The prognostic value of automated coronary calcium derived by a deep learning approach on non-ECG gated CT images from 82Rb-PET/CT myocardial perfusion imaging

Assessment of both coronary artery calcium(CAC) scores and myocardial perfusion imaging(MPI) in patients suspected of coronary artery disease(CAD) provides incremental prognostic information. We used an automated method to determine CAC scores on low-dose attenuation correction CT(LDACT) images gath...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of cardiology Vol. 329; pp. 9 - 15
Main Authors Dekker, Mirthe, Waissi, Farahnaz, Bank, Ingrid E.M., Isgum, Ivana, Scholtens, Asbjørn M., Velthuis, Birgitta K., Pasterkamp, Gerard, de Winter, Robbert J., Mosterd, Arend, Timmers, Leo, de Kleijn, Dominique P.V.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.04.2021
Subjects
Online AccessGet full text
ISSN0167-5273
1874-1754
1874-1754
DOI10.1016/j.ijcard.2020.12.079

Cover

Abstract Assessment of both coronary artery calcium(CAC) scores and myocardial perfusion imaging(MPI) in patients suspected of coronary artery disease(CAD) provides incremental prognostic information. We used an automated method to determine CAC scores on low-dose attenuation correction CT(LDACT) images gathered during MPI in one single assessment. The prognostic value of this automated CAC score is unknown, we therefore investigated the association of this automated CAC scores and major adverse cardiovascular events(MACE) in a large chest-pain cohort. We analyzed 747 symptomatic patients referred for 82RubidiumPET/CT, without a history of coronary revascularization. Ischemia was defined as a summed difference score≥2. We used a validated deep learning(DL) method to determine CAC scores. For survival analysis CAC scores were dichotomized as low(<400) and high(≥400). MACE was defined as all cause death, late revascularization (>90 days after scanning) or nonfatal myocardial infarction. Cox proportional hazard analysis were performed to identify predictors of MACE. During 4 years follow-up, 115 MACEs were observed. High CAC scores showed higher cumulative event rates, irrespective of ischemia (nonischemic: 25.8% vs 11.9% and ischemic: 57.6% vs 23.4%, P-values <0.001). Multivariable cox regression revealed both high CAC scores (HR 2.19 95%CI 1.43–3.35) and ischemia (HR 2.56 95%CI 1.71–3.35) as independent predictors of MACE. Addition of automated CAC scores showed a net reclassification improvement of 0.13(0.022–0.245). Automatically derived CAC scores determined during a single imaging session are independently associated with MACE. This validated DL method could improve risk stratification and subsequently lead to more personalized treatment in patients suspected of CAD. •Combined assessment of CAC scores and perfusion data provide additional information.•We show a validated DL-method to determine CAC scores on CT images required during MPI.•No additional radiation exposure and manual scoring of a physician is needed.•We showed that this automated CAC score was independently associated with MACE.•If confirmed externally this could lead to better risk stratification in patients suspected of CCS.
AbstractList Assessment of both coronary artery calcium(CAC) scores and myocardial perfusion imaging(MPI) in patients suspected of coronary artery disease(CAD) provides incremental prognostic information. We used an automated method to determine CAC scores on low-dose attenuation correction CT(LDACT) images gathered during MPI in one single assessment. The prognostic value of this automated CAC score is unknown, we therefore investigated the association of this automated CAC scores and major adverse cardiovascular events(MACE) in a large chest-pain cohort. We analyzed 747 symptomatic patients referred for 82RubidiumPET/CT, without a history of coronary revascularization. Ischemia was defined as a summed difference score≥2. We used a validated deep learning(DL) method to determine CAC scores. For survival analysis CAC scores were dichotomized as low(<400) and high(≥400). MACE was defined as all cause death, late revascularization (>90 days after scanning) or nonfatal myocardial infarction. Cox proportional hazard analysis were performed to identify predictors of MACE. During 4 years follow-up, 115 MACEs were observed. High CAC scores showed higher cumulative event rates, irrespective of ischemia (nonischemic: 25.8% vs 11.9% and ischemic: 57.6% vs 23.4%, P-values <0.001). Multivariable cox regression revealed both high CAC scores (HR 2.19 95%CI 1.43–3.35) and ischemia (HR 2.56 95%CI 1.71–3.35) as independent predictors of MACE. Addition of automated CAC scores showed a net reclassification improvement of 0.13(0.022–0.245). Automatically derived CAC scores determined during a single imaging session are independently associated with MACE. This validated DL method could improve risk stratification and subsequently lead to more personalized treatment in patients suspected of CAD. •Combined assessment of CAC scores and perfusion data provide additional information.•We show a validated DL-method to determine CAC scores on CT images required during MPI.•No additional radiation exposure and manual scoring of a physician is needed.•We showed that this automated CAC score was independently associated with MACE.•If confirmed externally this could lead to better risk stratification in patients suspected of CCS.
Assessment of both coronary artery calcium(CAC) scores and myocardial perfusion imaging(MPI) in patients suspected of coronary artery disease(CAD) provides incremental prognostic information. We used an automated method to determine CAC scores on low-dose attenuation correction CT(LDACT) images gathered during MPI in one single assessment. The prognostic value of this automated CAC score is unknown, we therefore investigated the association of this automated CAC scores and major adverse cardiovascular events(MACE) in a large chest-pain cohort.BACKGROUNDAssessment of both coronary artery calcium(CAC) scores and myocardial perfusion imaging(MPI) in patients suspected of coronary artery disease(CAD) provides incremental prognostic information. We used an automated method to determine CAC scores on low-dose attenuation correction CT(LDACT) images gathered during MPI in one single assessment. The prognostic value of this automated CAC score is unknown, we therefore investigated the association of this automated CAC scores and major adverse cardiovascular events(MACE) in a large chest-pain cohort.We analyzed 747 symptomatic patients referred for 82RubidiumPET/CT, without a history of coronary revascularization. Ischemia was defined as a summed difference score≥2. We used a validated deep learning(DL) method to determine CAC scores. For survival analysis CAC scores were dichotomized as low(<400) and high(≥400). MACE was defined as all cause death, late revascularization (>90 days after scanning) or nonfatal myocardial infarction. Cox proportional hazard analysis were performed to identify predictors of MACE.METHODWe analyzed 747 symptomatic patients referred for 82RubidiumPET/CT, without a history of coronary revascularization. Ischemia was defined as a summed difference score≥2. We used a validated deep learning(DL) method to determine CAC scores. For survival analysis CAC scores were dichotomized as low(<400) and high(≥400). MACE was defined as all cause death, late revascularization (>90 days after scanning) or nonfatal myocardial infarction. Cox proportional hazard analysis were performed to identify predictors of MACE.During 4 years follow-up, 115 MACEs were observed. High CAC scores showed higher cumulative event rates, irrespective of ischemia (nonischemic: 25.8% vs 11.9% and ischemic: 57.6% vs 23.4%, P-values <0.001). Multivariable cox regression revealed both high CAC scores (HR 2.19 95%CI 1.43-3.35) and ischemia (HR 2.56 95%CI 1.71-3.35) as independent predictors of MACE. Addition of automated CAC scores showed a net reclassification improvement of 0.13(0.022-0.245).RESULTSDuring 4 years follow-up, 115 MACEs were observed. High CAC scores showed higher cumulative event rates, irrespective of ischemia (nonischemic: 25.8% vs 11.9% and ischemic: 57.6% vs 23.4%, P-values <0.001). Multivariable cox regression revealed both high CAC scores (HR 2.19 95%CI 1.43-3.35) and ischemia (HR 2.56 95%CI 1.71-3.35) as independent predictors of MACE. Addition of automated CAC scores showed a net reclassification improvement of 0.13(0.022-0.245).Automatically derived CAC scores determined during a single imaging session are independently associated with MACE. This validated DL method could improve risk stratification and subsequently lead to more personalized treatment in patients suspected of CAD.CONCLUSIONAutomatically derived CAC scores determined during a single imaging session are independently associated with MACE. This validated DL method could improve risk stratification and subsequently lead to more personalized treatment in patients suspected of CAD.
Author Bank, Ingrid E.M.
Scholtens, Asbjørn M.
Mosterd, Arend
de Winter, Robbert J.
Waissi, Farahnaz
Timmers, Leo
Velthuis, Birgitta K.
Isgum, Ivana
Pasterkamp, Gerard
de Kleijn, Dominique P.V.
Dekker, Mirthe
Author_xml – sequence: 1
  givenname: Mirthe
  surname: Dekker
  fullname: Dekker, Mirthe
  email: m.dekker-17@umcutrecht.nl
  organization: Department of Vascular Surgery, University Medical Centre Utrecht, the Netherlands
– sequence: 2
  givenname: Farahnaz
  surname: Waissi
  fullname: Waissi, Farahnaz
  organization: Department of Vascular Surgery, University Medical Centre Utrecht, the Netherlands
– sequence: 3
  givenname: Ingrid E.M.
  surname: Bank
  fullname: Bank, Ingrid E.M.
  organization: Department of Cardiology, St. Antonius hospital Nieuwegein, the Netherlands
– sequence: 4
  givenname: Ivana
  surname: Isgum
  fullname: Isgum, Ivana
  organization: Image Sciences Institute, University Medical Centre Utrecht, the Netherlands
– sequence: 5
  givenname: Asbjørn M.
  surname: Scholtens
  fullname: Scholtens, Asbjørn M.
  organization: Department of Nuclear Medicine, Meander Medical Centre, the Netherlands
– sequence: 6
  givenname: Birgitta K.
  surname: Velthuis
  fullname: Velthuis, Birgitta K.
  organization: Department of radiology, University Medical Centre Utrecht, the Netherlands
– sequence: 7
  givenname: Gerard
  surname: Pasterkamp
  fullname: Pasterkamp, Gerard
  organization: Department of Clinical Chemistry and Haematology, University Medical Centre Utrecht, the Netherlands
– sequence: 8
  givenname: Robbert J.
  surname: de Winter
  fullname: de Winter, Robbert J.
  organization: Department of Cardiology, Amsterdam University Medical Centre, Amsterdam, the Netherlands
– sequence: 9
  givenname: Arend
  surname: Mosterd
  fullname: Mosterd, Arend
  organization: Department of Cardiology, Meander Medical Centre Amersfoort, the Netherlands
– sequence: 10
  givenname: Leo
  surname: Timmers
  fullname: Timmers, Leo
  organization: Department of Cardiology, St. Antonius hospital Nieuwegein, the Netherlands
– sequence: 11
  givenname: Dominique P.V.
  surname: de Kleijn
  fullname: de Kleijn, Dominique P.V.
  organization: Department of Vascular Surgery, University Medical Centre Utrecht, the Netherlands
BookMark eNqFkcFu1DAURS1UJKaFP2DhJZtMYydxEoSQ0GhokSqB0LC2Xp9fph4SO9jJSPkafhUP01U3s7Hl53uurn2v2ZXzjhh7L_K1yIW6PaztASGYtcxlGsl1Xrev2Eo0dZmJuiqv2CrJ6qySdfGGXcd4yPO8bNtmxf7unoiPwe-dj5NFfoR-Ju47DvPkB5jIcPTBOwgLR-jRzgM3FOwxXTwuHNKBRt4TBGfdnsOYvACfuHc8hcy2mzu-_--y2XE7wJ4i74IfeCN_PmY_trvbNB8Wf0pvoecjhW6ONtEncXJ8y1530Ed697zfsF9ft7vNffbw_e7b5stDhmVRTpnCqmuKziipBDSFMKgaJVBINK0iaKEWoGQnoK2bvEahKK3SYNOKCiSZ4oZ9OPum_H9mipMebETqe3Dk56hlWatKNaIokvTjWYrBxxio02gnmFLoKYDttcj1qRV90OdW9KkVLaROrSS4fAGPIT01LJewz2eM0h8cLQUd0ZJDMjYQTtp4e8ng0wsD7K2zqdLftFzG_wHaSsDv
CitedBy_id crossref_primary_10_1016_j_cpet_2021_06_011
crossref_primary_10_3390_jcm14062095
crossref_primary_10_3389_fcvm_2021_782971
crossref_primary_10_1007_s10554_025_03327_8
crossref_primary_10_1053_j_semnuclmed_2024_04_003
crossref_primary_10_1007_s43657_023_00137_7
crossref_primary_10_1093_ehjci_jeae081
crossref_primary_10_1016_j_jcmg_2022_06_006
crossref_primary_10_1053_j_semnuclmed_2024_02_005
crossref_primary_10_1161_CIRCIMAGING_123_016443
crossref_primary_10_2169_internalmedicine_3566_24
crossref_primary_10_26787_nydha_2686_6846_2023_25_11_19_28
crossref_primary_10_2967_jnumed_122_264423
Cites_doi 10.1016/S0735-1097(00)01119-0
10.1007/s12350-019-01965-9
10.1093/ehjci/jet068
10.1002/sim.2929
10.1109/TMI.2017.2769839
10.1093/eurheartj/ehl001
10.1007/s12350-017-0866-3
10.1016/j.jacc.2009.05.071
10.1016/j.jacc.2006.12.015
10.1136/hrt.2010.217281
10.1016/j.ijcha.2019.100434
10.1161/CIRCULATIONAHA.107.187397
10.7326/M13-1522
10.1056/NEJMoa072100
10.1016/j.jacc.2006.12.035
10.1016/j.jacc.2018.05.027
10.1016/j.jacc.2004.06.042
10.1161/CIRCULATIONAHA.106.629808
10.1093/ehjci/jey019
10.1148/radiol.13122529
10.1016/j.jcmg.2017.05.007
10.1016/0735-1097(90)90282-T
10.1016/j.jacc.2015.08.035
10.1161/CIRCULATIONAHA.107.743161
10.1016/j.jcmg.2017.07.024
10.1161/CIRCULATIONAHA.117.030578
10.1093/ehjci/jex037
10.1148/radiol.2020191621
10.1001/jama.2012.9624
10.1161/CIRCULATIONAHA.107.717512
ContentType Journal Article
Copyright 2021 The Authors
Copyright © 2021 The Authors. Published by Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2021 The Authors
– notice: Copyright © 2021 The Authors. Published by Elsevier B.V. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
7X8
DOI 10.1016/j.ijcard.2020.12.079
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1874-1754
EndPage 15
ExternalDocumentID 10_1016_j_ijcard_2020_12_079
S0167527320343278
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
1B1
1P~
1RT
1~.
1~5
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
ABBQC
ABFNM
ABJNI
ABLJU
ABMAC
ABMZM
ABOCM
ACDAQ
ACGFS
ACIEU
ACIUM
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGUBO
AGYEJ
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
AXJTR
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M29
M41
MO0
N9A
O-L
O9-
OA.
OAUVE
OL~
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SAE
SCC
SDF
SDG
SEL
SES
SPCBC
SSH
SSZ
T5K
UV1
Z5R
~G-
0SF
6I.
AACTN
AAFTH
AAIAV
ABLVK
ABYKQ
AFCTW
AFKWA
AHHHB
AJOXV
AMFUW
EFLBG
LCYCR
ZA5
.55
.GJ
29J
AAQXK
AAYWO
AAYXX
ABWVN
ABXDB
ACRPL
ADMUD
ADNMO
ADVLN
AFFNX
AFJKZ
AGHFR
AGQPQ
AGRNS
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
G-2
HEB
HMK
HMO
HVGLF
HZ~
R2-
RIG
SEW
WUQ
X7M
ZGI
7X8
ACLOT
~HD
ID FETCH-LOGICAL-c434t-6c5f83fd6261a831dc6861c12cd96ea9a71a62f1a97807c16e07c2dc8915a2ed3
IEDL.DBID AIKHN
ISSN 0167-5273
1874-1754
IngestDate Sat Sep 27 19:57:26 EDT 2025
Thu Apr 24 23:10:39 EDT 2025
Tue Jul 01 04:04:22 EDT 2025
Fri Feb 23 02:46:44 EST 2024
Tue Aug 26 16:54:33 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Myocardial perfusion imaging
Coronary artery calcium
Coronary artery disease
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c434t-6c5f83fd6261a831dc6861c12cd96ea9a71a62f1a97807c16e07c2dc8915a2ed3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0167527320343278
PQID 2476568133
PQPubID 23479
PageCount 7
ParticipantIDs proquest_miscellaneous_2476568133
crossref_citationtrail_10_1016_j_ijcard_2020_12_079
crossref_primary_10_1016_j_ijcard_2020_12_079
elsevier_sciencedirect_doi_10_1016_j_ijcard_2020_12_079
elsevier_clinicalkey_doi_10_1016_j_ijcard_2020_12_079
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-04-15
PublicationDateYYYYMMDD 2021-04-15
PublicationDate_xml – month: 04
  year: 2021
  text: 2021-04-15
  day: 15
PublicationDecade 2020
PublicationTitle International journal of cardiology
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Lessmann, van Ginneken, Zreik, de Jong, de Vos, Viergever, Isgum (bb0080) 2018; 37
G. Sangiorgi, J.A. Rumberger, A. Severson, W.D. Edwards, J. Gregoire, L.A. Fitzpatrick, R.S. Schwartz, M. Duluth, Arterial Calcification and Not Lumen Stenosis Is Highly Correlated with Atherosclerotic Plaque Burden in Humans: A Histologic Study of 723 Coronary Artery Segments Using Nondecalcifying Methodology, n.d.
Agatston, Janowitz, Hildner, Zusmer, Viamonte, Detrano (bb0095) 1990; 15
Išgum, de Vos, Wolterink, Dey, Berman, Rubeaux, Leiner, Slomka (bb0085) 2018; 25
Leening, Vedder, Witteman, Pencina, Steyerberg (bb0125) 2014; 160
Sharma, Mughal, Dimitropoulos, Sheikh, Griffin, Moss, Notghi, Pandit, Connolly, Varma, Kirchhof (bb0150) 2019
Gräni, Vontobel, Benz, Bacanovic, Giannopoulos, Messerli, Grossmann, Gebhard, Pazhenkottil, Gaemperli, Kaufmann, Buechel (bb0090) 2018; 19
Dekker, Waissi, I.E.M. Bank, Lessmann, Išgum, Velthuis, Scholtens, Leenders, Pasterkamp, de Kleijn, Timmers, Mosterd (bb0065) 2020; 26
Betancur, Otaki, Motwani, Fish, Lemley, Dey, Gransar, Tamarappoo, Germano, Sharir, Berman, Slomka (bb0055) 2018; 11
di Carli, Hachamovitch (bb0075) 2007; 115
Haberl, Becker, Leber, Knez, Becker, Lang, Bruning, Reiser, Steinbeck (bb0140) 2001; 37
Chang, Nabi, Xu, Peterson, Achari, Pratt, Mahmarian (bb0145) 2009; 54
van Velzen, Lessmann, Velthuis, I.E.M. Bank, van den Bongard, Leiner, de Jong, Veldhuis, Correa, Terry, Carr, Viergever, Verkooijen, Išgum (bb0060) 2020; 295
Cerqueira, Weissman, Dilsizian, Jacobs, Kaul, Laskey, Pennell, Rumberger, Ryan, Verani (bb0070) 2002; 18
Fox, Garcia, Ardissino, Buszman, Camici, Crea, Daly, de Backer, Hjemdahl, Lopez-Sendon, Marco, Morais, Pepper, Sechtem, Simoons, Thygesen, Priori, Blanc, Budaj, Camm, Dean, Deckers, Dickstein, Lekakis, McGregor, Metra, Morais, Osterspey, Tamargo, Zamorano (bb0115) 2006; 27
Engbers, Timmer, Ottervanger, Mouden, Knollema, Jager (bb0045) 2016; 9
Mittal, Pottle, Nicol, Barbir, Ariff, Mirsadraee, Dubowitz, Gorog, Clifford, Firoozan, Smith, Dubrey, Chana, Shah, Stephens, Travill, Kelion, Pakkal, Timmis (bb0050) 2017; 18
Sampson, Dorbala, Limaye, Kwong, di Carli (bb0005) 2007; 49
Demer, Tintut (bb0035) 2008; 117
Farhad, Dunet, Bachelard, Allenbach, Kaufmann, Prior (bb0105) 2013; 14
Berman, Wong, Gransar, Miranda-Peats, Dahlbeck, Hayes, Friedman, Kang, Polk, Hachamovitch, Shaw, Rozanski (bb0110) 2004; 44
McClelland, Jorgensen, Budoff, Blaha, Post, Kronmal, Bild, Shea, Liu, Watson, Folsom, Khera, Ayers, Mahabadi, Lehmann, Jöckel, Moebus, Carr, Erbel, Burke (bb0020) 2015; 66
Budoff, Mayrhofer, Ferencik, Bittner, Lee, Lu, Coles, Jang, Krishnam, Douglas, Hoffmann (bb0030) 2017; 136
Rozanski, Gransar, Wong, Shaw, Miranda-Peats, Polk, Hayes, Friedman, Berman (bb0155) 2007; 49
Ghadri, Pazhenkottil, Nkoulou, Goetti, Buechel, Husmann, Herzog, Wolfrum, Wyss, Templin, Kaufmann (bb0165) 2011; 97
Thygesen, Alpert, White (bb0100) 2007; 116
Yeboah, McClelland, Polonsky, Burke, Sibley, O’Leary, Carr, Goff, Greenland, Herrington (bb0015) 2012; 308
Greenland, Blaha, Budoff, Erbel, Watson (bb0025) 2018; 72
Schenker, Dorbala, Hong, Rybicki, Hachamovitch, Kwong, di Carli (bb0040) 2008; 117
Pencina, D’Agostino, D’Agostino, Vasan (bb0120) 2008; 27
Blaha, Mortensen, Kianoush, Tota-Maharaj, Cainzos-Achirica (bb0130) 2017; 10
Detrano, Guerci, Carr, Bild, Burke, Folsom, Liu, Shea, Szklo, Bluemke, O’Leary, Tracy, Watson, Wong, Kronmal (bb0010) 2008; 358
Mouden, Timmer, Reiffers, Oostdijk, Knollema, Ottervanger, Jager (bb0160) 2013; 269
Ghadri (10.1016/j.ijcard.2020.12.079_bb0165) 2011; 97
Mouden (10.1016/j.ijcard.2020.12.079_bb0160) 2013; 269
Rozanski (10.1016/j.ijcard.2020.12.079_bb0155) 2007; 49
Gräni (10.1016/j.ijcard.2020.12.079_bb0090) 2018; 19
Greenland (10.1016/j.ijcard.2020.12.079_bb0025) 2018; 72
Haberl (10.1016/j.ijcard.2020.12.079_bb0140) 2001; 37
Dekker (10.1016/j.ijcard.2020.12.079_bb0065) 2020; 26
Detrano (10.1016/j.ijcard.2020.12.079_bb0010) 2008; 358
Pencina (10.1016/j.ijcard.2020.12.079_bb0120) 2008; 27
10.1016/j.ijcard.2020.12.079_bb0135
Demer (10.1016/j.ijcard.2020.12.079_bb0035) 2008; 117
Mittal (10.1016/j.ijcard.2020.12.079_bb0050) 2017; 18
Farhad (10.1016/j.ijcard.2020.12.079_bb0105) 2013; 14
Chang (10.1016/j.ijcard.2020.12.079_bb0145) 2009; 54
di Carli (10.1016/j.ijcard.2020.12.079_bb0075) 2007; 115
Thygesen (10.1016/j.ijcard.2020.12.079_bb0100) 2007; 116
Fox (10.1016/j.ijcard.2020.12.079_bb0115) 2006; 27
Cerqueira (10.1016/j.ijcard.2020.12.079_bb0070) 2002; 18
McClelland (10.1016/j.ijcard.2020.12.079_bb0020) 2015; 66
Yeboah (10.1016/j.ijcard.2020.12.079_bb0015) 2012; 308
Sharma (10.1016/j.ijcard.2020.12.079_bb0150) 2019
Berman (10.1016/j.ijcard.2020.12.079_bb0110) 2004; 44
Lessmann (10.1016/j.ijcard.2020.12.079_bb0080) 2018; 37
Budoff (10.1016/j.ijcard.2020.12.079_bb0030) 2017; 136
Išgum (10.1016/j.ijcard.2020.12.079_bb0085) 2018; 25
Schenker (10.1016/j.ijcard.2020.12.079_bb0040) 2008; 117
van Velzen (10.1016/j.ijcard.2020.12.079_bb0060) 2020; 295
Agatston (10.1016/j.ijcard.2020.12.079_bb0095) 1990; 15
Betancur (10.1016/j.ijcard.2020.12.079_bb0055) 2018; 11
Blaha (10.1016/j.ijcard.2020.12.079_bb0130) 2017; 10
Engbers (10.1016/j.ijcard.2020.12.079_bb0045) 2016; 9
Leening (10.1016/j.ijcard.2020.12.079_bb0125) 2014; 160
Sampson (10.1016/j.ijcard.2020.12.079_bb0005) 2007; 49
References_xml – volume: 72
  start-page: 434
  year: 2018
  end-page: 447
  ident: bb0025
  article-title: Coronary calcium score and cardiovascular risk
  publication-title: J. Am. Coll. Cardiol.
– volume: 27
  year: 2008
  ident: bb0120
  article-title: Evaluating the added predictive ability of a new marker: From area under the ROC curve to reclassification and beyond
  publication-title: Stat. Med.
– volume: 14
  start-page: 1203
  year: 2013
  end-page: 1210
  ident: bb0105
  article-title: Added prognostic value of myocardial blood flow quantitation in rubidium-82 positron emission tomography imaging
  publication-title: Eur. Heart J. Cardiovasc. Imaging
– volume: 11
  start-page: 1000
  year: 2018
  end-page: 1009
  ident: bb0055
  article-title: Prognostic value of combined clinical and myocardial perfusion imaging data using machine learning
  publication-title: JACC Cardiovasc. Imaging
– volume: 37
  start-page: 615
  year: 2018
  end-page: 625
  ident: bb0080
  article-title: Automatic calcium scoring in low-dose chest CT using deep neural networks with dilated convolutions
  publication-title: IEEE Trans. Med. Imaging
– volume: 116
  start-page: 2634
  year: 2007
  end-page: 2653
  ident: bb0100
  article-title: Universal definition of myocardial infarction
  publication-title: Circulation.
– volume: 117
  start-page: 1693
  year: 2008
  end-page: 1700
  ident: bb0040
  article-title: Interrelation of coronary calcification, myocardial ischemia, and outcomes in patients with intermediate likelihood of coronary artery disease: a combined positron emission tomography/computed tomography study
  publication-title: Circulation.
– volume: 15
  start-page: 827
  year: 1990
  end-page: 832
  ident: bb0095
  article-title: Quantification of coronary artery calcium using ultrafast computed tomography
  publication-title: J. Am. Coll. Cardiol.
– reference: G. Sangiorgi, J.A. Rumberger, A. Severson, W.D. Edwards, J. Gregoire, L.A. Fitzpatrick, R.S. Schwartz, M. Duluth, Arterial Calcification and Not Lumen Stenosis Is Highly Correlated with Atherosclerotic Plaque Burden in Humans: A Histologic Study of 723 Coronary Artery Segments Using Nondecalcifying Methodology, n.d.
– volume: 9
  start-page: 1
  year: 2016
  end-page: 9
  ident: bb0045
  article-title: Prognostic value of coronary artery calcium scoring in addition to single-photon emission computed tomographic myocardial perfusion imaging in symptomatic patients
  publication-title: Circ.: Cardiovasc. Imag.
– volume: 295
  start-page: 66
  year: 2020
  end-page: 79
  ident: bb0060
  article-title: Deep learning for automatic calcium scoring in CT: validation using multiple cardiac CT and chest CT protocols
  publication-title: Radiology.
– volume: 115
  start-page: 1464
  year: 2007
  end-page: 1480
  ident: bb0075
  article-title: New Technology for Noninvasive Evaluation of coronary artery disease
  publication-title: Circulation.
– volume: 66
  start-page: 1643
  year: 2015
  end-page: 1653
  ident: bb0020
  article-title: 10-Year coronary heart disease risk prediction using coronary artery calcium and traditional risk factors: derivation in the MESA (Multi-Ethnic Study of Atherosclerosis) with validation in the HNR (Heinz Nixdorf Recall) study and the DHS (Dallas Heart Stu)
  publication-title: J. Am. Coll. Cardiol.
– volume: 19
  year: 2018
  ident: bb0090
  article-title: Ultra-low-dose coronary artery calcium scoring using novel scoring thresholds for low tube voltage protocols—a pilot study
  publication-title: Eur. Heart J. Cardiovasc. Imaging
– volume: 117
  start-page: 2938
  year: 2008
  end-page: 2948
  ident: bb0035
  article-title: Vascular Calcification
  publication-title: Circulation.
– volume: 160
  year: 2014
  ident: bb0125
  article-title: Net reclassification improvement: computation, interpretation, and controversies
  publication-title: Ann. Intern. Med.
– volume: 54
  start-page: 1872
  year: 2009
  end-page: 1882
  ident: bb0145
  article-title: The coronary artery calcium score and stress myocardial perfusion imaging provide independent and complementary prediction of cardiac risk
  publication-title: J. Am. Coll. Cardiol.
– volume: 27
  start-page: 1341
  year: 2006
  end-page: 1381
  ident: bb0115
  article-title: Task force on the management of stable angina pectoris of the european society of cardiology, ESC Committee for Practice Guidelines (CPG), Guidelines on the management of stable angina pectoris: executive summary: The Task Force on the Management of Stable Angina Pectoris of the European Society of Cardiology
  publication-title: Eur. Heart J.
– volume: 358
  start-page: 1336
  year: 2008
  end-page: 1345
  ident: bb0010
  article-title: Coronary calcium as a predictor of coronary events in four racial or ethnic groups
  publication-title: N. Engl. J. Med.
– volume: 18
  start-page: 539
  year: 2002
  end-page: 542
  ident: bb0070
  article-title: American heart association writing group on myocardial segmentation and registration for cardiac imaging, standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association
  publication-title: Int. J. Cardiovasc. Imag.
– volume: 25
  start-page: 2133
  year: 2018
  end-page: 2142
  ident: bb0085
  article-title: Automatic determination of cardiovascular risk by CT attenuation correction maps in Rb-82 PET/CT
  publication-title: J. Nucl. Cardiol.
– volume: 10
  start-page: 923
  year: 2017
  end-page: 937
  ident: bb0130
  article-title: Coronary artery calcium scoring
  publication-title: JACC Cardiovasc. Imaging
– volume: 49
  start-page: 1052
  year: 2007
  end-page: 1058
  ident: bb0005
  article-title: Diagnostic accuracy of rubidium-82 myocardial perfusion imaging with hybrid positron emission tomography/computed tomography in the detection of coronary artery disease
  publication-title: J. Am. Coll. Cardiol.
– volume: 18
  start-page: 922
  year: 2017
  end-page: 929
  ident: bb0050
  article-title: Prevalence of obstructive coronary artery disease and prognosis in patients with stable symptoms and a zero-coronary calcium score
  publication-title: Eur. Heart J. Cardiovasc. Imaging
– volume: 44
  start-page: 923
  year: 2004
  end-page: 930
  ident: bb0110
  article-title: Relationship between stress-induced myocardial ischemia and atherosclerosis measured by coronary calcium tomography
  publication-title: J. Am. Coll. Cardiol.
– volume: 308
  start-page: 788
  year: 2012
  end-page: 795
  ident: bb0015
  article-title: Comparison of novel risk markers for improvement in cardiovascular risk assessment in intermediate-risk individuals
  publication-title: JAMA.
– volume: 26
  start-page: 100434
  year: 2020
  ident: bb0065
  article-title: Automated calcium scores collected during myocardial perfusion imaging improve identification of obstructive coronary artery disease
  publication-title: IJC Heart Vasc.
– year: 2019
  ident: bb0150
  article-title: The additive prognostic value of coronary calcium score (CCS) to single photon emission computed tomography myocardial perfusion imaging (SPECT-MPI)-real world data from a single center
  publication-title: J. Nucl. Cardiol.
– volume: 136
  start-page: 1993
  year: 2017
  end-page: 2005
  ident: bb0030
  article-title: Prognostic value of coronary artery calcium in the PROMISE study (prospective multicenter imaging study for evaluation of chest pain)
  publication-title: Circulation.
– volume: 269
  start-page: 77
  year: 2013
  end-page: 83
  ident: bb0160
  article-title: Coronary artery calcium scoring to exclude flow-limiting coronary artery disease in symptomatic stable patients at low or intermediate risk
  publication-title: Radiology.
– volume: 49
  start-page: 1352
  year: 2007
  end-page: 1361
  ident: bb0155
  article-title: Clinical outcomes after both coronary calcium scanning and exercise myocardial perfusion scintigraphy
  publication-title: J. Am. Coll. Cardiol.
– volume: 97
  start-page: 998
  year: 2011
  end-page: 1003
  ident: bb0165
  article-title: Very high coronary calcium score unmasks obstructive coronary artery disease in patients with normal SPECT MPI
  publication-title: Heart
– volume: 37
  start-page: 451
  year: 2001
  end-page: 457
  ident: bb0140
  article-title: Correlation of coronary calcification and angiographically documented stenoses in patients with suspected coronary artery disease: results of 1,764 patients
  publication-title: J. Am. Coll. Cardiol.
– volume: 37
  start-page: 451
  year: 2001
  ident: 10.1016/j.ijcard.2020.12.079_bb0140
  article-title: Correlation of coronary calcification and angiographically documented stenoses in patients with suspected coronary artery disease: results of 1,764 patients
  publication-title: J. Am. Coll. Cardiol.
  doi: 10.1016/S0735-1097(00)01119-0
– ident: 10.1016/j.ijcard.2020.12.079_bb0135
– year: 2019
  ident: 10.1016/j.ijcard.2020.12.079_bb0150
  article-title: The additive prognostic value of coronary calcium score (CCS) to single photon emission computed tomography myocardial perfusion imaging (SPECT-MPI)-real world data from a single center
  publication-title: J. Nucl. Cardiol.
  doi: 10.1007/s12350-019-01965-9
– volume: 14
  start-page: 1203
  year: 2013
  ident: 10.1016/j.ijcard.2020.12.079_bb0105
  article-title: Added prognostic value of myocardial blood flow quantitation in rubidium-82 positron emission tomography imaging
  publication-title: Eur. Heart J. Cardiovasc. Imaging
  doi: 10.1093/ehjci/jet068
– volume: 27
  year: 2008
  ident: 10.1016/j.ijcard.2020.12.079_bb0120
  article-title: Evaluating the added predictive ability of a new marker: From area under the ROC curve to reclassification and beyond
  publication-title: Stat. Med.
  doi: 10.1002/sim.2929
– volume: 37
  start-page: 615
  year: 2018
  ident: 10.1016/j.ijcard.2020.12.079_bb0080
  article-title: Automatic calcium scoring in low-dose chest CT using deep neural networks with dilated convolutions
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2017.2769839
– volume: 27
  start-page: 1341
  year: 2006
  ident: 10.1016/j.ijcard.2020.12.079_bb0115
  publication-title: Eur. Heart J.
  doi: 10.1093/eurheartj/ehl001
– volume: 25
  start-page: 2133
  year: 2018
  ident: 10.1016/j.ijcard.2020.12.079_bb0085
  article-title: Automatic determination of cardiovascular risk by CT attenuation correction maps in Rb-82 PET/CT
  publication-title: J. Nucl. Cardiol.
  doi: 10.1007/s12350-017-0866-3
– volume: 54
  start-page: 1872
  year: 2009
  ident: 10.1016/j.ijcard.2020.12.079_bb0145
  article-title: The coronary artery calcium score and stress myocardial perfusion imaging provide independent and complementary prediction of cardiac risk
  publication-title: J. Am. Coll. Cardiol.
  doi: 10.1016/j.jacc.2009.05.071
– volume: 49
  start-page: 1052
  year: 2007
  ident: 10.1016/j.ijcard.2020.12.079_bb0005
  article-title: Diagnostic accuracy of rubidium-82 myocardial perfusion imaging with hybrid positron emission tomography/computed tomography in the detection of coronary artery disease
  publication-title: J. Am. Coll. Cardiol.
  doi: 10.1016/j.jacc.2006.12.015
– volume: 97
  start-page: 998
  year: 2011
  ident: 10.1016/j.ijcard.2020.12.079_bb0165
  article-title: Very high coronary calcium score unmasks obstructive coronary artery disease in patients with normal SPECT MPI
  publication-title: Heart
  doi: 10.1136/hrt.2010.217281
– volume: 26
  start-page: 100434
  year: 2020
  ident: 10.1016/j.ijcard.2020.12.079_bb0065
  article-title: Automated calcium scores collected during myocardial perfusion imaging improve identification of obstructive coronary artery disease
  publication-title: IJC Heart Vasc.
  doi: 10.1016/j.ijcha.2019.100434
– volume: 116
  start-page: 2634
  year: 2007
  ident: 10.1016/j.ijcard.2020.12.079_bb0100
  article-title: Universal definition of myocardial infarction
  publication-title: Circulation.
  doi: 10.1161/CIRCULATIONAHA.107.187397
– volume: 160
  year: 2014
  ident: 10.1016/j.ijcard.2020.12.079_bb0125
  article-title: Net reclassification improvement: computation, interpretation, and controversies
  publication-title: Ann. Intern. Med.
  doi: 10.7326/M13-1522
– volume: 358
  start-page: 1336
  year: 2008
  ident: 10.1016/j.ijcard.2020.12.079_bb0010
  article-title: Coronary calcium as a predictor of coronary events in four racial or ethnic groups
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa072100
– volume: 49
  start-page: 1352
  year: 2007
  ident: 10.1016/j.ijcard.2020.12.079_bb0155
  article-title: Clinical outcomes after both coronary calcium scanning and exercise myocardial perfusion scintigraphy
  publication-title: J. Am. Coll. Cardiol.
  doi: 10.1016/j.jacc.2006.12.035
– volume: 72
  start-page: 434
  year: 2018
  ident: 10.1016/j.ijcard.2020.12.079_bb0025
  article-title: Coronary calcium score and cardiovascular risk
  publication-title: J. Am. Coll. Cardiol.
  doi: 10.1016/j.jacc.2018.05.027
– volume: 44
  start-page: 923
  year: 2004
  ident: 10.1016/j.ijcard.2020.12.079_bb0110
  article-title: Relationship between stress-induced myocardial ischemia and atherosclerosis measured by coronary calcium tomography
  publication-title: J. Am. Coll. Cardiol.
  doi: 10.1016/j.jacc.2004.06.042
– volume: 115
  start-page: 1464
  year: 2007
  ident: 10.1016/j.ijcard.2020.12.079_bb0075
  article-title: New Technology for Noninvasive Evaluation of coronary artery disease
  publication-title: Circulation.
  doi: 10.1161/CIRCULATIONAHA.106.629808
– volume: 19
  year: 2018
  ident: 10.1016/j.ijcard.2020.12.079_bb0090
  article-title: Ultra-low-dose coronary artery calcium scoring using novel scoring thresholds for low tube voltage protocols—a pilot study
  publication-title: Eur. Heart J. Cardiovasc. Imaging
  doi: 10.1093/ehjci/jey019
– volume: 269
  start-page: 77
  year: 2013
  ident: 10.1016/j.ijcard.2020.12.079_bb0160
  article-title: Coronary artery calcium scoring to exclude flow-limiting coronary artery disease in symptomatic stable patients at low or intermediate risk
  publication-title: Radiology.
  doi: 10.1148/radiol.13122529
– volume: 10
  start-page: 923
  year: 2017
  ident: 10.1016/j.ijcard.2020.12.079_bb0130
  article-title: Coronary artery calcium scoring
  publication-title: JACC Cardiovasc. Imaging
  doi: 10.1016/j.jcmg.2017.05.007
– volume: 9
  start-page: 1
  year: 2016
  ident: 10.1016/j.ijcard.2020.12.079_bb0045
  article-title: Prognostic value of coronary artery calcium scoring in addition to single-photon emission computed tomographic myocardial perfusion imaging in symptomatic patients
  publication-title: Circ.: Cardiovasc. Imag.
– volume: 18
  start-page: 539
  year: 2002
  ident: 10.1016/j.ijcard.2020.12.079_bb0070
  publication-title: Int. J. Cardiovasc. Imag.
– volume: 15
  start-page: 827
  year: 1990
  ident: 10.1016/j.ijcard.2020.12.079_bb0095
  article-title: Quantification of coronary artery calcium using ultrafast computed tomography
  publication-title: J. Am. Coll. Cardiol.
  doi: 10.1016/0735-1097(90)90282-T
– volume: 66
  start-page: 1643
  year: 2015
  ident: 10.1016/j.ijcard.2020.12.079_bb0020
  article-title: 10-Year coronary heart disease risk prediction using coronary artery calcium and traditional risk factors: derivation in the MESA (Multi-Ethnic Study of Atherosclerosis) with validation in the HNR (Heinz Nixdorf Recall) study and the DHS (Dallas Heart Stu)
  publication-title: J. Am. Coll. Cardiol.
  doi: 10.1016/j.jacc.2015.08.035
– volume: 117
  start-page: 2938
  year: 2008
  ident: 10.1016/j.ijcard.2020.12.079_bb0035
  article-title: Vascular Calcification
  publication-title: Circulation.
  doi: 10.1161/CIRCULATIONAHA.107.743161
– volume: 11
  start-page: 1000
  year: 2018
  ident: 10.1016/j.ijcard.2020.12.079_bb0055
  article-title: Prognostic value of combined clinical and myocardial perfusion imaging data using machine learning
  publication-title: JACC Cardiovasc. Imaging
  doi: 10.1016/j.jcmg.2017.07.024
– volume: 136
  start-page: 1993
  year: 2017
  ident: 10.1016/j.ijcard.2020.12.079_bb0030
  article-title: Prognostic value of coronary artery calcium in the PROMISE study (prospective multicenter imaging study for evaluation of chest pain)
  publication-title: Circulation.
  doi: 10.1161/CIRCULATIONAHA.117.030578
– volume: 18
  start-page: 922
  year: 2017
  ident: 10.1016/j.ijcard.2020.12.079_bb0050
  article-title: Prevalence of obstructive coronary artery disease and prognosis in patients with stable symptoms and a zero-coronary calcium score
  publication-title: Eur. Heart J. Cardiovasc. Imaging
  doi: 10.1093/ehjci/jex037
– volume: 295
  start-page: 66
  year: 2020
  ident: 10.1016/j.ijcard.2020.12.079_bb0060
  article-title: Deep learning for automatic calcium scoring in CT: validation using multiple cardiac CT and chest CT protocols
  publication-title: Radiology.
  doi: 10.1148/radiol.2020191621
– volume: 308
  start-page: 788
  year: 2012
  ident: 10.1016/j.ijcard.2020.12.079_bb0015
  article-title: Comparison of novel risk markers for improvement in cardiovascular risk assessment in intermediate-risk individuals
  publication-title: JAMA.
  doi: 10.1001/jama.2012.9624
– volume: 117
  start-page: 1693
  year: 2008
  ident: 10.1016/j.ijcard.2020.12.079_bb0040
  article-title: Interrelation of coronary calcification, myocardial ischemia, and outcomes in patients with intermediate likelihood of coronary artery disease: a combined positron emission tomography/computed tomography study
  publication-title: Circulation.
  doi: 10.1161/CIRCULATIONAHA.107.717512
SSID ssj0004998
Score 2.3890467
Snippet Assessment of both coronary artery calcium(CAC) scores and myocardial perfusion imaging(MPI) in patients suspected of coronary artery disease(CAD) provides...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 9
SubjectTerms Coronary artery calcium
Coronary artery disease
Deep learning
Myocardial perfusion imaging
Title The prognostic value of automated coronary calcium derived by a deep learning approach on non-ECG gated CT images from 82Rb-PET/CT myocardial perfusion imaging
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0167527320343278
https://dx.doi.org/10.1016/j.ijcard.2020.12.079
https://www.proquest.com/docview/2476568133
Volume 329
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBdtCmMvY5-s-yg32KuWSLZl-7GEdNlGy9hS6JvQZ3Fp7JDGg7zsX9m_ujvH7tgYdOzFYFsnhO50d5LufsfYW-Nj4owVPKpgeaq85db4wPMQCYslWpdQovDpmZqfpx8vsos9Nh1yYSisstf9O53eaev-y7ifzfGqqsZfKYCe4MPkhJIj82KfHUi09sWIHRx_-DQ_-5UeWXYlcTuIbyIYMui6MK_qyiErcKMoJ925IMV0_d1C_aGrOwN08pA96D1HON4N7hHbC_Vjdu-0vxt_wn4gx4HCreqGsJeBYLwDNBFMu2nQLw0eHMEVmPUWkDGuapfgUf6-4Q-7BYMvYQV9FYlLGMDGoamhbmo-m76Hy66X6QKqJaqhG6DcFCjkF8s_zxZj_L7cNq4TuWtYhXVs6Siua4w9PmXnJ7PFdM778gvcpUm64cplsUiixy2PMEUivFOFEk5I50sVTGlyYZSMwhCIUe6ECviU3hWlyIwMPnnGRji-8JyBKL3MQsjsJKapR6dzYlAqTBlEEGnw9pAlw5Rr12OTU4mMaz0EoV3pHaM0MUoLqZFRh4zfUq122Bx3tM8Gbuoh7xQ1pUbjcQddfkv3m2z-A-WbQWg0Llu6izF1aNobLdNcEfZbkrz4795fsvuSImwIeTJ7xUabdRteo4u0sUds_913cdQvhJ9jWRO3
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9QwEA_nCeqL-InnZwRf427SNm0fZdlz1dtDdA_uLeRjcvS4bZe9rbAv_iv-q8502xNFOPGl0DYJITOZTJLf_IaxNzbExFsnRdTgRKqDE84GEDlE4mKJzicUKDw_1rOT9ONpdrrHJkMsDMEqe9u_s-mdte6_jPrRHK2qavSVAPREH6bGFByZFzfYzZTSHKBSv_3-C-eBLn0xEHxT8SF-rgN5VeceBYHbRDXuTgUJ0fX39ekPS90tP4f32N3eb-Tvdl27z_agfsBuzfub8YfsB8qbE9iqboh5mROJN_AmcttuGvRKIXBPZAV2veUoFl-1Sx5Q-77hD7flFl9gxfscEmd8oBrnTc3rphbTyXt-1rUyWfBqiUboklNkCi_UFyc-Txcj_L7cNr5TuAu-gnVs6SCuK4wtPmInh9PFZCb65AvCp0m6EdpnsUhiwA2PtEUig9eFll4qH0oNtrS5tFpFaYnCKPdSAz5V8EUpM6sgJI_ZPvYPnjAuy6AygMyNY5oGdDnHFnXCliBBphDcAUuGITe-ZyanBBkXZoCgnZudoAwJykhlUFAHTFzVWu2YOa4pnw3SNEPUKdpJg0vHNfXyq3q_aeY_1Hw9KI3BSUs3MbaGpr00Ks01Mb8lydP_bv0Vuz1bzI_M0YfjT8_YHUVYG-KgzJ6z_c26hRfoLG3cy24y_ASjAhR5
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+prognostic+value+of+automated+coronary+calcium+derived+by+a+deep+learning+approach+on+non-ECG+gated+CT+images+from+82Rb-PET%2FCT+myocardial+perfusion+imaging&rft.jtitle=International+journal+of+cardiology&rft.au=Dekker%2C+Mirthe&rft.au=Waissi%2C+Farahnaz&rft.au=Bank%2C+Ingrid+E.M.&rft.au=Isgum%2C+Ivana&rft.date=2021-04-15&rft.pub=Elsevier+B.V&rft.issn=0167-5273&rft.eissn=1874-1754&rft.volume=329&rft.spage=9&rft.epage=15&rft_id=info:doi/10.1016%2Fj.ijcard.2020.12.079&rft.externalDocID=S0167527320343278
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-5273&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-5273&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-5273&client=summon