AOP-helpFinder 3.0: from text mining to network visualization of key event relationships, and knowledge integration from multiple sources

Abstract Motivation The Adverse Outcome Pathways (AOP) framework advances alternative toxicology by prioritizing the mechanisms underlying toxic effects. It organizes existing knowledge in a structured way, tracing the progression from the initial perturbation of a molecular event, caused by various...

Full description

Saved in:
Bibliographic Details
Published inBioinformatics (Oxford, England) Vol. 41; no. 7
Main Authors Jaylet, Thomas, Jornod, Florence, Capdet, Quentin, Armant, Olivier, Audouze, Karine
Format Journal Article
LanguageEnglish
Published England Oxford University Press 01.07.2025
Oxford Publishing Limited (England)
Subjects
Online AccessGet full text
ISSN1367-4811
1367-4803
1367-4811
DOI10.1093/bioinformatics/btaf381

Cover

Abstract Abstract Motivation The Adverse Outcome Pathways (AOP) framework advances alternative toxicology by prioritizing the mechanisms underlying toxic effects. It organizes existing knowledge in a structured way, tracing the progression from the initial perturbation of a molecular event, caused by various stressors, through key events across different biological levels, ultimately leading to adverse outcomes that affect human health and ecosystems. However, the increasing volume of toxicological data presents a significant challenge for integrating all available knowledge effectively. Results Text mining techniques, including natural language processing and graph-based approaches, provide powerful methods to analyze and integrate large, heterogeneous data sources. Within this framework, the AOP-helpFinder TM tool, accessible as a web server, was created to identify stressor-event and event-event relationships by automatically screening scientific literature in the PubMed database, facilitating the development of AOPs. The proposed new version introduces enhanced functionality by incorporating additional data sources, automatically annotating events from the literature with toxicological database information in a systems biology context. Users can now visualize results as interactive networks directly on the web server. With these advancements, AOP-helpFinder 3.0 offers a robust solution for integrative and predictive toxicology, as demonstrated in a case study exploring toxicological mechanisms associated with radon exposure. Availability and implementation AOP-helpFinder is available at https://aop-helpfinder-v3.u-paris-sciences.fr.
AbstractList The Adverse Outcome Pathways (AOP) framework advances alternative toxicology by prioritizing the mechanisms underlying toxic effects. It organizes existing knowledge in a structured way, tracing the progression from the initial perturbation of a molecular event, caused by various stressors, through key events across different biological levels, ultimately leading to adverse outcomes that affect human health and ecosystems. However, the increasing volume of toxicological data presents a significant challenge for integrating all available knowledge effectively. Text mining techniques, including natural language processing and graph-based approaches, provide powerful methods to analyze and integrate large, heterogeneous data sources. Within this framework, the AOP-helpFinder TM tool, accessible as a web server, was created to identify stressor-event and event-event relationships by automatically screening scientific literature in the PubMed database, facilitating the development of AOPs. The proposed new version introduces enhanced functionality by incorporating additional data sources, automatically annotating events from the literature with toxicological database information in a systems biology context. Users can now visualize results as interactive networks directly on the web server. With these advancements, AOP-helpFinder 3.0 offers a robust solution for integrative and predictive toxicology, as demonstrated in a case study exploring toxicological mechanisms associated with radon exposure. AOP-helpFinder is available at https://aop-helpfinder-v3.u-paris-sciences.fr.
Abstract Motivation The Adverse Outcome Pathways (AOP) framework advances alternative toxicology by prioritizing the mechanisms underlying toxic effects. It organizes existing knowledge in a structured way, tracing the progression from the initial perturbation of a molecular event, caused by various stressors, through key events across different biological levels, ultimately leading to adverse outcomes that affect human health and ecosystems. However, the increasing volume of toxicological data presents a significant challenge for integrating all available knowledge effectively. Results Text mining techniques, including natural language processing and graph-based approaches, provide powerful methods to analyze and integrate large, heterogeneous data sources. Within this framework, the AOP-helpFinder TM tool, accessible as a web server, was created to identify stressor-event and event-event relationships by automatically screening scientific literature in the PubMed database, facilitating the development of AOPs. The proposed new version introduces enhanced functionality by incorporating additional data sources, automatically annotating events from the literature with toxicological database information in a systems biology context. Users can now visualize results as interactive networks directly on the web server. With these advancements, AOP-helpFinder 3.0 offers a robust solution for integrative and predictive toxicology, as demonstrated in a case study exploring toxicological mechanisms associated with radon exposure. Availability and implementation AOP-helpFinder is available at https://aop-helpfinder-v3.u-paris-sciences.fr.
Motivation The Adverse Outcome Pathways (AOP) framework advances alternative toxicology by prioritizing the mechanisms underlying toxic effects. It organizes existing knowledge in a structured way, tracing the progression from the initial perturbation of a molecular event, caused by various stressors, through key events across different biological levels, ultimately leading to adverse outcomes that affect human health and ecosystems. However, the increasing volume of toxicological data presents a significant challenge for integrating all available knowledge effectively. Results Text mining techniques, including natural language processing and graph-based approaches, provide powerful methods to analyze and integrate large, heterogeneous data sources. Within this framework, the AOP-helpFinder TM tool, accessible as a web server, was created to identify stressor-event and event-event relationships by automatically screening scientific literature in the PubMed database, facilitating the development of AOPs. The proposed new version introduces enhanced functionality by incorporating additional data sources, automatically annotating events from the literature with toxicological database information in a systems biology context. Users can now visualize results as interactive networks directly on the web server. With these advancements, AOP-helpFinder 3.0 offers a robust solution for integrative and predictive toxicology, as demonstrated in a case study exploring toxicological mechanisms associated with radon exposure. Availability and implementation AOP-helpFinder is available at https://aop-helpfinder-v3.u-paris-sciences.fr.
The Adverse Outcome Pathways (AOP) framework advances alternative toxicology by prioritizing the mechanisms underlying toxic effects. It organizes existing knowledge in a structured way, tracing the progression from the initial perturbation of a molecular event, caused by various stressors, through key events (KEs) across different biological levels, ultimately leading to adverse outcomes that affect human health and ecosystems. However, the increasing volume of toxicological data presents a significant challenge for integrating all available knowledge effectively.MOTIVATIONThe Adverse Outcome Pathways (AOP) framework advances alternative toxicology by prioritizing the mechanisms underlying toxic effects. It organizes existing knowledge in a structured way, tracing the progression from the initial perturbation of a molecular event, caused by various stressors, through key events (KEs) across different biological levels, ultimately leading to adverse outcomes that affect human health and ecosystems. However, the increasing volume of toxicological data presents a significant challenge for integrating all available knowledge effectively.Text mining (TM) techniques, including natural language processing (NLP) and graph-based approaches, provide powerful methods to analyze and integrate large, heterogeneous data sources. Within this framework, the AOP-helpFinder text mining tool, accessible as a web server, was created to identify stressor-event and event-event relationships by automatically screening scientific literature in the PubMed database, facilitating the development of AOPs. The proposed new version introduces enhanced functionality by incorporating additional data sources, automatically annotating events from the literature with toxicological database information in a systems biology context. Users can now visualize results as interactive networks directly on the web server. With these advancements, AOP-helpFinder 3.0 offers a robust solution for integrative and predictive toxicology, as demonstrated in a case study exploring toxicological mechanisms associated with radon exposure.RESULTSText mining (TM) techniques, including natural language processing (NLP) and graph-based approaches, provide powerful methods to analyze and integrate large, heterogeneous data sources. Within this framework, the AOP-helpFinder text mining tool, accessible as a web server, was created to identify stressor-event and event-event relationships by automatically screening scientific literature in the PubMed database, facilitating the development of AOPs. The proposed new version introduces enhanced functionality by incorporating additional data sources, automatically annotating events from the literature with toxicological database information in a systems biology context. Users can now visualize results as interactive networks directly on the web server. With these advancements, AOP-helpFinder 3.0 offers a robust solution for integrative and predictive toxicology, as demonstrated in a case study exploring toxicological mechanisms associated with radon exposure.AOP-helpFinder is available at https://aop-helpfinder-v3.u-paris-sciences.fr.AVAILABILITYAOP-helpFinder is available at https://aop-helpfinder-v3.u-paris-sciences.fr.Supplementary data are available on Zenodo 10.5281/zenodo.15193935 and on GitHub: https://github.com/systox1124/AOP-helpFinder.SUPPLEMENTARY INFORMATIONSupplementary data are available on Zenodo 10.5281/zenodo.15193935 and on GitHub: https://github.com/systox1124/AOP-helpFinder.
Author Jaylet, Thomas
Audouze, Karine
Armant, Olivier
Jornod, Florence
Capdet, Quentin
Author_xml – sequence: 1
  givenname: Thomas
  surname: Jaylet
  fullname: Jaylet, Thomas
– sequence: 2
  givenname: Florence
  surname: Jornod
  fullname: Jornod, Florence
– sequence: 3
  givenname: Quentin
  surname: Capdet
  fullname: Capdet, Quentin
– sequence: 4
  givenname: Olivier
  surname: Armant
  fullname: Armant, Olivier
– sequence: 5
  givenname: Karine
  orcidid: 0000-0001-7525-4089
  surname: Audouze
  fullname: Audouze, Karine
  email: karine.audouze@u-paris.fr
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40580447$$D View this record in MEDLINE/PubMed
BookMark eNqNks1u3CAUhVGUKP-vECF100WdgDE27qaKoqatFCldtGuE8fUMGQwu4EnTN-hbl2YmUdJVVyD4zuFccY7QrvMOEDqj5JySll10xhs3-DCqZHS86JIamKA76JCyuikqQenui_0BOorxjhDCCa_30UFFuCBV1Ryi35e3X4sl2OnauB4CZufkPR6CH3GCnwmPxhm3wMljB-nehxVemzgra37ld73DfsAreMCwBpdwAPt4Gpdmiu-wcj1eOX9voV8ANi7BImxUj_7jbJOZLODo56AhnqC9QdkIp9v1GH2__vjt6nNxc_vpy9XlTaErVqWCV13b80Z33VDqqtbQVbwBAlwoDa0SrKdK0EFzojWteT-UolO8LbVqSdlxzY7Rh43vNHcj9DonD8rKKZhRhQfplZGvb5xZyoVfS1qWNaOEZ4e3W4fgf8wQkxxN1GCtcuDnKFlZclE3tWgz-uYf9C5P6_J8mWKEl1Q0NFNnLyM9Z3n6pgzUG0AHH2OA4RmhRP7tg3zdB7ntQxbSjdDP0_9q_gCvtsQG
Cites_doi 10.1093/toxsci/kfu199
10.1016/j.envres.2022.112980
10.1158/1055-9965.EPI-05-0456
10.1080/10937404.2010.483176
10.1002/etc.34
10.1289/EHP4200
10.1093/ije/dyx011
10.1080/18811248.2010.9711649
10.3233/JAD-170308
10.1289/ehp.8476
10.1093/bioinformatics/btab750
10.1016/j.envint.2023.108017
10.1007/s00204-019-02613-4
10.1259/0007-1285-64-763-608
ContentType Journal Article
Copyright The Author(s) 2025. Published by Oxford University Press. 2025
The Author(s) 2025. Published by Oxford University Press.
Copyright_xml – notice: The Author(s) 2025. Published by Oxford University Press. 2025
– notice: The Author(s) 2025. Published by Oxford University Press.
DBID TOX
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TM
7TO
7U5
8BQ
8FD
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
P64
7X8
5PM
DOI 10.1093/bioinformatics/btaf381
DatabaseName Oxford Academic : Oxford Journals Open Access Collection journals [open access]
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Oncogenes and Growth Factors Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Materials Business File
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
AIDS and Cancer Research Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE

Materials Research Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: TOX
  name: Oxford Academic : Oxford Journals Open Access Collection journals [open access]
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1367-4811
ExternalDocumentID PMC12263105
40580447
10_1093_bioinformatics_btaf381
10.1093/bioinformatics/btaf381
Genre Journal Article
Report
GrantInformation_xml – fundername: European Union's Horizon 2020 Research and Innovation Programme OBERON
– fundername: ;
GroupedDBID ---
-E4
-~X
.-4
.2P
.DC
.GJ
.I3
0R~
1TH
23N
2WC
4.4
48X
53G
5GY
5WA
70D
AAIJN
AAIMJ
AAJKP
AAJQQ
AAKPC
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AAUQX
AAVAP
AAVLN
ABEFU
ABEJV
ABEUO
ABGNP
ABIXL
ABNGD
ABNKS
ABPQP
ABPTD
ABQLI
ABWST
ABXVV
ABZBJ
ACGFS
ACIWK
ACPRK
ACUFI
ACUKT
ACUXJ
ACYTK
ADBBV
ADEYI
ADEZT
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADMLS
ADOCK
ADPDF
ADRDM
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AECKG
AEGPL
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFNX
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AGINJ
AGKEF
AGQPQ
AGQXC
AGSYK
AHMBA
AHXPO
AI.
AIJHB
AJEEA
AJEUX
AKHUL
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
AMNDL
APIBT
APWMN
AQDSO
ARIXL
ASPBG
ATTQO
AVWKF
AXUDD
AYOIW
AZFZN
AZVOD
BAWUL
BAYMD
BHONS
BQDIO
BQUQU
BSWAC
BTQHN
C1A
C45
CAG
CDBKE
COF
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
EBD
EBS
EE~
EJD
ELUNK
EMOBN
F5P
F9B
FEDTE
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GROUPED_DOAJ
GX1
H13
H5~
HAR
HVGLF
HW0
HZ~
IOX
J21
JXSIZ
KAQDR
KOP
KQ8
KSI
KSN
M-Z
MK~
ML0
N9A
NGC
NLBLG
NMDNZ
NOMLY
NTWIH
NU-
NVLIB
O0~
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
O~Y
P2P
PAFKI
PB-
PEELM
PQQKQ
Q1.
Q5Y
R44
RD5
RNI
RNS
ROL
RPM
RUSNO
RW1
RXO
RZF
RZO
SV3
TEORI
TJP
TLC
TOX
TR2
VH1
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZGI
ZKX
~91
~KM
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TM
7TO
7U5
8BQ
8FD
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
P64
7X8
5PM
ID FETCH-LOGICAL-c434t-54b9d57cbbf2c46ceb457e0e58ace9a83d1a81fc50cc165df28ba592ca902b5c3
IEDL.DBID TOX
ISSN 1367-4811
1367-4803
IngestDate Thu Aug 21 18:23:04 EDT 2025
Wed Jul 02 01:47:38 EDT 2025
Sat Sep 20 00:10:43 EDT 2025
Fri Jul 18 01:41:19 EDT 2025
Wed Jul 16 16:46:35 EDT 2025
Mon Sep 15 00:06:09 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
https://creativecommons.org/licenses/by/4.0
The Author(s) 2025. Published by Oxford University Press.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c434t-54b9d57cbbf2c46ceb457e0e58ace9a83d1a81fc50cc165df28ba592ca902b5c3
Notes SourceType-Scholarly Journals-1
content type line 14
ObjectType-Report-1
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-7525-4089
OpenAccessLink https://dx.doi.org/10.1093/bioinformatics/btaf381
PMID 40580447
PQID 3230521871
PQPubID 36124
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_12263105
proquest_miscellaneous_3225867689
proquest_journals_3230521871
pubmed_primary_40580447
crossref_primary_10_1093_bioinformatics_btaf381
oup_primary_10_1093_bioinformatics_btaf381
PublicationCentury 2000
PublicationDate 2025-07-01
PublicationDateYYYYMMDD 2025-07-01
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Bioinformatics (Oxford, England)
PublicationTitleAlternate Bioinformatics
PublicationYear 2025
Publisher Oxford University Press
Oxford Publishing Limited (England)
Publisher_xml – name: Oxford University Press
– name: Oxford Publishing Limited (England)
References Sakoda (2025071516412059600_btaf381-B12) 2010; 47
Wild (2025071516412059600_btaf381-B15) 2005; 14
Krewski (2025071516412059600_btaf381-B6) 2020; 94
Carvaillo (2025071516412059600_btaf381-B3) 2019; 127
Lu (2025071516412059600_btaf381-B9) 2020; 25
Ankley (2025071516412059600_btaf381-B1) 2010; 29
Villeneuve (2025071516412059600_btaf381-B13) 2014; 142
Zhang (2025071516412059600_btaf381-B17) 2022; 210
Krewski (2025071516412059600_btaf381-B7) 2010; 13
Lehrer (2025071516412059600_btaf381-B8) 2017; 59
Rericha (2025071516412059600_btaf381-B10) 2006; 114
Richardson (2025071516412059600_btaf381-B11) 1991; 64
WHO (2025071516412059600_btaf381-B14) 2009
Jaylet (2025071516412059600_btaf381-B4) 2023; 177
Jornod (2025071516412059600_btaf381-B5) 2022; 38
Yarar (2025071516412059600_btaf381-B16) 2024
Barbosa-Lorenzo (2025071516412059600_btaf381-B2) 2017; 46
References_xml – volume: 25
  start-page: 1035
  year: 2020
  ident: 2025071516412059600_btaf381-B9
  article-title: Domestic radon exposure and risk of childhood leukemia: a meta-analysis
  publication-title: J BUON
– volume: 142
  start-page: 312
  year: 2014
  ident: 2025071516412059600_btaf381-B13
  article-title: Adverse outcome pathway (AOP) development I: strategies and principles
  publication-title: Toxicol Sci Off J Soc Toxicol
  doi: 10.1093/toxsci/kfu199
– year: 2024
  ident: 2025071516412059600_btaf381-B16
– volume: 210
  start-page: 112980
  year: 2022
  ident: 2025071516412059600_btaf381-B17
  article-title: Does protracted radon exposure play a role in the development of dementia?
  publication-title: Environ Res
  doi: 10.1016/j.envres.2022.112980
– volume: 14
  start-page: 1847
  year: 2005
  ident: 2025071516412059600_btaf381-B15
  article-title: Complementing the genome with an “exposome”: the outstanding challenge of environmental exposure measurement in molecular epidemiology
  publication-title: Cancer Epidemiol Biomarkers Prev
  doi: 10.1158/1055-9965.EPI-05-0456
– volume: 13
  start-page: 51
  year: 2010
  ident: 2025071516412059600_btaf381-B7
  article-title: Toxicity testing in the 21st century: a vision and a strategy
  publication-title: J Toxicol Environ Health B Critic Rev
  doi: 10.1080/10937404.2010.483176
– volume: 29
  start-page: 730
  year: 2010
  ident: 2025071516412059600_btaf381-B1
  article-title: Adverse outcome pathways: a conceptual framework to support ecotoxicology research and risk assessment
  publication-title: Environ Toxicol Chem
  doi: 10.1002/etc.34
– volume: 127
  start-page: 47005
  year: 2019
  ident: 2025071516412059600_btaf381-B3
  article-title: Linking bisphenol S to adverse outcome pathways using a combined text mining and systems biology approach
  publication-title: Environ Health Perspect
  doi: 10.1289/EHP4200
– year: 2009
  ident: 2025071516412059600_btaf381-B14
– volume: 46
  start-page: 767
  year: 2017
  ident: 2025071516412059600_btaf381-B2
  article-title: Radon and stomach cancer
  publication-title: Int J Epidemiol
  doi: 10.1093/ije/dyx011
– volume: 47
  start-page: 731
  year: 2010
  ident: 2025071516412059600_btaf381-B12
  article-title: Physiologically based pharmacokinetic modeling of inhaled radon to calculate absorbed doses in mice, rats, and humans
  publication-title: J Nuclear Sci Technol
  doi: 10.1080/18811248.2010.9711649
– volume: 59
  start-page: 737
  year: 2017
  ident: 2025071516412059600_btaf381-B8
  article-title: Association of radon background and total background ionizing radiation with Alzheimer’s disease deaths in U.S
  publication-title: J Alzheimers Dis
  doi: 10.3233/JAD-170308
– volume: 114
  start-page: 818
  year: 2006
  ident: 2025071516412059600_btaf381-B10
  article-title: Incidence of leukemia, lymphoma, and multiple myeloma in Czech Uranium Miners: a case-cohort study
  publication-title: Environ Health Perspect
  doi: 10.1289/ehp.8476
– volume: 38
  start-page: 1173
  year: 2022
  ident: 2025071516412059600_btaf381-B5
  article-title: AOP-helpFinder webserver: a tool for comprehensive analysis of the literature to support adverse outcome pathways development
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btab750
– volume: 177
  start-page: 108017
  year: 2023
  ident: 2025071516412059600_btaf381-B4
  article-title: AOP-helpFinder 2.0: integration of an event-event searches module
  publication-title: Environ Int
  doi: 10.1016/j.envint.2023.108017
– volume: 94
  start-page: 1
  year: 2020
  ident: 2025071516412059600_btaf381-B6
  article-title: Toxicity testing in the 21st century: progress in the past decade and future perspectives
  publication-title: Arch Toxicol
  doi: 10.1007/s00204-019-02613-4
– volume: 64
  start-page: 608
  year: 1991
  ident: 2025071516412059600_btaf381-B11
  article-title: Dose to red bone marrow from natural radon and thoron exposure
  publication-title: Br J Radiol
  doi: 10.1259/0007-1285-64-763-608
SSID ssj0005056
Score 2.4867997
Snippet Abstract Motivation The Adverse Outcome Pathways (AOP) framework advances alternative toxicology by prioritizing the mechanisms underlying toxic effects. It...
The Adverse Outcome Pathways (AOP) framework advances alternative toxicology by prioritizing the mechanisms underlying toxic effects. It organizes existing...
Motivation The Adverse Outcome Pathways (AOP) framework advances alternative toxicology by prioritizing the mechanisms underlying toxic effects. It organizes...
SourceID pubmedcentral
proquest
pubmed
crossref
oup
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
SubjectTerms Adverse Outcome Pathways
Applications Note
Availability
Computational Biology - methods
Data mining
Data Mining - methods
Data sources
Humans
Internet
Natural Language Processing
Radon
Servers
Software
Toxicology
Title AOP-helpFinder 3.0: from text mining to network visualization of key event relationships, and knowledge integration from multiple sources
URI https://www.ncbi.nlm.nih.gov/pubmed/40580447
https://www.proquest.com/docview/3230521871
https://www.proquest.com/docview/3225867689
https://pubmed.ncbi.nlm.nih.gov/PMC12263105
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB5CoJBLaJtH3abLBHIqddYPybZyW0qXEMjjkMDejCRL7EJrL7tOIT8h_zojP7ZxIJCcJdnYn8TMaOb7BuBEpwXTmhAokjRwt1WFnwkT-NaGSpO9FUo7NvLlVXJ-xy5mfLYFYc-FeZnCF_FYLapORNQJF49VLW3ckK3JErudfXs9-1_UQfa85wG_unRggga0tmfe5csiyWdWZ_oRdjt3ESctvp9gy5Sf4UPbQPJhDx4n1zf-3PxZTp3q4Qrj0-AMHWMEXUEH_m26P2BdYdlWe-O_xdqxKFvuJVYW6QxjI-KEq74sbr5Yrn-iLAvcXLhhryrhVjXP7wsRsb39X-_D3fT37a9zv2uu4GsWs9rnTImCp1opG2mWaKMYT01geCa1EZJAC2UWWs0DrcOEFzbKlOQi0lIEkeI6PoDtsirNF0BWSGXCxFinDkfhWxZYl_8snBhhKnTiwbj_3_my1dDI29x3nA8RyjuEPPhBsLx58lGPXt4dwHUeU2hFngmFgx4cb4bp6Lh8iCxNde_mRDxLKN4SHhy2YG9eSX5sFjCWepANtsFmgpPlHo6Ui3kjzx2SR0tOM__6no_4BjuR6yzcFAIfwXa9ujffyd2p1ai5Jhg1-_wJpEkKJQ
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AOP-helpFinder+3.0%3A+from+text+mining+to+network+visualization+of+key+event+relationships%2C+and+knowledge+integration+from+multiple+sources&rft.jtitle=Bioinformatics+%28Oxford%2C+England%29&rft.au=Jaylet%2C+Thomas&rft.au=Jornod%2C+Florence&rft.au=Capdet%2C+Quentin&rft.au=Armant%2C+Olivier&rft.date=2025-07-01&rft.issn=1367-4811&rft.eissn=1367-4811&rft.volume=41&rft.issue=7&rft_id=info:doi/10.1093%2Fbioinformatics%2Fbtaf381&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_bioinformatics_btaf381
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-4811&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-4811&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-4811&client=summon