A Diffusion Tensor Imaging Tractography Algorithm Based on Navier-Stokes Fluid Mechanics
We introduce a fluid mechanics based tractography method for estimating the most likely connection paths between points in diffusion tensor imaging (DTI) volumes. We customize the Navier-Stokes equations to include information from the diffusion tensor and simulate an artificial fluid flow through t...
Saved in:
| Published in | IEEE transactions on medical imaging Vol. 28; no. 3; pp. 348 - 360 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
IEEE
01.03.2009
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0278-0062 1558-254X 1558-254X |
| DOI | 10.1109/TMI.2008.2004403 |
Cover
| Abstract | We introduce a fluid mechanics based tractography method for estimating the most likely connection paths between points in diffusion tensor imaging (DTI) volumes. We customize the Navier-Stokes equations to include information from the diffusion tensor and simulate an artificial fluid flow through the DTI image volume. We then estimate the most likely connection paths between points in the DTI volume using a metric derived from the fluid velocity vector field. We validate our algorithm using digital DTI phantoms based on a helical shape. Our method segmented the structure of the phantom with less distortion than was produced using implementations of heat-based partial differential equation (PDE) and streamline based methods. In addition, our method was able to successfully segment divergent and crossing fiber geometries, closely following the ideal path through a digital helical phantom in the presence of multiple crossing tracts. To assess the performance of our algorithm on anatomical data, we applied our method to DTI volumes from normal human subjects. Our method produced paths that were consistent with both known anatomy and directionally encoded color images of the DTI dataset. |
|---|---|
| AbstractList | We introduce a fluid mechanics based tractography method for estimating the most likely connection paths between points in diffusion tensor imaging (DTI) volumes. We customize the Navier-Stokes equations to include information from the diffusion tensor and simulate an artificial fluid flow through the DTI image volume. We then estimate the most likely connection paths between points in the DTI volume using a metric derived from the fluid velocity vector field. We validate our algorithm using digital DTI phantoms based on a helical shape. Our method segmented the structure of the phantom with less distortion than was produced using implementations of heat-based partial differential equation (PDE) and streamline based methods. In addition, our method was able to successfully segment divergent and crossing fiber geometries, closely following the ideal path through a digital helical phantom in the presence of multiple crossing tracts. To assess the performance of our algorithm on anatomical data, we applied our method to DTI volumes from normal human subjects. Our method produced paths that were consistent with both known anatomy and directionally encoded color images of the DTI dataset. We introduce a fluid mechanics based tractography method for estimating the most likely connection paths between points in diffusion tensor imaging (DTI) volumes. We customize the Navier-Stokes equations to include information from the diffusion tensor and simulate an artificial fluid flow through the DTI image volume. We then estimate the most likely connection paths between points in the DTI volume using a metric derived from the fluid velocity vector field. We validate our algorithm using digital DTI phantoms based on a helical shape. Our method segmented the structure of the phantom with less distortion than was produced using implementations of heat-based partial differential equation (PDE) and streamline based methods. In addition, our method was able to successfully segment divergent and crossing fiber geometries, closely following the ideal path through a digital helical phantom in the presence of multiple crossing tracts. To assess the performance of our algorithm on anatomical data, we applied our method to DTI volumes from normal human subjects. Our method produced paths that were consistent with both known anatomy and directionally encoded color images of the DTI dataset.We introduce a fluid mechanics based tractography method for estimating the most likely connection paths between points in diffusion tensor imaging (DTI) volumes. We customize the Navier-Stokes equations to include information from the diffusion tensor and simulate an artificial fluid flow through the DTI image volume. We then estimate the most likely connection paths between points in the DTI volume using a metric derived from the fluid velocity vector field. We validate our algorithm using digital DTI phantoms based on a helical shape. Our method segmented the structure of the phantom with less distortion than was produced using implementations of heat-based partial differential equation (PDE) and streamline based methods. In addition, our method was able to successfully segment divergent and crossing fiber geometries, closely following the ideal path through a digital helical phantom in the presence of multiple crossing tracts. To assess the performance of our algorithm on anatomical data, we applied our method to DTI volumes from normal human subjects. Our method produced paths that were consistent with both known anatomy and directionally encoded color images of the DTI dataset. We introduce a fluid mechanics based tractography method for estimating the most likely connection paths between points in diffusion tensor imaging (DTI) volumes. We customize the Navier-Stokes equations to include information from the diffusion tensor and simulate an artificial fluid flow through the DTI image volume. We then estimate the most likely connection paths between points in the DTI volume using a metric derived from the fluid velocity vector field. We validate our algorithm using digital DTI phantoms based on a helical shape. Our method segmented the structure of the phantom with less distortion than was produced using implementations of heat-based partial differential equation (PDE) and streamline based methods. In addition, our method was able to successfully segment divergent and crossing fiber geometries, closely following the ideal path through a digital helical phantom in the presence of multiple crossing tracts. To assess the performance of our algorithm on anatomical data, we applied our method to DTI volumes from normal human subjects. Our method produced paths that were consistent with both known anatomy and directionally encoded color (DEC) images of the DTI dataset. We introduce a fluid mechanics based tractography method for estimating the most likely connection paths between points in diffusion tensor imaging (DTI) volumes. We customize the Navier-Stokes equations to include information from the diffusion [abstract truncated by publisher]. |
| Author | Narr, K.L. Hageman, N.S. Toga, A.W. Shattuck, D.W. |
| Author_xml | – sequence: 1 givenname: N.S. surname: Hageman fullname: Hageman, N.S. organization: Lab. of Neuroimaging, Univ. of California Los Angeles (UCLA), Los Angeles, CA – sequence: 2 givenname: A.W. surname: Toga fullname: Toga, A.W. organization: Dept. of Neurology, Univ. of California Los Angeles (UCLA), Los Angeles, CA – sequence: 3 givenname: K.L. surname: Narr fullname: Narr, K.L. organization: Lab. of Neuroimaging, Univ. of California Los Angeles (UCLA), Los Angeles, CA – sequence: 4 givenname: D.W. surname: Shattuck fullname: Shattuck, D.W. organization: Lab. of Neuroimaging, Univ. of California Los Angeles (UCLA), Los Angeles, CA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/19244007$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkk1vEzEQhi1URNPAHQkJrTjAacv4a9e-IIWWQqQWDgSpN8t47cRldx3s3aL8-zpK1EKE4GIf_LwjzzNzgo760FuEnmM4xRjk28XV_JQAiO3BGNBHaII5FyXh7PoITYDUogSoyDE6SekGADMO8gk6xpJkHOoJup4V5965MfnQFwvbpxCLeaeXvl8Wi6jNEJZRr1ebYtYuQ_TDqive62SbIuOf9a23sfw6hB82FRft6JviypqV7r1JT9Fjp9tkn-3vKfp28WFx9qm8_PJxfja7LA2jbCiNdFbUklMgFIRlVNQEC2qcBO0MrYgjsjEcWyGlqxojWQUWHOONoFZLR6cI7-qO_Vpvfum2VevoOx03CoPaWlJD59XWktpbypl3u8x6_N7Zxth-iPohF7RXf770fqWW4VaRuob87Vzgzb5ADD9HmwbV-WRs2-rehjEpUdU15YRAJl__k6wqWUkh2H9BAhyqim8__-oAvAlj7LNjJXjNgeJsc4pe_t7hg5L94DNQ7QATQ0rROmX8oIe8Bblh3967yxt26A4Ogoe6_xJ5sYt4a-09ngeJWW7oDgDS2Lo |
| CODEN | ITMID4 |
| CitedBy_id | crossref_primary_10_1109_TBME_2011_2139210 crossref_primary_10_1002_jmri_23870 crossref_primary_10_1016_j_neuroimage_2009_12_027 crossref_primary_10_1016_j_bspc_2017_11_008 crossref_primary_10_1109_JSEN_2023_3279069 crossref_primary_10_1214_17_EJS1382 crossref_primary_10_1016_j_cag_2021_08_010 crossref_primary_10_1016_j_neuroimage_2009_05_013 crossref_primary_10_1109_TMI_2013_2257179 crossref_primary_10_1016_j_neuroimage_2009_10_001 crossref_primary_10_1016_j_neuroimage_2018_06_071 crossref_primary_10_3174_ajnr_A2041 crossref_primary_10_1007_s00204_021_03213_x crossref_primary_10_1007_s10237_018_1018_7 crossref_primary_10_1007_s11042_022_12887_z crossref_primary_10_1016_j_amc_2018_09_051 crossref_primary_10_1109_TIP_2010_2048614 crossref_primary_10_1089_brain_2013_0143 crossref_primary_10_1109_TPAMI_2012_184 crossref_primary_10_1016_j_neuroimage_2017_12_039 crossref_primary_10_1016_j_media_2011_01_003 |
| Cites_doi | 10.1002/jmri.10350 10.1002/nbm.782 10.1016/j.neuroimage.2004.08.050 10.1006/nimg.2001.1052 10.1016/j.neuroimage.2005.09.027 10.1002/1522-2594(200010)44:4<625::AID-MRM17>3.0.CO;2-O 10.1016/0021-9991(88)90002-2 10.1073/pnas.96.18.10422 10.1016/j.neuroimage.2005.05.014 10.1002/mrm.10209 10.1109/42.552054 10.1002/mrm.10609 10.1006/nimg.2000.0730 10.1006/nimg.2002.1055 10.1002/mrm.10331 10.1016/S0165-1684(98)00140-6 10.1002/mrm.1125 10.1007/978-3-540-45087-0_57 10.1002/mrm.1910340618 10.1002/mrm.10266 10.1016/S1053-8119(03)00277-5 10.1002/mrm.1315 10.1016/S1361-8415(02)00054-3 10.1002/mrm.10074 10.1007/s11263-006-6855-7 10.1016/j.neuroimage.2004.07.037 10.1006/jmrb.1994.1037 10.1109/ISBI.2006.1625037 10.1109/83.661190 10.1002/nbm.779 10.1016/0730-725X(94)92538-0 10.1002/(SICI)1522-2594(199907)42:1<37::AID-MRM7>3.0.CO;2-O 10.1016/S1053-8119(03)00236-2 10.1073/pnas.252249999 10.1006/jmrb.1996.0086 10.1097/00004728-199801000-00027 10.1109/TMI.2002.1009386 10.1002/(SICI)1522-2594(199912)42:6<1123::AID-MRM17>3.0.CO;2-H 10.1016/S0730-725X(99)00082-X 10.1016/j.neuroimage.2006.01.028 10.1002/hbm.10102 10.1002/1531-8249(199902)45:2<265::AID-ANA21>3.0.CO;2-3 10.1016/S1053-8119(03)00142-3 10.1016/S0006-3495(01)76081-X 10.1109/83.661186 10.1016/j.media.2005.05.008 10.1148/radiology.217.3.r00nv43897 10.1002/mrm.1105 10.1109/TMI.2007.906785 10.1109/TMI.2005.852049 10.1148/radiology.201.3.8939209 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009 |
| DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 5PM ADTOC UNPAY |
| DOI | 10.1109/TMI.2008.2004403 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
| DatabaseTitleList | Engineering Research Database MEDLINE - Academic Engineering Research Database MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Engineering |
| EISSN | 1558-254X |
| EndPage | 360 |
| ExternalDocumentID | oai:pubmedcentral.nih.gov:2770434 PMC2770434 2295557691 19244007 10_1109_TMI_2008_2004403 4601465 |
| Genre | orig-research Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NCRR NIH HHS grantid: U54 RR021813 – fundername: NCRR NIH HHS grantid: P41 RR013642 – fundername: NIBIB NIH HHS grantid: U54 EB005149 – fundername: NCRR NIH HHS grantid: 5 P41 RR013642 – fundername: National Center for Research Resources : NCRR grantid: U54 RR021813-01 || RR – fundername: National Institute of Biomedical Imaging and Bioengineering : NIBIB grantid: U54 EB005149-04 || EB – fundername: National Center for Research Resources : NCRR grantid: P41 RR013642-11 || RR |
| GroupedDBID | --- -DZ -~X .GJ 0R~ 29I 4.4 53G 5GY 5RE 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT ACPRK AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 VH1 AAYXX CITATION CGR CUY CVF ECM EIF NPM RIG 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c434t-c9fe8795302308e43872183cf90afc362f29dc51e899f6dc9460e0f45d83ea9f3 |
| IEDL.DBID | RIE |
| ISSN | 0278-0062 1558-254X |
| IngestDate | Sun Oct 26 03:20:58 EDT 2025 Tue Sep 30 16:48:43 EDT 2025 Tue Oct 07 11:08:13 EDT 2025 Thu Oct 02 05:01:29 EDT 2025 Tue Oct 07 09:44:11 EDT 2025 Sun Jun 29 14:36:10 EDT 2025 Mon Jul 21 05:28:49 EDT 2025 Wed Oct 01 03:55:17 EDT 2025 Thu Apr 24 22:57:04 EDT 2025 Tue Aug 26 16:47:41 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c434t-c9fe8795302308e43872183cf90afc362f29dc51e899f6dc9460e0f45d83ea9f3 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/2770434 |
| PMID | 19244007 |
| PQID | 857503195 |
| PQPubID | 23462 |
| PageCount | 13 |
| ParticipantIDs | crossref_citationtrail_10_1109_TMI_2008_2004403 crossref_primary_10_1109_TMI_2008_2004403 pubmedcentral_primary_oai_pubmedcentral_nih_gov_2770434 unpaywall_primary_10_1109_tmi_2008_2004403 proquest_miscellaneous_867735220 ieee_primary_4601465 proquest_miscellaneous_20506653 proquest_journals_857503195 pubmed_primary_19244007 proquest_miscellaneous_66969884 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2009-03-01 |
| PublicationDateYYYYMMDD | 2009-03-01 |
| PublicationDate_xml | – month: 03 year: 2009 text: 2009-03-01 day: 01 |
| PublicationDecade | 2000 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: New York |
| PublicationTitle | IEEE transactions on medical imaging |
| PublicationTitleAbbrev | TMI |
| PublicationTitleAlternate | IEEE Trans Med Imaging |
| PublicationYear | 2009 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref57 ref13 ref56 ref12 ref15 ref58 ref14 ref53 ref52 ref55 ref11 ref17 ref16 batchelor (ref42) 2001 ref19 ref18 campbell (ref33) 2004 bjornemo (ref25) 2002 conturo (ref10) 1999; 96 thomas (ref49) 1949 tournier (ref62) 2004; 23 ref50 ref46 ref45 ref47 o'donnell (ref41) 2002 pierpaoli (ref54) 1996; 201 xu (ref51) 1998; 71 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref34 ref37 ref36 ref31 gembris (ref43) 2001 ref30 ref32 ref2 ref1 ref39 ref38 parker (ref35) 2000 nolle (ref59) 2002 friman (ref28) 2005 ref24 batchelor (ref44) 2002; 10 ref23 ref26 ref20 ref22 ref21 ref27 ref29 versteeg (ref48) 1995 ref60 ref61 |
| References_xml | – ident: ref24 doi: 10.1002/jmri.10350 – year: 1949 ident: ref49 publication-title: Elliptic problems in linear difference equations over a network – ident: ref2 doi: 10.1002/nbm.782 – ident: ref31 doi: 10.1016/j.neuroimage.2004.08.050 – ident: ref23 doi: 10.1006/nimg.2001.1052 – start-page: 107 year: 2005 ident: ref28 article-title: uncertainty in white matter fiber tractography publication-title: MICCAI 2005 – ident: ref39 doi: 10.1016/j.neuroimage.2005.09.027 – ident: ref9 doi: 10.1002/1522-2594(200010)44:4<625::AID-MRM17>3.0.CO;2-O – ident: ref32 doi: 10.1016/0021-9991(88)90002-2 – volume: 96 start-page: 10422 year: 1999 ident: ref10 article-title: tracking neuronal fiber pathways in the living human brain publication-title: Proc Nat Acad Sci USA doi: 10.1073/pnas.96.18.10422 – ident: ref36 doi: 10.1016/j.neuroimage.2005.05.014 – ident: ref60 doi: 10.1002/mrm.10209 – ident: ref57 doi: 10.1109/42.552054 – ident: ref30 doi: 10.1002/mrm.10609 – year: 1995 ident: ref48 publication-title: An Introduction to Computational Fluid Dynamics The Finite Volume Method – start-page: 459 year: 2002 ident: ref41 article-title: new approaches to estimation of white matter connectivity in diffusion tensor mri: elliptic pdes and geodesies in a tensor-warped space publication-title: MICCAI 2002 – ident: ref56 doi: 10.1006/nimg.2000.0730 – ident: ref18 doi: 10.1006/nimg.2002.1055 – year: 2002 ident: ref59 publication-title: The Human Brain An Introduction to its Functional Anatomy – ident: ref29 doi: 10.1002/mrm.10331 – volume: 71 start-page: 131 year: 1998 ident: ref51 article-title: generalized gradient vector flow external forces for active contours publication-title: Signal Process doi: 10.1016/S0165-1684(98)00140-6 – ident: ref61 doi: 10.1002/mrm.1125 – ident: ref26 doi: 10.1007/978-3-540-45087-0_57 – ident: ref55 doi: 10.1002/mrm.1910340618 – start-page: 435 year: 2002 ident: ref25 article-title: regularized stochastic white matter tractography using diffusion tensor mri publication-title: MICCAI 2002 – start-page: 121 year: 2001 ident: ref42 article-title: study of connectivity in the brain using the full diffusion tensor from mri publication-title: IPMI 2001 – ident: ref19 doi: 10.1002/mrm.10266 – ident: ref14 doi: 10.1016/S1053-8119(03)00277-5 – start-page: 1277 year: 2004 ident: ref33 article-title: comparison of flow- and streamline-based fibre tracking algorithms using an anisotropic diffusion phantom publication-title: Proc Int Soc Magn Reson Med 12th Scientific Meeting Exhibition – ident: ref15 doi: 10.1002/mrm.1315 – ident: ref53 doi: 10.1016/S1361-8415(02)00054-3 – ident: ref3 doi: 10.1002/mrm.10074 – ident: ref27 doi: 10.1007/s11263-006-6855-7 – volume: 23 start-page: 1176 year: 2004 ident: ref62 article-title: direct estimation of the fiber orientation density function from diffusion- weighted mri data using spherical deconvolution publication-title: NeuroImage doi: 10.1016/j.neuroimage.2004.07.037 – ident: ref1 doi: 10.1006/jmrb.1994.1037 – ident: ref47 doi: 10.1109/ISBI.2006.1625037 – ident: ref50 doi: 10.1109/83.661190 – ident: ref16 doi: 10.1002/nbm.779 – ident: ref5 doi: 10.1016/0730-725X(94)92538-0 – ident: ref11 doi: 10.1002/(SICI)1522-2594(199907)42:1<37::AID-MRM7>3.0.CO;2-O – ident: ref38 doi: 10.1016/S1053-8119(03)00236-2 – start-page: 85 year: 2000 ident: ref35 article-title: tracing fiber tracts using fast marching publication-title: Proc Int Soc Magn Reson Med – ident: ref4 doi: 10.1073/pnas.252249999 – ident: ref7 doi: 10.1006/jmrb.1996.0086 – ident: ref58 doi: 10.1097/00004728-199801000-00027 – ident: ref34 doi: 10.1109/TMI.2002.1009386 – ident: ref12 doi: 10.1002/(SICI)1522-2594(199912)42:6<1123::AID-MRM17>3.0.CO;2-H – ident: ref6 doi: 10.1016/S0730-725X(99)00082-X – ident: ref20 doi: 10.1016/j.neuroimage.2006.01.028 – ident: ref17 doi: 10.1002/hbm.10102 – ident: ref8 doi: 10.1002/1531-8249(199902)45:2<265::AID-ANA21>3.0.CO;2-3 – ident: ref45 doi: 10.1016/S1053-8119(03)00142-3 – ident: ref13 doi: 10.1016/S0006-3495(01)76081-X – volume: 10 start-page: 1135 year: 2002 ident: ref44 article-title: fibre-tracking by solving the diffusion-convection equation publication-title: Proc Int Soc Magn Reson Med – ident: ref52 doi: 10.1109/83.661186 – ident: ref37 doi: 10.1016/j.media.2005.05.008 – ident: ref21 doi: 10.1148/radiology.217.3.r00nv43897 – ident: ref22 doi: 10.1002/mrm.1105 – ident: ref40 doi: 10.1109/TMI.2007.906785 – ident: ref46 doi: 10.1109/TMI.2005.852049 – volume: 201 start-page: 637 year: 1996 ident: ref54 article-title: diffusion tensor mr imaging of the human brain publication-title: Radiology doi: 10.1148/radiology.201.3.8939209 – start-page: 1529 year: 2001 ident: ref43 article-title: solving the diffusion equation for fiber tracking in the living human brain publication-title: Proc Int Soc Magn Reson Med |
| SSID | ssj0014509 |
| Score | 2.0569851 |
| Snippet | We introduce a fluid mechanics based tractography method for estimating the most likely connection paths between points in diffusion tensor imaging (DTI)... |
| SourceID | unpaywall pubmedcentral proquest pubmed crossref ieee |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 348 |
| SubjectTerms | Algorithms Brain - anatomy & histology Diffusion tensor imaging Diffusion tensor imaging (DTI) Fluid flow fluid mechanics Geometry Humans Image Processing, Computer-Assisted - methods Image segmentation Imaging phantoms Mechanics Models, Neurological Navier-Stokes equations Partial differential equations Phantoms, Imaging Reproducibility of Results Rheology - methods Shape Tensile stress tractography white matter |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEB6VVAJ64NEWaspjD1xAcrKO1473GB5Ri5QIQSIFLpa9XlOrjhMlthCc-A_8Q34JM37RUIrU846tfcxoZnZmvw_geai0pUI0QC_qh6YQDjcpqjZtunBzIkvokgxmPHFPZuLd3JnvgNW8hSmb9lWYdLN00c2Ss7K3crVQvaZPrNcfDLiwxQ3YdR0MvzuwO5u8H34q71IILZaXJKLoJlEDHDFvSpNc9vJFUjVP9kuiZXvLFZXcKv8KMy93S94qslXw7WuQphdc0egufGgWUXWgnHeLPOyq73_hO15rlffgTh2YsmE1dB92dLYPexfgCvfh5rguxB_A5yF7k8RxQXdtbIqp8HLNThcl4xGb0sOrGgmbDdMvy3WSny3YK_SXEUPxSUC--NePnx_z5bnesFFaJBEba3qDnKjNIcxGb6evT8yapsFUOMPcVDLWRFlO9EPc08L2BhR3qVjyIFboIOO-jJRjaUztYjdSUrhc81g4kWfrQMb2A-hky0wfAVOcbiQxv7d0LEIv8lwReQGGRFLYrrQjA3rNifmqxjAnKo3UL3MZLv3p-LRi1qzP2IAX7RerCr_jP7IHpAStHM4TZ-MYcNwohV8b-MYnYlN6AIajz9pRtEwqtwSZXhYb_KtDdS37agnXla70PGEAu0KC0AYpROYGPKy08M8qMHMmUnsDBlv62QoQcPj2CGpaCSBeK5cBL1tNvrQ5aCxbm_PoOsLHcLuqulGv3mPo5OtCP8HgLQ-f1ub6G-BwP_I priority: 102 providerName: Unpaywall |
| Title | A Diffusion Tensor Imaging Tractography Algorithm Based on Navier-Stokes Fluid Mechanics |
| URI | https://ieeexplore.ieee.org/document/4601465 https://www.ncbi.nlm.nih.gov/pubmed/19244007 https://www.proquest.com/docview/857503195 https://www.proquest.com/docview/20506653 https://www.proquest.com/docview/66969884 https://www.proquest.com/docview/867735220 https://pubmed.ncbi.nlm.nih.gov/PMC2770434 https://www.ncbi.nlm.nih.gov/pmc/articles/2770434 |
| UnpaywallVersion | submittedVersion |
| Volume | 28 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-254X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014509 issn: 0278-0062 databaseCode: RIE dateStart: 19820101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED9tQ-LjgY8NtjAYfuAFRNo0cZz4sXxUG1IqJFqpPEWJ7bBoaTK1iRD89ficNKxsQ7xV8rWVfWfdne_u9wN4nQo1Eqm-gKF0U5tS37ExqrY9fHDz5YgqQwYTTdnpnH5e-IsdeNfPwiilTPOZGuBHU8uXlWjwqWxIGUKd-LuwG4SsndXqKwb6X0yo6yJirMPcTUnS4cNZdNY2TbqGYNlQ5-i0AxnBt7yRoVe5KdK83jB5rykvk58_kqK44o0mjyDa7KNtQrkYNHU6EL_-gnj8340-hoddWErGrR09gR1V7sODK2CF-3A36srwB7AYk495ljX40kZmOhGuVuRsafiOyAzHrjocbDIuvlervD5fkvfaW0qixacJemL7a11dqDWZFE0uSaRw_jgX66cwn3yafTi1O4oGW1CP1rbgmUK6cqQeckJFvTDAmEtk3EkyoZ1j5nIp_JHSaV3GpOB6Z8rJqC9DTyU8857BXlmV6giIcPA1Uuf2I5XRNJQhozJMdDjEqce4Jy0YblQViw6_HGk0itjkMQ6PtZ5bVs1Ozxa86b9x2WJ3_EP2ANXQy3UasOB4Yw1xd7nXMZKa4vCXXn3Vr-pbiaWWpFRVs9a_6mNNy7tdgjHOeBhSC8gtEog0iOGxY8Fha35_dtGZrwXBlmH2Aggavr1S5ucGPNwNAkerzoK3vQlfO5x6mW8dzvObD-cY7re1NezIewF79apRL3WIVqcn5m6ewJ359Mv422-spTYC |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB6VIlF64NEWagp0D1xAOHHsteM9hkeUQJ0LqZSbZe-DWnXsKrGF4Nezs3ZMQ1vEzdKObe3OrGZ2Z-b7AN6kXA54qjdgKNzUptR3bIyqbQ8v3HwxoNKQwUSzYHJOvyz8xQ6873phpJSm-Ez28NHk8kXJa7wq69MAoU78e3Dfp_qzTbdWlzPQ_zHBrouYsU7gbpKSDuvPo2lTNukaimVDnqMPHsgJvuWPDMHKbbHmzZLJvbq4Sn7-SPL8mj8aP4ZoM5OmDOWyV1dpj__6C-Txf6f6BB61gSkZNZb0FHZkcQD71-AKD-BB1CbiD2ExIp8ypWq8ayNzfRQuV2S6NIxHZI6NVy0SNhnl38tVVl0syQftLwXR4rMEfbH9rSov5ZqM8zoTJJLYgZzx9RGcjz_PP07slqTB5tSjlc2ZkkhYjuRDTiipFw4x6uKKOYni2j0qlwnuD6Q-2KlAcKZnJh1FfRF6MmHKewa7RVnIYyDcwftIfbofSEXTUIQBFWGiAyJGvYB5woL-RlUxbxHMkUgjj81JxmGx1nPDq9nq2YK33RtXDXrHP2QPUQ2dXKsBC0421hC323sdI60ptn_p0dNuVO9LTLYkhSzrtf6qj1kt726JIGABC0NqAblDArEGMUB2LHjemN-fWbTma8FwyzA7AYQN3x4psgsDH-4Oh45WnQXvOhO-sTjVMttanBe3L84p7E3m0Vl8Np19PYGHTaYN6_Newm61quUrHbBV6WuzT38DPnk3nw |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEB6VVAJ64NEWaspjD1xAcrKO1473GB5Ri5QIQSIFLpa9XlOrjhMlthCc-A_8Q34JM37RUIrU846tfcxoZnZmvw_geai0pUI0QC_qh6YQDjcpqjZtunBzIkvokgxmPHFPZuLd3JnvgNW8hSmb9lWYdLN00c2Ss7K3crVQvaZPrNcfDLiwxQ3YdR0MvzuwO5u8H34q71IILZaXJKLoJlEDHDFvSpNc9vJFUjVP9kuiZXvLFZXcKv8KMy93S94qslXw7WuQphdc0egufGgWUXWgnHeLPOyq73_hO15rlffgTh2YsmE1dB92dLYPexfgCvfh5rguxB_A5yF7k8RxQXdtbIqp8HLNThcl4xGb0sOrGgmbDdMvy3WSny3YK_SXEUPxSUC--NePnx_z5bnesFFaJBEba3qDnKjNIcxGb6evT8yapsFUOMPcVDLWRFlO9EPc08L2BhR3qVjyIFboIOO-jJRjaUztYjdSUrhc81g4kWfrQMb2A-hky0wfAVOcbiQxv7d0LEIv8lwReQGGRFLYrrQjA3rNifmqxjAnKo3UL3MZLv3p-LRi1qzP2IAX7RerCr_jP7IHpAStHM4TZ-MYcNwohV8b-MYnYlN6AIajz9pRtEwqtwSZXhYb_KtDdS37agnXla70PGEAu0KC0AYpROYGPKy08M8qMHMmUnsDBlv62QoQcPj2CGpaCSBeK5cBL1tNvrQ5aCxbm_PoOsLHcLuqulGv3mPo5OtCP8HgLQ-f1ub6G-BwP_I |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Diffusion+Tensor+Imaging+Tractography+Algorithm+Based+on+Navier-Stokes+Fluid+Mechanics&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Hageman%2C+N.S.&rft.au=Toga%2C+A.W.&rft.au=Narr%2C+K.L.&rft.au=Shattuck%2C+D.W.&rft.date=2009-03-01&rft.pub=IEEE&rft.issn=0278-0062&rft.volume=28&rft.issue=3&rft.spage=348&rft.epage=360&rft_id=info:doi/10.1109%2FTMI.2008.2004403&rft_id=info%3Apmid%2F19244007&rft.externalDocID=4601465 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon |