Steam Reforming of Dimethyl Ether by Gliding Arc Gas Discharge Plasma for Hydrogen Production
Gliding arc gas discharge plasma was used for the generation of hydrogen from steam reforming of dimethyl ether (DME). A systemic procedure was employed to determine the suitable experimental conditions. It was found that DME conversion first increased up to the maximum and then decreased slightly w...
Saved in:
| Published in | Chinese journal of chemical engineering Vol. 22; no. 1; pp. 104 - 112 |
|---|---|
| Main Author | |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier B.V
2014
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1004-9541 2210-321X |
| DOI | 10.1016/S1004-9541(14)60020-3 |
Cover
| Abstract | Gliding arc gas discharge plasma was used for the generation of hydrogen from steam reforming of dimethyl ether (DME). A systemic procedure was employed to determine the suitable experimental conditions. It was found that DME conversion first increased up to the maximum and then decreased slightly with the increase of added water and air. The increase of total feed gas flow rate resulted in the decrease of DME conversion and hydrogen yield, but hydrogen energy consumption dropped down to the lowest as total feed gas flow rate increased to 76 ml. min^-1. Larger electrode gap and higher discharge voltage were advantageous. Electrode shape had an important effect on the conversion of DME and production of H2- Among the five electrodes, electrode 2# with valid length of 55 mm and the radian of 34 degrees of the top electrode section was the best option, which enhanced obviously the conversion of DME. |
|---|---|
| AbstractList | Gliding arc gas discharge plasma was used for the generation of hydrogen from steam reforming of dimethyl ether (DME). A systemic procedure was employed to determine the suitable experimental conditions. It was found that DME conversion first increased up to the maximum and then decreased slightly with the increase of added water and air. The increase of total feed gas flow rate resulted in the decrease of DME conversion and hydrogen yield, but hydrogen energy consumption dropped down to the lowest as total feed gas flow rate increased to 76 ml[middot]min super(-1). Larger electrode gap and higher discharge voltage were advantageous. Electrode shape had an important effect on the conversion of DME and production of H sub(2). Among the five electrodes, electrode 2 super(#) with valid length of 55 mm and the radian of 34 degrees of the top electrode section was the best option, which enhanced obviously the conversion of DME. Gliding arc gas discharge plasma was used for the generation of hydrogen from steam reforming of dimethyl ether (DME). A systemic procedure was employed to determine the suitable experimental conditions. It was found that DME conversion first increased up to the maximum and then decreased slightly with the increase of added water and air. The increase of total feed gas flow rate resulted in the decrease of DME conversion and hydrogen yield, but hydrogen energy consumption dropped down to the lowest as total feed gas flow rate increased to 76 ml·min−1. Larger electrode gap and higher discharge voltage were advantageous. Electrode shape had an important effect on the conversion of DME and production of H2. Among the five electrodes, electrode 2# with valid length of 55 mm and the radian of 34 degrees of the top electrode section was the best option, which enhanced obviously the conversion of DME. Gliding arc gas discharge plasma was used for the generation of hydrogen from steam reforming of dimethyl ether (DME). A systemic procedure was employed to determine the suitable experimental conditions. It was found that DME conversion first increased up to the maximum and then decreased slightly with the increase of added water and air. The increase of total feed gas flow rate resulted in the decrease of DME conversion and hydrogen yield, but hydrogen energy consumption dropped down to the lowest as total feed gas flow rate increased to 76 ml.min-1. Larger electrode gap and higher discharge voltage were advantageous. Electrode shape had an important effect on the conversion of DME and production of H2. Among the five electrodes, electrode 2# with valid length of 55 mm and the radian of 34 degrees of the top electrode section was the best option, which enhanced obviously the conversion of DME. Gliding arc gas discharge plasma was used for the generation of hydrogen from steam reforming of dimethyl ether (DME). A systemic procedure was employed to determine the suitable experimental conditions. It was found that DME conversion first increased up to the maximum and then decreased slightly with the increase of added water and air. The increase of total feed gas flow rate resulted in the decrease of DME conversion and hydrogen yield, but hydrogen energy consumption dropped down to the lowest as total feed gas flow rate increased to 76 ml. min^-1. Larger electrode gap and higher discharge voltage were advantageous. Electrode shape had an important effect on the conversion of DME and production of H2- Among the five electrodes, electrode 2# with valid length of 55 mm and the radian of 34 degrees of the top electrode section was the best option, which enhanced obviously the conversion of DME. |
| Author | 王保伟 孙启梅 吕一军 杨美琳 闫文娟 |
| AuthorAffiliation | Key Laboratory for Green Chemical Technology, School of Chemical Engineering Technology, Tianjin University,Tianjin 300072, China |
| Author_xml | – sequence: 1 fullname: 王保伟 孙启梅 吕一军 杨美琳 闫文娟 |
| BookMark | eNqNkUFr3DAQhUVJoJukP6Gg3tKDW8keSzI9lJCmm0CgoUmglyJkabyrYluJpC3sv6-dDTnksj2NYL73Rrx3RA7GMCIh7zn7xBkXn285Y1A0NfBTDh8FYyUrqjdkUZZ8epT81wFZvCBvyVFKf2ZGcbUgv28zmoH-xC7EwY8rGjr6zQ-Y19ueXuQ1Rtpu6bL3bl6eRUuXJk1EsmsTV0hvepMGQyc1vdy6GFY40psY3MZmH8YTctiZPuG753lM7r9f3J1fFtc_llfnZ9eFhQpyASg7Zk2DplayVQYYNM4piUIgA8W7ruwkQKNM21jZCieUYwJkyXhrbcuqY3K6832I4XGDKeth-iH2vRkxbJLmQsqmASHkfrSuOROsVP_hOsUJFaurGf2yQ20MKUXstPXZzBHkaHyvOdNzVfqpKj33oDnop6p0NanrV-qH6AcTt3t1X3c6nLL96zHqZD2OFp2PaLN2we91-PB8eR3G1ePU8ctpUFArDqL6BwHLtvU |
| CitedBy_id | crossref_primary_10_1016_j_cjche_2022_03_002 crossref_primary_10_1007_s40201_019_00369_8 crossref_primary_10_1016_j_jcou_2018_12_019 crossref_primary_10_1007_s11705_019_1811_6 crossref_primary_10_1016_j_apenergy_2016_01_092 crossref_primary_10_1016_j_ijhydene_2019_07_042 crossref_primary_10_4236_jpee_2016_45004 crossref_primary_10_1016_j_cjche_2018_01_006 |
| Cites_doi | 10.1088/0963-0252/16/4/014 10.1021/ef060098o 10.1016/j.cej.2009.10.009 10.1016/S1003-9953(08)60140-1 10.1021/ie101920n 10.1016/j.ijhydene.2006.09.023 10.1016/j.ijhydene.2006.07.013 10.1016/S1872-5813(10)60030-8 10.1016/j.energy.2008.11.006 10.1016/j.ijhydene.2008.05.101 10.1007/s10562-005-5855-5 10.1016/j.jpowsour.2006.02.078 10.1016/j.ijhydene.2008.07.090 10.1016/j.cattod.2009.09.019 10.1016/j.jpowsour.2005.05.082 10.1016/j.surfcoat.2008.06.076 10.1007/s11144-007-5082-8 10.1021/jp905082s 10.1016/j.fuel.2009.11.039 10.1016/j.cattod.2009.01.026 10.1016/j.apcata.2006.02.021 10.1063/1.367003 10.1016/j.surfcoat.2011.01.061 10.1016/j.apcatb.2010.11.011 |
| ContentType | Journal Article |
| Copyright | 2014 Chemical Industry and Engineering Society of China (CIESC) and Chemical Industry Press (CIP) |
| Copyright_xml | – notice: 2014 Chemical Industry and Engineering Society of China (CIESC) and Chemical Industry Press (CIP) |
| DBID | 2RA 92L CQIGP W92 ~WA AAYXX CITATION 7U5 8FD L7M 7SU C1K FR3 |
| DOI | 10.1016/S1004-9541(14)60020-3 |
| DatabaseName | 维普期刊资源整合服务平台 中文科技期刊数据库-CALIS站点 中文科技期刊数据库-7.0平台 中文科技期刊数据库-工程技术 中文科技期刊数据库- 镜像站点 CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Environmental Engineering Abstracts Environmental Sciences and Pollution Management Engineering Research Database |
| DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Solid State and Superconductivity Abstracts Engineering Research Database Environmental Engineering Abstracts Environmental Sciences and Pollution Management |
| DatabaseTitleList | Technology Research Database Technology Research Database Solid State and Superconductivity Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| DocumentTitleAlternate | Steam Reforming of Dimethyl Ether by Gliding Arc Gas Discharge Plasma for Hydrogen Production |
| EISSN | 2210-321X |
| EndPage | 112 |
| ExternalDocumentID | 10_1016_S1004_9541_14_60020_3 S1004954114600203 48458146 |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 21176175, 20606023 |
| GroupedDBID | --K --M .~1 0R~ 188 1B1 1~. 1~5 29B 2B. 2C0 2RA 4.4 457 4G. 5GY 5VR 5VS 7-5 71M 8P~ 8RM 92H 92I 92L 92R 93N AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABMAC ABNUV ABXDB ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEWK ADEZE ADMUD AEBSH AEKER AENEX AFKWA AFTJW AFUIB AGHFR AGUBO AGYEJ AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CCEZO CDRFL CHBEP CQIGP CS3 CW9 DU5 EBS EFJIC EFLBG EJD ENUVR EO9 EP2 EP3 FA0 FDB FEDTE FIRID FNPLU FYGXN GBLVA HVGLF HZ~ J1W KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 RIG ROL SDC SDF SDG SDH SES SPC SPCBC SSG SSZ T5K TCJ TGT UGNYK W92 ~G- ~WA -SB -S~ AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CAJEB CITATION EFKBS Q-- U1G U5L ~HD 7U5 8FD L7M 7SU C1K FR3 |
| ID | FETCH-LOGICAL-c434t-4e7f0ca9ea587b8a4049dd87e66e0481ff2f74498ab9c7b6d68d0647201bccb03 |
| IEDL.DBID | .~1 |
| ISSN | 1004-9541 |
| IngestDate | Sat Sep 27 20:42:45 EDT 2025 Tue Oct 07 09:41:28 EDT 2025 Mon Sep 29 06:25:20 EDT 2025 Thu Apr 24 22:58:02 EDT 2025 Wed Oct 01 03:37:08 EDT 2025 Fri Feb 23 02:37:35 EST 2024 Wed Feb 14 10:38:41 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | dimethyl ether gliding arc gas discharge steam reforming hydrogen production |
| Language | English |
| License | https://www.elsevier.com/tdm/userlicense/1.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c434t-4e7f0ca9ea587b8a4049dd87e66e0481ff2f74498ab9c7b6d68d0647201bccb03 |
| Notes | WANG Baowei, SUN Qimei , LU Yijun, YANG Meilin and YAN Wenjuan Gliding arc gas discharge plasma was used for the generation of hydrogen from steam reforming of dimethyl ether (DME). A systemic procedure was employed to determine the suitable experimental conditions. It was found that DME conversion first increased up to the maximum and then decreased slightly with the increase of added water and air. The increase of total feed gas flow rate resulted in the decrease of DME conversion and hydrogen yield, but hydrogen energy consumption dropped down to the lowest as total feed gas flow rate increased to 76 ml. min^-1. Larger electrode gap and higher discharge voltage were advantageous. Electrode shape had an important effect on the conversion of DME and production of H2- Among the five electrodes, electrode 2# with valid length of 55 mm and the radian of 34 degrees of the top electrode section was the best option, which enhanced obviously the conversion of DME. 11-3270/TQ dimethyl ether; steam reforming; hydrogen production; gliding arc gas discharge ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
| PQID | 1541430530 |
| PQPubID | 23500 |
| PageCount | 9 |
| ParticipantIDs | proquest_miscellaneous_1677994667 proquest_miscellaneous_1551060280 proquest_miscellaneous_1541430530 crossref_citationtrail_10_1016_S1004_9541_14_60020_3 crossref_primary_10_1016_S1004_9541_14_60020_3 elsevier_sciencedirect_doi_10_1016_S1004_9541_14_60020_3 chongqing_primary_48458146 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2014 January 2014 2014-01-00 20140101 |
| PublicationDateYYYYMMDD | 2014-01-01 |
| PublicationDate_xml | – year: 2014 text: 2014 |
| PublicationDecade | 2010 |
| PublicationTitle | Chinese journal of chemical engineering |
| PublicationTitleAlternate | Chinese Journal of Chemical Engineering |
| PublicationYear | 2014 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Yan, Wang, Wang, Zhang, Xu (bib12) 2008; 37 Faungnawakij, Tanaka, Shimoda, Fukunaga, Kawashima, Kikuchi, Eguchi (bib4) 2006; 304 Zou, Zhang, Liu (bib10) 2007; 32 Xie (bib15) 2006 Burlica, Shih, Hnatiuc, Locke (bib29) 2011; 50 Kusano, Norrman, Drews, Leipold (bib21) 2011; 205 Ni, Jin, Li, Zheng (bib2) 2002; 20 Zou, Liu, Zhang (bib6) 2006; 20 Song, Li, Zheng (bib11) 2008; 33 Chun, Yang, Yoshikawa (bib25) 2009; 148 Lü (bib30) 2012 Kusano, Teodoru, Leipold, Andersen, Sorensen, Rozlosnik, Michelsen (bib22) 2008; 202 Bo, Yan, Li, Chi, Cen (bib23) 2008; 33 Sreethawong, Thakonpatthanakun, Chavadej (bib26) 2007; 32 Yang, Lee, Chun (bib24) 2009; 34 Rueangjitt, Sreethawong, Chavadej, Sekiguchi (bib27) 2009; 155 Du, Yan, Cheron (bib19) 2007; 16 Semelsberger, Borup, Greene (bib1) 2006; 156 Wang, Cao, Yan, Xu (bib13) 2009; 18 Zou, Zhang, Liu (bib16) 2007; 163 Zhang, Li, Fujimotoa, Asami (bib8) 2005; 102 Dalaine, Cormier, Lefaucheux (bib20) 1998; 83 Ledesmaa, Ozkanb, Llorcaa (bib3) 2011; 101 Ma, Li (bib17) 2010; 38 Gallagher, Geiger, Polevich, Rabinovich, Gutsol, Fridman (bib28) 2010; 89 Zhang, Du, He, Liu, Liu, Zhou (bib9) 2009; 146 Yan (bib14) 2008 Badmaeva, Volkovaa, Belyaeva, Sobyanina (bib5) 2007; 90 Song, Li, Li, Huang (bib7) 2008; 36 Yu, Li, Tu, Wang, Lu, Yan (bib18) 2010; 114 Chun (10.1016/S1004-9541(14)60020-3_bib25) 2009; 148 Gallagher (10.1016/S1004-9541(14)60020-3_bib28) 2010; 89 Yang (10.1016/S1004-9541(14)60020-3_bib24) 2009; 34 Burlica (10.1016/S1004-9541(14)60020-3_bib29) 2011; 50 Zhang (10.1016/S1004-9541(14)60020-3_bib9) 2009; 146 Kusano (10.1016/S1004-9541(14)60020-3_bib21) 2011; 205 Yan (10.1016/S1004-9541(14)60020-3_bib12) 2008; 37 Rueangjitt (10.1016/S1004-9541(14)60020-3_bib27) 2009; 155 Faungnawakij (10.1016/S1004-9541(14)60020-3_bib4) 2006; 304 Wang (10.1016/S1004-9541(14)60020-3_bib13) 2009; 18 Zou (10.1016/S1004-9541(14)60020-3_bib16) 2007; 163 Kusano (10.1016/S1004-9541(14)60020-3_bib22) 2008; 202 Ni (10.1016/S1004-9541(14)60020-3_bib2) 2002; 20 Sreethawong (10.1016/S1004-9541(14)60020-3_bib26) 2007; 32 Bo (10.1016/S1004-9541(14)60020-3_bib23) 2008; 33 Song (10.1016/S1004-9541(14)60020-3_bib7) 2008; 36 Badmaeva (10.1016/S1004-9541(14)60020-3_bib5) 2007; 90 Semelsberger (10.1016/S1004-9541(14)60020-3_bib1) 2006; 156 Yu (10.1016/S1004-9541(14)60020-3_bib18) 2010; 114 Zou (10.1016/S1004-9541(14)60020-3_bib6) 2006; 20 Dalaine (10.1016/S1004-9541(14)60020-3_bib20) 1998; 83 Zou (10.1016/S1004-9541(14)60020-3_bib10) 2007; 32 Yan (10.1016/S1004-9541(14)60020-3_bib14) 2008 Ma (10.1016/S1004-9541(14)60020-3_bib17) 2010; 38 Du (10.1016/S1004-9541(14)60020-3_bib19) 2007; 16 Zhang (10.1016/S1004-9541(14)60020-3_bib8) 2005; 102 Song (10.1016/S1004-9541(14)60020-3_bib11) 2008; 33 Ledesmaa (10.1016/S1004-9541(14)60020-3_bib3) 2011; 101 Xie (10.1016/S1004-9541(14)60020-3_bib15) 2006 Lü (10.1016/S1004-9541(14)60020-3_bib30) 2012 |
| References_xml | – volume: 304 start-page: 40 year: 2006 end-page: 48 ident: bib4 article-title: “Influence of solid-acid catalysts on steam reforming and hydrolysis of dimethyl ether for hydrogen production” publication-title: Appl. Catal. A Gen. – volume: 36 start-page: 79 year: 2008 end-page: 82 ident: bib7 article-title: “Hydrogen production from partial oxidation of dimethyl ether” publication-title: J. Fuel. Chem. Tech. – volume: 156 start-page: 497 year: 2006 end-page: 511 ident: bib1 article-title: “Dimethyl ether (DME) as an alternative fuel” publication-title: J. Power Sources – volume: 202 start-page: 5579 year: 2008 end-page: 5582 ident: bib22 article-title: “Gliding arc discharge-application for adhesion improvement of fibre reinforced polyester composites” publication-title: Surf. Coat. Technol. – volume: 50 start-page: 9466 year: 2011 end-page: 9470 ident: bib29 article-title: “Hydrogen generation by pulsed gliding arc discharge plasma with sprays of alcohol solutions” publication-title: Ind. Eng. Chem. Res. – volume: 32 start-page: 958 year: 2007 end-page: 964 ident: bib10 article-title: “Hydrogen production from partial oxidation of dimethyl ether using corona discharge plasma” publication-title: Int. J. Hydrogen. Energy – volume: 205 start-page: 490 year: 2011 end-page: 494 ident: bib21 article-title: “Gliding arc surface treatment of glass-fiber-reinforced polyester enhanced by ultrasonic irradiation” publication-title: Surf. Coat. Technol. – volume: 146 start-page: 50 year: 2009 end-page: 56 ident: bib9 article-title: “Hydrogen production via partial oxidation and reforming of dimethyl ether” publication-title: Catal. Today – volume: 163 start-page: 653 year: 2007 end-page: 657 ident: bib16 article-title: “Hydrogen production from dimethyl ether using corona discharge plasma” publication-title: J. Power Sources – volume: 90 start-page: 205 year: 2007 end-page: 211 ident: bib5 article-title: “Steam reforming of dimethyl ether to hydrogen-rich gas” publication-title: React. Kinet. Catal. Lett. – year: 2012 ident: bib30 publication-title: “Conversion of alcohol ether fuels into hydrogen with gliding arc discharge plasma” – volume: 102 start-page: 197 year: 2005 end-page: 200 ident: bib8 article-title: “Hydrogen production from partial oxidation and reforming of DME” publication-title: Catal. Lett. – volume: 38 start-page: 201 year: 2010 end-page: 206 ident: bib17 article-title: “Production of hydrogen-rich gas by plasma reforming of dimethyl ether” publication-title: J. Fuel. Chem. Tech. – volume: 83 start-page: 2435 year: 1998 end-page: 2441 ident: bib20 article-title: “A gliding discharge applied to H publication-title: J. Appl. Phys. – volume: 89 start-page: 1187 year: 2010 end-page: 1192 ident: bib28 article-title: “On-board plasma-assisted conversion of heavy hydrocarbons into synthesis gas” publication-title: Fuel – volume: 32 start-page: 1067 year: 2007 end-page: 1079 ident: bib26 article-title: “Partial oxidation of methane with air for synthesis gas production in a multistage gliding arc discharge system” publication-title: Int. J. Hydrogen Energy – volume: 18 start-page: 441 year: 2009 end-page: 444 ident: bib13 article-title: “Effects of additive gases on dimethyl ether conversion through dielectric barrier discharge” publication-title: J. Nat. Gas. Chem. – volume: 20 start-page: 1674 year: 2006 end-page: 1679 ident: bib6 article-title: “Steam reforming of dimethyl ether by AC corona discharge plasma with various waveforms” publication-title: Energy Fuels – volume: 101 start-page: 690 year: 2011 end-page: 697 ident: bib3 article-title: “Hydrogen production by steam reforming of dimethyl ether over Pd-based catalytic monoliths” publication-title: Appl. Catal. B Environ. – volume: 16 start-page: 791 year: 2007 end-page: 797 ident: bib19 article-title: “Decomposition of toluene in a gliding arc discharge plasma reactor” publication-title: Plasma Sources Sci. Technol. – volume: 33 start-page: 5545 year: 2008 end-page: 5553 ident: bib23 article-title: “Plasma assisted dry methane reforming using gliding arc gas discharge: Effect of feed gases proportion” publication-title: Int. J. Hydrogen Energy – volume: 33 start-page: 5060 year: 2008 end-page: 5065 ident: bib11 article-title: “On board hydrogen production from partial oxidation of dimethyl ether by spark discharge plasma reforming” publication-title: Int. J. Hydrogen. Energy – volume: 155 start-page: 874 year: 2009 end-page: 880 ident: bib27 article-title: “Plasma-catalytic reforming of methane in AC microsized gliding arc discharge: Effect of input power, reactor thickness, and catalyst existence” publication-title: Chem. Eng. J. – year: 2006 ident: bib15 publication-title: “Hydrogen generation from DME decomposition with corona discharge” – year: 2008 ident: bib14 publication-title: “Study on the conversion of dimethyl ether through non-equilibrium plasma” – volume: 20 start-page: 58 year: 2002 end-page: 60 ident: bib2 article-title: “DME economy is a key option of solving China's energy and environment problems” publication-title: Sci. Tech. Rev. – volume: 34 start-page: 172 year: 2009 end-page: 177 ident: bib24 article-title: “Characteristics of methane reforming using gliding arc reactor” publication-title: Energy – volume: 148 start-page: 283 year: 2009 end-page: 289 ident: bib25 article-title: “Hydrogen generation from biogas reforming using a gliding arc plasma-catalyst reformer” publication-title: Catal. Today – volume: 114 start-page: 360 year: 2010 end-page: 368 ident: bib18 article-title: “Decomposition of naphthalene by dc gliding arc gas discharge” publication-title: J. Phys. Chem. A – volume: 37 start-page: 729 year: 2008 end-page: 732 ident: bib12 article-title: “GC-MS analysis of liquid products from conversion of dimethyl ether with dielectric barrier discharge plasma” publication-title: Petrochem. Tech. – volume: 16 start-page: 791 issue: 4 year: 2007 ident: 10.1016/S1004-9541(14)60020-3_bib19 article-title: “Decomposition of toluene in a gliding arc discharge plasma reactor” publication-title: Plasma Sources Sci. Technol. doi: 10.1088/0963-0252/16/4/014 – year: 2012 ident: 10.1016/S1004-9541(14)60020-3_bib30 – volume: 37 start-page: 729 issue: 7 year: 2008 ident: 10.1016/S1004-9541(14)60020-3_bib12 article-title: “GC-MS analysis of liquid products from conversion of dimethyl ether with dielectric barrier discharge plasma” publication-title: Petrochem. Tech. – volume: 20 start-page: 1674 issue: 4 year: 2006 ident: 10.1016/S1004-9541(14)60020-3_bib6 article-title: “Steam reforming of dimethyl ether by AC corona discharge plasma with various waveforms” publication-title: Energy Fuels doi: 10.1021/ef060098o – volume: 155 start-page: 874 issue: 3 year: 2009 ident: 10.1016/S1004-9541(14)60020-3_bib27 article-title: “Plasma-catalytic reforming of methane in AC microsized gliding arc discharge: Effect of input power, reactor thickness, and catalyst existence” publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2009.10.009 – year: 2006 ident: 10.1016/S1004-9541(14)60020-3_bib15 – volume: 18 start-page: 441 issue: 4 year: 2009 ident: 10.1016/S1004-9541(14)60020-3_bib13 article-title: “Effects of additive gases on dimethyl ether conversion through dielectric barrier discharge” publication-title: J. Nat. Gas. Chem. doi: 10.1016/S1003-9953(08)60140-1 – volume: 50 start-page: 9466 issue: 15 year: 2011 ident: 10.1016/S1004-9541(14)60020-3_bib29 article-title: “Hydrogen generation by pulsed gliding arc discharge plasma with sprays of alcohol solutions” publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie101920n – volume: 32 start-page: 958 issue: 8 year: 2007 ident: 10.1016/S1004-9541(14)60020-3_bib10 article-title: “Hydrogen production from partial oxidation of dimethyl ether using corona discharge plasma” publication-title: Int. J. Hydrogen. Energy doi: 10.1016/j.ijhydene.2006.09.023 – volume: 32 start-page: 1067 issue: 8 year: 2007 ident: 10.1016/S1004-9541(14)60020-3_bib26 article-title: “Partial oxidation of methane with air for synthesis gas production in a multistage gliding arc discharge system” publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2006.07.013 – volume: 38 start-page: 201 issue: 2 year: 2010 ident: 10.1016/S1004-9541(14)60020-3_bib17 article-title: “Production of hydrogen-rich gas by plasma reforming of dimethyl ether” publication-title: J. Fuel. Chem. Tech. doi: 10.1016/S1872-5813(10)60030-8 – volume: 34 start-page: 172 issue: 2 year: 2009 ident: 10.1016/S1004-9541(14)60020-3_bib24 article-title: “Characteristics of methane reforming using gliding arc reactor” publication-title: Energy doi: 10.1016/j.energy.2008.11.006 – year: 2008 ident: 10.1016/S1004-9541(14)60020-3_bib14 – volume: 36 start-page: 79 issue: 1 year: 2008 ident: 10.1016/S1004-9541(14)60020-3_bib7 article-title: “Hydrogen production from partial oxidation of dimethyl ether” publication-title: J. Fuel. Chem. Tech. – volume: 33 start-page: 5545 issue: 20 year: 2008 ident: 10.1016/S1004-9541(14)60020-3_bib23 article-title: “Plasma assisted dry methane reforming using gliding arc gas discharge: Effect of feed gases proportion” publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2008.05.101 – volume: 102 start-page: 197 issue: 3-4 year: 2005 ident: 10.1016/S1004-9541(14)60020-3_bib8 article-title: “Hydrogen production from partial oxidation and reforming of DME” publication-title: Catal. Lett. doi: 10.1007/s10562-005-5855-5 – volume: 163 start-page: 653 issue: 2 year: 2007 ident: 10.1016/S1004-9541(14)60020-3_bib16 article-title: “Hydrogen production from dimethyl ether using corona discharge plasma” publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2006.02.078 – volume: 33 start-page: 5060 issue: 19 year: 2008 ident: 10.1016/S1004-9541(14)60020-3_bib11 article-title: “On board hydrogen production from partial oxidation of dimethyl ether by spark discharge plasma reforming” publication-title: Int. J. Hydrogen. Energy doi: 10.1016/j.ijhydene.2008.07.090 – volume: 148 start-page: 283 issue: 3-4 year: 2009 ident: 10.1016/S1004-9541(14)60020-3_bib25 article-title: “Hydrogen generation from biogas reforming using a gliding arc plasma-catalyst reformer” publication-title: Catal. Today doi: 10.1016/j.cattod.2009.09.019 – volume: 156 start-page: 497 year: 2006 ident: 10.1016/S1004-9541(14)60020-3_bib1 article-title: “Dimethyl ether (DME) as an alternative fuel” publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2005.05.082 – volume: 202 start-page: 5579 issue: 22-23 year: 2008 ident: 10.1016/S1004-9541(14)60020-3_bib22 article-title: “Gliding arc discharge-application for adhesion improvement of fibre reinforced polyester composites” publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2008.06.076 – volume: 90 start-page: 205 issue: 1 year: 2007 ident: 10.1016/S1004-9541(14)60020-3_bib5 article-title: “Steam reforming of dimethyl ether to hydrogen-rich gas” publication-title: React. Kinet. Catal. Lett. doi: 10.1007/s11144-007-5082-8 – volume: 114 start-page: 360 issue: 1 year: 2010 ident: 10.1016/S1004-9541(14)60020-3_bib18 article-title: “Decomposition of naphthalene by dc gliding arc gas discharge” publication-title: J. Phys. Chem. A doi: 10.1021/jp905082s – volume: 89 start-page: 1187 issue: 6 year: 2010 ident: 10.1016/S1004-9541(14)60020-3_bib28 article-title: “On-board plasma-assisted conversion of heavy hydrocarbons into synthesis gas” publication-title: Fuel doi: 10.1016/j.fuel.2009.11.039 – volume: 146 start-page: 50 issue: 1-2 year: 2009 ident: 10.1016/S1004-9541(14)60020-3_bib9 article-title: “Hydrogen production via partial oxidation and reforming of dimethyl ether” publication-title: Catal. Today doi: 10.1016/j.cattod.2009.01.026 – volume: 304 start-page: 40 issue: 1 year: 2006 ident: 10.1016/S1004-9541(14)60020-3_bib4 article-title: “Influence of solid-acid catalysts on steam reforming and hydrolysis of dimethyl ether for hydrogen production” publication-title: Appl. Catal. A Gen. doi: 10.1016/j.apcata.2006.02.021 – volume: 83 start-page: 2435 issue: 5 year: 1998 ident: 10.1016/S1004-9541(14)60020-3_bib20 article-title: “A gliding discharge applied to H2S destruction” publication-title: J. Appl. Phys. doi: 10.1063/1.367003 – volume: 205 start-page: 490 issue: 2 year: 2011 ident: 10.1016/S1004-9541(14)60020-3_bib21 article-title: “Gliding arc surface treatment of glass-fiber-reinforced polyester enhanced by ultrasonic irradiation” publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2011.01.061 – volume: 20 start-page: 58 issue: 6 year: 2002 ident: 10.1016/S1004-9541(14)60020-3_bib2 article-title: “DME economy is a key option of solving China's energy and environment problems” publication-title: Sci. Tech. Rev. – volume: 101 start-page: 690 issue: 3-4 year: 2011 ident: 10.1016/S1004-9541(14)60020-3_bib3 article-title: “Hydrogen production by steam reforming of dimethyl ether over Pd-based catalytic monoliths” publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2010.11.011 |
| SSID | ssj0020818 |
| Score | 2.0304725 |
| Snippet | Gliding arc gas discharge plasma was used for the generation of hydrogen from steam reforming of dimethyl ether (DME). A systemic procedure was employed to... Gliding arc gas discharge plasma was used for the generation of hydrogen from steam reforming of dimethyl ether (DME). A systemic procedure was employed to... |
| SourceID | proquest crossref elsevier chongqing |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 104 |
| SubjectTerms | Conversion Dimethyl ether Electric arcs Electrodes Gas discharges Gas flow Gliding gliding arc gas discharge hydrogen production Reforming steam reforming 二甲醚 制氢 放电等离子体 气体 水蒸气重整 滑动弧 电极间隙 进气流量 |
| Title | Steam Reforming of Dimethyl Ether by Gliding Arc Gas Discharge Plasma for Hydrogen Production |
| URI | http://lib.cqvip.com/qk/84275X/201401/48458146.html https://dx.doi.org/10.1016/S1004-9541(14)60020-3 https://www.proquest.com/docview/1541430530 https://www.proquest.com/docview/1551060280 https://www.proquest.com/docview/1677994667 |
| Volume | 22 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 2210-321X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0020818 issn: 1004-9541 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier Freedom Collection customDbUrl: eissn: 2210-321X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0020818 issn: 1004-9541 databaseCode: AIKHN dateStart: 20060201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 2210-321X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0020818 issn: 1004-9541 databaseCode: ACRLP dateStart: 20060201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 2210-321X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0020818 issn: 1004-9541 databaseCode: .~1 dateStart: 20060201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 2210-321X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0020818 issn: 1004-9541 databaseCode: AKRWK dateStart: 20060201 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9wwDI8QexkPaF-IuzGUSXuAh3Dt1W3Sx9MNuG0SQgwkXlCUpCk76WgZdzzcC3_77LS9bUgDaa-RY0V2aju1_TNjnwxGbSoprCD4JwHoQoSJCxAyAlsqm8bGhCrfk2xyAV8v08s1Nu56YaissrX9jU0P1rpdGbTSHNxOp4PvhHWWp0BttSGfRh3sIGmKwcHDqsxjSJBtIeMZgSDq3108DYewuBfDfmAiEsJY-FFX1z_Rc_zLVz2y2sEVHb1im20MyUfNMV-zNV-9YRt_IAu-ZVdUp3vDzzzFpLjC65J_ntK46OWMH1LQx-2SH8-m5LqQk-PHZo4U84Cc5PkpBtU3huNuPlkWdzVeM37agMOiIt-xi6PD8_FEtJMUhIMEFgK8LCNncm9SJa0ygJIrCiV9lnkCjCnLYSkBcmVs7qTNikwV1IWK0YF1zkbJFluv6spvMy6dTRQYJRMzBG8L69Dag0mzXMX43jU91l_JT982iBkaFKT0r7HHoBOodi0GOY3CmOlVsRnpRJNO8FGig0500mMHq20dy2c2qE5b-q_bpNFRPLf1Y6ddjV8apU9M5ev7uY5pYjqaxyR6igZtXEbp6idoMilzgvWX_f8_5nv2EpUDzc-gHba-uLv3HzA8WtjdcP932YvRl2-Tk19EJQbN |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYoPbQcEPShLtDiSj20B7PJZhI7x4rXtqUItSBxqSzbccpKSwLsctgLv50ZJ9kWpILUqzUeWTP2zNgz_oaxDwajNpUUVhD8kwB0IcLEBQgZgS2VTWNjQpXvYTY8ga-n6ekC2-7-wlBZZWv7G5serHU70m-l2b8Yjfo_CessT4G-1YZ82hP2FNKBpBvY1s28zmNAmG0h5RmBIPI_33gaFmHwYwyfAheREMjCWV39vkTX8S9ndc9sB1-0t8KW2yCSf27WucoWfPWCLf0FLfiS_aJC3XP-w1NQiiO8LvnOiPpFz8Z8l6I-bmd8fzwi34WcHN83E6SYBOgkz48wqj43HGfz4ay4qnGf8aMGHRY1-Yqd7O0ebw9F20pBOEhgKsDLMnIm9yZV0ioDKLqiUNJnmSfEmLIclBIgV8bmTtqsyFRB31AxPLDO2Sh5zRaruvJvGJfOJgqMkokZgLeFdWjuwaRZrmK88JoeW5vLT180kBkaFKT02Nhj0AlUuxaEnHphjPW82ox0okkneCvRQSc66bGt-bSO5SMTVKctfWc7afQUj01932lX41Gj_ImpfH090TG1TEf7mEQP0aCRyyhf_QBNJmVOuP5y7f-XucmeDY-_H-iDL4ff1tlzVBQ0L0MbbHF6de3fYqw0te_CWbgFR9gIYg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Steam+Reforming+of+Dimethyl+Ether+by+Gliding+Arc+Gas+Discharge+Plasma+for+Hydrogen+Production&rft.jtitle=%E4%B8%AD%E5%9B%BD%E5%8C%96%E5%AD%A6%E5%B7%A5%E7%A8%8B%E5%AD%A6%E6%8A%A5%EF%BC%9A%E8%8B%B1%E6%96%87%E7%89%88&rft.au=%E7%8E%8B%E4%BF%9D%E4%BC%9F+%E5%AD%99%E5%90%AF%E6%A2%85+%E5%90%95%E4%B8%80%E5%86%9B+%E6%9D%A8%E7%BE%8E%E7%90%B3+%E9%97%AB%E6%96%87%E5%A8%9F&rft.date=2014&rft.issn=1004-9541&rft.eissn=2210-321X&rft.issue=1&rft.spage=104&rft.epage=112&rft_id=info:doi/10.1016%2FS1004-9541%2814%2960020-3&rft.externalDocID=48458146 |
| thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F84275X%2F84275X.jpg |