Simulating paired and longitudinal single-cell RNA sequencing data with rescueSim

Abstract Motivation As single-cell RNA-sequencing (scRNA-seq) becomes more widely used in transcriptomic research, complex experimental designs, such as paired or longitudinal studies, become increasingly feasible. Paired/longitudinal scRNA-seq enables the study of transcriptomic changes over time w...

Full description

Saved in:
Bibliographic Details
Published inBioinformatics (Oxford, England) Vol. 41; no. 8
Main Authors Wynn, Elizabeth A, Mould, Kara J, Vestal, Brian E, Moore, Camille M
Format Journal Article
LanguageEnglish
Published England Oxford University Press 01.08.2025
Oxford Publishing Limited (England)
Subjects
Online AccessGet full text
ISSN1367-4811
1367-4803
1367-4811
DOI10.1093/bioinformatics/btaf442

Cover

Abstract Abstract Motivation As single-cell RNA-sequencing (scRNA-seq) becomes more widely used in transcriptomic research, complex experimental designs, such as paired or longitudinal studies, become increasingly feasible. Paired/longitudinal scRNA-seq enables the study of transcriptomic changes over time within specific cell types, yet guidance on analytical approaches and resources for study planning, such as power analysis, remains limited. Data simulation is a valuable tool for evaluating analysis method performance and informing study design decisions, including sample size selection. Currently, most scRNA-seq simulation methods simulate cells for a single sample, thus ignoring the between-sample and between-subject variability inherent to paired/longitudinal scRNA-seq data. Results Here, we introduce rescueSim (REpeated measures Single Cell RNA-seqUEncing data SIMulation), a novel method that simulates paired/longitudinal scRNA-seq data using a gamma-Poisson framework and incorporates additional variability between samples and subjects. We demonstrate our method’s ability to reproduce important data properties and demonstrate its application in study planning. Availability and implementation rescueSim is implemented as an R package and is available at https://github.com/ewynn610/rescueSim.
AbstractList Abstract Motivation As single-cell RNA-sequencing (scRNA-seq) becomes more widely used in transcriptomic research, complex experimental designs, such as paired or longitudinal studies, become increasingly feasible. Paired/longitudinal scRNA-seq enables the study of transcriptomic changes over time within specific cell types, yet guidance on analytical approaches and resources for study planning, such as power analysis, remains limited. Data simulation is a valuable tool for evaluating analysis method performance and informing study design decisions, including sample size selection. Currently, most scRNA-seq simulation methods simulate cells for a single sample, thus ignoring the between-sample and between-subject variability inherent to paired/longitudinal scRNA-seq data. Results Here, we introduce rescueSim (REpeated measures Single Cell RNA-seqUEncing data SIMulation), a novel method that simulates paired/longitudinal scRNA-seq data using a gamma-Poisson framework and incorporates additional variability between samples and subjects. We demonstrate our method’s ability to reproduce important data properties and demonstrate its application in study planning. Availability and implementation rescueSim is implemented as an R package and is available at https://github.com/ewynn610/rescueSim.
As single-cell RNA-sequencing (scRNA-seq) becomes more widely used in transcriptomic research, complex experimental designs, such as paired or longitudinal studies, become increasingly feasible. Paired/longitudinal scRNA-seq enables the study of transcriptomic changes over time within specific cell types, yet guidance on analytical approaches and resources for study planning, such as power analysis, remains limited. Data simulation is a valuable tool for evaluating analysis method performance and informing study design decisions, including sample size selection. Currently, most scRNA-seq simulation methods simulate cells for a single sample, thus ignoring the between-sample and between-subject variability inherent to paired/longitudinal scRNA-seq data.MOTIVATIONAs single-cell RNA-sequencing (scRNA-seq) becomes more widely used in transcriptomic research, complex experimental designs, such as paired or longitudinal studies, become increasingly feasible. Paired/longitudinal scRNA-seq enables the study of transcriptomic changes over time within specific cell types, yet guidance on analytical approaches and resources for study planning, such as power analysis, remains limited. Data simulation is a valuable tool for evaluating analysis method performance and informing study design decisions, including sample size selection. Currently, most scRNA-seq simulation methods simulate cells for a single sample, thus ignoring the between-sample and between-subject variability inherent to paired/longitudinal scRNA-seq data.Here, we introduce rescueSim (REpeated measures Single Cell RNA-seqUEncing data SIMulation), a novel method that simulates paired/longitudinal scRNA-seq data using a gamma-Poisson framework and incorporates additional variability between samples and subjects. We demonstrate our method's ability to reproduce important data properties and demonstrate its application in study planning.RESULTSHere, we introduce rescueSim (REpeated measures Single Cell RNA-seqUEncing data SIMulation), a novel method that simulates paired/longitudinal scRNA-seq data using a gamma-Poisson framework and incorporates additional variability between samples and subjects. We demonstrate our method's ability to reproduce important data properties and demonstrate its application in study planning.rescueSim is implemented as an R package and is available at https://github.com/ewynn610/rescueSim.AVAILABILITY AND IMPLEMENTATIONrescueSim is implemented as an R package and is available at https://github.com/ewynn610/rescueSim.Supplementary materials are available on Bioinformatics online.SUPPLEMENTARY INFORMATIONSupplementary materials are available on Bioinformatics online.
Motivation As single-cell RNA-sequencing (scRNA-seq) becomes more widely used in transcriptomic research, complex experimental designs, such as paired or longitudinal studies, become increasingly feasible. Paired/longitudinal scRNA-seq enables the study of transcriptomic changes over time within specific cell types, yet guidance on analytical approaches and resources for study planning, such as power analysis, remains limited. Data simulation is a valuable tool for evaluating analysis method performance and informing study design decisions, including sample size selection. Currently, most scRNA-seq simulation methods simulate cells for a single sample, thus ignoring the between-sample and between-subject variability inherent to paired/longitudinal scRNA-seq data. Results Here, we introduce rescueSim (REpeated measures Single Cell RNA-seqUEncing data SIMulation), a novel method that simulates paired/longitudinal scRNA-seq data using a gamma-Poisson framework and incorporates additional variability between samples and subjects. We demonstrate our method’s ability to reproduce important data properties and demonstrate its application in study planning. Availability and implementation rescueSim is implemented as an R package and is available at https://github.com/ewynn610/rescueSim.
As single-cell RNA-sequencing (scRNA-seq) becomes more widely used in transcriptomic research, complex experimental designs, such as paired or longitudinal studies, become increasingly feasible. Paired/longitudinal scRNA-seq enables the study of transcriptomic changes over time within specific cell types, yet guidance on analytical approaches and resources for study planning, such as power analysis, remains limited. Data simulation is a valuable tool for evaluating analysis method performance and informing study design decisions, including sample size selection. Currently, most scRNA-seq simulation methods simulate cells for a single sample, thus ignoring the between-sample and between-subject variability inherent to paired/longitudinal scRNA-seq data. Here, we introduce rescueSim (REpeated measures Single Cell RNA-seqUEncing data SIMulation), a novel method that simulates paired/longitudinal scRNA-seq data using a gamma-Poisson framework and incorporates additional variability between samples and subjects. We demonstrate our method's ability to reproduce important data properties and demonstrate its application in study planning. rescueSim is implemented as an R package and is available at https://github.com/ewynn610/rescueSim.
Author Moore, Camille M
Mould, Kara J
Vestal, Brian E
Wynn, Elizabeth A
Author_xml – sequence: 1
  givenname: Elizabeth A
  orcidid: 0000-0002-5857-4483
  surname: Wynn
  fullname: Wynn, Elizabeth A
  email: wynne@njhealth.org
– sequence: 2
  givenname: Kara J
  surname: Mould
  fullname: Mould, Kara J
– sequence: 3
  givenname: Brian E
  orcidid: 0000-0002-3772-1691
  surname: Vestal
  fullname: Vestal, Brian E
– sequence: 4
  givenname: Camille M
  surname: Moore
  fullname: Moore, Camille M
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40811017$$D View this record in MEDLINE/PubMed
BookMark eNqNkU9v1DAQxS1URP_AV6giceESOo69jnNCVQUtUlXUAmdrYjtbV4kd7Jiq3x6vdoG2p548nvm9p_HzIdnzwVtCjil8pNCxk94F54cQJ1ycTif9ggPnzStyQJloay4p3XtU75PDlO4AYAUr8YbscyhNoO0Buf7upjwWE7-uZnTRmgq9qcbg127Jxnkcq1SGo621Hcfq5uq0SvZXtl5vJAYXrO7dcltFm3S2xe0teT3gmOy73XlEfn75_OPsor78dv717PSy1pzxpW6ZRKM5dsAHY0qNwBqUhmlhAKmApu9M04t-4BI5AAKXIHoOq3IxGtgRabe-2c_4cI_jqOboJowPioLahKSehqR2IRXlp61yzv1kjbZ-ifhfHdCppxPvbtU6_Fa0YUJwKYvDh51DDCWLtKjJpU0-6G3ISbGGda1kLeMFff8MvQs5llg3FKeN7LpWFOr48Ur_dvn7UQUQW0DHkFK0w8sfS7fCkOeXav4AlmrB8Q
Cites_doi 10.1186/s13059-020-1926-6
10.1093/nar/30.1.207
10.1038/s41467-021-21038-1
10.1093/bioinformatics/btaa607
10.1182/blood-2023-187408
10.1093/bib/bbac286
10.3389/fonc.2020.584607
10.1111/j.2517-6161.1995.tb02031.x
10.1101/2023.03.17.533005,
10.1038/s41467-021-27130-w
10.1016/j.cell.2018.03.041
10.1093/bioinformatics/btaa105
10.1038/s41591-020-0799-2
10.1038/s41467-019-10500-w
10.1186/s13059-023-02904-1
10.1186/s12859-022-05019-9
10.1186/s13059-021-02546-1
10.1080/01621459.1951.10500769
10.1016/j.cell.2021.04.048
10.1037/10
10.1101/2024.08.01.606200,
10.1016/j.cell.2020.07.017
10.1016/0377-0427(87)90125-7
10.1186/s13059-017-1305-0
10.1038/s41467-020-19894-4
10.1186/gb-2010-11-3-r25
10.1186/s12859-023-05432-8
10.1186/s13059-016-0947-7
10.1093/mnras/202.3.615
10.1186/s13059-015-0844-5
10.1186/1471-2288-11-94
10.26508/lsa.202001004
10.1164/rccm.202005-1989OC
10.1038/s41467-023-37432-w
10.1016/j.clim.2022.109209
10.1093/bioinformatics/btz752
10.1038/nrg2934
10.1093/biostatistics/kxx053
10.1038/s41467-021-25960-2
10.1038/s41576-019-0150-2
10.1016/j.cell.2019.05.031
ContentType Journal Article
Copyright The Author(s) 2025. Published by Oxford University Press. 2025
The Author(s) 2025. Published by Oxford University Press.
Copyright_xml – notice: The Author(s) 2025. Published by Oxford University Press. 2025
– notice: The Author(s) 2025. Published by Oxford University Press.
DBID TOX
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TM
7TO
7U5
8BQ
8FD
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
P64
7X8
5PM
ADTOC
UNPAY
DOI 10.1093/bioinformatics/btaf442
DatabaseName Oxford Journals Open Access Collection
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Oncogenes and Growth Factors Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Materials Business File
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
AIDS and Cancer Research Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Materials Research Database
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: TOX
  name: Oxford Journals Open Access Collection
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1367-4811
ExternalDocumentID 10.1093/bioinformatics/btaf442
PMC12366488
40811017
10_1093_bioinformatics_btaf442
Genre Journal Article
GroupedDBID ---
-E4
-~X
.-4
.2P
.DC
.GJ
.I3
0R~
1TH
23N
2WC
4.4
48X
53G
5GY
5WA
70D
AAIJN
AAIMJ
AAJKP
AAJQQ
AAKPC
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AAUQX
AAVAP
AAVLN
ABEFU
ABEJV
ABEUO
ABGNP
ABIXL
ABNGD
ABNKS
ABPQP
ABPTD
ABQLI
ABWST
ABXVV
ABZBJ
ACGFS
ACIWK
ACPRK
ACUFI
ACUKT
ACUXJ
ACYTK
ADBBV
ADEYI
ADEZT
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADMLS
ADOCK
ADPDF
ADRDM
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AECKG
AEGPL
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFNX
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AGINJ
AGKEF
AGQPQ
AGQXC
AGSYK
AHMBA
AHXPO
AI.
AIJHB
AJEEA
AJEUX
AKHUL
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
AMNDL
APIBT
APWMN
AQDSO
ARIXL
ASPBG
ATTQO
AVWKF
AXUDD
AYOIW
AZFZN
AZVOD
BAWUL
BAYMD
BHONS
BQDIO
BQUQU
BSWAC
BTQHN
C1A
C45
CAG
CDBKE
COF
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
EBD
EBS
EE~
EJD
ELUNK
EMOBN
F5P
F9B
FEDTE
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GROUPED_DOAJ
GX1
H13
H5~
HAR
HVGLF
HW0
HZ~
IOX
J21
JXSIZ
KAQDR
KOP
KQ8
KSI
KSN
M-Z
MK~
ML0
N9A
NGC
NLBLG
NMDNZ
NOMLY
NTWIH
NU-
NVLIB
O0~
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
O~Y
P2P
PAFKI
PB-
PEELM
PQQKQ
Q1.
Q5Y
R44
RD5
RNI
RNS
ROL
RPM
RUSNO
RW1
RXO
RZF
RZO
SV3
TEORI
TJP
TLC
TOX
TR2
VH1
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZGI
ZKX
~91
~KM
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TM
7TO
7U5
8BQ
8FD
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
P64
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c434t-738adc4a904fdd8ada032a8d3c6d0a1602b9d2b6bf48a400a04806b405400dc03
IEDL.DBID UNPAY
ISSN 1367-4811
1367-4803
IngestDate Sun Oct 26 03:41:10 EDT 2025
Sat Aug 23 05:22:11 EDT 2025
Fri Aug 15 19:39:53 EDT 2025
Sat Oct 25 06:47:22 EDT 2025
Thu Sep 04 05:03:14 EDT 2025
Wed Oct 01 05:36:37 EDT 2025
Mon Oct 27 07:32:23 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
https://creativecommons.org/licenses/by/4.0
The Author(s) 2025. Published by Oxford University Press.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c434t-738adc4a904fdd8ada032a8d3c6d0a1602b9d2b6bf48a400a04806b405400dc03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5857-4483
0000-0002-3772-1691
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1093/bioinformatics/btaf442
PMID 40811017
PQID 3241289976
PQPubID 36124
ParticipantIDs unpaywall_primary_10_1093_bioinformatics_btaf442
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12366488
proquest_miscellaneous_3239783734
proquest_journals_3241289976
pubmed_primary_40811017
crossref_primary_10_1093_bioinformatics_btaf442
oup_primary_10_1093_bioinformatics_btaf442
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-08-01
PublicationDateYYYYMMDD 2025-08-01
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-08-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Bioinformatics (Oxford, England)
PublicationTitleAlternate Bioinformatics
PublicationYear 2025
Publisher Oxford University Press
Oxford Publishing Limited (England)
Publisher_xml – name: Oxford University Press
– name: Oxford Publishing Limited (England)
References Hao (2025082010465655800_btaf442-B12) 2021; 184
Ozsolak (2025082010465655800_btaf442-B29) 2011; 12
Zimmerman (2025082010465655800_btaf442-B42) 2021; 12
Kazer (2025082010465655800_btaf442-B16) 2020; 26
Baruzzo (2025082010465655800_btaf442-B4) 2020; 36
Rousseeuw (2025082010465655800_btaf442-B33) 1987; 20
Kim (2025082010465655800_btaf442-B18) 2018; 173
Lähnemann (2025082010465655800_btaf442-B19) 2020; 21
Assefa (2025082010465655800_btaf442-B2) 2020; 36
Cao (2025082010465655800_btaf442-B6) 2021; 12
Zhang (2025082010465655800_btaf442-B41) 2019; 10
Hicks (2025082010465655800_btaf442-B13) 2018; 19
Vestal (2025082010465655800_btaf442-B39) 2022; 23
Stuart (2025082010465655800_btaf442-B36) 2019; 177
Su (2025082010465655800_btaf442-B37) 2020; 36
Peacock (2025082010465655800_btaf442-B30) 1983; 202
Massey (2025082010465655800_btaf442-B25) 1951; 46
Arnold (2025082010465655800_btaf442-B1) 2011; 11
Stark (2025082010465655800_btaf442-B35) 2019; 20
Hoffman (2025082010465655800_btaf442-B14) 2024
Liu (2025082010465655800_btaf442-B21) 2023; 24
Azodi (2025082010465655800_btaf442-B3) 2021; 22
Hafner (2025082010465655800_btaf442-B11) 2024
Finak (2025082010465655800_btaf442-B10) 2015; 16
Squair (2025082010465655800_btaf442-B34) 2021; 12
Crowell (2025082010465655800_btaf442-B7) 2023; 24
Mould (2025082010465655800_btaf442-B27) 2021; 203
Zappia (2025082010465655800_btaf442-B40) 2017; 18
Junttila (2025082010465655800_btaf442-B15) 2022; 23
Ostasov (2025082010465655800_btaf442-B28) 2020; 10
Robinson (2025082010465655800_btaf442-B32) 2010; 11
Benjamini (2025082010465655800_btaf442-B5) 1995; 57
Edgar (2025082010465655800_btaf442-B9) 2002; 30
Maynard (2025082010465655800_btaf442-B26) 2020; 182
Khoo (2025082010465655800_btaf442-B17) 2023; 246
Crowell (2025082010465655800_btaf442-B8) 2020; 11
Maechler (2025082010465655800_btaf442-B24) 2018
Lütge (2025082010465655800_btaf442-B23) 2021; 4
Raudenbush (2025082010465655800_btaf442-B31) 2000; 5
Lambo (2025082010465655800_btaf442-B20) 2023; 142
Lun (2025082010465655800_btaf442-B22) 2016; 17
Vasaikar (2025082010465655800_btaf442-B38) 2023; 14
References_xml – volume: 21
  start-page: 31
  year: 2020
  ident: 2025082010465655800_btaf442-B19
  article-title: Eleven grand challenges in single-cell data science
  publication-title: Genome Biol
  doi: 10.1186/s13059-020-1926-6
– volume: 30
  start-page: 207
  year: 2002
  ident: 2025082010465655800_btaf442-B9
  article-title: Gene expression omnibus: NCBI gene expression and hybridization array data repository
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/30.1.207
– volume: 12
  start-page: 738
  year: 2021
  ident: 2025082010465655800_btaf442-B42
  article-title: A practical solution to pseudoreplication bias in single-cell studies
  publication-title: Nat Commun
  doi: 10.1038/s41467-021-21038-1
– volume: 36
  start-page: 4860
  year: 2020
  ident: 2025082010465655800_btaf442-B37
  article-title: Simulation, power evaluation and sample size recommendation for single-cell RNA-seq
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btaa607
– volume: 142
  start-page: 65
  year: 2023
  ident: 2025082010465655800_btaf442-B20
  article-title: A longitudinal single-cell atlas of treatment response in pediatric AML
  publication-title: Blood
  doi: 10.1182/blood-2023-187408
– volume: 23
  year: 2022
  ident: 2025082010465655800_btaf442-B15
  article-title: Benchmarking methods for detecting differential states between conditions from multi-subject single-cell RNA-seq data
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbac286
– volume: 10
  start-page: 584607
  year: 2020
  ident: 2025082010465655800_btaf442-B28
  article-title: Evolution of advanced chronic lymphoid leukemia unveiled by single-cell transcriptomics: a case report
  publication-title: Front Oncol
  doi: 10.3389/fonc.2020.584607
– volume: 57
  start-page: 289
  year: 1995
  ident: 2025082010465655800_btaf442-B5
  article-title: Controlling the false discovery rate: a practical and powerful approach to multiple testing
  publication-title: J R Stat Soc Ser B Stat Methodol
  doi: 10.1111/j.2517-6161.1995.tb02031.x
– year: 2024
  ident: 2025082010465655800_btaf442-B14
  article-title: Efficient differential expression analysis of large-scale single cell transcriptomics data using dreamlet
  doi: 10.1101/2023.03.17.533005,
– volume: 12
  start-page: 6911
  year: 2021
  ident: 2025082010465655800_btaf442-B6
  article-title: A benchmark study of simulation methods for single-cell RNA sequencing data
  publication-title: Nat Commun
  doi: 10.1038/s41467-021-27130-w
– volume: 173
  start-page: 879
  year: 2018
  ident: 2025082010465655800_btaf442-B18
  article-title: Chemoresistance evolution in triple-negative breast cancer delineated by single-cell sequencing
  publication-title: Cell
  doi: 10.1016/j.cell.2018.03.041
– volume: 36
  start-page: 3276
  year: 2020
  ident: 2025082010465655800_btaf442-B2
  article-title: SPsimSeq: semi-parametric simulation of bulk and single-cell RNA-sequencing data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btaa105
– volume: 26
  start-page: 511
  year: 2020
  ident: 2025082010465655800_btaf442-B16
  article-title: Integrated single-cell analysis of multicellular immune dynamics during hyperacute HIV-1 infection
  publication-title: Nat Med
  doi: 10.1038/s41591-020-0799-2
– volume: 10
  start-page: 2611
  year: 2019
  ident: 2025082010465655800_btaf442-B41
  article-title: Simulating multiple faceted variability in single cell RNA sequencing
  publication-title: Nat Commun
  doi: 10.1038/s41467-019-10500-w
– volume: 24
  start-page: 62
  year: 2023
  ident: 2025082010465655800_btaf442-B7
  article-title: The shaky foundations of simulating single-cell RNA sequencing data
  publication-title: Genome Biol
  doi: 10.1186/s13059-023-02904-1
– volume: 23
  start-page: 489
  year: 2022
  ident: 2025082010465655800_btaf442-B39
  article-title: lmerseq: an R package for analyzing transformed RNA-Seq data with linear mixed effects models
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-022-05019-9
– volume: 22
  start-page: 341
  year: 2021
  ident: 2025082010465655800_btaf442-B3
  article-title: splatPop: simulating population scale single-cell RNA sequencing data
  publication-title: Genome Biol
  doi: 10.1186/s13059-021-02546-1
– volume: 46
  start-page: 68
  year: 1951
  ident: 2025082010465655800_btaf442-B25
  article-title: The Kolmogorov–Smirnov test for goodness of fit
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1951.10500769
– volume: 184
  start-page: 3573
  year: 2021
  ident: 2025082010465655800_btaf442-B12
  article-title: Integrated analysis of multimodal single-cell data
  publication-title: Cell
  doi: 10.1016/j.cell.2021.04.048
– volume: 5
  start-page: 199
  year: 2000
  ident: 2025082010465655800_btaf442-B31
  article-title: Statistical power and optimal design for multisite randomized trials
  publication-title: Psychol Methods
  doi: 10.1037/10
– year: 2024
  ident: 2025082010465655800_btaf442-B11
  doi: 10.1101/2024.08.01.606200,
– volume: 182
  start-page: 1232
  year: 2020
  ident: 2025082010465655800_btaf442-B26
  article-title: Therapy-induced evolution of human lung cancer revealed by single-cell RNA sequencing
  publication-title: Cell
  doi: 10.1016/j.cell.2020.07.017
– volume: 20
  start-page: 53
  year: 1987
  ident: 2025082010465655800_btaf442-B33
  article-title: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis
  publication-title: J Comput Appl Math
  doi: 10.1016/0377-0427(87)90125-7
– volume: 18
  start-page: 174
  year: 2017
  ident: 2025082010465655800_btaf442-B40
  article-title: Splatter: simulation of single-cell RNA sequencing data
  publication-title: Genome Biol
  doi: 10.1186/s13059-017-1305-0
– volume: 11
  start-page: 6077
  year: 2020
  ident: 2025082010465655800_btaf442-B8
  article-title: Muscat detects subpopulation-specific state transitions from multi-sample multi-condition single-cell transcriptomics data
  publication-title: Nat Commun
  doi: 10.1038/s41467-020-19894-4
– volume: 11
  start-page: R25
  year: 2010
  ident: 2025082010465655800_btaf442-B32
  article-title: A scaling normalization method for differential expression analysis of RNA-seq data
  publication-title: Genome Biol
  doi: 10.1186/gb-2010-11-3-r25
– year: 2018
  ident: 2025082010465655800_btaf442-B24
– volume: 24
  start-page: 318
  year: 2023
  ident: 2025082010465655800_btaf442-B21
  article-title: idesc: identifying differential expression in single-cell RNA sequencing data with multiple subjects
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-023-05432-8
– volume: 17
  start-page: 75
  year: 2016
  ident: 2025082010465655800_btaf442-B22
  article-title: Pooling across cells to normalize single-cell RNA sequencing data with many zero counts
  publication-title: Genome Biol
  doi: 10.1186/s13059-016-0947-7
– volume: 202
  start-page: 615
  year: 1983
  ident: 2025082010465655800_btaf442-B30
  article-title: Two-dimensional goodness-of-fit testing in astronomy
  publication-title: Mon Not R Astron Soc
  doi: 10.1093/mnras/202.3.615
– volume: 16
  start-page: 278
  year: 2015
  ident: 2025082010465655800_btaf442-B10
  article-title: MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data
  publication-title: Genome Biol
  doi: 10.1186/s13059-015-0844-5
– volume: 11
  start-page: 94
  year: 2011
  ident: 2025082010465655800_btaf442-B1
  article-title: Simulation methods to estimate design power: an overview for applied research
  publication-title: BMC Med Res Methodol
  doi: 10.1186/1471-2288-11-94
– volume: 4
  start-page: e202001004
  year: 2021
  ident: 2025082010465655800_btaf442-B23
  article-title: CellMixS: quantifying and visualizing batch effects in single-cell RNA-seq data
  publication-title: Life Sci Alliance
  doi: 10.26508/lsa.202001004
– volume: 203
  start-page: 946
  year: 2021
  ident: 2025082010465655800_btaf442-B27
  article-title: Airspace macrophages and monocytes exist in transcriptionally distinct subsets in healthy adults
  publication-title: Am J Respir Crit Care Med
  doi: 10.1164/rccm.202005-1989OC
– volume: 14
  start-page: 1684
  year: 2023
  ident: 2025082010465655800_btaf442-B38
  article-title: A comprehensive platform for analyzing longitudinal multi-omics data
  publication-title: Nat Commun
  doi: 10.1038/s41467-023-37432-w
– volume: 246
  start-page: 109209
  year: 2023
  ident: 2025082010465655800_btaf442-B17
  article-title: Tracking the clonal dynamics of SARS-CoV-2-specific T cells in children and adults with mild/asymptomatic COVID-19
  publication-title: Clin Immunol
  doi: 10.1016/j.clim.2022.109209
– volume: 36
  start-page: 1468
  year: 2020
  ident: 2025082010465655800_btaf442-B4
  article-title: SPARSim single cell: a count data simulator for scRNA-seq data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz752
– volume: 12
  start-page: 87
  year: 2011
  ident: 2025082010465655800_btaf442-B29
  article-title: RNA sequencing: advances, challenges and opportunities
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg2934
– volume: 19
  start-page: 562
  year: 2018
  ident: 2025082010465655800_btaf442-B13
  article-title: Missing data and technical variability in single-cell RNA-sequencing experiments
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/kxx053
– volume: 12
  start-page: 5692
  year: 2021
  ident: 2025082010465655800_btaf442-B34
  article-title: Confronting false discoveries in single-cell differential expression
  publication-title: Nat Commun
  doi: 10.1038/s41467-021-25960-2
– volume: 20
  start-page: 631
  year: 2019
  ident: 2025082010465655800_btaf442-B35
  article-title: RNA sequencing: the teenage years
  publication-title: Nat Rev Genet
  doi: 10.1038/s41576-019-0150-2
– volume: 177
  start-page: 1888
  year: 2019
  ident: 2025082010465655800_btaf442-B36
  article-title: Comprehensive integration of single-cell data
  publication-title: Cell
  doi: 10.1016/j.cell.2019.05.031
SSID ssj0005056
Score 2.492996
Snippet Abstract Motivation As single-cell RNA-sequencing (scRNA-seq) becomes more widely used in transcriptomic research, complex experimental designs, such as paired...
As single-cell RNA-sequencing (scRNA-seq) becomes more widely used in transcriptomic research, complex experimental designs, such as paired or longitudinal...
Motivation As single-cell RNA-sequencing (scRNA-seq) becomes more widely used in transcriptomic research, complex experimental designs, such as paired or...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
oup
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
SubjectTerms Algorithms
Availability
Computer Simulation
Data simulation
Gene Expression Profiling - methods
Gene sequencing
Humans
Longitudinal studies
Original Paper
Ribonucleic acid
RNA
RNA-Seq - methods
Sequence Analysis, RNA - methods
Simulation
Single-Cell Analysis - methods
Software
Transcriptomics
Variability
Title Simulating paired and longitudinal single-cell RNA sequencing data with rescueSim
URI https://www.ncbi.nlm.nih.gov/pubmed/40811017
https://www.proquest.com/docview/3241289976
https://www.proquest.com/docview/3239783734
https://pubmed.ncbi.nlm.nih.gov/PMC12366488
https://doi.org/10.1093/bioinformatics/btaf442
UnpaywallVersion publishedVersion
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: KQ8
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: DOA
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: ADMLS
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: RPM
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVOVD
  databaseName: Journals@Ovid LWW All Open Access Journal Collection Rolling
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: OVEED
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://ovidsp.ovid.com/
  providerName: Ovid
– providerCode: PRVASL
  databaseName: Oxford Journals Open Access Collection
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: TOX
  dateStart: 19850101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3ri9QwEB90D9Ev51t7nkcEPwm9TZs0bT8u4nEI7vm4hfVTyaM9F9fuoi1y99ffTJtdroqwfimBPEoyk8kvk3kAvFaZk3hK8zBLdBnKJJahiSokiMXTtJLC2Ji8kT9M1elMvp8nc39RJF-Ywft9LsZmsfIRRClq8dg0usKxb8OeShB7j2BvNv04-do7V6WhzLpUyL4cRRuX4H8ONDiNBh5uN4Dm3_aSd9t6rS9_6-XyxmF0ch_ONtPobVC-H7eNObZXf0R43H2eD2Df41I26RnpIdwq60dwp89UefkYPn1Z_OgSfdUXbK1RTDqma8eWK0p31DpKrcVI67AsQ3oKYJ-nE-attKkL2aEyUvkyvN3btsTRnsDs5N3529PQZ2MIrRSyCVORaWelzrmsnMOy5iLWmRNWOa4jxWOTu9goU8lMo2TQ5K2ujCRMyJ3l4imM6lVdPgeW6hSRnoitQUBUykhXiTR5ZnWVc1UJG8B4Q5Vi3QfdKPrHclEMF6rwCxXAGyTezo0PNzQu_I79VSCwjOjymaoAXm2rca_Rqum6XLXURpCmLBUygGc9S2x_KRFbkXgLIBswy7YBxfEe1tSLb108bwqAo1CQBsC3fLXjVA7-v8sLuBdTDuPOiPEQRs3PtnyJwKoxR51CAr_nZ_Mjv7OuAaRLKvo
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swED-2lLG-rFu3tl67oUGfBm5kS5btxzBWymDZVwPdk9GHvYWmTmhtRvfX7y5WQt0xyN4E-kK6091P0n0AHKvMSdTSPMwSXYYyiWVoogoJYlGbVlIYG5M38sexOpvIDxfJhb8oki9M7_8-F0MznfsIohS1eGgaXeHYD2FLJYi9B7A1GX8efe-cq9JQZstUyL4cRSuX4H8O1NNGPQ-3O0Dzb3vJx2290Le_9Gx2Rxmd7sCn1TI6G5TLk7YxJ_b3vQiPm6_zKTzxuJSNOkZ6Bg_KehcedZkqb5_Dl2_Tq2Wir_oHW2gUk47p2rHZnNIdtY5SazF6dZiVIX0FsK_jEfNW2tSF7FAZPfkyvN3btsTRXsDk9P35u7PQZ2MIrRSyCVORaWelzrmsnMOy5iLWmRNWOa4jxWOTu9goU8lMo2TQ5K2ujCRMyJ3lYg8G9bwuD4ClOkWkJ2JrEBCVMtJVIk2eWV3lXFXCBjBcUaVYdEE3iu6zXBT9jSr8RgXwFom3ceOjFY0Lf2JvCgSWEV0-UxXAm3U1njXaNV2X85baCHopS4UMYL9jifWUErEVibcAsh6zrBtQHO9-TT39uYznTQFwFArSAPiarzZcysv_73II2zHlMF4aMR7BoLluy1cIrBrz2p-mP7IeKOk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Simulating+paired+and+longitudinal+single-cell+RNA+sequencing+data+with+rescueSim&rft.jtitle=Bioinformatics+%28Oxford%2C+England%29&rft.au=Wynn%2C+Elizabeth+A&rft.au=Mould%2C+Kara+J&rft.au=Vestal%2C+Brian+E&rft.au=Moore%2C+Camille+M&rft.date=2025-08-01&rft.pub=Oxford+University+Press&rft.issn=1367-4803&rft.eissn=1367-4811&rft.volume=41&rft.issue=8&rft_id=info:doi/10.1093%2Fbioinformatics%2Fbtaf442&rft_id=info%3Apmid%2F40811017&rft.externalDocID=PMC12366488
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-4811&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-4811&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-4811&client=summon