Bottom-up approaches to microLEDs emitting red, green and blue light based on GaN nanowires and relaxed InGaN platelets
Miniaturization of light-emitting diodes (LEDs) with sizes down to a few micrometers has become a hot topic in both academia and industry due to their attractive applications on self-emissive displays for high-definition televisions, augmented/mixed realities and head-up displays, and also on optoge...
Saved in:
Published in | Chinese physics B Vol. 32; no. 1; pp. 18103 - 10 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Chinese Physical Society and IOP Publishing Ltd
01.01.2023
Division of Solid State Physics and NanoLund, Lund University, Box 118, SE-22100 Lund, Sweden |
Subjects | |
Online Access | Get full text |
ISSN | 1674-1056 2058-3834 |
DOI | 10.1088/1674-1056/aca9c2 |
Cover
Abstract | Miniaturization of light-emitting diodes (LEDs) with sizes down to a few micrometers has become a hot topic in both academia and industry due to their attractive applications on self-emissive displays for high-definition televisions, augmented/mixed realities and head-up displays, and also on optogenetics, high-speed light communication, etc. The conventional top-down technology uses dry etching to define the LED size, leading to damage to the LED side walls. Since sizes of microLEDs approach the carrier diffusion length, the damaged side walls play an important role, reducing microLED performance significantly from that of large area LEDs. In this paper, we review our efforts on realization of microLEDs by direct bottom-up growth, based on selective area metal–organic vapor phase epitaxy. The individual LEDs based on either GaN nanowires or InGaN platelets are smaller than 1 μm in our approach. Such nano-LEDs can be used as building blocks in arrays to assemble microLEDs with different sizes, avoiding the side wall damage by dry etching encountered for the top-down approach. The technology of InGaN platelets is especially interesting since InGaN quantum wells emitting red, green and blue light can be grown on such platelets with a low-level of strain by changing the indium content in the InGaN platelets. This technology is therefore very attractive for highly efficient microLEDs of three primary colors for displays. |
---|---|
AbstractList | Miniaturization of light-emitting diodes (LEDs) with sizes down to a few micrometers has become a hot topic in both academia and industry due to their attractive applications on self-emissive displays for high-definition televisions, augmented/mixed realities and head-up displays, and also on optogenetics, high-speed light communication, etc. The conventional top-down technology uses dry etching to define the LED size, leading to damage to the LED side walls. Since sizes of microLEDs approach the carrier diffusion length, the damaged side walls play an important role, reducing microLED performance significantly from that of large area LEDs. In this paper, we review our efforts on realization of microLEDs by direct bottom-up growth, based on selective area metal–organic vapor phase epitaxy. The individual LEDs based on either GaN nanowires or InGaN platelets are smaller than 1 μm in our approach. Such nano-LEDs can be used as building blocks in arrays to assemble microLEDs with different sizes, avoiding the side wall damage by dry etching encountered for the top-down approach. The technology of InGaN platelets is especially interesting since InGaN quantum wells emitting red, green and blue light can be grown on such platelets with a low-level of strain by changing the indium content in the InGaN platelets. This technology is therefore very attractive for highly efficient microLEDs of three primary colors for displays. |
Author | Samuelson, Lars Gustafsson, Anders Bi, Zhaoxia |
AuthorAffiliation | Division of Solid State Physics and NanoLund, Lund University, Box 118, SE-22100 Lund, Sweden |
AuthorAffiliation_xml | – name: Division of Solid State Physics and NanoLund, Lund University, Box 118, SE-22100 Lund, Sweden |
Author_xml | – sequence: 1 givenname: Zhaoxia surname: Bi fullname: Bi, Zhaoxia organization: Division of Solid State Physics and NanoLund, Lund University, Box 118 , Sweden – sequence: 2 givenname: Anders surname: Gustafsson fullname: Gustafsson, Anders organization: Division of Solid State Physics and NanoLund, Lund University, Box 118 , Sweden – sequence: 3 givenname: Lars surname: Samuelson fullname: Samuelson, Lars organization: Division of Solid State Physics and NanoLund, Lund University, Box 118 , Sweden |
BookMark | eNp9kb1vFDEQxbcIEkmgp3SXJkf8tb51CSGESCdooB7NemfvHPnsle3TAX89uxwKEkKpLHl-b-bNvIvmLKZITfNG8LeCd92NMGu9Erw1N-jQOnnWnD99vWwuSnnk3Agu1XlzfJ9qTfvVYWI4TTmh21FhNbG9dzlt7j4URntfq49blmm4ZttMFBnGgfXhQCz47a6yHgsNLEV2j59ZxJiOPs9tFipTwO9z8SEutSlgpUC1vGpejBgKvf7zXjbfPt59vf202ny5f7h9t1k5rXRdGWGlcUY7a6VWxuLYW6etXitLsm-1pbZVrel5N_TKSCF5hyMXhONgB2NJXTZ46luONB16mLLfY_4BCT1MKVcMMDslzG4H4QCFYKaCd1h9igXEIFG1awVr7hD00HaA6DT0w7q13GhBcphnXJ1mHDGOGLfwmA45zlvBz-0xAMn50lxwLmaSn8j5tqVkGp_8CA5LdLDkBEtOcIpulph_JM7X3-5qRh-eE16fhD5Nfx09g1_9B3dTD0qCAC46wRVMw6h-AR-9vtQ |
CitedBy_id | crossref_primary_10_1002_pssb_202400446 crossref_primary_10_1063_5_0150863 crossref_primary_10_1088_1361_6528_ad33e9 crossref_primary_10_1002_pssr_202400012 crossref_primary_10_1088_1361_6463_ad6ce3 crossref_primary_10_1016_j_actamat_2024_120082 |
Cites_doi | 10.1088/1361-6463/abcfe4 10.1109/JSTQE.2009.2015675 10.1038/s41565-021-00966-5 10.1021/nl060553t 10.1021/cg101537m 10.1088/2632-959X/abed3d 10.1063/5.0086912 10.1002/smll.201907364 10.7567/APEX.9.015502 10.1088/0957-4484/26/46/465203 10.1016/bs.semsem.2015.10.002 10.1063/1.5010762 10.1088/1361-6641/32/2/023001 10.1063/1.125841 10.1364/PRJ.428168 10.1149/2.0302001JSS 10.35848/1882-0786/ac1b3e 10.1016/j.neuron.2015.10.032 10.1021/acsami.0c00951 10.1021/acs.nanolett.8b04781 10.1088/0957-4484/23/46/465601 10.1364/PRJ.7.000144 10.1016/j.jlumin.2016.09.052 10.1016/bs.semsem.2021.01.001 10.1016/j.jcrysgro.2012.07.025 10.1063/1.5096322 10.3390/cryst11111364 10.1063/1.1351521 10.1364/OE.433786 10.1016/j.spmi.2007.05.001 10.1039/C3CE42266F 10.1364/PRJ.424528 10.1002/pssa.201900380 10.1088/0957-4484/21/30/305201 10.1021/acs.chemrev.9b00075 10.1063/1.5010237 10.1063/1.5144819 10.1088/1674-1056/24/9/096103 10.1103/PhysRevLett.95.155503 10.1063/1.5145201 10.1063/1.3615679 10.7567/1882-0786/aaf4b1 |
ContentType | Journal Article |
Copyright | 2023 Chinese Physical Society and IOP Publishing Ltd Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: 2023 Chinese Physical Society and IOP Publishing Ltd – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
CorporateAuthor | Solid State Physics Fasta tillståndets fysik LU Profile Area: Light and Materials Lunds universitets profilområden Lunds universitet Naturvetenskapliga fakulteten Profile areas and other strong research environments LTH profilområden Fysiska institutionen Faculty of Engineering, LTH Lunds Tekniska Högskola Faculty of Science Lund University LTH Profile Area: Nanoscience and Semiconductor Technology LTH Profile areas Department of Physics Lund University Profile areas LU profilområde: Ljus och material Strategiska forskningsområden (SFO) Strategic research areas (SRA) NanoLund: Centre for Nanoscience Profilområden och andra starka forskningsmiljöer LTH profilområde: Nanovetenskap och halvledarteknologi |
CorporateAuthor_xml | – name: Naturvetenskapliga fakulteten – name: Strategiska forskningsområden (SFO) – name: LTH Profile Area: Nanoscience and Semiconductor Technology – name: LTH profilområde: Nanovetenskap och halvledarteknologi – name: LU profilområde: Ljus och material – name: Department of Physics – name: Strategic research areas (SRA) – name: Lunds Tekniska Högskola – name: Faculty of Science – name: Lunds universitet – name: Lunds universitets profilområden – name: Faculty of Engineering, LTH – name: Lund University Profile areas – name: Profilområden och andra starka forskningsmiljöer – name: LTH Profile areas – name: LTH profilområden – name: Lund University – name: Solid State Physics – name: NanoLund: Centre for Nanoscience – name: Profile areas and other strong research environments – name: LU Profile Area: Light and Materials – name: Fysiska institutionen – name: Fasta tillståndets fysik |
DBID | AAYXX CITATION 2B. 4A8 92I 93N PSX TCJ ADTPV AOWAS D95 |
DOI | 10.1088/1674-1056/aca9c2 |
DatabaseName | CrossRef Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) SwePub SwePub Articles SWEPUB Lunds universitet |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EndPage | 10 |
ExternalDocumentID | oai_portal_research_lu_se_publications_1d2a3573_70ca_4d58_aac4_bd7590641e2d zgwl_e202301001 10_1088_1674_1056_aca9c2 cpb_32_1_018103 |
GroupedDBID | -SA -S~ 1JI 29B 4.4 5B3 5GY 5VR 5VS 5ZH 6J9 7.M 7.Q AAGCD AAJIO AAJKP AATNI AAXDM ABHWH ABJNI ABQJV ACAFW ACGFS ACHIP AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CAJEA CCEZO CCVFK CEBXE CHBEP CJUJL CRLBU CS3 DU5 EBS EDWGO EMSAF EPQRW EQZZN FA0 HAK IJHAN IOP IZVLO KOT N5L PJBAE Q-- RIN RNS ROL RPA SY9 TCJ TGP U1G U5K UCJ W28 AAYXX ADEQX CITATION 02O 1WK 2B. 4A8 92I 93N AALHV ACARI AERVB AFUIB AGQPQ AHSEE ARNYC BBWZM EJD FEDTE HVGLF JCGBZ M45 NT- NT. PSX Q02 ADTPV AEINN AOWAS D95 |
ID | FETCH-LOGICAL-c434t-61926c64c9924369afb9c494739e2b549e55356b08db3621208af01eafd9d69e3 |
IEDL.DBID | IOP |
ISSN | 1674-1056 2058-3834 |
IngestDate | Thu Sep 18 03:30:07 EDT 2025 Thu May 29 04:07:17 EDT 2025 Tue Jul 01 02:13:07 EDT 2025 Thu Apr 24 22:58:19 EDT 2025 Wed Jun 07 11:19:01 EDT 2023 Wed Aug 21 03:35:02 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | InGaN microLEDs RGB GaN |
Language | English |
License | This article is available under the terms of the IOP-Standard License. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c434t-61926c64c9924369afb9c494739e2b549e55356b08db3621208af01eafd9d69e3 |
PageCount | 10 |
ParticipantIDs | crossref_citationtrail_10_1088_1674_1056_aca9c2 crossref_primary_10_1088_1674_1056_aca9c2 iop_journals_10_1088_1674_1056_aca9c2 swepub_primary_oai_portal_research_lu_se_publications_1d2a3573_70ca_4d58_aac4_bd7590641e2d wanfang_journals_zgwl_e202301001 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20230101 2023-01-01 2023 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 01 year: 2023 text: 20230101 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Chinese physics B |
PublicationTitleAlternate | Chin. Phys. B |
PublicationTitle_FL | Chinese Physics B |
PublicationYear | 2023 |
Publisher | Chinese Physical Society and IOP Publishing Ltd Division of Solid State Physics and NanoLund, Lund University, Box 118, SE-22100 Lund, Sweden |
Publisher_xml | – name: Chinese Physical Society and IOP Publishing Ltd – name: Division of Solid State Physics and NanoLund, Lund University, Box 118, SE-22100 Lund, Sweden |
References | Coulon (cpb_32_1_018103bib37) 2016; 9 Yam (cpb_32_1_018103bib26) 2008; 43 Barrigón (cpb_32_1_018103bib36) 2019; 119 Zhu (cpb_32_1_018103bib16) 2019; 216 Liu (cpb_32_1_018103bib19) 2009; 15 Zhang (cpb_32_1_018103bib38) 2015; 26 Choi (cpb_32_1_018103bib33) 2012; 357 Bi (cpb_32_1_018103bib40) 2020; 12 Rajbhandari (cpb_32_1_018103bib6) 2017; 32 Zhuang (cpb_32_1_018103bib10) 2021; 9 White (cpb_32_1_018103bib24) 2021; 11 Dussaigne (cpb_32_1_018103bib12) 2021; 14 Jiang (cpb_32_1_018103bib9) 2001; 78 Day (cpb_32_1_018103bib18) 2011; 99 Lin (cpb_32_1_018103bib31) 2012; 23 Wu (cpb_32_1_018103bib14) 2021; 9 Monemar (cpb_32_1_018103bib35) 2016; 94 Chen (cpb_32_1_018103bib3) 2021; 54 Meng (cpb_32_1_018103bib20) 2021; 16 Wong (cpb_32_1_018103bib4) 2019; 9 Bi (cpb_32_1_018103bib39) 2018; 123 Bi (cpb_32_1_018103bib2) 2021; 106 Gustafsson (cpb_32_1_018103bib41) 2021; 2 Du (cpb_32_1_018103bib28) 2005; 95 Li (cpb_32_1_018103bib11) 2022; 120 Jung (cpb_32_1_018103bib32) 2014; 16 Wu (cpb_32_1_018103bib7) 2015; 88 Ozaki (cpb_32_1_018103bib25) 2019; 12 Olivier (cpb_32_1_018103bib21) 2017; 191 Jin (cpb_32_1_018103bib8) 2000; 76 Lin (cpb_32_1_018103bib1) 2020; 116 Wasisto (cpb_32_1_018103bib5) 2019; 6 Khalilian (cpb_32_1_018103bib29) 2020; 16 Yang (cpb_32_1_018103bib42) 2015; 24 Bi (cpb_32_1_018103bib15) 2019; 19 Yan (cpb_32_1_018103bib17) 2021; 29 Li (cpb_32_1_018103bib27) 2011; 11 Mitchell (cpb_32_1_018103bib13) 2018; 123 Jiang (cpb_32_1_018103bib23) 2019; 7 Hersee (cpb_32_1_018103bib30) 2006; 6 Smith (cpb_32_1_018103bib22) 2020; 116 Bergbauer (cpb_32_1_018103bib34) 2010; 21 |
References_xml | – volume: 54 year: 2021 ident: cpb_32_1_018103bib3 publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/1361-6463/abcfe4 – volume: 15 start-page: 1298 year: 2009 ident: cpb_32_1_018103bib19 publication-title: IEEE J. Select. Topics Quantum Electron. doi: 10.1109/JSTQE.2009.2015675 – volume: 16 start-page: 1231 year: 2021 ident: cpb_32_1_018103bib20 doi: 10.1038/s41565-021-00966-5 – volume: 6 start-page: 1808 year: 2006 ident: cpb_32_1_018103bib30 publication-title: Nano Lett. doi: 10.1021/nl060553t – volume: 11 start-page: 1573 year: 2011 ident: cpb_32_1_018103bib27 publication-title: Cryst. Growth Des. doi: 10.1021/cg101537m – volume: 2 year: 2021 ident: cpb_32_1_018103bib41 publication-title: Nano Exp. doi: 10.1088/2632-959X/abed3d – volume: 120 year: 2022 ident: cpb_32_1_018103bib11 publication-title: Appl. Phys. Lett. doi: 10.1063/5.0086912 – volume: 16 year: 2020 ident: cpb_32_1_018103bib29 publication-title: Small doi: 10.1002/smll.201907364 – volume: 9 year: 2016 ident: cpb_32_1_018103bib37 publication-title: Appl. Phys. Express doi: 10.7567/APEX.9.015502 – volume: 26 year: 2015 ident: cpb_32_1_018103bib38 publication-title: Nanotechnology doi: 10.1088/0957-4484/26/46/465203 – volume: 94 start-page: 227 year: 2016 ident: cpb_32_1_018103bib35 publication-title: Semiconductors and Semimetals doi: 10.1016/bs.semsem.2015.10.002 – volume: 123 year: 2018 ident: cpb_32_1_018103bib13 publication-title: J. Appl. Phys. doi: 10.1063/1.5010762 – volume: 32 year: 2017 ident: cpb_32_1_018103bib6 publication-title: Semicond. Sci. Technol. doi: 10.1088/1361-6641/32/2/023001 – volume: 76 start-page: 631 year: 2000 ident: cpb_32_1_018103bib8 publication-title: Appl. Phys. Lett. doi: 10.1063/1.125841 – volume: 9 start-page: 1796 year: 2021 ident: cpb_32_1_018103bib10 publication-title: Photon. Res. doi: 10.1364/PRJ.428168 – volume: 9 year: 2019 ident: cpb_32_1_018103bib4 publication-title: ECS J. Solid State Sci. Technol. doi: 10.1149/2.0302001JSS – volume: 14 year: 2021 ident: cpb_32_1_018103bib12 publication-title: Appl. Phys. Express doi: 10.35848/1882-0786/ac1b3e – volume: 88 start-page: 1136 year: 2015 ident: cpb_32_1_018103bib7 publication-title: Neuron doi: 10.1016/j.neuron.2015.10.032 – volume: 12 year: 2020 ident: cpb_32_1_018103bib40 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c00951 – volume: 19 start-page: 2832 year: 2019 ident: cpb_32_1_018103bib15 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.8b04781 – volume: 23 year: 2012 ident: cpb_32_1_018103bib31 publication-title: Nanotechnology doi: 10.1088/0957-4484/23/46/465601 – volume: 7 start-page: 144 year: 2019 ident: cpb_32_1_018103bib23 publication-title: Photon. Res., PRJ doi: 10.1364/PRJ.7.000144 – volume: 191 start-page: 112 year: 2017 ident: cpb_32_1_018103bib21 publication-title: J. Lumin. doi: 10.1016/j.jlumin.2016.09.052 – volume: 106 start-page: 223 year: 2021 ident: cpb_32_1_018103bib2 publication-title: Semiconductors and Semimetals doi: 10.1016/bs.semsem.2021.01.001 – volume: 357 start-page: 58 year: 2012 ident: cpb_32_1_018103bib33 publication-title: J. Cryst. Growth doi: 10.1016/j.jcrysgro.2012.07.025 – volume: 6 year: 2019 ident: cpb_32_1_018103bib5 publication-title: Appl. Phys. Rev. doi: 10.1063/1.5096322 – volume: 11 start-page: 1364 year: 2021 ident: cpb_32_1_018103bib24 publication-title: Crystals doi: 10.3390/cryst11111364 – volume: 78 start-page: 1303 year: 2001 ident: cpb_32_1_018103bib9 publication-title: Appl. Phys. Lett. doi: 10.1063/1.1351521 – volume: 29 year: 2021 ident: cpb_32_1_018103bib17 publication-title: Opt. Express doi: 10.1364/OE.433786 – volume: 43 start-page: 1 year: 2008 ident: cpb_32_1_018103bib26 publication-title: Superlattices and Microstructures doi: 10.1016/j.spmi.2007.05.001 – volume: 16 start-page: 2273 year: 2014 ident: cpb_32_1_018103bib32 publication-title: CrystEngComm doi: 10.1039/C3CE42266F – volume: 9 start-page: 1683 year: 2021 ident: cpb_32_1_018103bib14 publication-title: Photon. Res., PRJ doi: 10.1364/PRJ.424528 – volume: 216 year: 2019 ident: cpb_32_1_018103bib16 publication-title: Phys. Status Solidi (a) doi: 10.1002/pssa.201900380 – volume: 21 year: 2010 ident: cpb_32_1_018103bib34 publication-title: Nanotechnology doi: 10.1088/0957-4484/21/30/305201 – volume: 119 start-page: 9170 year: 2019 ident: cpb_32_1_018103bib36 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.9b00075 – volume: 123 year: 2018 ident: cpb_32_1_018103bib39 publication-title: J. Appl. Phys. doi: 10.1063/1.5010237 – volume: 116 year: 2020 ident: cpb_32_1_018103bib22 publication-title: Appl. Phys. Lett. doi: 10.1063/1.5144819 – volume: 24 year: 2015 ident: cpb_32_1_018103bib42 publication-title: Chin. Phys. B doi: 10.1088/1674-1056/24/9/096103 – volume: 95 year: 2005 ident: cpb_32_1_018103bib28 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.95.155503 – volume: 116 year: 2020 ident: cpb_32_1_018103bib1 publication-title: Appl. Phys. Lett. doi: 10.1063/1.5145201 – volume: 99 year: 2011 ident: cpb_32_1_018103bib18 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3615679 – volume: 12 year: 2019 ident: cpb_32_1_018103bib25 publication-title: Appl. Phys. Express doi: 10.7567/1882-0786/aaf4b1 |
SSID | ssj0061023 |
Score | 2.3515031 |
SecondaryResourceType | review_article |
Snippet | Miniaturization of light-emitting diodes (LEDs) with sizes down to a few micrometers has become a hot topic in both academia and industry due to their... |
SourceID | swepub wanfang crossref iop |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 18103 |
SubjectTerms | Condensed Matter Physics (including Material Physics, Nano Physics) Den kondenserade materiens fysik (Här ingår: Materialfysik, nanofysik) Fysik GaN InGaN microLEDs Natural Sciences Naturvetenskap Physical Sciences RGB |
Title | Bottom-up approaches to microLEDs emitting red, green and blue light based on GaN nanowires and relaxed InGaN platelets |
URI | https://iopscience.iop.org/article/10.1088/1674-1056/aca9c2 https://d.wanfangdata.com.cn/periodical/zgwl-e202301001 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKERIX3qjbAvIBDkhkN4kfscWJR0tBUDhQqUJIll9ZEKkTNYmK-uvxJNmlRahC3CJ5HNtje8Zjz3yD0GNewvNc7hKSmjyhlslEl54klvjSZEZ6xiF2-MMB3z-k747Y0QZ6vo6FqZtJ9M_j5wgUPLJwcogTC_CbTyBh_EJbLW2Uv1cJZFKC6L2Pn1ZimAMmAVhbK-rpjfJvf7igk67Edte4oUMoTyh1WJ7TOns30ddVf0dnkx_zvjNze_YHlON_DugWujGdRvGLkfQ22vDhDro2eIXa9i46fVl3XRSifYNX2OO-xV2Nj8GN7_3u6xb74--D5zQ-8e4ZXoIXD9bBYVP1Hldg-WNQlA7XAb_RBzjoUAM8cjtQQSTNz1j4NkBZU8WDb1xH7T10uLf7-dV-MmVqSCwltEvACuOWUyujOUe41KWRlkpaEOlzE01Qzxhh3KTCmagxszwVukwzr0snHZee3EeboQ5-C-EoQHJuhBWysLRgLto7xFvmhHC0oEbO0GI1V8pOMOaQTaNSw3O6EArYqYCdamTnDD1d12hGCI9LaJ_EWVLTPm4vocMX6GxjFMlVpgD_LCWqceUMfRnX0LpRQPIejSo1ITl9U1WvWq-ac1e0KnO5JqwgqkitVtQxobS2VBlXMBlPkJnPXWx_Wpe_-3C2PK2Uz8GoBGCt7X8cyg66DnXGa6UHaLM76f3DeNDqzKNhQ_0C3kohDw |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZoEYgLb8Ty9AEOSGQ3iZ2Hj0C7dKEsPVCp4jL1K0vVNImaREX99XjyWFqEKiRukTyO7ZnxY-yZbwh5FWf4PBcaj_kq9LiOhCczyzzNbKYCJWwUY-zwl2W8s88_HUQHQ57TLhamrIalf-o-e6DgnoWDQ1w6Q795DxPGz6SWQoezymQb5HrEogRn5uLr3rgUx4hLgBbXWGN4p_zbXy7tSxuu7TV2aBfOU2SyWF3YeeZ3yOHY597h5HjaNmqqz_-Ac_yPQd0lt4dTKX3Xk98j12xxn9zovEN1_YCcvS-bxi2mbUVHDHJb06akJ-jOt7u9VVN7ctR5UNNTa97SFXrzUFkYqvLW0hxvAChumIaWBf0ol7SQRYkwyXVHhRE1P13hosCyKncHYKdP9UOyP9_-9mHHGzI2eJoz3nhojcU65lo4s47FQmZKaC54woQNlTNFbeTEFCs_NcrtnEHopzLzAyszI0wsLHtENouysI8JdQtJGKtUpyLRPImMs3uY1ZFJU8MTrsSEzEZ5gR7gzDGrRg7ds3qaArIUkKXQs3RC3qxrVD2UxxW0r52kYJjP9RV09BKdrhSwEAJAHDSfgZPihHzv9WjdKCJ698YVDIhOPyBvobZQXbiqhcCE0uk0g8TXEriJUpBSc1AmiYQ7SQY2NK79QTd_9-F8dZaDDdG4RICtJ_84lJfk5t7WHHYXy89PyS2s3t80PSObzWlrn7uzV6NedPPrF-KkJnk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bottom-up+approaches+to+microLEDs+emitting+red%2C+green+and+blue+light+based+on+GaN+nanowires+and+relaxed+InGaN+platelets&rft.jtitle=%E4%B8%AD%E5%9B%BD%E7%89%A9%E7%90%86B%EF%BC%88%E8%8B%B1%E6%96%87%E7%89%88%EF%BC%89&rft.au=Zhaoxia+Bi&rft.au=Anders+Gustafsson&rft.au=Lars+Samuelson&rft.date=2023&rft.pub=Division+of+Solid+State+Physics+and+NanoLund%2C+Lund+University%2C+Box+118%2C+SE-22100+Lund%2C+Sweden&rft.issn=1674-1056&rft.volume=32&rft.issue=1&rft.spage=1&rft.epage=10&rft_id=info:doi/10.1088%2F1674-1056%2Faca9c2&rft.externalDocID=zgwl_e202301001 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzgwl-e%2Fzgwl-e.jpg |