An Adaptive Contextual SEM Algorithm for Urban Land Cover Mapping Using Multitemporal High-Resolution Polarimetric SAR Data

This paper presents a semi-supervised Stochastic Expectation-Maximization (SEM) algorithm for detailed urban land cover mapping using multitemporal high-resolution polarimetric SAR (PolSAR) data. By applying an adaptive Markov Random Field (MRF) with the spatially variant Finite Mixture Model (SVFMM...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of selected topics in applied earth observations and remote sensing Vol. 5; no. 4; pp. 1129 - 1139
Main Authors Niu, Xin, Ban, Yifang
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.08.2012
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1939-1404
2151-1535
2151-1535
DOI10.1109/JSTARS.2012.2201448

Cover

More Information
Summary:This paper presents a semi-supervised Stochastic Expectation-Maximization (SEM) algorithm for detailed urban land cover mapping using multitemporal high-resolution polarimetric SAR (PolSAR) data. By applying an adaptive Markov Random Field (MRF) with the spatially variant Finite Mixture Model (SVFMM), spatial-temporal contextual information could be effectively explored to improve the mapping accuracy with homogenous results and preserved shape details. Further, a learning control scheme was proposed to ensure a robust semi-supervised mapping process thus avoiding the undesired class merges. Four-date RADARSAT-2 polarimetric SAR data over the Greater Toronto Area were used to evaluate the proposed method. Common PolSAR distribution models such as Wishart, G0p, Kp and KummerU were compared through this contextual SEM algorithm for detailed urban land cover mapping. Comparisons with Support Vector Machine (SVM) were also conducted to assess the potential of our parametric approach. The results show that the Kp, G0p and KummerU models could generate better urban land cover mapping results than the Wishart model and SVM.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ISSN:1939-1404
2151-1535
2151-1535
DOI:10.1109/JSTARS.2012.2201448