Prediction of Coal Mine Pressure Hazard Based on Logistic Regression and Adagrad Algorithm—A Case Study of C Coal Mine
Effectively avoiding coal mine safety accidents has always been an important issue in the process of coal mining. In order to predict mine pressure hazard and reduce the occurrence of mine safety accidents, this paper innovatively combines logistic regression and mine pressure hazard prediction to e...
        Saved in:
      
    
          | Published in | Applied sciences Vol. 13; no. 22; p. 12227 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Basel
          MDPI AG
    
        01.11.2023
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2076-3417 2076-3417  | 
| DOI | 10.3390/app132212227 | 
Cover
| Abstract | Effectively avoiding coal mine safety accidents has always been an important issue in the process of coal mining. In order to predict mine pressure hazard and reduce the occurrence of mine safety accidents, this paper innovatively combines logistic regression and mine pressure hazard prediction to establish a mine pressure hazard prediction model. By standardizing the data, the model improves the reliability of the mine pressure data and reduces the interference of the prediction effect of random errors. Based on the batch gradient descent algorithm and the Adagrad optimization algorithm, the prediction model is solved innovatively, which greatly improves the calculation speed and prediction accuracy of the model. Accuracy rate, precision rate, recall rate, and F1-score were selected as the evaluation indices to evaluate the prediction effect of the Adagrad optimization algorithm to solve the logistic regression model for mine pressure hazard. Compared with the existing classification algorithms, such as SVM and decision tree, the Adagrad optimization algorithm has the highest four indices when solving the logistic regression prediction model, and it takes the least time to predict. The results show that the model can efficiently predict mine pressure hazard. Finally, C Coal Mine was selected as the example for analysis. The prediction function was added to the mine pressure monitoring interface design. The practical application effect is similar to the theoretical verification. The establishment of this model provides a reliable guarantee for the secure and efficient production of coal mines and provides helpful research for the prediction of mine pressure. | 
    
|---|---|
| AbstractList | Effectively avoiding coal mine safety accidents has always been an important issue in the process of coal mining. In order to predict mine pressure hazard and reduce the occurrence of mine safety accidents, this paper innovatively combines logistic regression and mine pressure hazard prediction to establish a mine pressure hazard prediction model. By standardizing the data, the model improves the reliability of the mine pressure data and reduces the interference of the prediction effect of random errors. Based on the batch gradient descent algorithm and the Adagrad optimization algorithm, the prediction model is solved innovatively, which greatly improves the calculation speed and prediction accuracy of the model. Accuracy rate, precision rate, recall rate, and F1-score were selected as the evaluation indices to evaluate the prediction effect of the Adagrad optimization algorithm to solve the logistic regression model for mine pressure hazard. Compared with the existing classification algorithms, such as SVM and decision tree, the Adagrad optimization algorithm has the highest four indices when solving the logistic regression prediction model, and it takes the least time to predict. The results show that the model can efficiently predict mine pressure hazard. Finally, C Coal Mine was selected as the example for analysis. The prediction function was added to the mine pressure monitoring interface design. The practical application effect is similar to the theoretical verification. The establishment of this model provides a reliable guarantee for the secure and efficient production of coal mines and provides helpful research for the prediction of mine pressure. | 
    
| Audience | Academic | 
    
| Author | Fu, Guanqun Zhu, Bobin Shi, Yongkui Hao, Jian  | 
    
| Author_xml | – sequence: 1 givenname: Bobin surname: Zhu fullname: Zhu, Bobin – sequence: 2 givenname: Yongkui surname: Shi fullname: Shi, Yongkui – sequence: 3 givenname: Jian surname: Hao fullname: Hao, Jian – sequence: 4 givenname: Guanqun surname: Fu fullname: Fu, Guanqun  | 
    
| BookMark | eNqFkktuFDEQhi0UJMKQHQewxJYJ7Ufb7uUwAhJpEIjH2qr2o_Gop93Y3YJhxSFywpwETwaRgCJhL8oqff9fVSo_RidDHBxCT0l1zlhTvYBxJIxSQimVD9ApraRYMk7kyZ33I3SW87YqpyFMkeoUfX-fnA1mCnHA0eN1hB6_DYPDJZ_znBy-gB-QLH4J2VlcqE3sQp6CwR9cd2AOShgsXlnoEpTYdzGF6cvu-ufVCq-LDH-cZru_sb8t8AQ99NBnd_Y7LtDn168-rS-Wm3dvLterzdJwxqel8i2vLSFW1cpULZfCtsa2VppGqqpWVjTUWCCeGys9K5HWnErXOsGd94It0OXR10bY6jGFHaS9jhD0TSKmTkMq4_ROW2oF1EYKRg0nIJRTzFMLdWOFaYgvXsuj1zyMsP8Gff_HkFT6sAV9dwuFf3bkxxS_zi5PehvnNJRxNVUNbWRpvr6lOihNhMHHKYHZhWz0SkrOiFBlWwt0fg9VrnW7YMpX8KHk_xI8PwpMijkn5__XK_0HN2GCw78odUJ_v-gXkhbDKg | 
    
| CitedBy_id | crossref_primary_10_3390_app14020570 crossref_primary_10_2478_amns_2025_0514  | 
    
| Cites_doi | 10.1016/S0013-7952(03)00069-3 10.1016/j.ijrmms.2015.07.006  | 
    
| ContentType | Journal Article | 
    
| Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS ADTOC UNPAY DOA  | 
    
| DOI | 10.3390/app132212227 | 
    
| DatabaseName | CrossRef ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals  | 
    
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New)  | 
    
| DatabaseTitleList | Publicly Available Content Database CrossRef  | 
    
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ (Directory of Open Access Journals) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering Sciences (General)  | 
    
| EISSN | 2076-3417 | 
    
| ExternalDocumentID | oai_doaj_org_article_d2d6a5c7632c41a68e83f2da59d6c91f 10.3390/app132212227 A774316891 10_3390_app132212227  | 
    
| GeographicLocations | China | 
    
| GeographicLocations_xml | – name: China | 
    
| GroupedDBID | .4S 2XV 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ADBBV ADMLS AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ARCSS BCNDV BENPR CCPQU CITATION CZ9 D1I D1J D1K GROUPED_DOAJ IAO IGS ITC K6- K6V KC. KQ8 L6V LK5 LK8 M7R MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC TUS ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS ADTOC IPNFZ RIG UNPAY  | 
    
| ID | FETCH-LOGICAL-c434t-8fb45d11d858c0b476dbcdbd7c978058d692cda1f4cd7f31f425427ebe64eff63 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 2076-3417 | 
    
| IngestDate | Fri Oct 03 12:40:54 EDT 2025 Tue Aug 19 14:20:36 EDT 2025 Mon Jun 30 07:14:35 EDT 2025 Tue Jun 17 22:19:07 EDT 2025 Mon Oct 20 17:11:02 EDT 2025 Thu Oct 16 04:33:44 EDT 2025 Thu Apr 24 22:52:14 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 22 | 
    
| Language | English | 
    
| License | cc-by | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c434t-8fb45d11d858c0b476dbcdbd7c978058d692cda1f4cd7f31f425427ebe64eff63 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.mdpi.com/2076-3417/13/22/12227/pdf?version=1699847331 | 
    
| PQID | 2892976925 | 
    
| PQPubID | 2032433 | 
    
| ParticipantIDs | doaj_primary_oai_doaj_org_article_d2d6a5c7632c41a68e83f2da59d6c91f unpaywall_primary_10_3390_app132212227 proquest_journals_2892976925 gale_infotracmisc_A774316891 gale_infotracacademiconefile_A774316891 crossref_primary_10_3390_app132212227 crossref_citationtrail_10_3390_app132212227  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2023-11-01 | 
    
| PublicationDateYYYYMMDD | 2023-11-01 | 
    
| PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Basel | 
    
| PublicationPlace_xml | – name: Basel | 
    
| PublicationTitle | Applied sciences | 
    
| PublicationYear | 2023 | 
    
| Publisher | MDPI AG | 
    
| Publisher_xml | – name: MDPI AG | 
    
| References | Ju (ref_19) 2012; 29 Zhang (ref_35) 2022; 42 Jiang (ref_1) 2023; 11 Xin (ref_14) 2021; 53 He (ref_10) 2021; 46 ref_11 ref_31 Liu (ref_13) 2022; 42 Long (ref_34) 2022; 33 ref_37 Wu (ref_2) 2014; 1 Yin (ref_25) 2021; 46 Li (ref_33) 2015; 80 Cheng (ref_24) 2021; 52 Chen (ref_27) 2021; 3 Lan (ref_4) 2016; 44 Xia (ref_36) 2010; 35 Liu (ref_12) 2022; 41 Jia (ref_29) 2019; 39 Ma (ref_15) 2018; 43 ref_22 Wu (ref_30) 2017; 43 ref_21 Yin (ref_7) 2019; 47 Wu (ref_6) 2016; 35 Gong (ref_23) 2021; 46 ref_28 Ohlmacher (ref_32) 2003; 69 Yang (ref_17) 2021; 38 ref_26 ref_9 ref_8 ref_5 Wang (ref_3) 2020; 46 Xu (ref_16) 2022; 47 Li (ref_18) 2016; 33 Ji (ref_20) 2021; 3  | 
    
| References_xml | – ident: ref_28 – volume: 33 start-page: 853 year: 2016 ident: ref_18 article-title: Multiple factor sensitivity analysis of strata pressure behaviour in shallow coal seam mining publication-title: J. Min. Saf. Eng. – ident: ref_9 – ident: ref_5 – volume: 35 start-page: 2011 year: 2010 ident: ref_36 article-title: Five indexes based on microseismic monitoring and their application in rock burst prediction publication-title: J. Coal Sci. – volume: 69 start-page: 331 year: 2003 ident: ref_32 article-title: Using multiple logistic regression and GIS technology to predict landslide hazard in northeast Kansas, USA publication-title: Eng. Geol. doi: 10.1016/S0013-7952(03)00069-3 – volume: 33 start-page: 1231 year: 2022 ident: ref_34 article-title: Adaptive NAG method based on AdaGrad and its optimal individual convergence publication-title: J. Softw. – ident: ref_26 – volume: 42 start-page: 86 year: 2022 ident: ref_13 article-title: Similarity Simulation Study on Mine Pressure Behavior of Intelligent Mining Face with Large Dip Angl publication-title: Min. Res. Dev. – ident: ref_11 – volume: 52 start-page: 216 year: 2021 ident: ref_24 article-title: Roof pressure data prediction for working face based on back propagation neural network publication-title: Saf. Coal Mines – volume: 35 start-page: 44 year: 2016 ident: ref_6 article-title: Study on Roof Structure Model and Support-surrounding Rock Relationship at Fully-mechanized Coal Mining Face publication-title: J. Shandong Univ. Sci. Technol. Nat. Sci. – ident: ref_37 – volume: 46 start-page: 3116 year: 2021 ident: ref_25 article-title: Method of double-cycle analysis and prediction for rock pressure based on the support load publication-title: J. China Coal Soc. – volume: 38 start-page: 655 year: 2021 ident: ref_17 article-title: Strata behavior regularity and overlying strata broken structure of super large mining-height working face with 8.8 m support publication-title: J. Min. Saf. Eng. – volume: 29 start-page: 344 year: 2012 ident: ref_19 article-title: Strata Behavior of Fully-Mechanized Face with 7.0 m Height Support publication-title: J. Min. Saf. Eng. – volume: 41 start-page: 20 year: 2022 ident: ref_12 article-title: Analysis of Mineral Pressure under Rigid Top Plate Based on Variance Analysis publication-title: Coal Technol. – ident: ref_21 – volume: 53 start-page: 87 year: 2021 ident: ref_14 article-title: Characteristics of abnormal underground pressure in fully mechanized caving face based on multi-source data analysis publication-title: Coal Eng. – volume: 46 start-page: 110 year: 2021 ident: ref_10 article-title: On Rock-burst Hazards Assessment Based on AHP-SA Model publication-title: Energy Technol. Manag. – volume: 47 start-page: 3622 year: 2022 ident: ref_16 article-title: Predicting ground pressure evolution and support crushing of fully mechanized top coal caving face based on zoning support mechanical model publication-title: J. China Coal Soc. – volume: 1 start-page: 1 year: 2014 ident: ref_2 article-title: Adhere to the strategy of sustainable development of mineral resources and promote the construction of ecological civilization publication-title: Miner. Prot. Util. – volume: 3 start-page: 57 year: 2021 ident: ref_27 article-title: Machine learning method for rock burst prediction and early warning publication-title: J. Min. Rock Control Eng. – ident: ref_8 – volume: 46 start-page: 529 year: 2021 ident: ref_23 article-title: Transfer prediction of underground pressure for fully mechanized mining face based on MRDA-FLPEM integrated algorithm publication-title: J. China Coal Soc. – ident: ref_31 – volume: 47 start-page: 37 year: 2019 ident: ref_7 article-title: Research status of strata control and large mining height fully-mechanized mining technology in China publication-title: Coal Sci. Technol. – volume: 42 start-page: 41 year: 2022 ident: ref_35 article-title: Dual averaging method based on AdaGrad adaptive strategy publication-title: Ship Electron. Eng. – volume: 43 start-page: 42 year: 2017 ident: ref_30 article-title: Rock burst early-warning for thick coal seam in deep mining based on Logistic regression publication-title: Ind. Mine Autom. – volume: 43 start-page: 359 year: 2018 ident: ref_15 article-title: Mechanism and control of strata pressure behavior anomaly in fully mechanized top-coal caving face of extra-thick coal sea publication-title: J. China Coal Soc. – volume: 39 start-page: 330 year: 2019 ident: ref_29 article-title: Research on rock burst prediction technology of multi-parameter comprehensive index publication-title: J. Disaster Prev. Mitig. Eng. – volume: 11 start-page: 181 year: 2023 ident: ref_1 article-title: Research on mineral resource evaluation and sustainable development strategy publication-title: Non-Ferr. Met. World – volume: 46 start-page: 11 year: 2020 ident: ref_3 article-title: Thoughts about the main energy status of coal and green mining in China publication-title: China Coal. – volume: 80 start-page: 185 year: 2015 ident: ref_33 article-title: Hazard evaluation of coal and gas outbursts in a coal-mine roadway based on logistic regression model publication-title: Int. J. Rock Mech. Min. Sci. doi: 10.1016/j.ijrmms.2015.07.006 – ident: ref_22 – volume: 44 start-page: 39 year: 2016 ident: ref_4 article-title: Current status of deep mining and disaster prevention in China publication-title: Coal Sci. Technol. – volume: 3 start-page: 71 year: 2021 ident: ref_20 article-title: Mine pressure prediction method based on random forest publication-title: J. Min. Strat. Control Eng.  | 
    
| SSID | ssj0000913810 | 
    
| Score | 2.2883265 | 
    
| Snippet | Effectively avoiding coal mine safety accidents has always been an important issue in the process of coal mining. In order to predict mine pressure hazard and... | 
    
| SourceID | doaj unpaywall proquest gale crossref  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database  | 
    
| StartPage | 12227 | 
    
| SubjectTerms | Accident prevention Accuracy Adagrad gradient algorithm Algorithms Case studies Coal industry Coal mining Data mining Disasters Earthquakes logistic regression Machine learning Mathematical optimization Methods mine pressure hazard prediction Mineral resources Mines Neural networks Occupational health and safety Regression analysis Simulation  | 
    
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hXqAHRAuIQEE-lJdQxNpxbOe4XbVaIYoQolJvlp_bSku2SreCcuJH8Av5JYyTdJtVBVw4RUrGju15eEae-QywK0paYGAhc-cLk6P1o7nFjSAvOWMhUutCm5tz-EFMj_i74_J4cNVXygnr4IG7hXvrmRemdKgGzHFqhAqqiMybsvLCVTQm6ztS1SCYam1wRRN0VZfpXmBcn86DU-BFU-3n2h7UQvXfNMibcPuiPjOXX818PthxDu7B3d5VJONuiFtwK9TbsDkAENyGrV41z8mrHj_69X349rFJpy9pxckikskCOznENqQrBWwCmZrvKBhkD3cwT5DqfVsGdOrIpzDr8mJrYmpPxt7MGoPP-WzRnC5Pvvz68XNMJtiMpPzDy7b76x88gKOD_c-Tad5fsJA7XvBlrqLlpafUq1K5keVSeOu89dK1Vx0oLyrmvKGROy9jgU8MJ5lEvgseYhTFQ9ioF3V4BCS64LGFZBZDRvTprLUj5dgIe0QVlzKDN1dLrl2PPp4uwZhrjEISg_SQQRk8X1Gfdagbf6DbS9xb0SSs7PYFSpDuJUj_S4IyeJl4r5NG45Cc6QsTcGIJG0uPZfKyhKpoBjtrlKiJbv3zlfTo3hKcawxoGbp8FSszeLGSqL_O6vH_mNUTuMPQH-vKJndgY9lchKfoPy3ts1ZVfgNErxZJ priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEB6V9AA9IFpAGAraA08hq9n1MweEkqhVhGhUVVTqzdpnQAp2cFNBOfEj-IX8EmbsdZoI0ZOlZHYTe97emW8AnqcJjzCxyEJtIhmi9eOhQkcQJrEQ1nGlbVObczxNJ2fxh_PkfAumXS8MlVV2NrEx1KbS9I78ABMDga5zIJL3i28hTY2i09VuhIb0oxXMuwZi7BZsC0LG6sH26HB6crp660IomDnvtxXwEeb7dE5MCRmnntAN39RA-P9rqHfg9mW5kFff5Xy-5omO7sFdH0KyYcvzXdiy5R7srAEL7sGuV9kL9trjSr-5Dz9OajqVIU6wyrFxhZsc4xrWtgjWlk3kTxQYNkLPZhhSfWzag75odmpnbb1syWRp2NDIWS3xOp_hI1p-_vrn1-8hG-MyRnWJV8321z_wAM6ODj-NJ6EfvBDqOIqXYe5UnBjOTZ7kuq_iLDVKG2Uy3YxAyA2yQRvJXaxN5iK8YpopMpSHNLbOpdFD6JVVaR8Bc9oaXJEJhakkxnpKqX6uRR93RNXPsgDedo-80B6VnIZjzAvMTohBxTqDAnixol60aBz_oRsR91Y0hKHdfFDVs8KrZGGESWWi0cAKHXOZ5jaPnDAyGZhUD7gL4BXxviBNx7-kpW9YwBsjzKximFH0leYDHsD-BiVqqN78upOewluIi-JangN4uZKoG-_q8c37PIE7AiOwtlFyH3rL-tI-xYhpqZ55NfgL_VUT5A priority: 102 providerName: ProQuest  | 
    
| Title | Prediction of Coal Mine Pressure Hazard Based on Logistic Regression and Adagrad Algorithm—A Case Study of C Coal Mine | 
    
| URI | https://www.proquest.com/docview/2892976925 https://www.mdpi.com/2076-3417/13/22/12227/pdf?version=1699847331 https://doaj.org/article/d2d6a5c7632c41a68e83f2da59d6c91f  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 13 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: KQ8 dateStart: 20110101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ (Directory of Open Access Journals) customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: ADMLS dateStart: 20120901 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: 8FG dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB6x7QH2AOwCostS-cBTKNvaSZz0hNpqS4XYqlpRCU6RH3Gp6KZV2gK7J34Ev5BfwjhxSwsCIXGKlIwdWxl_ns-ZB8AjHlIfiUXkKe0LD9GPehI3Ai8MGEsNlSotfHPOBrw_Cl6_C9fehAvnVolUfFKANEOS7SHMRg3qNxhrUBu42Zhr8_KTO0yiHOlCYOsO7kGVh2iOV6A6Ggzb721RuXXz0uHdR3pvfwtb_lX0tLMVFRn7f8flfbi-yubi8rOYTrc2nt4tkOshl_4mH09WS3mirn7J5vhfc7oNN51ZStqlHh3AtTQ7hP2tZIWHcOBgYEGeuVzVz-_Al2Fu__TYr0tmhnRn2MkZtiFl2GGekr64QiUkHdwtNUGpN0XI0USR83Rc-uBmRGSatLUY5wKv0_Esnyw_XHz_-q1NutiMWF_Hy6L7ny-4C6Pe6dtu33PFHDwV-MHSi40MQk2pjsNYNWUQcS2VljpSRVmFWPMWU1pQEygdGR-vSF1ZhDrGg9QY7t-DSjbL0vtAjEo1toiYRHqK9qOUshkr1sQeEU6iqAYv1t81US7TuS24MU2Q8VgtSLa1oAaPN9LzMsPHH-Q6VkU2MjYvd3Fjlo8Tt8wTzTQXoULQZiqggsdp7BumRdjSXLWoqcFTq2CJRQ8ckhIuCAInZvNwJe3IWnQ8btEaHO9I4qpXu4_XKpo41FkkSJ4ZmpctFtbgyUZt_zqro38VfAA3GNp3ZRjmMVSW-Sp9iPbYUtZhL-69qkO1czoYnteLU426W4U_AAzNL60 | 
    
| linkProvider | Unpaywall | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V9lB6QLSASCmwB8pDyMK7fh8qlIRWKU2iqmql3tx9OSClTnBSlXDiR_B7-DH8EmbtdZoI0VtPluzZcTaz-82Mdx4Ar8KAeuhYRI5UHncQ_agjUBE4gc-YzqiQuozN6fXDzpn_-Tw4X4HfdS6MCausMbEEajWS5hv5B3QMGKrOhAUfx98c0zXKnK7WLTS4ba2g9soSYzax40jPrtGFm-wdfkJ57zJ2sH_a7ji2y4Ajfc-fOnEm_EBRquIglq7wo1AJqYSKZFnvP1b4Tqk4zXyposzDK_pULMLJh77OstBDvvdgDXkl6Pyttfb7xyfzrzym6mZM3Sri3vMS15xLGweQmhzUJV1Ytgz4VzFswPpVPuazaz4cLmi-g4fwwJqspFmtsU1Y0fkWbCwUMtyCTQsRE_LW1rF-9wi-HxfmFMhInowy0h4hkx6OIVVKYqFJh__ABUpaqEkVQapumY70VZITPajic3PCc0Waig8KjtfhAEUy_XL55-evJmnjMGLiIGcl-5sXPIazOxHBE1jNR7l-CiSTWuGIiAl0XdG2FEK4sWQuckSoiaIGvK__8lTaKuimGccwRW_ICChdFFADdufU46r6x3_oWkZ6cxpTs7u8MSoGqYWAVDEV8kAioDPpUx7GOvYypniQqFAmNGvAGyP71CAL_iTJbYIETszU6EqbkbH2wjihDdhZokREkMuP69WTWkSapDf7pwGv5yvq1llt387nJax3TnvdtHvYP3oG9xlaf1WS5g6sTosr_Ryttal4YbcEgYu73oV_Ab1FUkw | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtNAcFSKBPSAaAERKLAHykOV1ez6fUAoTQkpfahCVOrN7DOtFJzgpCrhxEfwNXwOX8KM7aSJEL31ZMmeHWczb-88AF5EIfcxsIg9bXzpofbjnkJD4IWBENZxpW2Zm3NwGHWPg48n4ckS_J7WwlBa5VQnloraDDR9I9_CwECg6UxFuOXqtIijnc674TePJkjRSet0nEbFInt2coHh2-jt7g7SekOIzvvP7a5XTxjwdOAHYy9xKggN5yYJE91UQRwZpY0ysS57_ScG36eN5C7QJnY-XjGeEjFuPAqsc5GPeG_AzZi6uFOVeufD7PsO9dtMeLPKtff9tEkn0hT6cao-XbCC5bCAf03CCtw-z4dyciH7_Tmb17kHd2tnlbUq7lqFJZuvwcpcC8M1WK2Vw4i9rjtYv7kP348KOv8hmrOBY-0BIjnANawqRiws68ofyJpsG22oYQi1XxYinWn2yfaqzNycydywlpG9QuK130MCjE-__vn5q8XauIxRBuSkRH_5ggdwfC0EeAjL-SC3j4A5bQ2uiIXCoBW9SqVUM9GiiRhRycRxAzanf3mm6_7nNIajn2EcRATK5gnUgI0Z9LDq-_EfuG2i3gyGunWXNwZFL6uFPzPCRDLUqMqFDriMEpv4ThgZpibSKXcNeEW0z0in4E_Ssi6NwI1Rd66sFZOfFyUpb8D6AiTqAr34eMo9Wa2LRtml5DTg5YyjrtzV46vxPIdbKHvZ_u7h3hO4I9Dtq6oz12F5XJzbp-imjdWzUh4YfLluAfwLgllP5g | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtNAFL2CdAFdAC1UBAqaBU8hN5mxPbZXVRpRRYhWFSISrKx5hohgR04CtCs-gi_kS3rHnoQEBEJiZSm5M_HIZ87cE98HwCMe0xCFRRIoHYoA2Y8GEg-CII4YM5ZKZerYnJNTPhhGr97Fy2jCmQ-rRCk-rkmaocgOkGaTDg07jHWoS9zsTLU9_Oz_TKIc5ULk-g5ehS0eozvegq3h6VnvvWsqtxzeBLyHKO_da2Gnv-qZNo6iumL_77y8DdcWxVScfxGTydrBc3wT5PKWm3iTjweLuTxQF79Uc_yvNd2CG94tJb0GRztwxRS7sL1WrHAXdjwNzMgzX6v6-W34ela5Nz3u6ZLSkn6Jk5zgGNKkHVaGDMQFgpAc4WmpCVq9rlOOxoq8MaMmBrcgotCkp8WoEnidjMpqPP_w6ce37z3Sx2HExTqe19P__IE7MDx--bY_CHwzh0BFYTQPUiujWFOq0zhVXRklXEulpU5U3VYh1TxjSgtqI6UTG-IVpStLEGM8MtbycA9aRVmYu0CsMhpHJEyiPEX_UUrZTRXr4oxIJ0nShhfL55orX-ncNdyY5Kh4HArydRS04fHKetpU-PiD3ZGDyMrG1eWuPyirUe63ea6Z5iJWSNpMRVTw1KShZVrEmeYqo7YNTx3AcsceeEtK-CQIXJirw5X3EufR8TSjbdjfsMRdrza_XkI096wzy1E8M3QvMxa34ckKtn9d1b1_NbwP1xn6d00a5j605tXCPEB_bC4f-h13CX4rLDg | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+Coal+Mine+Pressure+Hazard+Based+on+Logistic+Regression+and+Adagrad+Algorithm%E2%80%94A+Case+Study+of+C+Coal+Mine&rft.jtitle=Applied+sciences&rft.au=Zhu%2C+Bobin&rft.au=Shi%2C+Yongkui&rft.au=Hao%2C+Jian&rft.au=Fu%2C+Guanqun&rft.date=2023-11-01&rft.pub=MDPI+AG&rft.issn=2076-3417&rft.eissn=2076-3417&rft.volume=13&rft.issue=22&rft_id=info:doi/10.3390%2Fapp132212227&rft.externalDocID=A774316891 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon |