10.1115/1.3172945
10.1090/S0033-569X-07-01074-X
10.1111/j.1365-246X.1972.tb02347.x
10.1093/qjmam/54.1.13
10.1098/rspa.1993.0059
10.1016/j.enganabound.2018.04.009
10.1061/(ASCE)0733-9399(2002)128:4(449)
10.1016/0955-7997(91)90020-T
10.1007/s00466-013-0949-1
10.1007/BF02920068
10.1073/pnas.41.9.629
10.1785/BSSA0640020473
10.1098/rspa.1956.0055
10.1121/1.1908753
10.1111/j.1365-246X.1990.tb05684.x
10.1017/CBO9780511616877
10.1115/1.3644041
10.1063/1.1745385
10.1190/1.1438044
10.1098/rspa.2012.0462
10.1016/0165-2125(82)90014-2
10.1098/rsta.1949.0005
10.1073/pnas.41.7.469
10.1002/nme.1620371409
10.1093/imamat/2.4.299
10.1016/S0020-7683(98)00035-3
10.1002/eqe.1075
ContentType Journal Article
Copyright 2020 The Author(s).
2020 The Author(s) 2020
Copyright_xml – notice: 2020 The Author(s).
– notice: 2020 The Author(s) 2020
DBID AAYXX
CITATION
NPM
7X8
5PM
DOI 10.1098/rspa.2019.0610
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList CrossRef
PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Mathematics
DocumentTitleAlternate Dynamic T-D Half-space Green's function
EISSN 1471-2946
ExternalDocumentID PMC7125994
32269485
10_1098_rspa_2019_0610
Genre Journal Article
GrantInformation_xml – fundername: ;
  grantid: N00014-11-1-0691
GroupedDBID 18M
4.4
5VS
AACGO
AANCE
AAWIL
AAYXX
ABBHK
ABFAN
ABPLY
ABTLG
ABXSQ
ABYWD
ACGFO
ACHIC
ACIPV
ACIWK
ACMTB
ACNCT
ACQIA
ACRPL
ACTMH
ADBBV
ADNMO
ADODI
ADQXQ
ADULT
AEUPB
AEXZC
AFVYC
AGLNM
AGPVY
AGQPQ
AIHAF
AJZGM
ALMA_UNASSIGNED_HOLDINGS
ALMYZ
ALRMG
AQVQM
AS~
BGBPD
BTFSW
CAG
CITATION
COF
DCCCD
DQDLB
DSRWC
EBS
ECEWR
EJD
FEDTE
FRP
H13
HGD
HQ3
HQ6
HTVGU
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JMS
JPM
JSG
JST
K-O
KQ8
MRS
MV1
NSAHA
RNS
ROL
RRY
SA0
TR2
V1E
W8F
WHG
XSW
YF5
ZCG
ZE2
~02
NPM
7X8
5PM
ID FETCH-LOGICAL-c434t-e4cdc2e700f750becfe28c32b1b0e2d9db32fdea44d675c329e5183b2061a6813
ISSN 1364-5021
IngestDate Thu Aug 21 18:15:22 EDT 2025
Fri Jul 11 13:29:17 EDT 2025
Thu Apr 03 07:08:44 EDT 2025
Tue Jul 01 04:05:49 EDT 2025
Thu Apr 24 23:05:51 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2235
Keywords Laplace and Hankel transforms
asymptotic decomposition
Cagniard method
Bessel function integral representation
wave propagation
half-space Green's function
Language English
License 2020 The Author(s).
Published by the Royal Society. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c434t-e4cdc2e700f750becfe28c32b1b0e2d9db32fdea44d675c329e5183b2061a6813
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
In memory of J. Miklowitz, E. Sternberg and J. K. Knowles.
ORCID 0000-0003-4529-5538
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/7125994
PMID 32269485
PQID 2388005314
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7125994
proquest_miscellaneous_2388005314
pubmed_primary_32269485
crossref_citationtrail_10_1098_rspa_2019_0610
crossref_primary_10_1098_rspa_2019_0610
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-03-01
PublicationDateYYYYMMDD 2020-03-01
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences
PublicationTitleAlternate Proc Math Phys Eng Sci
PublicationYear 2020
Publisher The Royal Society Publishing
Publisher_xml – name: The Royal Society Publishing
References e_1_3_6_30_2
e_1_3_6_31_2
Graff KF (e_1_3_6_38_2) 1975
e_1_3_6_10_2
Cagniard L (e_1_3_6_13_2) 1939
e_1_3_6_19_2
e_1_3_6_14_2
e_1_3_6_12_2
e_1_3_6_39_2
e_1_3_6_11_2
e_1_3_6_18_2
e_1_3_6_33_2
e_1_3_6_17_2
e_1_3_6_16_2
e_1_3_6_35_2
e_1_3_6_15_2
e_1_3_6_36_2
Kennett BLN (e_1_3_6_4_2) 2013
e_1_3_6_40_2
e_1_3_6_20_2
e_1_3_6_21_2
Aki K (e_1_3_6_2_2) 2002
e_1_3_6_5_2
Mooney HM (e_1_3_6_23_2) 1974; 64
e_1_3_6_9_2
e_1_3_6_8_2
Watson GN (e_1_3_6_37_2) 1944
e_1_3_6_6_2
Miklowitz J (e_1_3_6_3_2) 1978
Widder DV (e_1_3_6_34_2) 1941
Wolf JP (e_1_3_6_7_2) 1985
e_1_3_6_26_2
e_1_3_6_27_2
e_1_3_6_28_2
e_1_3_6_29_2
e_1_3_6_22_2
e_1_3_6_24_2
Gurtin ME (e_1_3_6_32_2) 1984
e_1_3_6_25_2
References_xml – ident: e_1_3_6_12_2
  doi: 10.1098/rsta.1904.0013
– volume-title: Quantitative seismology, theory and methods
  year: 2002
  ident: e_1_3_6_2_2
– ident: e_1_3_6_22_2
  doi: 10.1115/1.3564708
– volume-title: The linear theory of elasticity, mechanics of solids
  year: 1984
  ident: e_1_3_6_32_2
– ident: e_1_3_6_25_2
  doi: 10.1111/j.1365-246X.1974.tb02446.x
– ident: e_1_3_6_29_2
  doi: 10.1115/1.3172945
– volume-title: Wave motion in elastic solids
  year: 1975
  ident: e_1_3_6_38_2
– ident: e_1_3_6_33_2
  doi: 10.1090/S0033-569X-07-01074-X
– volume-title: The Laplace transform
  year: 1941
  ident: e_1_3_6_34_2
– ident: e_1_3_6_6_2
  doi: 10.1111/j.1365-246X.1972.tb02347.x
– ident: e_1_3_6_31_2
  doi: 10.1093/qjmam/54.1.13
– volume-title: A treatise on the theory of Bessel functions
  year: 1944
  ident: e_1_3_6_37_2
– ident: e_1_3_6_39_2
  doi: 10.1098/rspa.1993.0059
– volume-title: Dynamic soil-structure interaction
  year: 1985
  ident: e_1_3_6_7_2
– ident: e_1_3_6_11_2
  doi: 10.1016/j.enganabound.2018.04.009
– ident: e_1_3_6_30_2
  doi: 10.1061/(ASCE)0733-9399(2002)128:4(449)
– ident: e_1_3_6_8_2
  doi: 10.1016/0955-7997(91)90020-T
– ident: e_1_3_6_10_2
  doi: 10.1007/s00466-013-0949-1
– ident: e_1_3_6_15_2
  doi: 10.1007/BF02920068
– ident: e_1_3_6_19_2
  doi: 10.1073/pnas.41.9.629
– volume: 64
  start-page: 473
  year: 1974
  ident: e_1_3_6_23_2
  article-title: Some numerical solutions for Lamb's problem
  publication-title: Bull. Seism. Soc. Am.
  doi: 10.1785/BSSA0640020473
– ident: e_1_3_6_17_2
  doi: 10.1098/rspa.1956.0055
– ident: e_1_3_6_20_2
  doi: 10.1121/1.1908753
– ident: e_1_3_6_28_2
  doi: 10.1111/j.1365-246X.1990.tb05684.x
– ident: e_1_3_6_5_2
  doi: 10.1017/CBO9780511616877
– ident: e_1_3_6_21_2
  doi: 10.1115/1.3644041
– ident: e_1_3_6_35_2
  doi: 10.1063/1.1745385
– ident: e_1_3_6_14_2
  doi: 10.1190/1.1438044
– ident: e_1_3_6_24_2
  doi: 10.1098/rspa.2012.0462
– ident: e_1_3_6_26_2
  doi: 10.1016/0165-2125(82)90014-2
– ident: e_1_3_6_16_2
  doi: 10.1098/rsta.1949.0005
– ident: e_1_3_6_18_2
  doi: 10.1073/pnas.41.7.469
– ident: e_1_3_6_40_2
  doi: 10.1002/nme.1620371409
– volume-title: Reflexion et refraction des ondes seismiques progressives
  year: 1939
  ident: e_1_3_6_13_2
– volume-title: The theory of elastic waves and wave guides
  year: 1978
  ident: e_1_3_6_3_2
– volume-title: Seismic wave propagation in stratified media
  year: 2013
  ident: e_1_3_6_4_2
– ident: e_1_3_6_27_2
  doi: 10.1093/imamat/2.4.299
– ident: e_1_3_6_36_2
  doi: 10.1016/S0020-7683(98)00035-3
– ident: e_1_3_6_9_2
  doi: 10.1002/eqe.1075
SSID ssj0009587
Score 2.3245263
Snippet A refined yet compact analytical formulation is presented for the time-domain elastodynamic response of a three-dimensional half-space subject to an arbitrary...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 20190610
Title Analytic resolution of time-domain half-space Green's functions for internal loads by a displacement potential-Laplace-Hankel-Cagniard transform method
URI https://www.ncbi.nlm.nih.gov/pubmed/32269485
https://www.proquest.com/docview/2388005314
https://pubmed.ncbi.nlm.nih.gov/PMC7125994
Volume 476
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1471-2946
  dateEnd: 20230930
  omitProxy: true
  ssIdentifier: ssj0009587
  issn: 1364-5021
  databaseCode: KQ8
  dateStart: 20150930
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKeIEHxMat3GQkxECVS5o4SfM4pk0VlAFSK5WnyHEcqOiSsqQP44_wO_iHnGM7lzIQg5coSqyk6vnic_Hn7xDyVCboiLOISVxb5xIbuSepz_zU9zLc_DjKsKD_9iSYzPnrhb_o9X50WEubKhnKb7_dV_I_VoVrYFfcJfsPlm0eChfgHOwLR7AwHC9lY60oYkSY6xfpNf_lqWJpcQpJP_ZKyRjMGvD5aoqNrs-jMzMMuEzT0Y0Q9GBViLTEeFTguo1ma2mqwLqokFMkVmwq9FU2EfkXtWKH4lO-xDpEVYe_tiN1N-R937jIsiYkmJqFJYwOBwdm01CtH6tbENiSiznH4r5qhRMH1m036QCEwYYljnXuwce2nPvKNNteLEVxXlgfbUsckM82HC87K3sBZ75jtlLX0zY3fWMsPiHK8bvzMG6RDwxh9oKTcCLc-HAGI5HaFw3rgdtq3Cfv4uP5dBrPjhazZ-uvDBuV4YK-7dpyhVx1wyDAphlvPow7Os-6J2Pzixud0PHL7Rdux0EXkptfObqdoGd2k9yw2Qo9MNDbJT2V75HrranKPbJrvUNJn1sJ8xe3yPcambRFJi0y2kEmbZFJNTL3S9rgkgKWaI1LqnFJk3MqaBeX9K-4pA0uqcHlbTI_PpodTphtAcIk93jFFJepdFXoOBmEtjDfZModS89NRomj3DRKE8_NUiU4TyHzhRuR8sFJJS78xSIYj7w7ZCcvcnWP0JGAZCeLRCTdkMvIiWQiHRX6SRgo4ciwT1htkFhafXxs07KKDU9jHKMBYzRgjAbsk_1m_Noow_xx5JPavjFM3rgiJ3JVbMrYRSkmdIO8T-4aezfPAk8boHRTn4RbSGgGoDD89p18-VkLxIeQtUQRv3-J9z4g19ov7iHZqc426hGE2VXyWAP7Jzeg3hY
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analytic+resolution+of+time-domain+half-space+Green%27s+functions+for+internal+loads+by+a+displacement+potential-Laplace-Hankel-Cagniard+transform+method&rft.jtitle=Proceedings+of+the+Royal+Society.+A%2C+Mathematical%2C+physical%2C+and+engineering+sciences&rft.au=Pak%2C+Ronald+Y+S&rft.au=Bai%2C+Xiaoyong&rft.date=2020-03-01&rft.issn=1364-5021&rft.volume=476&rft.issue=2235&rft.spage=20190610&rft_id=info:doi/10.1098%2Frspa.2019.0610&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1364-5021&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1364-5021&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1364-5021&client=summon