Prediction of Coal Mine Pressure Hazard Based on Logistic Regression and Adagrad Algorithm—A Case Study of C Coal Mine

Effectively avoiding coal mine safety accidents has always been an important issue in the process of coal mining. In order to predict mine pressure hazard and reduce the occurrence of mine safety accidents, this paper innovatively combines logistic regression and mine pressure hazard prediction to e...

Full description

Saved in:
Bibliographic Details
Published inApplied sciences Vol. 13; no. 22; p. 12227
Main Authors Zhu, Bobin, Shi, Yongkui, Hao, Jian, Fu, Guanqun
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.11.2023
Subjects
Online AccessGet full text
ISSN2076-3417
2076-3417
DOI10.3390/app132212227

Cover

Abstract Effectively avoiding coal mine safety accidents has always been an important issue in the process of coal mining. In order to predict mine pressure hazard and reduce the occurrence of mine safety accidents, this paper innovatively combines logistic regression and mine pressure hazard prediction to establish a mine pressure hazard prediction model. By standardizing the data, the model improves the reliability of the mine pressure data and reduces the interference of the prediction effect of random errors. Based on the batch gradient descent algorithm and the Adagrad optimization algorithm, the prediction model is solved innovatively, which greatly improves the calculation speed and prediction accuracy of the model. Accuracy rate, precision rate, recall rate, and F1-score were selected as the evaluation indices to evaluate the prediction effect of the Adagrad optimization algorithm to solve the logistic regression model for mine pressure hazard. Compared with the existing classification algorithms, such as SVM and decision tree, the Adagrad optimization algorithm has the highest four indices when solving the logistic regression prediction model, and it takes the least time to predict. The results show that the model can efficiently predict mine pressure hazard. Finally, C Coal Mine was selected as the example for analysis. The prediction function was added to the mine pressure monitoring interface design. The practical application effect is similar to the theoretical verification. The establishment of this model provides a reliable guarantee for the secure and efficient production of coal mines and provides helpful research for the prediction of mine pressure.
AbstractList Effectively avoiding coal mine safety accidents has always been an important issue in the process of coal mining. In order to predict mine pressure hazard and reduce the occurrence of mine safety accidents, this paper innovatively combines logistic regression and mine pressure hazard prediction to establish a mine pressure hazard prediction model. By standardizing the data, the model improves the reliability of the mine pressure data and reduces the interference of the prediction effect of random errors. Based on the batch gradient descent algorithm and the Adagrad optimization algorithm, the prediction model is solved innovatively, which greatly improves the calculation speed and prediction accuracy of the model. Accuracy rate, precision rate, recall rate, and F1-score were selected as the evaluation indices to evaluate the prediction effect of the Adagrad optimization algorithm to solve the logistic regression model for mine pressure hazard. Compared with the existing classification algorithms, such as SVM and decision tree, the Adagrad optimization algorithm has the highest four indices when solving the logistic regression prediction model, and it takes the least time to predict. The results show that the model can efficiently predict mine pressure hazard. Finally, C Coal Mine was selected as the example for analysis. The prediction function was added to the mine pressure monitoring interface design. The practical application effect is similar to the theoretical verification. The establishment of this model provides a reliable guarantee for the secure and efficient production of coal mines and provides helpful research for the prediction of mine pressure.
Audience Academic
Author Fu, Guanqun
Zhu, Bobin
Shi, Yongkui
Hao, Jian
Author_xml – sequence: 1
  givenname: Bobin
  surname: Zhu
  fullname: Zhu, Bobin
– sequence: 2
  givenname: Yongkui
  surname: Shi
  fullname: Shi, Yongkui
– sequence: 3
  givenname: Jian
  surname: Hao
  fullname: Hao, Jian
– sequence: 4
  givenname: Guanqun
  surname: Fu
  fullname: Fu, Guanqun
BookMark eNqFkktuFDEQhi0UJMKQHQewxJYJ7Ufb7uUwAhJpEIjH2qr2o_Gop93Y3YJhxSFywpwETwaRgCJhL8oqff9fVSo_RidDHBxCT0l1zlhTvYBxJIxSQimVD9ApraRYMk7kyZ33I3SW87YqpyFMkeoUfX-fnA1mCnHA0eN1hB6_DYPDJZ_znBy-gB-QLH4J2VlcqE3sQp6CwR9cd2AOShgsXlnoEpTYdzGF6cvu-ufVCq-LDH-cZru_sb8t8AQ99NBnd_Y7LtDn168-rS-Wm3dvLterzdJwxqel8i2vLSFW1cpULZfCtsa2VppGqqpWVjTUWCCeGys9K5HWnErXOsGd94It0OXR10bY6jGFHaS9jhD0TSKmTkMq4_ROW2oF1EYKRg0nIJRTzFMLdWOFaYgvXsuj1zyMsP8Gff_HkFT6sAV9dwuFf3bkxxS_zi5PehvnNJRxNVUNbWRpvr6lOihNhMHHKYHZhWz0SkrOiFBlWwt0fg9VrnW7YMpX8KHk_xI8PwpMijkn5__XK_0HN2GCw78odUJ_v-gXkhbDKg
CitedBy_id crossref_primary_10_3390_app14020570
crossref_primary_10_2478_amns_2025_0514
Cites_doi 10.1016/S0013-7952(03)00069-3
10.1016/j.ijrmms.2015.07.006
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
UNPAY
DOA
DOI 10.3390/app132212227
DatabaseName CrossRef
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ (Directory of Open Access Journals)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_d2d6a5c7632c41a68e83f2da59d6c91f
10.3390/app132212227
A774316891
10_3390_app132212227
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID .4S
2XV
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
IGS
ITC
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c434t-8fb45d11d858c0b476dbcdbd7c978058d692cda1f4cd7f31f425427ebe64eff63
IEDL.DBID UNPAY
ISSN 2076-3417
IngestDate Fri Oct 03 12:40:54 EDT 2025
Tue Aug 19 14:20:36 EDT 2025
Mon Jun 30 07:14:35 EDT 2025
Tue Jun 17 22:19:07 EDT 2025
Mon Oct 20 17:11:02 EDT 2025
Thu Oct 16 04:33:44 EDT 2025
Thu Apr 24 22:52:14 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 22
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c434t-8fb45d11d858c0b476dbcdbd7c978058d692cda1f4cd7f31f425427ebe64eff63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.mdpi.com/2076-3417/13/22/12227/pdf?version=1699847331
PQID 2892976925
PQPubID 2032433
ParticipantIDs doaj_primary_oai_doaj_org_article_d2d6a5c7632c41a68e83f2da59d6c91f
unpaywall_primary_10_3390_app132212227
proquest_journals_2892976925
gale_infotracmisc_A774316891
gale_infotracacademiconefile_A774316891
crossref_primary_10_3390_app132212227
crossref_citationtrail_10_3390_app132212227
PublicationCentury 2000
PublicationDate 2023-11-01
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied sciences
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Ju (ref_19) 2012; 29
Zhang (ref_35) 2022; 42
Jiang (ref_1) 2023; 11
Xin (ref_14) 2021; 53
He (ref_10) 2021; 46
ref_11
ref_31
Liu (ref_13) 2022; 42
Long (ref_34) 2022; 33
ref_37
Wu (ref_2) 2014; 1
Yin (ref_25) 2021; 46
Li (ref_33) 2015; 80
Cheng (ref_24) 2021; 52
Chen (ref_27) 2021; 3
Lan (ref_4) 2016; 44
Xia (ref_36) 2010; 35
Liu (ref_12) 2022; 41
Jia (ref_29) 2019; 39
Ma (ref_15) 2018; 43
ref_22
Wu (ref_30) 2017; 43
ref_21
Yin (ref_7) 2019; 47
Wu (ref_6) 2016; 35
Gong (ref_23) 2021; 46
ref_28
Ohlmacher (ref_32) 2003; 69
Yang (ref_17) 2021; 38
ref_26
ref_9
ref_8
ref_5
Wang (ref_3) 2020; 46
Xu (ref_16) 2022; 47
Li (ref_18) 2016; 33
Ji (ref_20) 2021; 3
References_xml – ident: ref_28
– volume: 33
  start-page: 853
  year: 2016
  ident: ref_18
  article-title: Multiple factor sensitivity analysis of strata pressure behaviour in shallow coal seam mining
  publication-title: J. Min. Saf. Eng.
– ident: ref_9
– ident: ref_5
– volume: 35
  start-page: 2011
  year: 2010
  ident: ref_36
  article-title: Five indexes based on microseismic monitoring and their application in rock burst prediction
  publication-title: J. Coal Sci.
– volume: 69
  start-page: 331
  year: 2003
  ident: ref_32
  article-title: Using multiple logistic regression and GIS technology to predict landslide hazard in northeast Kansas, USA
  publication-title: Eng. Geol.
  doi: 10.1016/S0013-7952(03)00069-3
– volume: 33
  start-page: 1231
  year: 2022
  ident: ref_34
  article-title: Adaptive NAG method based on AdaGrad and its optimal individual convergence
  publication-title: J. Softw.
– ident: ref_26
– volume: 42
  start-page: 86
  year: 2022
  ident: ref_13
  article-title: Similarity Simulation Study on Mine Pressure Behavior of Intelligent Mining Face with Large Dip Angl
  publication-title: Min. Res. Dev.
– ident: ref_11
– volume: 52
  start-page: 216
  year: 2021
  ident: ref_24
  article-title: Roof pressure data prediction for working face based on back propagation neural network
  publication-title: Saf. Coal Mines
– volume: 35
  start-page: 44
  year: 2016
  ident: ref_6
  article-title: Study on Roof Structure Model and Support-surrounding Rock Relationship at Fully-mechanized Coal Mining Face
  publication-title: J. Shandong Univ. Sci. Technol. Nat. Sci.
– ident: ref_37
– volume: 46
  start-page: 3116
  year: 2021
  ident: ref_25
  article-title: Method of double-cycle analysis and prediction for rock pressure based on the support load
  publication-title: J. China Coal Soc.
– volume: 38
  start-page: 655
  year: 2021
  ident: ref_17
  article-title: Strata behavior regularity and overlying strata broken structure of super large mining-height working face with 8.8 m support
  publication-title: J. Min. Saf. Eng.
– volume: 29
  start-page: 344
  year: 2012
  ident: ref_19
  article-title: Strata Behavior of Fully-Mechanized Face with 7.0 m Height Support
  publication-title: J. Min. Saf. Eng.
– volume: 41
  start-page: 20
  year: 2022
  ident: ref_12
  article-title: Analysis of Mineral Pressure under Rigid Top Plate Based on Variance Analysis
  publication-title: Coal Technol.
– ident: ref_21
– volume: 53
  start-page: 87
  year: 2021
  ident: ref_14
  article-title: Characteristics of abnormal underground pressure in fully mechanized caving face based on multi-source data analysis
  publication-title: Coal Eng.
– volume: 46
  start-page: 110
  year: 2021
  ident: ref_10
  article-title: On Rock-burst Hazards Assessment Based on AHP-SA Model
  publication-title: Energy Technol. Manag.
– volume: 47
  start-page: 3622
  year: 2022
  ident: ref_16
  article-title: Predicting ground pressure evolution and support crushing of fully mechanized top coal caving face based on zoning support mechanical model
  publication-title: J. China Coal Soc.
– volume: 1
  start-page: 1
  year: 2014
  ident: ref_2
  article-title: Adhere to the strategy of sustainable development of mineral resources and promote the construction of ecological civilization
  publication-title: Miner. Prot. Util.
– volume: 3
  start-page: 57
  year: 2021
  ident: ref_27
  article-title: Machine learning method for rock burst prediction and early warning
  publication-title: J. Min. Rock Control Eng.
– ident: ref_8
– volume: 46
  start-page: 529
  year: 2021
  ident: ref_23
  article-title: Transfer prediction of underground pressure for fully mechanized mining face based on MRDA-FLPEM integrated algorithm
  publication-title: J. China Coal Soc.
– ident: ref_31
– volume: 47
  start-page: 37
  year: 2019
  ident: ref_7
  article-title: Research status of strata control and large mining height fully-mechanized mining technology in China
  publication-title: Coal Sci. Technol.
– volume: 42
  start-page: 41
  year: 2022
  ident: ref_35
  article-title: Dual averaging method based on AdaGrad adaptive strategy
  publication-title: Ship Electron. Eng.
– volume: 43
  start-page: 42
  year: 2017
  ident: ref_30
  article-title: Rock burst early-warning for thick coal seam in deep mining based on Logistic regression
  publication-title: Ind. Mine Autom.
– volume: 43
  start-page: 359
  year: 2018
  ident: ref_15
  article-title: Mechanism and control of strata pressure behavior anomaly in fully mechanized top-coal caving face of extra-thick coal sea
  publication-title: J. China Coal Soc.
– volume: 39
  start-page: 330
  year: 2019
  ident: ref_29
  article-title: Research on rock burst prediction technology of multi-parameter comprehensive index
  publication-title: J. Disaster Prev. Mitig. Eng.
– volume: 11
  start-page: 181
  year: 2023
  ident: ref_1
  article-title: Research on mineral resource evaluation and sustainable development strategy
  publication-title: Non-Ferr. Met. World
– volume: 46
  start-page: 11
  year: 2020
  ident: ref_3
  article-title: Thoughts about the main energy status of coal and green mining in China
  publication-title: China Coal.
– volume: 80
  start-page: 185
  year: 2015
  ident: ref_33
  article-title: Hazard evaluation of coal and gas outbursts in a coal-mine roadway based on logistic regression model
  publication-title: Int. J. Rock Mech. Min. Sci.
  doi: 10.1016/j.ijrmms.2015.07.006
– ident: ref_22
– volume: 44
  start-page: 39
  year: 2016
  ident: ref_4
  article-title: Current status of deep mining and disaster prevention in China
  publication-title: Coal Sci. Technol.
– volume: 3
  start-page: 71
  year: 2021
  ident: ref_20
  article-title: Mine pressure prediction method based on random forest
  publication-title: J. Min. Strat. Control Eng.
SSID ssj0000913810
Score 2.2883265
Snippet Effectively avoiding coal mine safety accidents has always been an important issue in the process of coal mining. In order to predict mine pressure hazard and...
SourceID doaj
unpaywall
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 12227
SubjectTerms Accident prevention
Accuracy
Adagrad gradient algorithm
Algorithms
Case studies
Coal industry
Coal mining
Data mining
Disasters
Earthquakes
logistic regression
Machine learning
Mathematical optimization
Methods
mine pressure hazard prediction
Mineral resources
Mines
Neural networks
Occupational health and safety
Regression analysis
Simulation
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hXqAHRAuIQEE-lJdQxNpxbOe4XbVaIYoQolJvlp_bSku2SreCcuJH8Av5JYyTdJtVBVw4RUrGju15eEae-QywK0paYGAhc-cLk6P1o7nFjSAvOWMhUutCm5tz-EFMj_i74_J4cNVXygnr4IG7hXvrmRemdKgGzHFqhAqqiMybsvLCVTQm6ztS1SCYam1wRRN0VZfpXmBcn86DU-BFU-3n2h7UQvXfNMibcPuiPjOXX818PthxDu7B3d5VJONuiFtwK9TbsDkAENyGrV41z8mrHj_69X349rFJpy9pxckikskCOznENqQrBWwCmZrvKBhkD3cwT5DqfVsGdOrIpzDr8mJrYmpPxt7MGoPP-WzRnC5Pvvz68XNMJtiMpPzDy7b76x88gKOD_c-Tad5fsJA7XvBlrqLlpafUq1K5keVSeOu89dK1Vx0oLyrmvKGROy9jgU8MJ5lEvgseYhTFQ9ioF3V4BCS64LGFZBZDRvTprLUj5dgIe0QVlzKDN1dLrl2PPp4uwZhrjEISg_SQQRk8X1Gfdagbf6DbS9xb0SSs7PYFSpDuJUj_S4IyeJl4r5NG45Cc6QsTcGIJG0uPZfKyhKpoBjtrlKiJbv3zlfTo3hKcawxoGbp8FSszeLGSqL_O6vH_mNUTuMPQH-vKJndgY9lchKfoPy3ts1ZVfgNErxZJ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEB6V9AA9IFpAGAraA08hq9n1MweEkqhVhGhUVVTqzdpnQAp2cFNBOfEj-IX8EmbsdZoI0ZOlZHYTe97emW8AnqcJjzCxyEJtIhmi9eOhQkcQJrEQ1nGlbVObczxNJ2fxh_PkfAumXS8MlVV2NrEx1KbS9I78ABMDga5zIJL3i28hTY2i09VuhIb0oxXMuwZi7BZsC0LG6sH26HB6crp660IomDnvtxXwEeb7dE5MCRmnntAN39RA-P9rqHfg9mW5kFff5Xy-5omO7sFdH0KyYcvzXdiy5R7srAEL7sGuV9kL9trjSr-5Dz9OajqVIU6wyrFxhZsc4xrWtgjWlk3kTxQYNkLPZhhSfWzag75odmpnbb1syWRp2NDIWS3xOp_hI1p-_vrn1-8hG-MyRnWJV8321z_wAM6ODj-NJ6EfvBDqOIqXYe5UnBjOTZ7kuq_iLDVKG2Uy3YxAyA2yQRvJXaxN5iK8YpopMpSHNLbOpdFD6JVVaR8Bc9oaXJEJhakkxnpKqX6uRR93RNXPsgDedo-80B6VnIZjzAvMTohBxTqDAnixol60aBz_oRsR91Y0hKHdfFDVs8KrZGGESWWi0cAKHXOZ5jaPnDAyGZhUD7gL4BXxviBNx7-kpW9YwBsjzKximFH0leYDHsD-BiVqqN78upOewluIi-JangN4uZKoG-_q8c37PIE7AiOwtlFyH3rL-tI-xYhpqZ55NfgL_VUT5A
  priority: 102
  providerName: ProQuest
Title Prediction of Coal Mine Pressure Hazard Based on Logistic Regression and Adagrad Algorithm—A Case Study of C Coal Mine
URI https://www.proquest.com/docview/2892976925
https://www.mdpi.com/2076-3417/13/22/12227/pdf?version=1699847331
https://doaj.org/article/d2d6a5c7632c41a68e83f2da59d6c91f
UnpaywallVersion publishedVersion
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: KQ8
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ (Directory of Open Access Journals)
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: ADMLS
  dateStart: 20120901
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: 8FG
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB6x7QH2AOwCostS-cBTKNvaSZz0hNpqS4XYqlpRCU6RH3Gp6KZV2gK7J34Ev5BfwjhxSwsCIXGKlIwdWxl_ns-ZB8AjHlIfiUXkKe0LD9GPehI3Ai8MGEsNlSotfHPOBrw_Cl6_C9fehAvnVolUfFKANEOS7SHMRg3qNxhrUBu42Zhr8_KTO0yiHOlCYOsO7kGVh2iOV6A6Ggzb721RuXXz0uHdR3pvfwtb_lX0tLMVFRn7f8flfbi-yubi8rOYTrc2nt4tkOshl_4mH09WS3mirn7J5vhfc7oNN51ZStqlHh3AtTQ7hP2tZIWHcOBgYEGeuVzVz-_Al2Fu__TYr0tmhnRn2MkZtiFl2GGekr64QiUkHdwtNUGpN0XI0USR83Rc-uBmRGSatLUY5wKv0_Esnyw_XHz_-q1NutiMWF_Hy6L7ny-4C6Pe6dtu33PFHDwV-MHSi40MQk2pjsNYNWUQcS2VljpSRVmFWPMWU1pQEygdGR-vSF1ZhDrGg9QY7t-DSjbL0vtAjEo1toiYRHqK9qOUshkr1sQeEU6iqAYv1t81US7TuS24MU2Q8VgtSLa1oAaPN9LzMsPHH-Q6VkU2MjYvd3Fjlo8Tt8wTzTQXoULQZiqggsdp7BumRdjSXLWoqcFTq2CJRQ8ckhIuCAInZvNwJe3IWnQ8btEaHO9I4qpXu4_XKpo41FkkSJ4ZmpctFtbgyUZt_zqro38VfAA3GNp3ZRjmMVSW-Sp9iPbYUtZhL-69qkO1czoYnteLU426W4U_AAzNL60
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V9lB6QLSASCmwB8pDyMK7fh8qlIRWKU2iqmql3tx9OSClTnBSlXDiR_B7-DH8EmbtdZoI0VtPluzZcTaz-82Mdx4Ar8KAeuhYRI5UHncQ_agjUBE4gc-YzqiQuozN6fXDzpn_-Tw4X4HfdS6MCausMbEEajWS5hv5B3QMGKrOhAUfx98c0zXKnK7WLTS4ba2g9soSYzax40jPrtGFm-wdfkJ57zJ2sH_a7ji2y4Ajfc-fOnEm_EBRquIglq7wo1AJqYSKZFnvP1b4Tqk4zXyposzDK_pULMLJh77OstBDvvdgDXkl6Pyttfb7xyfzrzym6mZM3Sri3vMS15xLGweQmhzUJV1Ytgz4VzFswPpVPuazaz4cLmi-g4fwwJqspFmtsU1Y0fkWbCwUMtyCTQsRE_LW1rF-9wi-HxfmFMhInowy0h4hkx6OIVVKYqFJh__ABUpaqEkVQapumY70VZITPajic3PCc0Waig8KjtfhAEUy_XL55-evJmnjMGLiIGcl-5sXPIazOxHBE1jNR7l-CiSTWuGIiAl0XdG2FEK4sWQuckSoiaIGvK__8lTaKuimGccwRW_ICChdFFADdufU46r6x3_oWkZ6cxpTs7u8MSoGqYWAVDEV8kAioDPpUx7GOvYypniQqFAmNGvAGyP71CAL_iTJbYIETszU6EqbkbH2wjihDdhZokREkMuP69WTWkSapDf7pwGv5yvq1llt387nJax3TnvdtHvYP3oG9xlaf1WS5g6sTosr_Ryttal4YbcEgYu73oV_Ab1FUkw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtNAcFSKBPSAaAERKLAHykOV1ez6fUAoTQkpfahCVOrN7DOtFJzgpCrhxEfwNXwOX8KM7aSJEL31ZMmeHWczb-88AF5EIfcxsIg9bXzpofbjnkJD4IWBENZxpW2Zm3NwGHWPg48n4ckS_J7WwlBa5VQnloraDDR9I9_CwECg6UxFuOXqtIijnc674TePJkjRSet0nEbFInt2coHh2-jt7g7SekOIzvvP7a5XTxjwdOAHYy9xKggN5yYJE91UQRwZpY0ysS57_ScG36eN5C7QJnY-XjGeEjFuPAqsc5GPeG_AzZi6uFOVeufD7PsO9dtMeLPKtff9tEkn0hT6cao-XbCC5bCAf03CCtw-z4dyciH7_Tmb17kHd2tnlbUq7lqFJZuvwcpcC8M1WK2Vw4i9rjtYv7kP348KOv8hmrOBY-0BIjnANawqRiws68ofyJpsG22oYQi1XxYinWn2yfaqzNycydywlpG9QuK130MCjE-__vn5q8XauIxRBuSkRH_5ggdwfC0EeAjL-SC3j4A5bQ2uiIXCoBW9SqVUM9GiiRhRycRxAzanf3mm6_7nNIajn2EcRATK5gnUgI0Z9LDq-_EfuG2i3gyGunWXNwZFL6uFPzPCRDLUqMqFDriMEpv4ThgZpibSKXcNeEW0z0in4E_Ssi6NwI1Rd66sFZOfFyUpb8D6AiTqAr34eMo9Wa2LRtml5DTg5YyjrtzV46vxPIdbKHvZ_u7h3hO4I9Dtq6oz12F5XJzbp-imjdWzUh4YfLluAfwLgllP5g
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtNAFL2CdAFdAC1UBAqaBU8hN5mxPbZXVRpRRYhWFSISrKx5hohgR04CtCs-gi_kS3rHnoQEBEJiZSm5M_HIZ87cE98HwCMe0xCFRRIoHYoA2Y8GEg-CII4YM5ZKZerYnJNTPhhGr97Fy2jCmQ-rRCk-rkmaocgOkGaTDg07jHWoS9zsTLU9_Oz_TKIc5ULk-g5ehS0eozvegq3h6VnvvWsqtxzeBLyHKO_da2Gnv-qZNo6iumL_77y8DdcWxVScfxGTydrBc3wT5PKWm3iTjweLuTxQF79Uc_yvNd2CG94tJb0GRztwxRS7sL1WrHAXdjwNzMgzX6v6-W34ela5Nz3u6ZLSkn6Jk5zgGNKkHVaGDMQFgpAc4WmpCVq9rlOOxoq8MaMmBrcgotCkp8WoEnidjMpqPP_w6ce37z3Sx2HExTqe19P__IE7MDx--bY_CHwzh0BFYTQPUiujWFOq0zhVXRklXEulpU5U3VYh1TxjSgtqI6UTG-IVpStLEGM8MtbycA9aRVmYu0CsMhpHJEyiPEX_UUrZTRXr4oxIJ0nShhfL55orX-ncNdyY5Kh4HArydRS04fHKetpU-PiD3ZGDyMrG1eWuPyirUe63ea6Z5iJWSNpMRVTw1KShZVrEmeYqo7YNTx3AcsceeEtK-CQIXJirw5X3EufR8TSjbdjfsMRdrza_XkI096wzy1E8M3QvMxa34ckKtn9d1b1_NbwP1xn6d00a5j605tXCPEB_bC4f-h13CX4rLDg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+Coal+Mine+Pressure+Hazard+Based+on+Logistic+Regression+and+Adagrad+Algorithm%E2%80%94A+Case+Study+of+C+Coal+Mine&rft.jtitle=Applied+sciences&rft.au=Zhu%2C+Bobin&rft.au=Shi%2C+Yongkui&rft.au=Hao%2C+Jian&rft.au=Fu%2C+Guanqun&rft.date=2023-11-01&rft.pub=MDPI+AG&rft.issn=2076-3417&rft.eissn=2076-3417&rft.volume=13&rft.issue=22&rft_id=info:doi/10.3390%2Fapp132212227&rft.externalDocID=A774316891
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon