The prognostic value of automated coronary calcium derived by a deep learning approach on non-ECG gated CT images from 82Rb-PET/CT myocardial perfusion imaging
Assessment of both coronary artery calcium(CAC) scores and myocardial perfusion imaging(MPI) in patients suspected of coronary artery disease(CAD) provides incremental prognostic information. We used an automated method to determine CAC scores on low-dose attenuation correction CT(LDACT) images gath...
Saved in:
Published in | International journal of cardiology Vol. 329; pp. 9 - 15 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
15.04.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 0167-5273 1874-1754 1874-1754 |
DOI | 10.1016/j.ijcard.2020.12.079 |
Cover
Abstract | Assessment of both coronary artery calcium(CAC) scores and myocardial perfusion imaging(MPI) in patients suspected of coronary artery disease(CAD) provides incremental prognostic information. We used an automated method to determine CAC scores on low-dose attenuation correction CT(LDACT) images gathered during MPI in one single assessment. The prognostic value of this automated CAC score is unknown, we therefore investigated the association of this automated CAC scores and major adverse cardiovascular events(MACE) in a large chest-pain cohort.
We analyzed 747 symptomatic patients referred for 82RubidiumPET/CT, without a history of coronary revascularization. Ischemia was defined as a summed difference score≥2. We used a validated deep learning(DL) method to determine CAC scores. For survival analysis CAC scores were dichotomized as low(<400) and high(≥400). MACE was defined as all cause death, late revascularization (>90 days after scanning) or nonfatal myocardial infarction. Cox proportional hazard analysis were performed to identify predictors of MACE.
During 4 years follow-up, 115 MACEs were observed. High CAC scores showed higher cumulative event rates, irrespective of ischemia (nonischemic: 25.8% vs 11.9% and ischemic: 57.6% vs 23.4%, P-values <0.001). Multivariable cox regression revealed both high CAC scores (HR 2.19 95%CI 1.43–3.35) and ischemia (HR 2.56 95%CI 1.71–3.35) as independent predictors of MACE. Addition of automated CAC scores showed a net reclassification improvement of 0.13(0.022–0.245).
Automatically derived CAC scores determined during a single imaging session are independently associated with MACE. This validated DL method could improve risk stratification and subsequently lead to more personalized treatment in patients suspected of CAD.
•Combined assessment of CAC scores and perfusion data provide additional information.•We show a validated DL-method to determine CAC scores on CT images required during MPI.•No additional radiation exposure and manual scoring of a physician is needed.•We showed that this automated CAC score was independently associated with MACE.•If confirmed externally this could lead to better risk stratification in patients suspected of CCS. |
---|---|
AbstractList | Assessment of both coronary artery calcium(CAC) scores and myocardial perfusion imaging(MPI) in patients suspected of coronary artery disease(CAD) provides incremental prognostic information. We used an automated method to determine CAC scores on low-dose attenuation correction CT(LDACT) images gathered during MPI in one single assessment. The prognostic value of this automated CAC score is unknown, we therefore investigated the association of this automated CAC scores and major adverse cardiovascular events(MACE) in a large chest-pain cohort.
We analyzed 747 symptomatic patients referred for 82RubidiumPET/CT, without a history of coronary revascularization. Ischemia was defined as a summed difference score≥2. We used a validated deep learning(DL) method to determine CAC scores. For survival analysis CAC scores were dichotomized as low(<400) and high(≥400). MACE was defined as all cause death, late revascularization (>90 days after scanning) or nonfatal myocardial infarction. Cox proportional hazard analysis were performed to identify predictors of MACE.
During 4 years follow-up, 115 MACEs were observed. High CAC scores showed higher cumulative event rates, irrespective of ischemia (nonischemic: 25.8% vs 11.9% and ischemic: 57.6% vs 23.4%, P-values <0.001). Multivariable cox regression revealed both high CAC scores (HR 2.19 95%CI 1.43–3.35) and ischemia (HR 2.56 95%CI 1.71–3.35) as independent predictors of MACE. Addition of automated CAC scores showed a net reclassification improvement of 0.13(0.022–0.245).
Automatically derived CAC scores determined during a single imaging session are independently associated with MACE. This validated DL method could improve risk stratification and subsequently lead to more personalized treatment in patients suspected of CAD.
•Combined assessment of CAC scores and perfusion data provide additional information.•We show a validated DL-method to determine CAC scores on CT images required during MPI.•No additional radiation exposure and manual scoring of a physician is needed.•We showed that this automated CAC score was independently associated with MACE.•If confirmed externally this could lead to better risk stratification in patients suspected of CCS. Assessment of both coronary artery calcium(CAC) scores and myocardial perfusion imaging(MPI) in patients suspected of coronary artery disease(CAD) provides incremental prognostic information. We used an automated method to determine CAC scores on low-dose attenuation correction CT(LDACT) images gathered during MPI in one single assessment. The prognostic value of this automated CAC score is unknown, we therefore investigated the association of this automated CAC scores and major adverse cardiovascular events(MACE) in a large chest-pain cohort.BACKGROUNDAssessment of both coronary artery calcium(CAC) scores and myocardial perfusion imaging(MPI) in patients suspected of coronary artery disease(CAD) provides incremental prognostic information. We used an automated method to determine CAC scores on low-dose attenuation correction CT(LDACT) images gathered during MPI in one single assessment. The prognostic value of this automated CAC score is unknown, we therefore investigated the association of this automated CAC scores and major adverse cardiovascular events(MACE) in a large chest-pain cohort.We analyzed 747 symptomatic patients referred for 82RubidiumPET/CT, without a history of coronary revascularization. Ischemia was defined as a summed difference score≥2. We used a validated deep learning(DL) method to determine CAC scores. For survival analysis CAC scores were dichotomized as low(<400) and high(≥400). MACE was defined as all cause death, late revascularization (>90 days after scanning) or nonfatal myocardial infarction. Cox proportional hazard analysis were performed to identify predictors of MACE.METHODWe analyzed 747 symptomatic patients referred for 82RubidiumPET/CT, without a history of coronary revascularization. Ischemia was defined as a summed difference score≥2. We used a validated deep learning(DL) method to determine CAC scores. For survival analysis CAC scores were dichotomized as low(<400) and high(≥400). MACE was defined as all cause death, late revascularization (>90 days after scanning) or nonfatal myocardial infarction. Cox proportional hazard analysis were performed to identify predictors of MACE.During 4 years follow-up, 115 MACEs were observed. High CAC scores showed higher cumulative event rates, irrespective of ischemia (nonischemic: 25.8% vs 11.9% and ischemic: 57.6% vs 23.4%, P-values <0.001). Multivariable cox regression revealed both high CAC scores (HR 2.19 95%CI 1.43-3.35) and ischemia (HR 2.56 95%CI 1.71-3.35) as independent predictors of MACE. Addition of automated CAC scores showed a net reclassification improvement of 0.13(0.022-0.245).RESULTSDuring 4 years follow-up, 115 MACEs were observed. High CAC scores showed higher cumulative event rates, irrespective of ischemia (nonischemic: 25.8% vs 11.9% and ischemic: 57.6% vs 23.4%, P-values <0.001). Multivariable cox regression revealed both high CAC scores (HR 2.19 95%CI 1.43-3.35) and ischemia (HR 2.56 95%CI 1.71-3.35) as independent predictors of MACE. Addition of automated CAC scores showed a net reclassification improvement of 0.13(0.022-0.245).Automatically derived CAC scores determined during a single imaging session are independently associated with MACE. This validated DL method could improve risk stratification and subsequently lead to more personalized treatment in patients suspected of CAD.CONCLUSIONAutomatically derived CAC scores determined during a single imaging session are independently associated with MACE. This validated DL method could improve risk stratification and subsequently lead to more personalized treatment in patients suspected of CAD. |
Author | Bank, Ingrid E.M. Scholtens, Asbjørn M. Mosterd, Arend de Winter, Robbert J. Waissi, Farahnaz Timmers, Leo Velthuis, Birgitta K. Isgum, Ivana Pasterkamp, Gerard de Kleijn, Dominique P.V. Dekker, Mirthe |
Author_xml | – sequence: 1 givenname: Mirthe surname: Dekker fullname: Dekker, Mirthe email: m.dekker-17@umcutrecht.nl organization: Department of Vascular Surgery, University Medical Centre Utrecht, the Netherlands – sequence: 2 givenname: Farahnaz surname: Waissi fullname: Waissi, Farahnaz organization: Department of Vascular Surgery, University Medical Centre Utrecht, the Netherlands – sequence: 3 givenname: Ingrid E.M. surname: Bank fullname: Bank, Ingrid E.M. organization: Department of Cardiology, St. Antonius hospital Nieuwegein, the Netherlands – sequence: 4 givenname: Ivana surname: Isgum fullname: Isgum, Ivana organization: Image Sciences Institute, University Medical Centre Utrecht, the Netherlands – sequence: 5 givenname: Asbjørn M. surname: Scholtens fullname: Scholtens, Asbjørn M. organization: Department of Nuclear Medicine, Meander Medical Centre, the Netherlands – sequence: 6 givenname: Birgitta K. surname: Velthuis fullname: Velthuis, Birgitta K. organization: Department of radiology, University Medical Centre Utrecht, the Netherlands – sequence: 7 givenname: Gerard surname: Pasterkamp fullname: Pasterkamp, Gerard organization: Department of Clinical Chemistry and Haematology, University Medical Centre Utrecht, the Netherlands – sequence: 8 givenname: Robbert J. surname: de Winter fullname: de Winter, Robbert J. organization: Department of Cardiology, Amsterdam University Medical Centre, Amsterdam, the Netherlands – sequence: 9 givenname: Arend surname: Mosterd fullname: Mosterd, Arend organization: Department of Cardiology, Meander Medical Centre Amersfoort, the Netherlands – sequence: 10 givenname: Leo surname: Timmers fullname: Timmers, Leo organization: Department of Cardiology, St. Antonius hospital Nieuwegein, the Netherlands – sequence: 11 givenname: Dominique P.V. surname: de Kleijn fullname: de Kleijn, Dominique P.V. organization: Department of Vascular Surgery, University Medical Centre Utrecht, the Netherlands |
BookMark | eNqFkcFu1DAURS1UJKaFP2DhJZtMYydxEoSQ0GhokSqB0LC2Xp9fph4SO9jJSPkafhUP01U3s7Hl53uurn2v2ZXzjhh7L_K1yIW6PaztASGYtcxlGsl1Xrev2Eo0dZmJuiqv2CrJ6qySdfGGXcd4yPO8bNtmxf7unoiPwe-dj5NFfoR-Ju47DvPkB5jIcPTBOwgLR-jRzgM3FOwxXTwuHNKBRt4TBGfdnsOYvACfuHc8hcy2mzu-_--y2XE7wJ4i74IfeCN_PmY_trvbNB8Wf0pvoecjhW6ONtEncXJ8y1530Ed697zfsF9ft7vNffbw_e7b5stDhmVRTpnCqmuKziipBDSFMKgaJVBINK0iaKEWoGQnoK2bvEahKK3SYNOKCiSZ4oZ9OPum_H9mipMebETqe3Dk56hlWatKNaIokvTjWYrBxxio02gnmFLoKYDttcj1qRV90OdW9KkVLaROrSS4fAGPIT01LJewz2eM0h8cLQUd0ZJDMjYQTtp4e8ng0wsD7K2zqdLftFzG_wHaSsDv |
CitedBy_id | crossref_primary_10_1016_j_cpet_2021_06_011 crossref_primary_10_3390_jcm14062095 crossref_primary_10_3389_fcvm_2021_782971 crossref_primary_10_1007_s10554_025_03327_8 crossref_primary_10_1053_j_semnuclmed_2024_04_003 crossref_primary_10_1007_s43657_023_00137_7 crossref_primary_10_1093_ehjci_jeae081 crossref_primary_10_1016_j_jcmg_2022_06_006 crossref_primary_10_1053_j_semnuclmed_2024_02_005 crossref_primary_10_1161_CIRCIMAGING_123_016443 crossref_primary_10_2169_internalmedicine_3566_24 crossref_primary_10_26787_nydha_2686_6846_2023_25_11_19_28 crossref_primary_10_2967_jnumed_122_264423 |
Cites_doi | 10.1016/S0735-1097(00)01119-0 10.1007/s12350-019-01965-9 10.1093/ehjci/jet068 10.1002/sim.2929 10.1109/TMI.2017.2769839 10.1093/eurheartj/ehl001 10.1007/s12350-017-0866-3 10.1016/j.jacc.2009.05.071 10.1016/j.jacc.2006.12.015 10.1136/hrt.2010.217281 10.1016/j.ijcha.2019.100434 10.1161/CIRCULATIONAHA.107.187397 10.7326/M13-1522 10.1056/NEJMoa072100 10.1016/j.jacc.2006.12.035 10.1016/j.jacc.2018.05.027 10.1016/j.jacc.2004.06.042 10.1161/CIRCULATIONAHA.106.629808 10.1093/ehjci/jey019 10.1148/radiol.13122529 10.1016/j.jcmg.2017.05.007 10.1016/0735-1097(90)90282-T 10.1016/j.jacc.2015.08.035 10.1161/CIRCULATIONAHA.107.743161 10.1016/j.jcmg.2017.07.024 10.1161/CIRCULATIONAHA.117.030578 10.1093/ehjci/jex037 10.1148/radiol.2020191621 10.1001/jama.2012.9624 10.1161/CIRCULATIONAHA.107.717512 |
ContentType | Journal Article |
Copyright | 2021 The Authors Copyright © 2021 The Authors. Published by Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2021 The Authors – notice: Copyright © 2021 The Authors. Published by Elsevier B.V. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION 7X8 |
DOI | 10.1016/j.ijcard.2020.12.079 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1874-1754 |
EndPage | 15 |
ExternalDocumentID | 10_1016_j_ijcard_2020_12_079 S0167527320343278 |
GroupedDBID | --- --K --M .1- .FO .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO ABBQC ABFNM ABJNI ABLJU ABMAC ABMZM ABOCM ACDAQ ACGFS ACIEU ACIUM ACRLP ACVFH ADBBV ADCNI ADEZE AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFPUW AFRHN AFTJW AFXIZ AGCQF AGUBO AGYEJ AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP AXJTR BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EFKBS EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM M29 M41 MO0 N9A O-L O9- OA. OAUVE OL~ OZT P-8 P-9 P2P PC. Q38 ROL RPZ SAE SCC SDF SDG SEL SES SPCBC SSH SSZ T5K UV1 Z5R ~G- 0SF 6I. AACTN AAFTH AAIAV ABLVK ABYKQ AFCTW AFKWA AHHHB AJOXV AMFUW EFLBG LCYCR ZA5 .55 .GJ 29J AAQXK AAYWO AAYXX ABWVN ABXDB ACRPL ADMUD ADNMO ADVLN AFFNX AFJKZ AGHFR AGQPQ AGRNS ASPBG AVWKF AZFZN CITATION EJD FEDTE FGOYB G-2 HEB HMK HMO HVGLF HZ~ R2- RIG SEW WUQ X7M ZGI 7X8 ACLOT ~HD |
ID | FETCH-LOGICAL-c434t-6c5f83fd6261a831dc6861c12cd96ea9a71a62f1a97807c16e07c2dc8915a2ed3 |
IEDL.DBID | AIKHN |
ISSN | 0167-5273 1874-1754 |
IngestDate | Sat Sep 27 19:57:26 EDT 2025 Thu Apr 24 23:10:39 EDT 2025 Tue Jul 01 04:04:22 EDT 2025 Fri Feb 23 02:46:44 EST 2024 Tue Aug 26 16:54:33 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Deep learning Myocardial perfusion imaging Coronary artery calcium Coronary artery disease |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c434t-6c5f83fd6261a831dc6861c12cd96ea9a71a62f1a97807c16e07c2dc8915a2ed3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0167527320343278 |
PQID | 2476568133 |
PQPubID | 23479 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_2476568133 crossref_citationtrail_10_1016_j_ijcard_2020_12_079 crossref_primary_10_1016_j_ijcard_2020_12_079 elsevier_sciencedirect_doi_10_1016_j_ijcard_2020_12_079 elsevier_clinicalkey_doi_10_1016_j_ijcard_2020_12_079 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-04-15 |
PublicationDateYYYYMMDD | 2021-04-15 |
PublicationDate_xml | – month: 04 year: 2021 text: 2021-04-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | International journal of cardiology |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Lessmann, van Ginneken, Zreik, de Jong, de Vos, Viergever, Isgum (bb0080) 2018; 37 G. Sangiorgi, J.A. Rumberger, A. Severson, W.D. Edwards, J. Gregoire, L.A. Fitzpatrick, R.S. Schwartz, M. Duluth, Arterial Calcification and Not Lumen Stenosis Is Highly Correlated with Atherosclerotic Plaque Burden in Humans: A Histologic Study of 723 Coronary Artery Segments Using Nondecalcifying Methodology, n.d. Agatston, Janowitz, Hildner, Zusmer, Viamonte, Detrano (bb0095) 1990; 15 Išgum, de Vos, Wolterink, Dey, Berman, Rubeaux, Leiner, Slomka (bb0085) 2018; 25 Leening, Vedder, Witteman, Pencina, Steyerberg (bb0125) 2014; 160 Sharma, Mughal, Dimitropoulos, Sheikh, Griffin, Moss, Notghi, Pandit, Connolly, Varma, Kirchhof (bb0150) 2019 Gräni, Vontobel, Benz, Bacanovic, Giannopoulos, Messerli, Grossmann, Gebhard, Pazhenkottil, Gaemperli, Kaufmann, Buechel (bb0090) 2018; 19 Dekker, Waissi, I.E.M. Bank, Lessmann, Išgum, Velthuis, Scholtens, Leenders, Pasterkamp, de Kleijn, Timmers, Mosterd (bb0065) 2020; 26 Betancur, Otaki, Motwani, Fish, Lemley, Dey, Gransar, Tamarappoo, Germano, Sharir, Berman, Slomka (bb0055) 2018; 11 di Carli, Hachamovitch (bb0075) 2007; 115 Haberl, Becker, Leber, Knez, Becker, Lang, Bruning, Reiser, Steinbeck (bb0140) 2001; 37 Chang, Nabi, Xu, Peterson, Achari, Pratt, Mahmarian (bb0145) 2009; 54 van Velzen, Lessmann, Velthuis, I.E.M. Bank, van den Bongard, Leiner, de Jong, Veldhuis, Correa, Terry, Carr, Viergever, Verkooijen, Išgum (bb0060) 2020; 295 Cerqueira, Weissman, Dilsizian, Jacobs, Kaul, Laskey, Pennell, Rumberger, Ryan, Verani (bb0070) 2002; 18 Fox, Garcia, Ardissino, Buszman, Camici, Crea, Daly, de Backer, Hjemdahl, Lopez-Sendon, Marco, Morais, Pepper, Sechtem, Simoons, Thygesen, Priori, Blanc, Budaj, Camm, Dean, Deckers, Dickstein, Lekakis, McGregor, Metra, Morais, Osterspey, Tamargo, Zamorano (bb0115) 2006; 27 Engbers, Timmer, Ottervanger, Mouden, Knollema, Jager (bb0045) 2016; 9 Mittal, Pottle, Nicol, Barbir, Ariff, Mirsadraee, Dubowitz, Gorog, Clifford, Firoozan, Smith, Dubrey, Chana, Shah, Stephens, Travill, Kelion, Pakkal, Timmis (bb0050) 2017; 18 Sampson, Dorbala, Limaye, Kwong, di Carli (bb0005) 2007; 49 Demer, Tintut (bb0035) 2008; 117 Farhad, Dunet, Bachelard, Allenbach, Kaufmann, Prior (bb0105) 2013; 14 Berman, Wong, Gransar, Miranda-Peats, Dahlbeck, Hayes, Friedman, Kang, Polk, Hachamovitch, Shaw, Rozanski (bb0110) 2004; 44 McClelland, Jorgensen, Budoff, Blaha, Post, Kronmal, Bild, Shea, Liu, Watson, Folsom, Khera, Ayers, Mahabadi, Lehmann, Jöckel, Moebus, Carr, Erbel, Burke (bb0020) 2015; 66 Budoff, Mayrhofer, Ferencik, Bittner, Lee, Lu, Coles, Jang, Krishnam, Douglas, Hoffmann (bb0030) 2017; 136 Rozanski, Gransar, Wong, Shaw, Miranda-Peats, Polk, Hayes, Friedman, Berman (bb0155) 2007; 49 Ghadri, Pazhenkottil, Nkoulou, Goetti, Buechel, Husmann, Herzog, Wolfrum, Wyss, Templin, Kaufmann (bb0165) 2011; 97 Thygesen, Alpert, White (bb0100) 2007; 116 Yeboah, McClelland, Polonsky, Burke, Sibley, O’Leary, Carr, Goff, Greenland, Herrington (bb0015) 2012; 308 Greenland, Blaha, Budoff, Erbel, Watson (bb0025) 2018; 72 Schenker, Dorbala, Hong, Rybicki, Hachamovitch, Kwong, di Carli (bb0040) 2008; 117 Pencina, D’Agostino, D’Agostino, Vasan (bb0120) 2008; 27 Blaha, Mortensen, Kianoush, Tota-Maharaj, Cainzos-Achirica (bb0130) 2017; 10 Detrano, Guerci, Carr, Bild, Burke, Folsom, Liu, Shea, Szklo, Bluemke, O’Leary, Tracy, Watson, Wong, Kronmal (bb0010) 2008; 358 Mouden, Timmer, Reiffers, Oostdijk, Knollema, Ottervanger, Jager (bb0160) 2013; 269 Ghadri (10.1016/j.ijcard.2020.12.079_bb0165) 2011; 97 Mouden (10.1016/j.ijcard.2020.12.079_bb0160) 2013; 269 Rozanski (10.1016/j.ijcard.2020.12.079_bb0155) 2007; 49 Gräni (10.1016/j.ijcard.2020.12.079_bb0090) 2018; 19 Greenland (10.1016/j.ijcard.2020.12.079_bb0025) 2018; 72 Haberl (10.1016/j.ijcard.2020.12.079_bb0140) 2001; 37 Dekker (10.1016/j.ijcard.2020.12.079_bb0065) 2020; 26 Detrano (10.1016/j.ijcard.2020.12.079_bb0010) 2008; 358 Pencina (10.1016/j.ijcard.2020.12.079_bb0120) 2008; 27 10.1016/j.ijcard.2020.12.079_bb0135 Demer (10.1016/j.ijcard.2020.12.079_bb0035) 2008; 117 Mittal (10.1016/j.ijcard.2020.12.079_bb0050) 2017; 18 Farhad (10.1016/j.ijcard.2020.12.079_bb0105) 2013; 14 Chang (10.1016/j.ijcard.2020.12.079_bb0145) 2009; 54 di Carli (10.1016/j.ijcard.2020.12.079_bb0075) 2007; 115 Thygesen (10.1016/j.ijcard.2020.12.079_bb0100) 2007; 116 Fox (10.1016/j.ijcard.2020.12.079_bb0115) 2006; 27 Cerqueira (10.1016/j.ijcard.2020.12.079_bb0070) 2002; 18 McClelland (10.1016/j.ijcard.2020.12.079_bb0020) 2015; 66 Yeboah (10.1016/j.ijcard.2020.12.079_bb0015) 2012; 308 Sharma (10.1016/j.ijcard.2020.12.079_bb0150) 2019 Berman (10.1016/j.ijcard.2020.12.079_bb0110) 2004; 44 Lessmann (10.1016/j.ijcard.2020.12.079_bb0080) 2018; 37 Budoff (10.1016/j.ijcard.2020.12.079_bb0030) 2017; 136 Išgum (10.1016/j.ijcard.2020.12.079_bb0085) 2018; 25 Schenker (10.1016/j.ijcard.2020.12.079_bb0040) 2008; 117 van Velzen (10.1016/j.ijcard.2020.12.079_bb0060) 2020; 295 Agatston (10.1016/j.ijcard.2020.12.079_bb0095) 1990; 15 Betancur (10.1016/j.ijcard.2020.12.079_bb0055) 2018; 11 Blaha (10.1016/j.ijcard.2020.12.079_bb0130) 2017; 10 Engbers (10.1016/j.ijcard.2020.12.079_bb0045) 2016; 9 Leening (10.1016/j.ijcard.2020.12.079_bb0125) 2014; 160 Sampson (10.1016/j.ijcard.2020.12.079_bb0005) 2007; 49 |
References_xml | – volume: 72 start-page: 434 year: 2018 end-page: 447 ident: bb0025 article-title: Coronary calcium score and cardiovascular risk publication-title: J. Am. Coll. Cardiol. – volume: 27 year: 2008 ident: bb0120 article-title: Evaluating the added predictive ability of a new marker: From area under the ROC curve to reclassification and beyond publication-title: Stat. Med. – volume: 14 start-page: 1203 year: 2013 end-page: 1210 ident: bb0105 article-title: Added prognostic value of myocardial blood flow quantitation in rubidium-82 positron emission tomography imaging publication-title: Eur. Heart J. Cardiovasc. Imaging – volume: 11 start-page: 1000 year: 2018 end-page: 1009 ident: bb0055 article-title: Prognostic value of combined clinical and myocardial perfusion imaging data using machine learning publication-title: JACC Cardiovasc. Imaging – volume: 37 start-page: 615 year: 2018 end-page: 625 ident: bb0080 article-title: Automatic calcium scoring in low-dose chest CT using deep neural networks with dilated convolutions publication-title: IEEE Trans. Med. Imaging – volume: 116 start-page: 2634 year: 2007 end-page: 2653 ident: bb0100 article-title: Universal definition of myocardial infarction publication-title: Circulation. – volume: 117 start-page: 1693 year: 2008 end-page: 1700 ident: bb0040 article-title: Interrelation of coronary calcification, myocardial ischemia, and outcomes in patients with intermediate likelihood of coronary artery disease: a combined positron emission tomography/computed tomography study publication-title: Circulation. – volume: 15 start-page: 827 year: 1990 end-page: 832 ident: bb0095 article-title: Quantification of coronary artery calcium using ultrafast computed tomography publication-title: J. Am. Coll. Cardiol. – reference: G. Sangiorgi, J.A. Rumberger, A. Severson, W.D. Edwards, J. Gregoire, L.A. Fitzpatrick, R.S. Schwartz, M. Duluth, Arterial Calcification and Not Lumen Stenosis Is Highly Correlated with Atherosclerotic Plaque Burden in Humans: A Histologic Study of 723 Coronary Artery Segments Using Nondecalcifying Methodology, n.d. – volume: 9 start-page: 1 year: 2016 end-page: 9 ident: bb0045 article-title: Prognostic value of coronary artery calcium scoring in addition to single-photon emission computed tomographic myocardial perfusion imaging in symptomatic patients publication-title: Circ.: Cardiovasc. Imag. – volume: 295 start-page: 66 year: 2020 end-page: 79 ident: bb0060 article-title: Deep learning for automatic calcium scoring in CT: validation using multiple cardiac CT and chest CT protocols publication-title: Radiology. – volume: 115 start-page: 1464 year: 2007 end-page: 1480 ident: bb0075 article-title: New Technology for Noninvasive Evaluation of coronary artery disease publication-title: Circulation. – volume: 66 start-page: 1643 year: 2015 end-page: 1653 ident: bb0020 article-title: 10-Year coronary heart disease risk prediction using coronary artery calcium and traditional risk factors: derivation in the MESA (Multi-Ethnic Study of Atherosclerosis) with validation in the HNR (Heinz Nixdorf Recall) study and the DHS (Dallas Heart Stu) publication-title: J. Am. Coll. Cardiol. – volume: 19 year: 2018 ident: bb0090 article-title: Ultra-low-dose coronary artery calcium scoring using novel scoring thresholds for low tube voltage protocols—a pilot study publication-title: Eur. Heart J. Cardiovasc. Imaging – volume: 117 start-page: 2938 year: 2008 end-page: 2948 ident: bb0035 article-title: Vascular Calcification publication-title: Circulation. – volume: 160 year: 2014 ident: bb0125 article-title: Net reclassification improvement: computation, interpretation, and controversies publication-title: Ann. Intern. Med. – volume: 54 start-page: 1872 year: 2009 end-page: 1882 ident: bb0145 article-title: The coronary artery calcium score and stress myocardial perfusion imaging provide independent and complementary prediction of cardiac risk publication-title: J. Am. Coll. Cardiol. – volume: 27 start-page: 1341 year: 2006 end-page: 1381 ident: bb0115 article-title: Task force on the management of stable angina pectoris of the european society of cardiology, ESC Committee for Practice Guidelines (CPG), Guidelines on the management of stable angina pectoris: executive summary: The Task Force on the Management of Stable Angina Pectoris of the European Society of Cardiology publication-title: Eur. Heart J. – volume: 358 start-page: 1336 year: 2008 end-page: 1345 ident: bb0010 article-title: Coronary calcium as a predictor of coronary events in four racial or ethnic groups publication-title: N. Engl. J. Med. – volume: 18 start-page: 539 year: 2002 end-page: 542 ident: bb0070 article-title: American heart association writing group on myocardial segmentation and registration for cardiac imaging, standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association publication-title: Int. J. Cardiovasc. Imag. – volume: 25 start-page: 2133 year: 2018 end-page: 2142 ident: bb0085 article-title: Automatic determination of cardiovascular risk by CT attenuation correction maps in Rb-82 PET/CT publication-title: J. Nucl. Cardiol. – volume: 10 start-page: 923 year: 2017 end-page: 937 ident: bb0130 article-title: Coronary artery calcium scoring publication-title: JACC Cardiovasc. Imaging – volume: 49 start-page: 1052 year: 2007 end-page: 1058 ident: bb0005 article-title: Diagnostic accuracy of rubidium-82 myocardial perfusion imaging with hybrid positron emission tomography/computed tomography in the detection of coronary artery disease publication-title: J. Am. Coll. Cardiol. – volume: 18 start-page: 922 year: 2017 end-page: 929 ident: bb0050 article-title: Prevalence of obstructive coronary artery disease and prognosis in patients with stable symptoms and a zero-coronary calcium score publication-title: Eur. Heart J. Cardiovasc. Imaging – volume: 44 start-page: 923 year: 2004 end-page: 930 ident: bb0110 article-title: Relationship between stress-induced myocardial ischemia and atherosclerosis measured by coronary calcium tomography publication-title: J. Am. Coll. Cardiol. – volume: 308 start-page: 788 year: 2012 end-page: 795 ident: bb0015 article-title: Comparison of novel risk markers for improvement in cardiovascular risk assessment in intermediate-risk individuals publication-title: JAMA. – volume: 26 start-page: 100434 year: 2020 ident: bb0065 article-title: Automated calcium scores collected during myocardial perfusion imaging improve identification of obstructive coronary artery disease publication-title: IJC Heart Vasc. – year: 2019 ident: bb0150 article-title: The additive prognostic value of coronary calcium score (CCS) to single photon emission computed tomography myocardial perfusion imaging (SPECT-MPI)-real world data from a single center publication-title: J. Nucl. Cardiol. – volume: 136 start-page: 1993 year: 2017 end-page: 2005 ident: bb0030 article-title: Prognostic value of coronary artery calcium in the PROMISE study (prospective multicenter imaging study for evaluation of chest pain) publication-title: Circulation. – volume: 269 start-page: 77 year: 2013 end-page: 83 ident: bb0160 article-title: Coronary artery calcium scoring to exclude flow-limiting coronary artery disease in symptomatic stable patients at low or intermediate risk publication-title: Radiology. – volume: 49 start-page: 1352 year: 2007 end-page: 1361 ident: bb0155 article-title: Clinical outcomes after both coronary calcium scanning and exercise myocardial perfusion scintigraphy publication-title: J. Am. Coll. Cardiol. – volume: 97 start-page: 998 year: 2011 end-page: 1003 ident: bb0165 article-title: Very high coronary calcium score unmasks obstructive coronary artery disease in patients with normal SPECT MPI publication-title: Heart – volume: 37 start-page: 451 year: 2001 end-page: 457 ident: bb0140 article-title: Correlation of coronary calcification and angiographically documented stenoses in patients with suspected coronary artery disease: results of 1,764 patients publication-title: J. Am. Coll. Cardiol. – volume: 37 start-page: 451 year: 2001 ident: 10.1016/j.ijcard.2020.12.079_bb0140 article-title: Correlation of coronary calcification and angiographically documented stenoses in patients with suspected coronary artery disease: results of 1,764 patients publication-title: J. Am. Coll. Cardiol. doi: 10.1016/S0735-1097(00)01119-0 – ident: 10.1016/j.ijcard.2020.12.079_bb0135 – year: 2019 ident: 10.1016/j.ijcard.2020.12.079_bb0150 article-title: The additive prognostic value of coronary calcium score (CCS) to single photon emission computed tomography myocardial perfusion imaging (SPECT-MPI)-real world data from a single center publication-title: J. Nucl. Cardiol. doi: 10.1007/s12350-019-01965-9 – volume: 14 start-page: 1203 year: 2013 ident: 10.1016/j.ijcard.2020.12.079_bb0105 article-title: Added prognostic value of myocardial blood flow quantitation in rubidium-82 positron emission tomography imaging publication-title: Eur. Heart J. Cardiovasc. Imaging doi: 10.1093/ehjci/jet068 – volume: 27 year: 2008 ident: 10.1016/j.ijcard.2020.12.079_bb0120 article-title: Evaluating the added predictive ability of a new marker: From area under the ROC curve to reclassification and beyond publication-title: Stat. Med. doi: 10.1002/sim.2929 – volume: 37 start-page: 615 year: 2018 ident: 10.1016/j.ijcard.2020.12.079_bb0080 article-title: Automatic calcium scoring in low-dose chest CT using deep neural networks with dilated convolutions publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2017.2769839 – volume: 27 start-page: 1341 year: 2006 ident: 10.1016/j.ijcard.2020.12.079_bb0115 publication-title: Eur. Heart J. doi: 10.1093/eurheartj/ehl001 – volume: 25 start-page: 2133 year: 2018 ident: 10.1016/j.ijcard.2020.12.079_bb0085 article-title: Automatic determination of cardiovascular risk by CT attenuation correction maps in Rb-82 PET/CT publication-title: J. Nucl. Cardiol. doi: 10.1007/s12350-017-0866-3 – volume: 54 start-page: 1872 year: 2009 ident: 10.1016/j.ijcard.2020.12.079_bb0145 article-title: The coronary artery calcium score and stress myocardial perfusion imaging provide independent and complementary prediction of cardiac risk publication-title: J. Am. Coll. Cardiol. doi: 10.1016/j.jacc.2009.05.071 – volume: 49 start-page: 1052 year: 2007 ident: 10.1016/j.ijcard.2020.12.079_bb0005 article-title: Diagnostic accuracy of rubidium-82 myocardial perfusion imaging with hybrid positron emission tomography/computed tomography in the detection of coronary artery disease publication-title: J. Am. Coll. Cardiol. doi: 10.1016/j.jacc.2006.12.015 – volume: 97 start-page: 998 year: 2011 ident: 10.1016/j.ijcard.2020.12.079_bb0165 article-title: Very high coronary calcium score unmasks obstructive coronary artery disease in patients with normal SPECT MPI publication-title: Heart doi: 10.1136/hrt.2010.217281 – volume: 26 start-page: 100434 year: 2020 ident: 10.1016/j.ijcard.2020.12.079_bb0065 article-title: Automated calcium scores collected during myocardial perfusion imaging improve identification of obstructive coronary artery disease publication-title: IJC Heart Vasc. doi: 10.1016/j.ijcha.2019.100434 – volume: 116 start-page: 2634 year: 2007 ident: 10.1016/j.ijcard.2020.12.079_bb0100 article-title: Universal definition of myocardial infarction publication-title: Circulation. doi: 10.1161/CIRCULATIONAHA.107.187397 – volume: 160 year: 2014 ident: 10.1016/j.ijcard.2020.12.079_bb0125 article-title: Net reclassification improvement: computation, interpretation, and controversies publication-title: Ann. Intern. Med. doi: 10.7326/M13-1522 – volume: 358 start-page: 1336 year: 2008 ident: 10.1016/j.ijcard.2020.12.079_bb0010 article-title: Coronary calcium as a predictor of coronary events in four racial or ethnic groups publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa072100 – volume: 49 start-page: 1352 year: 2007 ident: 10.1016/j.ijcard.2020.12.079_bb0155 article-title: Clinical outcomes after both coronary calcium scanning and exercise myocardial perfusion scintigraphy publication-title: J. Am. Coll. Cardiol. doi: 10.1016/j.jacc.2006.12.035 – volume: 72 start-page: 434 year: 2018 ident: 10.1016/j.ijcard.2020.12.079_bb0025 article-title: Coronary calcium score and cardiovascular risk publication-title: J. Am. Coll. Cardiol. doi: 10.1016/j.jacc.2018.05.027 – volume: 44 start-page: 923 year: 2004 ident: 10.1016/j.ijcard.2020.12.079_bb0110 article-title: Relationship between stress-induced myocardial ischemia and atherosclerosis measured by coronary calcium tomography publication-title: J. Am. Coll. Cardiol. doi: 10.1016/j.jacc.2004.06.042 – volume: 115 start-page: 1464 year: 2007 ident: 10.1016/j.ijcard.2020.12.079_bb0075 article-title: New Technology for Noninvasive Evaluation of coronary artery disease publication-title: Circulation. doi: 10.1161/CIRCULATIONAHA.106.629808 – volume: 19 year: 2018 ident: 10.1016/j.ijcard.2020.12.079_bb0090 article-title: Ultra-low-dose coronary artery calcium scoring using novel scoring thresholds for low tube voltage protocols—a pilot study publication-title: Eur. Heart J. Cardiovasc. Imaging doi: 10.1093/ehjci/jey019 – volume: 269 start-page: 77 year: 2013 ident: 10.1016/j.ijcard.2020.12.079_bb0160 article-title: Coronary artery calcium scoring to exclude flow-limiting coronary artery disease in symptomatic stable patients at low or intermediate risk publication-title: Radiology. doi: 10.1148/radiol.13122529 – volume: 10 start-page: 923 year: 2017 ident: 10.1016/j.ijcard.2020.12.079_bb0130 article-title: Coronary artery calcium scoring publication-title: JACC Cardiovasc. Imaging doi: 10.1016/j.jcmg.2017.05.007 – volume: 9 start-page: 1 year: 2016 ident: 10.1016/j.ijcard.2020.12.079_bb0045 article-title: Prognostic value of coronary artery calcium scoring in addition to single-photon emission computed tomographic myocardial perfusion imaging in symptomatic patients publication-title: Circ.: Cardiovasc. Imag. – volume: 18 start-page: 539 year: 2002 ident: 10.1016/j.ijcard.2020.12.079_bb0070 publication-title: Int. J. Cardiovasc. Imag. – volume: 15 start-page: 827 year: 1990 ident: 10.1016/j.ijcard.2020.12.079_bb0095 article-title: Quantification of coronary artery calcium using ultrafast computed tomography publication-title: J. Am. Coll. Cardiol. doi: 10.1016/0735-1097(90)90282-T – volume: 66 start-page: 1643 year: 2015 ident: 10.1016/j.ijcard.2020.12.079_bb0020 article-title: 10-Year coronary heart disease risk prediction using coronary artery calcium and traditional risk factors: derivation in the MESA (Multi-Ethnic Study of Atherosclerosis) with validation in the HNR (Heinz Nixdorf Recall) study and the DHS (Dallas Heart Stu) publication-title: J. Am. Coll. Cardiol. doi: 10.1016/j.jacc.2015.08.035 – volume: 117 start-page: 2938 year: 2008 ident: 10.1016/j.ijcard.2020.12.079_bb0035 article-title: Vascular Calcification publication-title: Circulation. doi: 10.1161/CIRCULATIONAHA.107.743161 – volume: 11 start-page: 1000 year: 2018 ident: 10.1016/j.ijcard.2020.12.079_bb0055 article-title: Prognostic value of combined clinical and myocardial perfusion imaging data using machine learning publication-title: JACC Cardiovasc. Imaging doi: 10.1016/j.jcmg.2017.07.024 – volume: 136 start-page: 1993 year: 2017 ident: 10.1016/j.ijcard.2020.12.079_bb0030 article-title: Prognostic value of coronary artery calcium in the PROMISE study (prospective multicenter imaging study for evaluation of chest pain) publication-title: Circulation. doi: 10.1161/CIRCULATIONAHA.117.030578 – volume: 18 start-page: 922 year: 2017 ident: 10.1016/j.ijcard.2020.12.079_bb0050 article-title: Prevalence of obstructive coronary artery disease and prognosis in patients with stable symptoms and a zero-coronary calcium score publication-title: Eur. Heart J. Cardiovasc. Imaging doi: 10.1093/ehjci/jex037 – volume: 295 start-page: 66 year: 2020 ident: 10.1016/j.ijcard.2020.12.079_bb0060 article-title: Deep learning for automatic calcium scoring in CT: validation using multiple cardiac CT and chest CT protocols publication-title: Radiology. doi: 10.1148/radiol.2020191621 – volume: 308 start-page: 788 year: 2012 ident: 10.1016/j.ijcard.2020.12.079_bb0015 article-title: Comparison of novel risk markers for improvement in cardiovascular risk assessment in intermediate-risk individuals publication-title: JAMA. doi: 10.1001/jama.2012.9624 – volume: 117 start-page: 1693 year: 2008 ident: 10.1016/j.ijcard.2020.12.079_bb0040 article-title: Interrelation of coronary calcification, myocardial ischemia, and outcomes in patients with intermediate likelihood of coronary artery disease: a combined positron emission tomography/computed tomography study publication-title: Circulation. doi: 10.1161/CIRCULATIONAHA.107.717512 |
SSID | ssj0004998 |
Score | 2.3890467 |
Snippet | Assessment of both coronary artery calcium(CAC) scores and myocardial perfusion imaging(MPI) in patients suspected of coronary artery disease(CAD) provides... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 9 |
SubjectTerms | Coronary artery calcium Coronary artery disease Deep learning Myocardial perfusion imaging |
Title | The prognostic value of automated coronary calcium derived by a deep learning approach on non-ECG gated CT images from 82Rb-PET/CT myocardial perfusion imaging |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0167527320343278 https://dx.doi.org/10.1016/j.ijcard.2020.12.079 https://www.proquest.com/docview/2476568133 |
Volume | 329 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBdtCmMvY5-s-yg32KuWSLZl-7GEdNlGy9hS6JvQZ3Fp7JDGg7zsX9m_ujvH7tgYdOzFYFsnhO50d5LufsfYW-Nj4owVPKpgeaq85db4wPMQCYslWpdQovDpmZqfpx8vsos9Nh1yYSisstf9O53eaev-y7ifzfGqqsZfKYCe4MPkhJIj82KfHUi09sWIHRx_-DQ_-5UeWXYlcTuIbyIYMui6MK_qyiErcKMoJ925IMV0_d1C_aGrOwN08pA96D1HON4N7hHbC_Vjdu-0vxt_wn4gx4HCreqGsJeBYLwDNBFMu2nQLw0eHMEVmPUWkDGuapfgUf6-4Q-7BYMvYQV9FYlLGMDGoamhbmo-m76Hy66X6QKqJaqhG6DcFCjkF8s_zxZj_L7cNq4TuWtYhXVs6Siua4w9PmXnJ7PFdM778gvcpUm64cplsUiixy2PMEUivFOFEk5I50sVTGlyYZSMwhCIUe6ECviU3hWlyIwMPnnGRji-8JyBKL3MQsjsJKapR6dzYlAqTBlEEGnw9pAlw5Rr12OTU4mMaz0EoV3pHaM0MUoLqZFRh4zfUq122Bx3tM8Gbuoh7xQ1pUbjcQddfkv3m2z-A-WbQWg0Llu6izF1aNobLdNcEfZbkrz4795fsvuSImwIeTJ7xUabdRteo4u0sUds_913cdQvhJ9jWRO3 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9QwEA_nCeqL-InnZwRf427SNm0fZdlz1dtDdA_uLeRjcvS4bZe9rbAv_iv-q8502xNFOPGl0DYJITOZTJLf_IaxNzbExFsnRdTgRKqDE84GEDlE4mKJzicUKDw_1rOT9ONpdrrHJkMsDMEqe9u_s-mdte6_jPrRHK2qavSVAPREH6bGFByZFzfYzZTSHKBSv_3-C-eBLn0xEHxT8SF-rgN5VeceBYHbRDXuTgUJ0fX39ekPS90tP4f32N3eb-Tvdl27z_agfsBuzfub8YfsB8qbE9iqboh5mROJN_AmcttuGvRKIXBPZAV2veUoFl-1Sx5Q-77hD7flFl9gxfscEmd8oBrnTc3rphbTyXt-1rUyWfBqiUboklNkCi_UFyc-Txcj_L7cNr5TuAu-gnVs6SCuK4wtPmInh9PFZCb65AvCp0m6EdpnsUhiwA2PtEUig9eFll4qH0oNtrS5tFpFaYnCKPdSAz5V8EUpM6sgJI_ZPvYPnjAuy6AygMyNY5oGdDnHFnXCliBBphDcAUuGITe-ZyanBBkXZoCgnZudoAwJykhlUFAHTFzVWu2YOa4pnw3SNEPUKdpJg0vHNfXyq3q_aeY_1Hw9KI3BSUs3MbaGpr00Ks01Mb8lydP_bv0Vuz1bzI_M0YfjT8_YHUVYG-KgzJ6z_c26hRfoLG3cy24y_ASjAhR5 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+prognostic+value+of+automated+coronary+calcium+derived+by+a+deep+learning+approach+on+non-ECG+gated+CT+images+from+82Rb-PET%2FCT+myocardial+perfusion+imaging&rft.jtitle=International+journal+of+cardiology&rft.au=Dekker%2C+Mirthe&rft.au=Waissi%2C+Farahnaz&rft.au=Bank%2C+Ingrid+E.M.&rft.au=Isgum%2C+Ivana&rft.date=2021-04-15&rft.pub=Elsevier+B.V&rft.issn=0167-5273&rft.eissn=1874-1754&rft.volume=329&rft.spage=9&rft.epage=15&rft_id=info:doi/10.1016%2Fj.ijcard.2020.12.079&rft.externalDocID=S0167527320343278 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-5273&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-5273&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-5273&client=summon |