Simulating paired and longitudinal single-cell RNA sequencing data with rescueSim
Abstract Motivation As single-cell RNA-sequencing (scRNA-seq) becomes more widely used in transcriptomic research, complex experimental designs, such as paired or longitudinal studies, become increasingly feasible. Paired/longitudinal scRNA-seq enables the study of transcriptomic changes over time w...
        Saved in:
      
    
          | Published in | Bioinformatics (Oxford, England) Vol. 41; no. 8 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        England
          Oxford University Press
    
        01.08.2025
     Oxford Publishing Limited (England)  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1367-4811 1367-4803 1367-4811  | 
| DOI | 10.1093/bioinformatics/btaf442 | 
Cover
| Abstract | Abstract
Motivation
As single-cell RNA-sequencing (scRNA-seq) becomes more widely used in transcriptomic research, complex experimental designs, such as paired or longitudinal studies, become increasingly feasible. Paired/longitudinal scRNA-seq enables the study of transcriptomic changes over time within specific cell types, yet guidance on analytical approaches and resources for study planning, such as power analysis, remains limited. Data simulation is a valuable tool for evaluating analysis method performance and informing study design decisions, including sample size selection. Currently, most scRNA-seq simulation methods simulate cells for a single sample, thus ignoring the between-sample and between-subject variability inherent to paired/longitudinal scRNA-seq data.
Results
Here, we introduce rescueSim (REpeated measures Single Cell RNA-seqUEncing data SIMulation), a novel method that simulates paired/longitudinal scRNA-seq data using a gamma-Poisson framework and incorporates additional variability between samples and subjects. We demonstrate our method’s ability to reproduce important data properties and demonstrate its application in study planning.
Availability and implementation
rescueSim is implemented as an R package and is available at https://github.com/ewynn610/rescueSim. | 
    
|---|---|
| AbstractList | Abstract
Motivation
As single-cell RNA-sequencing (scRNA-seq) becomes more widely used in transcriptomic research, complex experimental designs, such as paired or longitudinal studies, become increasingly feasible. Paired/longitudinal scRNA-seq enables the study of transcriptomic changes over time within specific cell types, yet guidance on analytical approaches and resources for study planning, such as power analysis, remains limited. Data simulation is a valuable tool for evaluating analysis method performance and informing study design decisions, including sample size selection. Currently, most scRNA-seq simulation methods simulate cells for a single sample, thus ignoring the between-sample and between-subject variability inherent to paired/longitudinal scRNA-seq data.
Results
Here, we introduce rescueSim (REpeated measures Single Cell RNA-seqUEncing data SIMulation), a novel method that simulates paired/longitudinal scRNA-seq data using a gamma-Poisson framework and incorporates additional variability between samples and subjects. We demonstrate our method’s ability to reproduce important data properties and demonstrate its application in study planning.
Availability and implementation
rescueSim is implemented as an R package and is available at https://github.com/ewynn610/rescueSim. As single-cell RNA-sequencing (scRNA-seq) becomes more widely used in transcriptomic research, complex experimental designs, such as paired or longitudinal studies, become increasingly feasible. Paired/longitudinal scRNA-seq enables the study of transcriptomic changes over time within specific cell types, yet guidance on analytical approaches and resources for study planning, such as power analysis, remains limited. Data simulation is a valuable tool for evaluating analysis method performance and informing study design decisions, including sample size selection. Currently, most scRNA-seq simulation methods simulate cells for a single sample, thus ignoring the between-sample and between-subject variability inherent to paired/longitudinal scRNA-seq data.MOTIVATIONAs single-cell RNA-sequencing (scRNA-seq) becomes more widely used in transcriptomic research, complex experimental designs, such as paired or longitudinal studies, become increasingly feasible. Paired/longitudinal scRNA-seq enables the study of transcriptomic changes over time within specific cell types, yet guidance on analytical approaches and resources for study planning, such as power analysis, remains limited. Data simulation is a valuable tool for evaluating analysis method performance and informing study design decisions, including sample size selection. Currently, most scRNA-seq simulation methods simulate cells for a single sample, thus ignoring the between-sample and between-subject variability inherent to paired/longitudinal scRNA-seq data.Here, we introduce rescueSim (REpeated measures Single Cell RNA-seqUEncing data SIMulation), a novel method that simulates paired/longitudinal scRNA-seq data using a gamma-Poisson framework and incorporates additional variability between samples and subjects. We demonstrate our method's ability to reproduce important data properties and demonstrate its application in study planning.RESULTSHere, we introduce rescueSim (REpeated measures Single Cell RNA-seqUEncing data SIMulation), a novel method that simulates paired/longitudinal scRNA-seq data using a gamma-Poisson framework and incorporates additional variability between samples and subjects. We demonstrate our method's ability to reproduce important data properties and demonstrate its application in study planning.rescueSim is implemented as an R package and is available at https://github.com/ewynn610/rescueSim.AVAILABILITY AND IMPLEMENTATIONrescueSim is implemented as an R package and is available at https://github.com/ewynn610/rescueSim.Supplementary materials are available on Bioinformatics online.SUPPLEMENTARY INFORMATIONSupplementary materials are available on Bioinformatics online. Motivation As single-cell RNA-sequencing (scRNA-seq) becomes more widely used in transcriptomic research, complex experimental designs, such as paired or longitudinal studies, become increasingly feasible. Paired/longitudinal scRNA-seq enables the study of transcriptomic changes over time within specific cell types, yet guidance on analytical approaches and resources for study planning, such as power analysis, remains limited. Data simulation is a valuable tool for evaluating analysis method performance and informing study design decisions, including sample size selection. Currently, most scRNA-seq simulation methods simulate cells for a single sample, thus ignoring the between-sample and between-subject variability inherent to paired/longitudinal scRNA-seq data. Results Here, we introduce rescueSim (REpeated measures Single Cell RNA-seqUEncing data SIMulation), a novel method that simulates paired/longitudinal scRNA-seq data using a gamma-Poisson framework and incorporates additional variability between samples and subjects. We demonstrate our method’s ability to reproduce important data properties and demonstrate its application in study planning. Availability and implementation rescueSim is implemented as an R package and is available at https://github.com/ewynn610/rescueSim. As single-cell RNA-sequencing (scRNA-seq) becomes more widely used in transcriptomic research, complex experimental designs, such as paired or longitudinal studies, become increasingly feasible. Paired/longitudinal scRNA-seq enables the study of transcriptomic changes over time within specific cell types, yet guidance on analytical approaches and resources for study planning, such as power analysis, remains limited. Data simulation is a valuable tool for evaluating analysis method performance and informing study design decisions, including sample size selection. Currently, most scRNA-seq simulation methods simulate cells for a single sample, thus ignoring the between-sample and between-subject variability inherent to paired/longitudinal scRNA-seq data. Here, we introduce rescueSim (REpeated measures Single Cell RNA-seqUEncing data SIMulation), a novel method that simulates paired/longitudinal scRNA-seq data using a gamma-Poisson framework and incorporates additional variability between samples and subjects. We demonstrate our method's ability to reproduce important data properties and demonstrate its application in study planning. rescueSim is implemented as an R package and is available at https://github.com/ewynn610/rescueSim.  | 
    
| Author | Moore, Camille M Mould, Kara J Vestal, Brian E Wynn, Elizabeth A  | 
    
| Author_xml | – sequence: 1 givenname: Elizabeth A orcidid: 0000-0002-5857-4483 surname: Wynn fullname: Wynn, Elizabeth A email: wynne@njhealth.org – sequence: 2 givenname: Kara J surname: Mould fullname: Mould, Kara J – sequence: 3 givenname: Brian E orcidid: 0000-0002-3772-1691 surname: Vestal fullname: Vestal, Brian E – sequence: 4 givenname: Camille M surname: Moore fullname: Moore, Camille M  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40811017$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqNkU9v1DAQxS1URP_AV6giceESOo69jnNCVQUtUlXUAmdrYjtbV4kd7Jiq3x6vdoG2p548nvm9p_HzIdnzwVtCjil8pNCxk94F54cQJ1ycTif9ggPnzStyQJloay4p3XtU75PDlO4AYAUr8YbscyhNoO0Buf7upjwWE7-uZnTRmgq9qcbg127Jxnkcq1SGo621Hcfq5uq0SvZXtl5vJAYXrO7dcltFm3S2xe0teT3gmOy73XlEfn75_OPsor78dv717PSy1pzxpW6ZRKM5dsAHY0qNwBqUhmlhAKmApu9M04t-4BI5AAKXIHoOq3IxGtgRabe-2c_4cI_jqOboJowPioLahKSehqR2IRXlp61yzv1kjbZ-ifhfHdCppxPvbtU6_Fa0YUJwKYvDh51DDCWLtKjJpU0-6G3ISbGGda1kLeMFff8MvQs5llg3FKeN7LpWFOr48Ur_dvn7UQUQW0DHkFK0w8sfS7fCkOeXav4AlmrB8Q | 
    
| Cites_doi | 10.1186/s13059-020-1926-6 10.1093/nar/30.1.207 10.1038/s41467-021-21038-1 10.1093/bioinformatics/btaa607 10.1182/blood-2023-187408 10.1093/bib/bbac286 10.3389/fonc.2020.584607 10.1111/j.2517-6161.1995.tb02031.x 10.1101/2023.03.17.533005, 10.1038/s41467-021-27130-w 10.1016/j.cell.2018.03.041 10.1093/bioinformatics/btaa105 10.1038/s41591-020-0799-2 10.1038/s41467-019-10500-w 10.1186/s13059-023-02904-1 10.1186/s12859-022-05019-9 10.1186/s13059-021-02546-1 10.1080/01621459.1951.10500769 10.1016/j.cell.2021.04.048 10.1037/10 10.1101/2024.08.01.606200, 10.1016/j.cell.2020.07.017 10.1016/0377-0427(87)90125-7 10.1186/s13059-017-1305-0 10.1038/s41467-020-19894-4 10.1186/gb-2010-11-3-r25 10.1186/s12859-023-05432-8 10.1186/s13059-016-0947-7 10.1093/mnras/202.3.615 10.1186/s13059-015-0844-5 10.1186/1471-2288-11-94 10.26508/lsa.202001004 10.1164/rccm.202005-1989OC 10.1038/s41467-023-37432-w 10.1016/j.clim.2022.109209 10.1093/bioinformatics/btz752 10.1038/nrg2934 10.1093/biostatistics/kxx053 10.1038/s41467-021-25960-2 10.1038/s41576-019-0150-2 10.1016/j.cell.2019.05.031  | 
    
| ContentType | Journal Article | 
    
| Copyright | The Author(s) 2025. Published by Oxford University Press. 2025 The Author(s) 2025. Published by Oxford University Press.  | 
    
| Copyright_xml | – notice: The Author(s) 2025. Published by Oxford University Press. 2025 – notice: The Author(s) 2025. Published by Oxford University Press.  | 
    
| DBID | TOX AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TM 7TO 7U5 8BQ 8FD F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D P64 7X8 5PM ADTOC UNPAY  | 
    
| DOI | 10.1093/bioinformatics/btaf442 | 
    
| DatabaseName | Oxford Journals Open Access Collection CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Oncogenes and Growth Factors Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Materials Business File Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Biotechnology Research Abstracts AIDS and Cancer Research Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE - Academic Materials Research Database MEDLINE  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: TOX name: Oxford Journals Open Access Collection url: https://academic.oup.com/journals/ sourceTypes: Publisher – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Biology | 
    
| EISSN | 1367-4811 | 
    
| ExternalDocumentID | 10.1093/bioinformatics/btaf442 PMC12366488 40811017 10_1093_bioinformatics_btaf442  | 
    
| Genre | Journal Article | 
    
| GroupedDBID | --- -E4 -~X .-4 .2P .DC .GJ .I3 0R~ 1TH 23N 2WC 4.4 48X 53G 5GY 5WA 70D AAIJN AAIMJ AAJKP AAJQQ AAKPC AAMDB AAMVS AAOGV AAPQZ AAPXW AAUQX AAVAP AAVLN ABEFU ABEJV ABEUO ABGNP ABIXL ABNGD ABNKS ABPQP ABPTD ABQLI ABWST ABXVV ABZBJ ACGFS ACIWK ACPRK ACUFI ACUKT ACUXJ ACYTK ADBBV ADEYI ADEZT ADFTL ADGKP ADGZP ADHKW ADHZD ADMLS ADOCK ADPDF ADRDM ADRTK ADVEK ADYVW ADZTZ ADZXQ AECKG AEGPL AEJOX AEKKA AEKSI AELWJ AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFFNX AFFZL AFGWE AFIYH AFOFC AFRAH AGINJ AGKEF AGQPQ AGQXC AGSYK AHMBA AHXPO AI. AIJHB AJEEA AJEUX AKHUL AKWXX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC AMNDL APIBT APWMN AQDSO ARIXL ASPBG ATTQO AVWKF AXUDD AYOIW AZFZN AZVOD BAWUL BAYMD BHONS BQDIO BQUQU BSWAC BTQHN C1A C45 CAG CDBKE COF CS3 CZ4 DAKXR DIK DILTD DU5 D~K EBD EBS EE~ EJD ELUNK EMOBN F5P F9B FEDTE FHSFR FLIZI FLUFQ FOEOM FQBLK GAUVT GJXCC GROUPED_DOAJ GX1 H13 H5~ HAR HVGLF HW0 HZ~ IOX J21 JXSIZ KAQDR KOP KQ8 KSI KSN M-Z MK~ ML0 N9A NGC NLBLG NMDNZ NOMLY NTWIH NU- NVLIB O0~ O9- OAWHX ODMLO OJQWA OK1 OVD OVEED O~Y P2P PAFKI PB- PEELM PQQKQ Q1. Q5Y R44 RD5 RNI RNS ROL RPM RUSNO RW1 RXO RZF RZO SV3 TEORI TJP TLC TOX TR2 VH1 W8F WOQ X7H YAYTL YKOAZ YXANX ZGI ZKX ~91 ~KM AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TM 7TO 7U5 8BQ 8FD F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D P64 7X8 5PM ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c434t-738adc4a904fdd8ada032a8d3c6d0a1602b9d2b6bf48a400a04806b405400dc03 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 1367-4811 1367-4803  | 
    
| IngestDate | Sun Oct 26 03:41:10 EDT 2025 Sat Aug 23 05:22:11 EDT 2025 Fri Aug 15 19:39:53 EDT 2025 Sat Oct 25 06:47:22 EDT 2025 Thu Sep 04 05:03:14 EDT 2025 Wed Oct 01 05:36:37 EDT 2025 Mon Oct 27 07:32:23 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 8 | 
    
| Language | English | 
    
| License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. https://creativecommons.org/licenses/by/4.0 The Author(s) 2025. Published by Oxford University Press. cc-by  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c434t-738adc4a904fdd8ada032a8d3c6d0a1602b9d2b6bf48a400a04806b405400dc03 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| ORCID | 0000-0002-5857-4483 0000-0002-3772-1691  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.1093/bioinformatics/btaf442 | 
    
| PMID | 40811017 | 
    
| PQID | 3241289976 | 
    
| PQPubID | 36124 | 
    
| ParticipantIDs | unpaywall_primary_10_1093_bioinformatics_btaf442 pubmedcentral_primary_oai_pubmedcentral_nih_gov_12366488 proquest_miscellaneous_3239783734 proquest_journals_3241289976 pubmed_primary_40811017 crossref_primary_10_1093_bioinformatics_btaf442 oup_primary_10_1093_bioinformatics_btaf442  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2025-08-01 | 
    
| PublicationDateYYYYMMDD | 2025-08-01 | 
    
| PublicationDate_xml | – month: 08 year: 2025 text: 2025-08-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | England | 
    
| PublicationPlace_xml | – name: England – name: Oxford  | 
    
| PublicationTitle | Bioinformatics (Oxford, England) | 
    
| PublicationTitleAlternate | Bioinformatics | 
    
| PublicationYear | 2025 | 
    
| Publisher | Oxford University Press Oxford Publishing Limited (England)  | 
    
| Publisher_xml | – name: Oxford University Press – name: Oxford Publishing Limited (England)  | 
    
| References | Hao (2025082010465655800_btaf442-B12) 2021; 184 Ozsolak (2025082010465655800_btaf442-B29) 2011; 12 Zimmerman (2025082010465655800_btaf442-B42) 2021; 12 Kazer (2025082010465655800_btaf442-B16) 2020; 26 Baruzzo (2025082010465655800_btaf442-B4) 2020; 36 Rousseeuw (2025082010465655800_btaf442-B33) 1987; 20 Kim (2025082010465655800_btaf442-B18) 2018; 173 Lähnemann (2025082010465655800_btaf442-B19) 2020; 21 Assefa (2025082010465655800_btaf442-B2) 2020; 36 Cao (2025082010465655800_btaf442-B6) 2021; 12 Zhang (2025082010465655800_btaf442-B41) 2019; 10 Hicks (2025082010465655800_btaf442-B13) 2018; 19 Vestal (2025082010465655800_btaf442-B39) 2022; 23 Stuart (2025082010465655800_btaf442-B36) 2019; 177 Su (2025082010465655800_btaf442-B37) 2020; 36 Peacock (2025082010465655800_btaf442-B30) 1983; 202 Massey (2025082010465655800_btaf442-B25) 1951; 46 Arnold (2025082010465655800_btaf442-B1) 2011; 11 Stark (2025082010465655800_btaf442-B35) 2019; 20 Hoffman (2025082010465655800_btaf442-B14) 2024 Liu (2025082010465655800_btaf442-B21) 2023; 24 Azodi (2025082010465655800_btaf442-B3) 2021; 22 Hafner (2025082010465655800_btaf442-B11) 2024 Finak (2025082010465655800_btaf442-B10) 2015; 16 Squair (2025082010465655800_btaf442-B34) 2021; 12 Crowell (2025082010465655800_btaf442-B7) 2023; 24 Mould (2025082010465655800_btaf442-B27) 2021; 203 Zappia (2025082010465655800_btaf442-B40) 2017; 18 Junttila (2025082010465655800_btaf442-B15) 2022; 23 Ostasov (2025082010465655800_btaf442-B28) 2020; 10 Robinson (2025082010465655800_btaf442-B32) 2010; 11 Benjamini (2025082010465655800_btaf442-B5) 1995; 57 Edgar (2025082010465655800_btaf442-B9) 2002; 30 Maynard (2025082010465655800_btaf442-B26) 2020; 182 Khoo (2025082010465655800_btaf442-B17) 2023; 246 Crowell (2025082010465655800_btaf442-B8) 2020; 11 Maechler (2025082010465655800_btaf442-B24) 2018 Lütge (2025082010465655800_btaf442-B23) 2021; 4 Raudenbush (2025082010465655800_btaf442-B31) 2000; 5 Lambo (2025082010465655800_btaf442-B20) 2023; 142 Lun (2025082010465655800_btaf442-B22) 2016; 17 Vasaikar (2025082010465655800_btaf442-B38) 2023; 14  | 
    
| References_xml | – volume: 21 start-page: 31 year: 2020 ident: 2025082010465655800_btaf442-B19 article-title: Eleven grand challenges in single-cell data science publication-title: Genome Biol doi: 10.1186/s13059-020-1926-6 – volume: 30 start-page: 207 year: 2002 ident: 2025082010465655800_btaf442-B9 article-title: Gene expression omnibus: NCBI gene expression and hybridization array data repository publication-title: Nucleic Acids Res doi: 10.1093/nar/30.1.207 – volume: 12 start-page: 738 year: 2021 ident: 2025082010465655800_btaf442-B42 article-title: A practical solution to pseudoreplication bias in single-cell studies publication-title: Nat Commun doi: 10.1038/s41467-021-21038-1 – volume: 36 start-page: 4860 year: 2020 ident: 2025082010465655800_btaf442-B37 article-title: Simulation, power evaluation and sample size recommendation for single-cell RNA-seq publication-title: Bioinformatics doi: 10.1093/bioinformatics/btaa607 – volume: 142 start-page: 65 year: 2023 ident: 2025082010465655800_btaf442-B20 article-title: A longitudinal single-cell atlas of treatment response in pediatric AML publication-title: Blood doi: 10.1182/blood-2023-187408 – volume: 23 year: 2022 ident: 2025082010465655800_btaf442-B15 article-title: Benchmarking methods for detecting differential states between conditions from multi-subject single-cell RNA-seq data publication-title: Brief Bioinform doi: 10.1093/bib/bbac286 – volume: 10 start-page: 584607 year: 2020 ident: 2025082010465655800_btaf442-B28 article-title: Evolution of advanced chronic lymphoid leukemia unveiled by single-cell transcriptomics: a case report publication-title: Front Oncol doi: 10.3389/fonc.2020.584607 – volume: 57 start-page: 289 year: 1995 ident: 2025082010465655800_btaf442-B5 article-title: Controlling the false discovery rate: a practical and powerful approach to multiple testing publication-title: J R Stat Soc Ser B Stat Methodol doi: 10.1111/j.2517-6161.1995.tb02031.x – year: 2024 ident: 2025082010465655800_btaf442-B14 article-title: Efficient differential expression analysis of large-scale single cell transcriptomics data using dreamlet doi: 10.1101/2023.03.17.533005, – volume: 12 start-page: 6911 year: 2021 ident: 2025082010465655800_btaf442-B6 article-title: A benchmark study of simulation methods for single-cell RNA sequencing data publication-title: Nat Commun doi: 10.1038/s41467-021-27130-w – volume: 173 start-page: 879 year: 2018 ident: 2025082010465655800_btaf442-B18 article-title: Chemoresistance evolution in triple-negative breast cancer delineated by single-cell sequencing publication-title: Cell doi: 10.1016/j.cell.2018.03.041 – volume: 36 start-page: 3276 year: 2020 ident: 2025082010465655800_btaf442-B2 article-title: SPsimSeq: semi-parametric simulation of bulk and single-cell RNA-sequencing data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btaa105 – volume: 26 start-page: 511 year: 2020 ident: 2025082010465655800_btaf442-B16 article-title: Integrated single-cell analysis of multicellular immune dynamics during hyperacute HIV-1 infection publication-title: Nat Med doi: 10.1038/s41591-020-0799-2 – volume: 10 start-page: 2611 year: 2019 ident: 2025082010465655800_btaf442-B41 article-title: Simulating multiple faceted variability in single cell RNA sequencing publication-title: Nat Commun doi: 10.1038/s41467-019-10500-w – volume: 24 start-page: 62 year: 2023 ident: 2025082010465655800_btaf442-B7 article-title: The shaky foundations of simulating single-cell RNA sequencing data publication-title: Genome Biol doi: 10.1186/s13059-023-02904-1 – volume: 23 start-page: 489 year: 2022 ident: 2025082010465655800_btaf442-B39 article-title: lmerseq: an R package for analyzing transformed RNA-Seq data with linear mixed effects models publication-title: BMC Bioinformatics doi: 10.1186/s12859-022-05019-9 – volume: 22 start-page: 341 year: 2021 ident: 2025082010465655800_btaf442-B3 article-title: splatPop: simulating population scale single-cell RNA sequencing data publication-title: Genome Biol doi: 10.1186/s13059-021-02546-1 – volume: 46 start-page: 68 year: 1951 ident: 2025082010465655800_btaf442-B25 article-title: The Kolmogorov–Smirnov test for goodness of fit publication-title: J Am Stat Assoc doi: 10.1080/01621459.1951.10500769 – volume: 184 start-page: 3573 year: 2021 ident: 2025082010465655800_btaf442-B12 article-title: Integrated analysis of multimodal single-cell data publication-title: Cell doi: 10.1016/j.cell.2021.04.048 – volume: 5 start-page: 199 year: 2000 ident: 2025082010465655800_btaf442-B31 article-title: Statistical power and optimal design for multisite randomized trials publication-title: Psychol Methods doi: 10.1037/10 – year: 2024 ident: 2025082010465655800_btaf442-B11 doi: 10.1101/2024.08.01.606200, – volume: 182 start-page: 1232 year: 2020 ident: 2025082010465655800_btaf442-B26 article-title: Therapy-induced evolution of human lung cancer revealed by single-cell RNA sequencing publication-title: Cell doi: 10.1016/j.cell.2020.07.017 – volume: 20 start-page: 53 year: 1987 ident: 2025082010465655800_btaf442-B33 article-title: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis publication-title: J Comput Appl Math doi: 10.1016/0377-0427(87)90125-7 – volume: 18 start-page: 174 year: 2017 ident: 2025082010465655800_btaf442-B40 article-title: Splatter: simulation of single-cell RNA sequencing data publication-title: Genome Biol doi: 10.1186/s13059-017-1305-0 – volume: 11 start-page: 6077 year: 2020 ident: 2025082010465655800_btaf442-B8 article-title: Muscat detects subpopulation-specific state transitions from multi-sample multi-condition single-cell transcriptomics data publication-title: Nat Commun doi: 10.1038/s41467-020-19894-4 – volume: 11 start-page: R25 year: 2010 ident: 2025082010465655800_btaf442-B32 article-title: A scaling normalization method for differential expression analysis of RNA-seq data publication-title: Genome Biol doi: 10.1186/gb-2010-11-3-r25 – year: 2018 ident: 2025082010465655800_btaf442-B24 – volume: 24 start-page: 318 year: 2023 ident: 2025082010465655800_btaf442-B21 article-title: idesc: identifying differential expression in single-cell RNA sequencing data with multiple subjects publication-title: BMC Bioinformatics doi: 10.1186/s12859-023-05432-8 – volume: 17 start-page: 75 year: 2016 ident: 2025082010465655800_btaf442-B22 article-title: Pooling across cells to normalize single-cell RNA sequencing data with many zero counts publication-title: Genome Biol doi: 10.1186/s13059-016-0947-7 – volume: 202 start-page: 615 year: 1983 ident: 2025082010465655800_btaf442-B30 article-title: Two-dimensional goodness-of-fit testing in astronomy publication-title: Mon Not R Astron Soc doi: 10.1093/mnras/202.3.615 – volume: 16 start-page: 278 year: 2015 ident: 2025082010465655800_btaf442-B10 article-title: MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data publication-title: Genome Biol doi: 10.1186/s13059-015-0844-5 – volume: 11 start-page: 94 year: 2011 ident: 2025082010465655800_btaf442-B1 article-title: Simulation methods to estimate design power: an overview for applied research publication-title: BMC Med Res Methodol doi: 10.1186/1471-2288-11-94 – volume: 4 start-page: e202001004 year: 2021 ident: 2025082010465655800_btaf442-B23 article-title: CellMixS: quantifying and visualizing batch effects in single-cell RNA-seq data publication-title: Life Sci Alliance doi: 10.26508/lsa.202001004 – volume: 203 start-page: 946 year: 2021 ident: 2025082010465655800_btaf442-B27 article-title: Airspace macrophages and monocytes exist in transcriptionally distinct subsets in healthy adults publication-title: Am J Respir Crit Care Med doi: 10.1164/rccm.202005-1989OC – volume: 14 start-page: 1684 year: 2023 ident: 2025082010465655800_btaf442-B38 article-title: A comprehensive platform for analyzing longitudinal multi-omics data publication-title: Nat Commun doi: 10.1038/s41467-023-37432-w – volume: 246 start-page: 109209 year: 2023 ident: 2025082010465655800_btaf442-B17 article-title: Tracking the clonal dynamics of SARS-CoV-2-specific T cells in children and adults with mild/asymptomatic COVID-19 publication-title: Clin Immunol doi: 10.1016/j.clim.2022.109209 – volume: 36 start-page: 1468 year: 2020 ident: 2025082010465655800_btaf442-B4 article-title: SPARSim single cell: a count data simulator for scRNA-seq data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btz752 – volume: 12 start-page: 87 year: 2011 ident: 2025082010465655800_btaf442-B29 article-title: RNA sequencing: advances, challenges and opportunities publication-title: Nat Rev Genet doi: 10.1038/nrg2934 – volume: 19 start-page: 562 year: 2018 ident: 2025082010465655800_btaf442-B13 article-title: Missing data and technical variability in single-cell RNA-sequencing experiments publication-title: Biostatistics doi: 10.1093/biostatistics/kxx053 – volume: 12 start-page: 5692 year: 2021 ident: 2025082010465655800_btaf442-B34 article-title: Confronting false discoveries in single-cell differential expression publication-title: Nat Commun doi: 10.1038/s41467-021-25960-2 – volume: 20 start-page: 631 year: 2019 ident: 2025082010465655800_btaf442-B35 article-title: RNA sequencing: the teenage years publication-title: Nat Rev Genet doi: 10.1038/s41576-019-0150-2 – volume: 177 start-page: 1888 year: 2019 ident: 2025082010465655800_btaf442-B36 article-title: Comprehensive integration of single-cell data publication-title: Cell doi: 10.1016/j.cell.2019.05.031  | 
    
| SSID | ssj0005056 | 
    
| Score | 2.492996 | 
    
| Snippet | Abstract
Motivation
As single-cell RNA-sequencing (scRNA-seq) becomes more widely used in transcriptomic research, complex experimental designs, such as paired... As single-cell RNA-sequencing (scRNA-seq) becomes more widely used in transcriptomic research, complex experimental designs, such as paired or longitudinal... Motivation As single-cell RNA-sequencing (scRNA-seq) becomes more widely used in transcriptomic research, complex experimental designs, such as paired or...  | 
    
| SourceID | unpaywall pubmedcentral proquest pubmed crossref oup  | 
    
| SourceType | Open Access Repository Aggregation Database Index Database Publisher  | 
    
| SubjectTerms | Algorithms Availability Computer Simulation Data simulation Gene Expression Profiling - methods Gene sequencing Humans Longitudinal studies Original Paper Ribonucleic acid RNA RNA-Seq - methods Sequence Analysis, RNA - methods Simulation Single-Cell Analysis - methods Software Transcriptomics Variability  | 
    
| Title | Simulating paired and longitudinal single-cell RNA sequencing data with rescueSim | 
    
| URI | https://www.ncbi.nlm.nih.gov/pubmed/40811017 https://www.proquest.com/docview/3241289976 https://www.proquest.com/docview/3239783734 https://pubmed.ncbi.nlm.nih.gov/PMC12366488 https://doi.org/10.1093/bioinformatics/btaf442  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 41 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1367-4811 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005056 issn: 1367-4811 databaseCode: KQ8 dateStart: 19960101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1367-4811 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005056 issn: 1367-4811 databaseCode: DOA dateStart: 20230101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1367-4811 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005056 issn: 1367-4811 databaseCode: ADMLS dateStart: 19980101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1367-4811 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005056 issn: 1367-4811 databaseCode: RPM dateStart: 20070101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVOVD databaseName: Journals@Ovid LWW All Open Access Journal Collection Rolling customDbUrl: eissn: 1367-4811 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005056 issn: 1367-4811 databaseCode: OVEED dateStart: 20010101 isFulltext: true titleUrlDefault: http://ovidsp.ovid.com/ providerName: Ovid – providerCode: PRVASL databaseName: Oxford Journals Open Access Collection customDbUrl: eissn: 1367-4811 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005056 issn: 1367-4811 databaseCode: TOX dateStart: 19850101 isFulltext: true titleUrlDefault: https://academic.oup.com/journals/ providerName: Oxford University Press  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3ri9QwEB90D9Ev51t7nkcEPwm9TZs0bT8u4nEI7vm4hfVTyaM9F9fuoi1y99ffTJtdroqwfimBPEoyk8kvk3kAvFaZk3hK8zBLdBnKJJahiSokiMXTtJLC2Ji8kT9M1elMvp8nc39RJF-Ywft9LsZmsfIRRClq8dg0usKxb8OeShB7j2BvNv04-do7V6WhzLpUyL4cRRuX4H8ONDiNBh5uN4Dm3_aSd9t6rS9_6-XyxmF0ch_ONtPobVC-H7eNObZXf0R43H2eD2Df41I26RnpIdwq60dwp89UefkYPn1Z_OgSfdUXbK1RTDqma8eWK0p31DpKrcVI67AsQ3oKYJ-nE-attKkL2aEyUvkyvN3btsTRnsDs5N3529PQZ2MIrRSyCVORaWelzrmsnMOy5iLWmRNWOa4jxWOTu9goU8lMo2TQ5K2ujCRMyJ3l4imM6lVdPgeW6hSRnoitQUBUykhXiTR5ZnWVc1UJG8B4Q5Vi3QfdKPrHclEMF6rwCxXAGyTezo0PNzQu_I79VSCwjOjymaoAXm2rca_Rqum6XLXURpCmLBUygGc9S2x_KRFbkXgLIBswy7YBxfEe1tSLb108bwqAo1CQBsC3fLXjVA7-v8sLuBdTDuPOiPEQRs3PtnyJwKoxR51CAr_nZ_Mjv7OuAaRLKvo | 
    
| linkProvider | Unpaywall | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swED-2lLG-rFu3tl67oUGfBm5kS5btxzBWymDZVwPdk9GHvYWmTmhtRvfX7y5WQt0xyN4E-kK6091P0n0AHKvMSdTSPMwSXYYyiWVoogoJYlGbVlIYG5M38sexOpvIDxfJhb8oki9M7_8-F0MznfsIohS1eGgaXeHYD2FLJYi9B7A1GX8efe-cq9JQZstUyL4cRSuX4H8O1NNGPQ-3O0Dzb3vJx2290Le_9Gx2Rxmd7sCn1TI6G5TLk7YxJ_b3vQiPm6_zKTzxuJSNOkZ6Bg_KehcedZkqb5_Dl2_Tq2Wir_oHW2gUk47p2rHZnNIdtY5SazF6dZiVIX0FsK_jEfNW2tSF7FAZPfkyvN3btsTRXsDk9P35u7PQZ2MIrRSyCVORaWelzrmsnMOy5iLWmRNWOa4jxWOTu9goU8lMo2TQ5K2ujCRMyJ3lYg8G9bwuD4ClOkWkJ2JrEBCVMtJVIk2eWV3lXFXCBjBcUaVYdEE3iu6zXBT9jSr8RgXwFom3ceOjFY0Lf2JvCgSWEV0-UxXAm3U1njXaNV2X85baCHopS4UMYL9jifWUErEVibcAsh6zrBtQHO9-TT39uYznTQFwFArSAPiarzZcysv_73II2zHlMF4aMR7BoLluy1cIrBrz2p-mP7IeKOk | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Simulating+paired+and+longitudinal+single-cell+RNA+sequencing+data+with+rescueSim&rft.jtitle=Bioinformatics+%28Oxford%2C+England%29&rft.au=Wynn%2C+Elizabeth+A&rft.au=Mould%2C+Kara+J&rft.au=Vestal%2C+Brian+E&rft.au=Moore%2C+Camille+M&rft.date=2025-08-01&rft.pub=Oxford+University+Press&rft.issn=1367-4803&rft.eissn=1367-4811&rft.volume=41&rft.issue=8&rft_id=info:doi/10.1093%2Fbioinformatics%2Fbtaf442&rft_id=info%3Apmid%2F40811017&rft.externalDocID=PMC12366488 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-4811&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-4811&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-4811&client=summon |