COVID-19 Mortality Prediction From Deep Learning in a Large Multistate Electronic Health Record and Laboratory Information System Data Set: Algorithm Development and Validation

Background: COVID-19 is caused by the SARS-CoV-2 virus and has strikingly heterogeneous clinical manifestations, with most individuals contracting mild disease but a substantial minority experiencing fulminant cardiopulmonary symptoms or death. The clinical covariates and the laboratory tests perfor...

Full description

Saved in:
Bibliographic Details
Published inJournal of medical Internet research Vol. 23; no. 9; p. e30157
Main Authors Sankaranarayanan, Saranya, Balan, Jagadheshwar, Walsh, Jesse R, Wu, Yanhong, Minnich, Sara, Piazza, Amy, Osborne, Collin, Oliver, Gavin R, Lesko, Jessica, Bates, Kathy L, Khezeli, Kia, Block, Darci R, DiGuardo, Margaret, Kreuter, Justin, O’Horo, John C, Kalantari, John, Klee, Eric W, Salama, Mohamed E, Kipp, Benjamin, Morice, William G, Jenkinson, Garrett
Format Journal Article
LanguageEnglish
Published Toronto Gunther Eysenbach MD MPH, Associate Professor 28.09.2021
JMIR Publications
Subjects
Online AccessGet full text
ISSN1438-8871
1439-4456
1438-8871
DOI10.2196/30157

Cover

Abstract Background: COVID-19 is caused by the SARS-CoV-2 virus and has strikingly heterogeneous clinical manifestations, with most individuals contracting mild disease but a substantial minority experiencing fulminant cardiopulmonary symptoms or death. The clinical covariates and the laboratory tests performed on a patient provide robust statistics to guide clinical treatment. Deep learning approaches on a data set of this nature enable patient stratification and provide methods to guide clinical treatment. Objective: Here, we report on the development and prospective validation of a state-of-the-art machine learning model to provide mortality prediction shortly after confirmation of SARS-CoV-2 infection in the Mayo Clinic patient population. Methods: We retrospectively constructed one of the largest reported and most geographically diverse laboratory information system and electronic health record of COVID-19 data sets in the published literature, which included 11,807 patients residing in 41 states of the United States of America and treated at medical sites across 5 states in 3 time zones. Traditional machine learning models were evaluated independently as well as in a stacked learner approach by using AutoGluon, and various recurrent neural network architectures were considered. The traditional machine learning models were implemented using the AutoGluon-Tabular framework, whereas the recurrent neural networks utilized the TensorFlow Keras framework. We trained these models to operate solely using routine laboratory measurements and clinical covariates available within 72 hours of a patient’s first positive COVID-19 nucleic acid test result. Results: The GRU-D recurrent neural network achieved peak cross-validation performance with 0.938 (SE 0.004) as the area under the receiver operating characteristic (AUROC) curve. This model retained strong performance by reducing the follow-up time to 12 hours (0.916 [SE 0.005] AUROC), and the leave-one-out feature importance analysis indicated that the most independently valuable features were age, Charlson comorbidity index, minimum oxygen saturation, fibrinogen level, and serum iron level. In the prospective testing cohort, this model provided an AUROC of 0.901 and a statistically significant difference in survival (P<.001, hazard ratio for those predicted to survive, 95% CI 0.043-0.106). Conclusions: Our deep learning approach using GRU-D provides an alert system to flag mortality for COVID-19–positive patients by using clinical covariates and laboratory values within a 72-hour window after the first positive nucleic acid test result.
AbstractList Background: COVID-19 is caused by the SARS-CoV-2 virus and has strikingly heterogeneous clinical manifestations, with most individuals contracting mild disease but a substantial minority experiencing fulminant cardiopulmonary symptoms or death. The clinical covariates and the laboratory tests performed on a patient provide robust statistics to guide clinical treatment. Deep learning approaches on a data set of this nature enable patient stratification and provide methods to guide clinical treatment. Objective: Here, we report on the development and prospective validation of a state-of-the-art machine learning model to provide mortality prediction shortly after confirmation of SARS-CoV-2 infection in the Mayo Clinic patient population. Methods: We retrospectively constructed one of the largest reported and most geographically diverse laboratory information system and electronic health record of COVID-19 data sets in the published literature, which included 11,807 patients residing in 41 states of the United States of America and treated at medical sites across 5 states in 3 time zones. Traditional machine learning models were evaluated independently as well as in a stacked learner approach by using AutoGluon, and various recurrent neural network architectures were considered. The traditional machine learning models were implemented using the AutoGluon-Tabular framework, whereas the recurrent neural networks utilized the TensorFlow Keras framework. We trained these models to operate solely using routine laboratory measurements and clinical covariates available within 72 hours of a patient’s first positive COVID-19 nucleic acid test result. Results: The GRU-D recurrent neural network achieved peak cross-validation performance with 0.938 (SE 0.004) as the area under the receiver operating characteristic (AUROC) curve. This model retained strong performance by reducing the follow-up time to 12 hours (0.916 [SE 0.005] AUROC), and the leave-one-out feature importance analysis indicated that the most independently valuable features were age, Charlson comorbidity index, minimum oxygen saturation, fibrinogen level, and serum iron level. In the prospective testing cohort, this model provided an AUROC of 0.901 and a statistically significant difference in survival (P<.001, hazard ratio for those predicted to survive, 95% CI 0.043-0.106). Conclusions: Our deep learning approach using GRU-D provides an alert system to flag mortality for COVID-19–positive patients by using clinical covariates and laboratory values within a 72-hour window after the first positive nucleic acid test result.
BackgroundCOVID-19 is caused by the SARS-CoV-2 virus and has strikingly heterogeneous clinical manifestations, with most individuals contracting mild disease but a substantial minority experiencing fulminant cardiopulmonary symptoms or death. The clinical covariates and the laboratory tests performed on a patient provide robust statistics to guide clinical treatment. Deep learning approaches on a data set of this nature enable patient stratification and provide methods to guide clinical treatment. ObjectiveHere, we report on the development and prospective validation of a state-of-the-art machine learning model to provide mortality prediction shortly after confirmation of SARS-CoV-2 infection in the Mayo Clinic patient population. MethodsWe retrospectively constructed one of the largest reported and most geographically diverse laboratory information system and electronic health record of COVID-19 data sets in the published literature, which included 11,807 patients residing in 41 states of the United States of America and treated at medical sites across 5 states in 3 time zones. Traditional machine learning models were evaluated independently as well as in a stacked learner approach by using AutoGluon, and various recurrent neural network architectures were considered. The traditional machine learning models were implemented using the AutoGluon-Tabular framework, whereas the recurrent neural networks utilized the TensorFlow Keras framework. We trained these models to operate solely using routine laboratory measurements and clinical covariates available within 72 hours of a patient’s first positive COVID-19 nucleic acid test result. ResultsThe GRU-D recurrent neural network achieved peak cross-validation performance with 0.938 (SE 0.004) as the area under the receiver operating characteristic (AUROC) curve. This model retained strong performance by reducing the follow-up time to 12 hours (0.916 [SE 0.005] AUROC), and the leave-one-out feature importance analysis indicated that the most independently valuable features were age, Charlson comorbidity index, minimum oxygen saturation, fibrinogen level, and serum iron level. In the prospective testing cohort, this model provided an AUROC of 0.901 and a statistically significant difference in survival (P<.001, hazard ratio for those predicted to survive, 95% CI 0.043-0.106). ConclusionsOur deep learning approach using GRU-D provides an alert system to flag mortality for COVID-19–positive patients by using clinical covariates and laboratory values within a 72-hour window after the first positive nucleic acid test result.
COVID-19 is caused by the SARS-CoV-2 virus and has strikingly heterogeneous clinical manifestations, with most individuals contracting mild disease but a substantial minority experiencing fulminant cardiopulmonary symptoms or death. The clinical covariates and the laboratory tests performed on a patient provide robust statistics to guide clinical treatment. Deep learning approaches on a data set of this nature enable patient stratification and provide methods to guide clinical treatment.BACKGROUNDCOVID-19 is caused by the SARS-CoV-2 virus and has strikingly heterogeneous clinical manifestations, with most individuals contracting mild disease but a substantial minority experiencing fulminant cardiopulmonary symptoms or death. The clinical covariates and the laboratory tests performed on a patient provide robust statistics to guide clinical treatment. Deep learning approaches on a data set of this nature enable patient stratification and provide methods to guide clinical treatment.Here, we report on the development and prospective validation of a state-of-the-art machine learning model to provide mortality prediction shortly after confirmation of SARS-CoV-2 infection in the Mayo Clinic patient population.OBJECTIVEHere, we report on the development and prospective validation of a state-of-the-art machine learning model to provide mortality prediction shortly after confirmation of SARS-CoV-2 infection in the Mayo Clinic patient population.We retrospectively constructed one of the largest reported and most geographically diverse laboratory information system and electronic health record of COVID-19 data sets in the published literature, which included 11,807 patients residing in 41 states of the United States of America and treated at medical sites across 5 states in 3 time zones. Traditional machine learning models were evaluated independently as well as in a stacked learner approach by using AutoGluon, and various recurrent neural network architectures were considered. The traditional machine learning models were implemented using the AutoGluon-Tabular framework, whereas the recurrent neural networks utilized the TensorFlow Keras framework. We trained these models to operate solely using routine laboratory measurements and clinical covariates available within 72 hours of a patient's first positive COVID-19 nucleic acid test result.METHODSWe retrospectively constructed one of the largest reported and most geographically diverse laboratory information system and electronic health record of COVID-19 data sets in the published literature, which included 11,807 patients residing in 41 states of the United States of America and treated at medical sites across 5 states in 3 time zones. Traditional machine learning models were evaluated independently as well as in a stacked learner approach by using AutoGluon, and various recurrent neural network architectures were considered. The traditional machine learning models were implemented using the AutoGluon-Tabular framework, whereas the recurrent neural networks utilized the TensorFlow Keras framework. We trained these models to operate solely using routine laboratory measurements and clinical covariates available within 72 hours of a patient's first positive COVID-19 nucleic acid test result.The GRU-D recurrent neural network achieved peak cross-validation performance with 0.938 (SE 0.004) as the area under the receiver operating characteristic (AUROC) curve. This model retained strong performance by reducing the follow-up time to 12 hours (0.916 [SE 0.005] AUROC), and the leave-one-out feature importance analysis indicated that the most independently valuable features were age, Charlson comorbidity index, minimum oxygen saturation, fibrinogen level, and serum iron level. In the prospective testing cohort, this model provided an AUROC of 0.901 and a statistically significant difference in survival (P<.001, hazard ratio for those predicted to survive, 95% CI 0.043-0.106).RESULTSThe GRU-D recurrent neural network achieved peak cross-validation performance with 0.938 (SE 0.004) as the area under the receiver operating characteristic (AUROC) curve. This model retained strong performance by reducing the follow-up time to 12 hours (0.916 [SE 0.005] AUROC), and the leave-one-out feature importance analysis indicated that the most independently valuable features were age, Charlson comorbidity index, minimum oxygen saturation, fibrinogen level, and serum iron level. In the prospective testing cohort, this model provided an AUROC of 0.901 and a statistically significant difference in survival (P<.001, hazard ratio for those predicted to survive, 95% CI 0.043-0.106).Our deep learning approach using GRU-D provides an alert system to flag mortality for COVID-19-positive patients by using clinical covariates and laboratory values within a 72-hour window after the first positive nucleic acid test result.CONCLUSIONSOur deep learning approach using GRU-D provides an alert system to flag mortality for COVID-19-positive patients by using clinical covariates and laboratory values within a 72-hour window after the first positive nucleic acid test result.
Author Klee, Eric W
Jenkinson, Garrett
Bates, Kathy L
Sankaranarayanan, Saranya
Minnich, Sara
Lesko, Jessica
Kreuter, Justin
Kipp, Benjamin
Block, Darci R
Oliver, Gavin R
O’Horo, John C
Piazza, Amy
DiGuardo, Margaret
Balan, Jagadheshwar
Walsh, Jesse R
Wu, Yanhong
Khezeli, Kia
Osborne, Collin
Salama, Mohamed E
Kalantari, John
Morice, William G
AuthorAffiliation 1 Mayo Clinic Rochester, MN United States
AuthorAffiliation_xml – name: 1 Mayo Clinic Rochester, MN United States
Author_xml – sequence: 1
  givenname: Saranya
  orcidid: 0000-0002-7656-4094
  surname: Sankaranarayanan
  fullname: Sankaranarayanan, Saranya
– sequence: 2
  givenname: Jagadheshwar
  orcidid: 0000-0002-8291-4054
  surname: Balan
  fullname: Balan, Jagadheshwar
– sequence: 3
  givenname: Jesse R
  orcidid: 0000-0001-6048-1166
  surname: Walsh
  fullname: Walsh, Jesse R
– sequence: 4
  givenname: Yanhong
  orcidid: 0000-0001-7930-2201
  surname: Wu
  fullname: Wu, Yanhong
– sequence: 5
  givenname: Sara
  orcidid: 0000-0003-2971-0113
  surname: Minnich
  fullname: Minnich, Sara
– sequence: 6
  givenname: Amy
  orcidid: 0000-0002-1100-0255
  surname: Piazza
  fullname: Piazza, Amy
– sequence: 7
  givenname: Collin
  orcidid: 0000-0001-5165-6729
  surname: Osborne
  fullname: Osborne, Collin
– sequence: 8
  givenname: Gavin R
  orcidid: 0000-0002-9948-3799
  surname: Oliver
  fullname: Oliver, Gavin R
– sequence: 9
  givenname: Jessica
  orcidid: 0000-0001-5999-989X
  surname: Lesko
  fullname: Lesko, Jessica
– sequence: 10
  givenname: Kathy L
  orcidid: 0000-0002-8646-2120
  surname: Bates
  fullname: Bates, Kathy L
– sequence: 11
  givenname: Kia
  orcidid: 0000-0002-1982-9391
  surname: Khezeli
  fullname: Khezeli, Kia
– sequence: 12
  givenname: Darci R
  orcidid: 0000-0002-2130-3372
  surname: Block
  fullname: Block, Darci R
– sequence: 13
  givenname: Margaret
  orcidid: 0000-0003-0900-377X
  surname: DiGuardo
  fullname: DiGuardo, Margaret
– sequence: 14
  givenname: Justin
  orcidid: 0000-0001-7842-8208
  surname: Kreuter
  fullname: Kreuter, Justin
– sequence: 15
  givenname: John C
  orcidid: 0000-0002-0880-4498
  surname: O’Horo
  fullname: O’Horo, John C
– sequence: 16
  givenname: John
  orcidid: 0000-0003-4229-162X
  surname: Kalantari
  fullname: Kalantari, John
– sequence: 17
  givenname: Eric W
  orcidid: 0000-0003-2946-5795
  surname: Klee
  fullname: Klee, Eric W
– sequence: 18
  givenname: Mohamed E
  orcidid: 0000-0001-6696-0061
  surname: Salama
  fullname: Salama, Mohamed E
– sequence: 19
  givenname: Benjamin
  orcidid: 0000-0001-9477-0118
  surname: Kipp
  fullname: Kipp, Benjamin
– sequence: 20
  givenname: William G
  orcidid: 0000-0002-5801-2501
  surname: Morice
  fullname: Morice, William G
– sequence: 21
  givenname: Garrett
  orcidid: 0000-0003-2548-098X
  surname: Jenkinson
  fullname: Jenkinson, Garrett
BookMark eNp1kWtrFDEUhgep2Iv9DwFRBFlNJplL_FAo29YubKlY7dfhTHJmNyWbrJlMZf-VP9HsbBG74KfcnjznTc5xduC8wyw7ZfRjzmT5iVNWVC-yIyZ4Panrih38Mz_Mjvv-gdKcCsleZYdcCCEFZUfZ7-nt_exiwiS58SGCNXFDvgbURkXjHbkKfkUuENdkjhCccQtiHAEyh7BAcjPYaPoIEcmlRRWDd0aRawQbl-QbKh80AacT3foA0YcNmbnOhxWM8rtNHzHpIQK5w_iZnNuFDyYutyUf0fr1Cl0cDfcpmR5vvc5edmB7PH0aT7IfV5ffp9eT-e2X2fR8PlGCizgpC1oorAA157JkOs87VTFZ1Qyk1JzxtqBa5JUCITlqTMsKFZTAFROyU_wkm-282sNDsw5mBWHTeDDNuOHDooEQjbLYtKyuSko7XdelaDlKaLui6KTuOq0Lisn1buca3Bo2v8Dav0JGm237mrF9CTzbgeuhXaFW6fkB7LPqz0-cWTYL_9jUoqZcyiR4_yQI_ueAfWxWpldoLTj0Q9_kRVnSvOK5SOibPfTBD8GlP01UVUlO83wrfLujVPB9H7D7b_IPe5wycWxYymnsHv0H6VXaCg
CitedBy_id crossref_primary_10_2196_35860
crossref_primary_10_2196_42717
crossref_primary_10_1097_CIN_0000000000001086
crossref_primary_10_1109_RBME_2023_3324264
crossref_primary_10_1186_s12879_023_08291_z
crossref_primary_10_3389_fmed_2023_1170331
crossref_primary_10_3390_electronics11234015
crossref_primary_10_3390_sym14010016
crossref_primary_10_1093_bib_bbae699
crossref_primary_10_3389_fdgth_2024_1288776
crossref_primary_10_1061_JPEODX_PVENG_1486
crossref_primary_10_1080_10255842_2022_2050906
crossref_primary_10_4103_jfmpc_jfmpc_113_22
crossref_primary_10_2174_1574893617666220329182633
crossref_primary_10_1007_s41666_023_00143_4
crossref_primary_10_1016_j_compbiomed_2023_107814
crossref_primary_10_1109_ACCESS_2024_3366490
crossref_primary_10_3390_math11143085
crossref_primary_10_1016_j_imu_2022_100983
crossref_primary_10_1016_j_csbj_2023_08_006
crossref_primary_10_1016_j_ijmedinf_2023_105090
crossref_primary_10_3390_electronics13061005
Cites_doi 10.1038/s41591-020-0820-9
10.1186/s13054-020-2833-7
10.1136/bmj.m1328
10.2196/24018
10.2196/23128
10.2196/24225
10.1056/NEJMp2005492
10.1016/j.dsx.2020.04.044
10.2196/24246
10.1002/sim.8569
10.1016/0021-9681(87)90171-8
10.1038/s41467-020-18684-2
10.18637/jss.v045.i03
10.1038/s41598-018-24271-9
10.1038/s41586-020-2012-7
10.1126/science.aba9757
10.1001/jama.2020.12839
10.2196/25442
10.1093/cid/ciaa443
10.1016/S0140-6736(20)30627-9
10.2196/20259
ContentType Journal Article
Copyright 2021. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Saranya Sankaranarayanan, Jagadheshwar Balan, Jesse R Walsh, Yanhong Wu, Sara Minnich, Amy Piazza, Collin Osborne, Gavin R Oliver, Jessica Lesko, Kathy L Bates, Kia Khezeli, Darci R Block, Margaret DiGuardo, Justin Kreuter, John C O’Horo, John Kalantari, Eric W Klee, Mohamed E Salama, Benjamin Kipp, William G Morice, Garrett Jenkinson. Originally published in the Journal of Medical Internet Research (https://www.jmir.org), 28.09.2021.
Saranya Sankaranarayanan, Jagadheshwar Balan, Jesse R Walsh, Yanhong Wu, Sara Minnich, Amy Piazza, Collin Osborne, Gavin R Oliver, Jessica Lesko, Kathy L Bates, Kia Khezeli, Darci R Block, Margaret DiGuardo, Justin Kreuter, John C O’Horo, John Kalantari, Eric W Klee, Mohamed E Salama, Benjamin Kipp, William G Morice, Garrett Jenkinson. Originally published in the Journal of Medical Internet Research (https://www.jmir.org), 28.09.2021. 2021
Copyright_xml – notice: 2021. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Saranya Sankaranarayanan, Jagadheshwar Balan, Jesse R Walsh, Yanhong Wu, Sara Minnich, Amy Piazza, Collin Osborne, Gavin R Oliver, Jessica Lesko, Kathy L Bates, Kia Khezeli, Darci R Block, Margaret DiGuardo, Justin Kreuter, John C O’Horo, John Kalantari, Eric W Klee, Mohamed E Salama, Benjamin Kipp, William G Morice, Garrett Jenkinson. Originally published in the Journal of Medical Internet Research (https://www.jmir.org), 28.09.2021.
– notice: Saranya Sankaranarayanan, Jagadheshwar Balan, Jesse R Walsh, Yanhong Wu, Sara Minnich, Amy Piazza, Collin Osborne, Gavin R Oliver, Jessica Lesko, Kathy L Bates, Kia Khezeli, Darci R Block, Margaret DiGuardo, Justin Kreuter, John C O’Horo, John Kalantari, Eric W Klee, Mohamed E Salama, Benjamin Kipp, William G Morice, Garrett Jenkinson. Originally published in the Journal of Medical Internet Research (https://www.jmir.org), 28.09.2021. 2021
DBID AAYXX
CITATION
3V.
7QJ
7RV
7X7
7XB
8FI
8FJ
8FK
ABUWG
AFKRA
ALSLI
AZQEC
BENPR
CCPQU
CNYFK
COVID
DWQXO
E3H
F2A
FYUFA
GHDGH
K9.
KB0
M0S
M1O
NAPCQ
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
PRQQA
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.2196/30157
DatabaseName CrossRef
ProQuest Central (Corporate)
Applied Social Sciences Index & Abstracts (ASSIA)
Nursing & Allied Health Database
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Social Science Premium Collection
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
Library & information science collection.
Coronavirus Research Database
ProQuest Central
Library & Information Sciences Abstracts (LISA)
Library & Information Science Abstracts (LISA)
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Health & Medical Collection (Alumni Edition)
ProQuest Library Science Database
Nursing & Allied Health Premium
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database (Proquest)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Social Sciences
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
Library and Information Science Abstracts (LISA)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Applied Social Sciences Index and Abstracts (ASSIA)
ProQuest Central China
ProQuest Central
ProQuest Library Science
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Library & Information Science Collection
ProQuest Central (New)
Social Science Premium Collection
ProQuest One Social Sciences
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Library & Information Science
EISSN 1438-8871
ExternalDocumentID oai_doaj_org_article_b187600fd8864b3e9abf55f9dffdd50e
10.2196/30157
PMC8480399
10_2196_30157
GroupedDBID ---
.4I
.DC
29L
2WC
36B
53G
5GY
5VS
77I
77K
7RV
7X7
8FI
8FJ
AAFWJ
AAKPC
AAWTL
AAYXX
ABDBF
ABIVO
ABUWG
ACGFO
ADBBV
AEGXH
AENEX
AFKRA
AFPKN
AIAGR
ALMA_UNASSIGNED_HOLDINGS
ALSLI
AOIJS
BAWUL
BCNDV
BENPR
CCPQU
CITATION
CNYFK
CS3
DIK
DU5
DWQXO
E3Z
EAP
EBD
EBS
EJD
ELW
EMB
EMOBN
ESX
F5P
FRP
FYUFA
GROUPED_DOAJ
GX1
HMCUK
HYE
KQ8
M1O
M48
NAPCQ
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PPXIY
PQQKQ
PRQQA
PUEGO
RNS
RPM
SJN
SV3
TR2
UKHRP
XSB
3V.
7QJ
7XB
8FK
AZQEC
COVID
E3H
F2A
K9.
PJZUB
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
ADRAZ
ADTOC
C1A
IAO
ICO
IEA
IHR
INH
ISN
ITC
O5R
O5S
UNPAY
WOQ
ID FETCH-LOGICAL-c434t-6505ce7aed33961d22fc719781a99d313b50d427ca493edeb507eca6a3c149fc3
IEDL.DBID DOA
ISSN 1438-8871
1439-4456
IngestDate Fri Oct 03 12:42:41 EDT 2025
Sun Oct 26 04:15:42 EDT 2025
Tue Sep 30 16:41:39 EDT 2025
Fri Sep 05 12:52:52 EDT 2025
Tue Oct 07 06:44:51 EDT 2025
Wed Oct 01 02:47:39 EDT 2025
Thu Apr 24 23:07:08 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in the Journal of Medical Internet Research, is properly cited. The complete bibliographic information, a link to the original publication on https://www.jmir.org/, as well as this copyright and license information must be included.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c434t-6505ce7aed33961d22fc719781a99d313b50d427ca493edeb507eca6a3c149fc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7842-8208
0000-0003-2971-0113
0000-0003-4229-162X
0000-0001-6048-1166
0000-0003-2548-098X
0000-0001-6696-0061
0000-0002-8646-2120
0000-0002-5801-2501
0000-0001-9477-0118
0000-0003-0900-377X
0000-0002-9948-3799
0000-0001-7930-2201
0000-0001-5165-6729
0000-0002-2130-3372
0000-0002-7656-4094
0000-0002-8291-4054
0000-0002-0880-4498
0000-0002-1100-0255
0000-0001-5999-989X
0000-0002-1982-9391
0000-0003-2946-5795
OpenAccessLink https://doaj.org/article/b187600fd8864b3e9abf55f9dffdd50e
PMID 34449401
PQID 2577930229
PQPubID 2033121
ParticipantIDs doaj_primary_oai_doaj_org_article_b187600fd8864b3e9abf55f9dffdd50e
unpaywall_primary_10_2196_30157
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8480399
proquest_miscellaneous_2566027324
proquest_journals_2577930229
crossref_primary_10_2196_30157
crossref_citationtrail_10_2196_30157
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-09-28
PublicationDateYYYYMMDD 2021-09-28
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-09-28
  day: 28
PublicationDecade 2020
PublicationPlace Toronto
PublicationPlace_xml – name: Toronto
– name: Toronto, Canada
PublicationTitle Journal of medical Internet research
PublicationYear 2021
Publisher Gunther Eysenbach MD MPH, Associate Professor
JMIR Publications
Publisher_xml – name: Gunther Eysenbach MD MPH, Associate Professor
– name: JMIR Publications
References ref13
ref24
ref12
ref23
ref15
ref14
ref20
ref11
Therneau, T (ref17) 2000
ref22
ref10
ref21
ref2
ref1
ref16
ref19
ref18
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref1
  doi: 10.1038/s41591-020-0820-9
– ident: ref3
– ident: ref10
  doi: 10.1186/s13054-020-2833-7
– ident: ref12
  doi: 10.1136/bmj.m1328
– ident: ref11
  doi: 10.2196/24018
– ident: ref20
  doi: 10.2196/23128
– ident: ref23
  doi: 10.2196/24225
– ident: ref6
  doi: 10.1056/NEJMp2005492
– ident: ref14
  doi: 10.1016/j.dsx.2020.04.044
– ident: ref24
  doi: 10.2196/24246
– ident: ref18
  doi: 10.1002/sim.8569
– start-page: 7
  year: 2000
  ident: ref17
  publication-title: Modeling Survival Data: Extending the Cox Model
– ident: ref13
  doi: 10.1016/0021-9681(87)90171-8
– ident: ref8
  doi: 10.1038/s41467-020-18684-2
– ident: ref19
  doi: 10.18637/jss.v045.i03
– ident: ref16
  doi: 10.1038/s41598-018-24271-9
– ident: ref2
  doi: 10.1038/s41586-020-2012-7
– ident: ref4
  doi: 10.1126/science.aba9757
– ident: ref7
  doi: 10.1001/jama.2020.12839
– ident: ref21
  doi: 10.2196/25442
– ident: ref9
  doi: 10.1093/cid/ciaa443
– ident: ref5
  doi: 10.1016/S0140-6736(20)30627-9
– ident: ref22
  doi: 10.2196/20259
– ident: ref15
SSID ssj0020491
Score 2.4708865
SecondaryResourceType review_article
Snippet Background: COVID-19 is caused by the SARS-CoV-2 virus and has strikingly heterogeneous clinical manifestations, with most individuals contracting mild disease...
COVID-19 is caused by the SARS-CoV-2 virus and has strikingly heterogeneous clinical manifestations, with most individuals contracting mild disease but a...
BackgroundCOVID-19 is caused by the SARS-CoV-2 virus and has strikingly heterogeneous clinical manifestations, with most individuals contracting mild disease...
SourceID doaj
unpaywall
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage e30157
SubjectTerms Acids
Age
Algorithms
Blood pressure
Cognitive style
Comorbidity
Coronaviruses
COVID-19
Data collection
Datasets
Deep learning
Diabetes
Electronic health records
Fibrinogen
Information systems
Iron
Kidney diseases
Laboratories
Medical treatment
Missing data
Mortality
Multimedia
Neural networks
Original Paper
Oxygen
Pandemics
Patients
Polymerase chain reaction
Recurrent
Saturation
Serum
Severe acute respiratory syndrome
Severe acute respiratory syndrome coronavirus 2
Stratification
Time series
Variables
SummonAdditionalLinks – databaseName: ProQuest Library Science Database
  dbid: M1O
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB5BkQoS4lGKMLRlkSpubmPv-sUFlaZRQYQiQaverPXuOq0IdkgdIfhV_ERm1htTR4gDx3jXyaz8ZR6emW8AdiO0GlwlxkfrE_siFsZP8YqPttiIVKhQSVsg-yE-PhXvzqNz98LtypVVLnWiVdS6VvSOfB-hhVBCi5O9nn3zaWoUZVfdCI2bcIuSjzTBYBycdAEXer_BOtylcmcE2j5imazQNftjafp7vuVqZeTtRTWTP77L6fSa2Rndh3wpcFtt8mVv0RR76ucKl-P_n-gB3HMeKTtoIfQQbphqA7ZdPwN7yVzDEj1A5jTBBqyPXU7-Efw6PDl7O_SDjI2tK49uPfs4p2V7y2hef2VDY2bMUblO2GXFJHtPJejM9v_apiZ21A3kYW1vFGtDYyYrjbstVmuUqCeP5aFmQ9lI9sk0r9jBdIJHbC7oJ7tqKPsNZyhZOz9qE05HR58Pj303B8JXgovGRycyUiaRRnOexYEOw1IlAZF1ySzTPOBFNNAiTJQUGTfa4MfEKBlLrjD-KxV_DGtVXZknwBIl0IORA1UUsVCcS4w-tUkKHmZSxkXowe4SHblyJOk0q2OaY7BEIMotiDzY6bbNWlaQ1Q1vCFrdIpF42wv1fJI7nZAXQUpp0VKnaSwKbjJZlFFUZrostY4GxoOtJXByp1mu8j-o8eBFt4w6gRI9sjL1gvbEMfEUhcKDpAfonkD9lerywrKLpyIdoNfqwfMO-n8_49N_i_cM7oRU_0MZvHQL1pr5wmyjA9cUO_Zf-hvCaUxG
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fb9MwELdgSAMJIRhMBLZxSBNvgSZ2nBgJobGuGogCEnTiLXJsp6sUkhJSwb4VH5Gz60bLtEceE18bO3eX-53uHyGHCVoNqlITovXhIePMhBneCdEWG5YxFSvpEmQ_8dMZ-_A9uZRN6F_gr2tdOztPatZWL__8vHiLCv_GpjGjAL1CGU3Sm-QWGidhpzdMWR9IiBEAR9vk7oB0YIJcp_4BvLyaHHl7VS_lxW9ZVZcsz-Q-uechIxytefyA3DD1Dtn3BQfwAnxFkX3D4FV1h2xPfdD8Ifl7_Pns_TiMBEzdMRF3w5fWLrufTNrmB4yNWYLvtTqHRQ0SPtoccXAFuq7qCE76iTmwLl6Cte8KstZI7YSpwR0N9uMaRcNYdhK-mu41HFXzpl105_aRfbqS-4cz3Nl6wNMjMpucfDs-Df2ghlAxyroQUV6iTCqNplTwSMdxqdLIdtOSQmga0SIZaRanSjJBjTZ4mRoluaQKHbRS0V2yVTe1eUwgVQwhhhypouBMUSrRPdQmLWgspORFHJDDDe9y5buY22EaVY7ejGVx7lgckIOebLlu23GV4J1lfL9ou2y7G007z73S5kWU2bhlqbOMs4IaIYsySUqhy1LrZGQCsrcRm3wjuTl-A_Gbh9BIBOR5v4xKayMxsjbNytJwbhsJxSwg6UDcBhsartSLc9f-O2PZCGFlQJ71gnn9GZ_8jzM-JXdim8ZjA3HZHtnq2pXZRxzWFQdO0_4BPEY3UA
  priority: 102
  providerName: Scholars Portal
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3fb9MwED6NThpIiB8DtMA6jDTxlq2JHSfhrayrBmJjEnQaT5FjO1tFl1RdKgR_FX8iZ8eNlgrEWxNfWkd35_vcu_sMsB9h1KAy1j5GH-4zzrSf4B0fY7FmCZOhFLZA9oyfTNjHy-hyA_qrXpg7-Xv0JX6I9hfF92CTRwi1e7A5OTsffrMdQ-io6CBB8zn1GSKBLXjYea4TaywlfwdHrldB3l-Wc_Hzh5jN7oSY8ePm38Bby0xoKku-Hyzr_ED-WuNt_Ofsn8AjBy7JsLGGp7Chy23ou9YE8pa43iOjC-Kcehu2Tl16_Rn8Pvp88WHkByk5tagcETo5X5hh-8h4Ud2QkdZz4lhZr8i0JIJ8MtXkxLby2v4kctyerUOaNifS7HKJKBVKW7OrcEad-VhKaTIStSBfdP2ODGdX1WJaX5ufbAub7Ddc4Myao6Cew2R8_PXoxHdHOviSUVb7iAcjqWOhFaUpD1QYFjIODO-WSFNFA5pHA8XCWAqWUq00XsZaCi6oxK1cIekL6JVVqXeAxJIhGBEDmeecSUoFbiSVjnMapkLwPPRgf6X8TDq-c3PsxizDfY_RTma148FeKzZvCD7WBd4by2kHDR-3vYGKzpx7Z3mQmAxnoZKEs5zqVORFFBWpKgqlooH2YHdld5lbJG4zXC1xdUQQlXrwph1G9zY5G1HqamlkODeUQyHzIO7Ya2dC3ZFyem2JwhOWDBCAevC6tey_v-PL_0q8ggehqeYx-bhkF3r1Yqn7CMfqfM855R_AIzNv
  priority: 102
  providerName: Unpaywall
Title COVID-19 Mortality Prediction From Deep Learning in a Large Multistate Electronic Health Record and Laboratory Information System Data Set: Algorithm Development and Validation
URI https://www.proquest.com/docview/2577930229
https://www.proquest.com/docview/2566027324
https://pubmed.ncbi.nlm.nih.gov/PMC8480399
https://doi.org/10.2196/30157
https://doaj.org/article/b187600fd8864b3e9abf55f9dffdd50e
UnpaywallVersion publishedVersion
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1438-8871
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020491
  issn: 1439-4456
  databaseCode: KQ8
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1438-8871
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020491
  issn: 1439-4456
  databaseCode: DOA
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1438-8871
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020491
  issn: 1439-4456
  databaseCode: ABDBF
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1438-8871
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020491
  issn: 1439-4456
  databaseCode: DIK
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1438-8871
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020491
  issn: 1439-4456
  databaseCode: GX1
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1438-8871
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020491
  issn: 1439-4456
  databaseCode: RPM
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1438-8871
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020491
  issn: 1439-4456
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Library Science Database
  customDbUrl:
  eissn: 1438-8871
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0020491
  issn: 1439-4456
  databaseCode: M1O
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/libraryscience
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1438-8871
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020491
  issn: 1439-4456
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1438-8871
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0020491
  issn: 1439-4456
  databaseCode: M48
  dateStart: 20100201
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwED7BkAbShGAwkbEVI028RUti5xdv3dpqINpVQKfyFDm2s1UqSVVSIf4r_kTOjhs1ExIvvERqzm0v8dn3nXz3HcBZiF6Dili56H0il0VMuQnecdEXK5YwEQhuEmQn0dWMfZyH851WXzonrKEHbl7cee4n-uyokEkSsZyqlOdFGBapLAopQ0_p3ddL0m0wZUMtxL3-PhzoRGc0sXO0Yu1_djyPIejvoMr7OZGPN-WK__rJl8sdhzN6Bk8tUiT9RsPn8ECVh3Bq6wzIO2ILifSLJXaFHsL-2J6Vv4Dfl9c3Hwaun5KxgdgIt8l0rcXmK6N19Z0MlFoRS7F6SxYl4eSTTg0npi7XFBuRYdsohzQ1S6QJWQkvJY42NlShRh19DD80GfCaky-qfk_6y9tqvajv9F-2WUrmF25Qs6av00uYjYZfL69c25_BFYyy2kVwFwoVcyUpTSNfBkEhYl-TaPE0ldSneehJFsSCs5QqqfBjrASPOBUYlxWCHsFeWZXqFZBYMEQW3BN5HjFBKceoUKo4p0HKeZQHDpxt5y4Tlrxc99BYZhjE6CnOzBQ70GuHrRq2jvsDLvTEt0JNrm1uoMll1uSyf5mcAydbs8nsiv-R4daHWx0iotSBt60Y16o-gOGlqjZ6TBRp_qCAORB3zK2jUFdSLu4M63fCEg_RpANvWsP8-zMe_49nfA1PAp29o8_fkhPYq9cbdYrwq8578DCexz14dDGcTD_3zLrD69i_1leWoGQ2mfa__QEm0Tkj
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3bbtMw9GgMaUNCCAaIwC5GGrxFa2znhoTQWFe1rB1IbFPfgmM73aSSlC7VtJ9CfCLHzmXrhHjbY2wnOdG559wAdn3UGkyG2kXtE7g84NqNcMVFXax5xCWVwibIHgf9U_5l7I9X4HdTC2PSKhuZaAW1KqT5R76HpIWkhBon_jT75ZqpUSa62ozQqMjiSF9foct2-XHQRfy-o7R3eHLQd-upAq7kjJcumiS-1KHQirE48BSlmQw90_pJxLFiHkv9juI0lILHTCuNl6GWIhBMojeRSYbPfQAPOUNZgvwTjm8cPLS2vTV4bNKrkbD3kHeM1rul7-xYgCVb9m4m5voin4nrKzGd3lJzvafwpLZPyX5FUM9gRecbsFVXN5D3pC5fMugktVzYgLVRHaF_Dn8Ovp4Nuq4Xk5E17NHIJ9_mZtve0psXP0lX6xmpG7tOyEVOBBmahHRiq4FtiRM5bMfzkKpSilSOMhG5wtOWcguEaAke25WadEUpyHddfiD70wmisDw3r2xzo-wTzhCyaprUCzi9F_y9hNW8yPUrIKHkaM-IjkzTgEvGBPqiSocpo7EQQUod2G1wl8i6ZbqZ3DFN0HUyKE4sih3Ybo_Nqh4hdw98NohvN01Lb7tQzCdJLSGS1ItMkDRTURTwlOlYpJnvZ7HKMqX8jnZgsyGbpJYzl8kNVzjwtt1GCWHCPiLXxcKcCQLTtYhyB8IlclsCaHknvzi3vcYjHnXQhnVgpyXMf3_j6_-DtwPr_ZPRMBkOjo_ewCNqMoNMbC_ahNVyvtBbaNqV6bblJwI_7puB_wI2s2ZK
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3batRA9FArrIKIVsVoLyNU30I3mclNEKndLl17saAt-5ZOZibbwpqs2yylf-WzX-c5k2zaLeJbHzMzSU4495wbwGaAWoOryLiofUJXhMK4Ma64qIuNiIXylbQJskfh3on4OgyGS_BnXgtDaZVzmWgFtS4V_SPfQtJCUkKNk2zlTVrEca__efLLpQlSFGmdj9OoSWTfXF-h-3b5adBDXL_3_f7uj509t5kw4CrBReWieRIoE0mjOU9CT_t-riKP2kDJJNHc41nQ1cKPlBQJN9rgZWSUDCVX6FnkiuNzH8DDCO-mdMJoeOPsoeXtdeAJpVojkW8hH5EGvKX77IiABbv2blbmo1kxkddXcjy-pfL6z-BpY6uy7Zq4nsOSKVZgral0YB9YU8pEqGWNjFiBzmETrX8Bv3e-nQ56rpewQ2vko8HPjqe0bW_pT8ufrGfMhDVNXkfsomCSHVByOrOVwbbcie22o3pYXTXFaqeZyULjaUvFJUK0AI_tUM16spLsu6k-su3xCFFYndMr2zwp-4RThKyeLPUSTu4Ff69guSgL8xpYpATaNrKrsiwUinOJfqk2Ucb9RMow8x3YnOMuVU37dJriMU7RjSIUpxbFDqy3xyZ1v5C7B74Q4ttNau9tF8rpKG2kRZp5MQVMcx3Hoci4SWSWB0Ge6DzXOugaB1bnZJM2MucyveEQB9612ygtKAQkC1PO6EwYUgcjXzgQLZDbAkCLO8XFue07Hou4i_asAxstYf77G9_8H7wN6CDrpgeDo_238NinJCEK88WrsFxNZ2YNrbwqW7fsxODsvvn3L86Vao0
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3fb9MwED6NThpIiB8DtMA6jDTxlq2JHSfhrayrBmJjEnQaT5FjO1tFl1RdKgR_FX8iZ8eNlgrEWxNfWkd35_vcu_sMsB9h1KAy1j5GH-4zzrSf4B0fY7FmCZOhFLZA9oyfTNjHy-hyA_qrXpg7-Xv0JX6I9hfF92CTRwi1e7A5OTsffrMdQ-io6CBB8zn1GSKBLXjYea4TaywlfwdHrldB3l-Wc_Hzh5jN7oSY8ePm38Bby0xoKku-Hyzr_ED-WuNt_Ofsn8AjBy7JsLGGp7Chy23ou9YE8pa43iOjC-Kcehu2Tl16_Rn8Pvp88WHkByk5tagcETo5X5hh-8h4Ud2QkdZz4lhZr8i0JIJ8MtXkxLby2v4kctyerUOaNifS7HKJKBVKW7OrcEad-VhKaTIStSBfdP2ODGdX1WJaX5ufbAub7Ddc4Myao6Cew2R8_PXoxHdHOviSUVb7iAcjqWOhFaUpD1QYFjIODO-WSFNFA5pHA8XCWAqWUq00XsZaCi6oxK1cIekL6JVVqXeAxJIhGBEDmeecSUoFbiSVjnMapkLwPPRgf6X8TDq-c3PsxizDfY_RTma148FeKzZvCD7WBd4by2kHDR-3vYGKzpx7Z3mQmAxnoZKEs5zqVORFFBWpKgqlooH2YHdld5lbJG4zXC1xdUQQlXrwph1G9zY5G1HqamlkODeUQyHzIO7Ya2dC3ZFyem2JwhOWDBCAevC6tey_v-PL_0q8ggehqeYx-bhkF3r1Yqn7CMfqfM855R_AIzNv
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=COVID-19+Mortality+Prediction+From+Deep+Learning+in+a+Large+Multistate+Electronic+Health+Record+and+Laboratory+Information+System+Data+Set%3A+Algorithm+Development+and+Validation&rft.jtitle=Journal+of+medical+Internet+research&rft.au=Saranya+Sankaranarayanan&rft.au=Jagadheshwar+Balan&rft.au=Jesse+R+Walsh&rft.au=Yanhong+Wu&rft.date=2021-09-28&rft.pub=JMIR+Publications&rft.eissn=1438-8871&rft.volume=23&rft.issue=9&rft.spage=e30157&rft_id=info:doi/10.2196%2F30157&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_b187600fd8864b3e9abf55f9dffdd50e
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1438-8871&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1438-8871&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1438-8871&client=summon