An Adaptive Contextual SEM Algorithm for Urban Land Cover Mapping Using Multitemporal High-Resolution Polarimetric SAR Data
This paper presents a semi-supervised Stochastic Expectation-Maximization (SEM) algorithm for detailed urban land cover mapping using multitemporal high-resolution polarimetric SAR (PolSAR) data. By applying an adaptive Markov Random Field (MRF) with the spatially variant Finite Mixture Model (SVFMM...
Saved in:
| Published in | IEEE journal of selected topics in applied earth observations and remote sensing Vol. 5; no. 4; pp. 1129 - 1139 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Piscataway
IEEE
01.08.2012
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1939-1404 2151-1535 2151-1535 |
| DOI | 10.1109/JSTARS.2012.2201448 |
Cover
| Summary: | This paper presents a semi-supervised Stochastic Expectation-Maximization (SEM) algorithm for detailed urban land cover mapping using multitemporal high-resolution polarimetric SAR (PolSAR) data. By applying an adaptive Markov Random Field (MRF) with the spatially variant Finite Mixture Model (SVFMM), spatial-temporal contextual information could be effectively explored to improve the mapping accuracy with homogenous results and preserved shape details. Further, a learning control scheme was proposed to ensure a robust semi-supervised mapping process thus avoiding the undesired class merges. Four-date RADARSAT-2 polarimetric SAR data over the Greater Toronto Area were used to evaluate the proposed method. Common PolSAR distribution models such as Wishart, G0p, Kp and KummerU were compared through this contextual SEM algorithm for detailed urban land cover mapping. Comparisons with Support Vector Machine (SVM) were also conducted to assess the potential of our parametric approach. The results show that the Kp, G0p and KummerU models could generate better urban land cover mapping results than the Wishart model and SVM. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
| ISSN: | 1939-1404 2151-1535 2151-1535 |
| DOI: | 10.1109/JSTARS.2012.2201448 |