Steam Reforming of Dimethyl Ether by Gliding Arc Gas Discharge Plasma for Hydrogen Production

Gliding arc gas discharge plasma was used for the generation of hydrogen from steam reforming of dimethyl ether (DME). A systemic procedure was employed to determine the suitable experimental conditions. It was found that DME conversion first increased up to the maximum and then decreased slightly w...

Full description

Saved in:
Bibliographic Details
Published inChinese journal of chemical engineering Vol. 22; no. 1; pp. 104 - 112
Main Author 王保伟 孙启梅 吕一军 杨美琳 闫文娟
Format Journal Article
LanguageEnglish
Published Elsevier B.V 2014
Subjects
Online AccessGet full text
ISSN1004-9541
2210-321X
DOI10.1016/S1004-9541(14)60020-3

Cover

Abstract Gliding arc gas discharge plasma was used for the generation of hydrogen from steam reforming of dimethyl ether (DME). A systemic procedure was employed to determine the suitable experimental conditions. It was found that DME conversion first increased up to the maximum and then decreased slightly with the increase of added water and air. The increase of total feed gas flow rate resulted in the decrease of DME conversion and hydrogen yield, but hydrogen energy consumption dropped down to the lowest as total feed gas flow rate increased to 76 ml. min^-1. Larger electrode gap and higher discharge voltage were advantageous. Electrode shape had an important effect on the conversion of DME and production of H2- Among the five electrodes, electrode 2# with valid length of 55 mm and the radian of 34 degrees of the top electrode section was the best option, which enhanced obviously the conversion of DME.
AbstractList Gliding arc gas discharge plasma was used for the generation of hydrogen from steam reforming of dimethyl ether (DME). A systemic procedure was employed to determine the suitable experimental conditions. It was found that DME conversion first increased up to the maximum and then decreased slightly with the increase of added water and air. The increase of total feed gas flow rate resulted in the decrease of DME conversion and hydrogen yield, but hydrogen energy consumption dropped down to the lowest as total feed gas flow rate increased to 76 ml[middot]min super(-1). Larger electrode gap and higher discharge voltage were advantageous. Electrode shape had an important effect on the conversion of DME and production of H sub(2). Among the five electrodes, electrode 2 super(#) with valid length of 55 mm and the radian of 34 degrees of the top electrode section was the best option, which enhanced obviously the conversion of DME.
Gliding arc gas discharge plasma was used for the generation of hydrogen from steam reforming of dimethyl ether (DME). A systemic procedure was employed to determine the suitable experimental conditions. It was found that DME conversion first increased up to the maximum and then decreased slightly with the increase of added water and air. The increase of total feed gas flow rate resulted in the decrease of DME conversion and hydrogen yield, but hydrogen energy consumption dropped down to the lowest as total feed gas flow rate increased to 76 ml·min−1. Larger electrode gap and higher discharge voltage were advantageous. Electrode shape had an important effect on the conversion of DME and production of H2. Among the five electrodes, electrode 2# with valid length of 55 mm and the radian of 34 degrees of the top electrode section was the best option, which enhanced obviously the conversion of DME.
Gliding arc gas discharge plasma was used for the generation of hydrogen from steam reforming of dimethyl ether (DME). A systemic procedure was employed to determine the suitable experimental conditions. It was found that DME conversion first increased up to the maximum and then decreased slightly with the increase of added water and air. The increase of total feed gas flow rate resulted in the decrease of DME conversion and hydrogen yield, but hydrogen energy consumption dropped down to the lowest as total feed gas flow rate increased to 76 ml.min-1. Larger electrode gap and higher discharge voltage were advantageous. Electrode shape had an important effect on the conversion of DME and production of H2. Among the five electrodes, electrode 2# with valid length of 55 mm and the radian of 34 degrees of the top electrode section was the best option, which enhanced obviously the conversion of DME.
Gliding arc gas discharge plasma was used for the generation of hydrogen from steam reforming of dimethyl ether (DME). A systemic procedure was employed to determine the suitable experimental conditions. It was found that DME conversion first increased up to the maximum and then decreased slightly with the increase of added water and air. The increase of total feed gas flow rate resulted in the decrease of DME conversion and hydrogen yield, but hydrogen energy consumption dropped down to the lowest as total feed gas flow rate increased to 76 ml. min^-1. Larger electrode gap and higher discharge voltage were advantageous. Electrode shape had an important effect on the conversion of DME and production of H2- Among the five electrodes, electrode 2# with valid length of 55 mm and the radian of 34 degrees of the top electrode section was the best option, which enhanced obviously the conversion of DME.
Author 王保伟 孙启梅 吕一军 杨美琳 闫文娟
AuthorAffiliation Key Laboratory for Green Chemical Technology, School of Chemical Engineering Technology, Tianjin University,Tianjin 300072, China
Author_xml – sequence: 1
  fullname: 王保伟 孙启梅 吕一军 杨美琳 闫文娟
BookMark eNqNkUFr3DAQhUVJoJukP6Gg3tKDW8keSzI9lJCmm0CgoUmglyJkabyrYluJpC3sv6-dDTnksj2NYL73Rrx3RA7GMCIh7zn7xBkXn285Y1A0NfBTDh8FYyUrqjdkUZZ8epT81wFZvCBvyVFKf2ZGcbUgv28zmoH-xC7EwY8rGjr6zQ-Y19ueXuQ1Rtpu6bL3bl6eRUuXJk1EsmsTV0hvepMGQyc1vdy6GFY40psY3MZmH8YTctiZPuG753lM7r9f3J1fFtc_llfnZ9eFhQpyASg7Zk2DplayVQYYNM4piUIgA8W7ruwkQKNM21jZCieUYwJkyXhrbcuqY3K6832I4XGDKeth-iH2vRkxbJLmQsqmASHkfrSuOROsVP_hOsUJFaurGf2yQ20MKUXstPXZzBHkaHyvOdNzVfqpKj33oDnop6p0NanrV-qH6AcTt3t1X3c6nLL96zHqZD2OFp2PaLN2we91-PB8eR3G1ePU8ctpUFArDqL6BwHLtvU
CitedBy_id crossref_primary_10_1016_j_cjche_2022_03_002
crossref_primary_10_1007_s40201_019_00369_8
crossref_primary_10_1016_j_jcou_2018_12_019
crossref_primary_10_1007_s11705_019_1811_6
crossref_primary_10_1016_j_apenergy_2016_01_092
crossref_primary_10_1016_j_ijhydene_2019_07_042
crossref_primary_10_4236_jpee_2016_45004
crossref_primary_10_1016_j_cjche_2018_01_006
Cites_doi 10.1088/0963-0252/16/4/014
10.1021/ef060098o
10.1016/j.cej.2009.10.009
10.1016/S1003-9953(08)60140-1
10.1021/ie101920n
10.1016/j.ijhydene.2006.09.023
10.1016/j.ijhydene.2006.07.013
10.1016/S1872-5813(10)60030-8
10.1016/j.energy.2008.11.006
10.1016/j.ijhydene.2008.05.101
10.1007/s10562-005-5855-5
10.1016/j.jpowsour.2006.02.078
10.1016/j.ijhydene.2008.07.090
10.1016/j.cattod.2009.09.019
10.1016/j.jpowsour.2005.05.082
10.1016/j.surfcoat.2008.06.076
10.1007/s11144-007-5082-8
10.1021/jp905082s
10.1016/j.fuel.2009.11.039
10.1016/j.cattod.2009.01.026
10.1016/j.apcata.2006.02.021
10.1063/1.367003
10.1016/j.surfcoat.2011.01.061
10.1016/j.apcatb.2010.11.011
ContentType Journal Article
Copyright 2014 Chemical Industry and Engineering Society of China (CIESC) and Chemical Industry Press (CIP)
Copyright_xml – notice: 2014 Chemical Industry and Engineering Society of China (CIESC) and Chemical Industry Press (CIP)
DBID 2RA
92L
CQIGP
W92
~WA
AAYXX
CITATION
7U5
8FD
L7M
7SU
C1K
FR3
DOI 10.1016/S1004-9541(14)60020-3
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
中文科技期刊数据库-7.0平台
中文科技期刊数据库-工程技术
中文科技期刊数据库- 镜像站点
CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Environmental Engineering Abstracts
Environmental Sciences and Pollution Management
Engineering Research Database
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Solid State and Superconductivity Abstracts
Engineering Research Database
Environmental Engineering Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Technology Research Database
Technology Research Database

Solid State and Superconductivity Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitleAlternate Steam Reforming of Dimethyl Ether by Gliding Arc Gas Discharge Plasma for Hydrogen Production
EISSN 2210-321X
EndPage 112
ExternalDocumentID 10_1016_S1004_9541_14_60020_3
S1004954114600203
48458146
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 21176175, 20606023
GroupedDBID --K
--M
.~1
0R~
188
1B1
1~.
1~5
29B
2B.
2C0
2RA
4.4
457
4G.
5GY
5VR
5VS
7-5
71M
8P~
8RM
92H
92I
92L
92R
93N
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABMAC
ABNUV
ABXDB
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFUIB
AGHFR
AGUBO
AGYEJ
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CCEZO
CDRFL
CHBEP
CQIGP
CS3
CW9
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO9
EP2
EP3
FA0
FDB
FEDTE
FIRID
FNPLU
FYGXN
GBLVA
HVGLF
HZ~
J1W
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
RIG
ROL
SDC
SDF
SDG
SDH
SES
SPC
SPCBC
SSG
SSZ
T5K
TCJ
TGT
UGNYK
W92
~G-
~WA
-SB
-S~
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CAJEB
CITATION
EFKBS
Q--
U1G
U5L
~HD
7U5
8FD
L7M
7SU
C1K
FR3
ID FETCH-LOGICAL-c434t-4e7f0ca9ea587b8a4049dd87e66e0481ff2f74498ab9c7b6d68d0647201bccb03
IEDL.DBID .~1
ISSN 1004-9541
IngestDate Sat Sep 27 20:42:45 EDT 2025
Tue Oct 07 09:41:28 EDT 2025
Mon Sep 29 06:25:20 EDT 2025
Thu Apr 24 22:58:02 EDT 2025
Wed Oct 01 03:37:08 EDT 2025
Fri Feb 23 02:37:35 EST 2024
Wed Feb 14 10:38:41 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords dimethyl ether
gliding arc gas discharge
steam reforming
hydrogen production
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c434t-4e7f0ca9ea587b8a4049dd87e66e0481ff2f74498ab9c7b6d68d0647201bccb03
Notes WANG Baowei, SUN Qimei , LU Yijun, YANG Meilin and YAN Wenjuan
Gliding arc gas discharge plasma was used for the generation of hydrogen from steam reforming of dimethyl ether (DME). A systemic procedure was employed to determine the suitable experimental conditions. It was found that DME conversion first increased up to the maximum and then decreased slightly with the increase of added water and air. The increase of total feed gas flow rate resulted in the decrease of DME conversion and hydrogen yield, but hydrogen energy consumption dropped down to the lowest as total feed gas flow rate increased to 76 ml. min^-1. Larger electrode gap and higher discharge voltage were advantageous. Electrode shape had an important effect on the conversion of DME and production of H2- Among the five electrodes, electrode 2# with valid length of 55 mm and the radian of 34 degrees of the top electrode section was the best option, which enhanced obviously the conversion of DME.
11-3270/TQ
dimethyl ether; steam reforming; hydrogen production; gliding arc gas discharge
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PQID 1541430530
PQPubID 23500
PageCount 9
ParticipantIDs proquest_miscellaneous_1677994667
proquest_miscellaneous_1551060280
proquest_miscellaneous_1541430530
crossref_citationtrail_10_1016_S1004_9541_14_60020_3
crossref_primary_10_1016_S1004_9541_14_60020_3
elsevier_sciencedirect_doi_10_1016_S1004_9541_14_60020_3
chongqing_primary_48458146
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014
January 2014
2014-01-00
20140101
PublicationDateYYYYMMDD 2014-01-01
PublicationDate_xml – year: 2014
  text: 2014
PublicationDecade 2010
PublicationTitle Chinese journal of chemical engineering
PublicationTitleAlternate Chinese Journal of Chemical Engineering
PublicationYear 2014
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Yan, Wang, Wang, Zhang, Xu (bib12) 2008; 37
Faungnawakij, Tanaka, Shimoda, Fukunaga, Kawashima, Kikuchi, Eguchi (bib4) 2006; 304
Zou, Zhang, Liu (bib10) 2007; 32
Xie (bib15) 2006
Burlica, Shih, Hnatiuc, Locke (bib29) 2011; 50
Kusano, Norrman, Drews, Leipold (bib21) 2011; 205
Ni, Jin, Li, Zheng (bib2) 2002; 20
Zou, Liu, Zhang (bib6) 2006; 20
Song, Li, Zheng (bib11) 2008; 33
Chun, Yang, Yoshikawa (bib25) 2009; 148
Lü (bib30) 2012
Kusano, Teodoru, Leipold, Andersen, Sorensen, Rozlosnik, Michelsen (bib22) 2008; 202
Bo, Yan, Li, Chi, Cen (bib23) 2008; 33
Sreethawong, Thakonpatthanakun, Chavadej (bib26) 2007; 32
Yang, Lee, Chun (bib24) 2009; 34
Rueangjitt, Sreethawong, Chavadej, Sekiguchi (bib27) 2009; 155
Du, Yan, Cheron (bib19) 2007; 16
Semelsberger, Borup, Greene (bib1) 2006; 156
Wang, Cao, Yan, Xu (bib13) 2009; 18
Zou, Zhang, Liu (bib16) 2007; 163
Zhang, Li, Fujimotoa, Asami (bib8) 2005; 102
Dalaine, Cormier, Lefaucheux (bib20) 1998; 83
Ledesmaa, Ozkanb, Llorcaa (bib3) 2011; 101
Ma, Li (bib17) 2010; 38
Gallagher, Geiger, Polevich, Rabinovich, Gutsol, Fridman (bib28) 2010; 89
Zhang, Du, He, Liu, Liu, Zhou (bib9) 2009; 146
Yan (bib14) 2008
Badmaeva, Volkovaa, Belyaeva, Sobyanina (bib5) 2007; 90
Song, Li, Li, Huang (bib7) 2008; 36
Yu, Li, Tu, Wang, Lu, Yan (bib18) 2010; 114
Chun (10.1016/S1004-9541(14)60020-3_bib25) 2009; 148
Gallagher (10.1016/S1004-9541(14)60020-3_bib28) 2010; 89
Yang (10.1016/S1004-9541(14)60020-3_bib24) 2009; 34
Burlica (10.1016/S1004-9541(14)60020-3_bib29) 2011; 50
Zhang (10.1016/S1004-9541(14)60020-3_bib9) 2009; 146
Kusano (10.1016/S1004-9541(14)60020-3_bib21) 2011; 205
Yan (10.1016/S1004-9541(14)60020-3_bib12) 2008; 37
Rueangjitt (10.1016/S1004-9541(14)60020-3_bib27) 2009; 155
Faungnawakij (10.1016/S1004-9541(14)60020-3_bib4) 2006; 304
Wang (10.1016/S1004-9541(14)60020-3_bib13) 2009; 18
Zou (10.1016/S1004-9541(14)60020-3_bib16) 2007; 163
Kusano (10.1016/S1004-9541(14)60020-3_bib22) 2008; 202
Ni (10.1016/S1004-9541(14)60020-3_bib2) 2002; 20
Sreethawong (10.1016/S1004-9541(14)60020-3_bib26) 2007; 32
Bo (10.1016/S1004-9541(14)60020-3_bib23) 2008; 33
Song (10.1016/S1004-9541(14)60020-3_bib7) 2008; 36
Badmaeva (10.1016/S1004-9541(14)60020-3_bib5) 2007; 90
Semelsberger (10.1016/S1004-9541(14)60020-3_bib1) 2006; 156
Yu (10.1016/S1004-9541(14)60020-3_bib18) 2010; 114
Zou (10.1016/S1004-9541(14)60020-3_bib6) 2006; 20
Dalaine (10.1016/S1004-9541(14)60020-3_bib20) 1998; 83
Zou (10.1016/S1004-9541(14)60020-3_bib10) 2007; 32
Yan (10.1016/S1004-9541(14)60020-3_bib14) 2008
Ma (10.1016/S1004-9541(14)60020-3_bib17) 2010; 38
Du (10.1016/S1004-9541(14)60020-3_bib19) 2007; 16
Zhang (10.1016/S1004-9541(14)60020-3_bib8) 2005; 102
Song (10.1016/S1004-9541(14)60020-3_bib11) 2008; 33
Ledesmaa (10.1016/S1004-9541(14)60020-3_bib3) 2011; 101
Xie (10.1016/S1004-9541(14)60020-3_bib15) 2006
Lü (10.1016/S1004-9541(14)60020-3_bib30) 2012
References_xml – volume: 304
  start-page: 40
  year: 2006
  end-page: 48
  ident: bib4
  article-title: “Influence of solid-acid catalysts on steam reforming and hydrolysis of dimethyl ether for hydrogen production”
  publication-title: Appl. Catal. A Gen.
– volume: 36
  start-page: 79
  year: 2008
  end-page: 82
  ident: bib7
  article-title: “Hydrogen production from partial oxidation of dimethyl ether”
  publication-title: J. Fuel. Chem. Tech.
– volume: 156
  start-page: 497
  year: 2006
  end-page: 511
  ident: bib1
  article-title: “Dimethyl ether (DME) as an alternative fuel”
  publication-title: J. Power Sources
– volume: 202
  start-page: 5579
  year: 2008
  end-page: 5582
  ident: bib22
  article-title: “Gliding arc discharge-application for adhesion improvement of fibre reinforced polyester composites”
  publication-title: Surf. Coat. Technol.
– volume: 50
  start-page: 9466
  year: 2011
  end-page: 9470
  ident: bib29
  article-title: “Hydrogen generation by pulsed gliding arc discharge plasma with sprays of alcohol solutions”
  publication-title: Ind. Eng. Chem. Res.
– volume: 32
  start-page: 958
  year: 2007
  end-page: 964
  ident: bib10
  article-title: “Hydrogen production from partial oxidation of dimethyl ether using corona discharge plasma”
  publication-title: Int. J. Hydrogen. Energy
– volume: 205
  start-page: 490
  year: 2011
  end-page: 494
  ident: bib21
  article-title: “Gliding arc surface treatment of glass-fiber-reinforced polyester enhanced by ultrasonic irradiation”
  publication-title: Surf. Coat. Technol.
– volume: 146
  start-page: 50
  year: 2009
  end-page: 56
  ident: bib9
  article-title: “Hydrogen production via partial oxidation and reforming of dimethyl ether”
  publication-title: Catal. Today
– volume: 163
  start-page: 653
  year: 2007
  end-page: 657
  ident: bib16
  article-title: “Hydrogen production from dimethyl ether using corona discharge plasma”
  publication-title: J. Power Sources
– volume: 90
  start-page: 205
  year: 2007
  end-page: 211
  ident: bib5
  article-title: “Steam reforming of dimethyl ether to hydrogen-rich gas”
  publication-title: React. Kinet. Catal. Lett.
– year: 2012
  ident: bib30
  publication-title: “Conversion of alcohol ether fuels into hydrogen with gliding arc discharge plasma”
– volume: 102
  start-page: 197
  year: 2005
  end-page: 200
  ident: bib8
  article-title: “Hydrogen production from partial oxidation and reforming of DME”
  publication-title: Catal. Lett.
– volume: 38
  start-page: 201
  year: 2010
  end-page: 206
  ident: bib17
  article-title: “Production of hydrogen-rich gas by plasma reforming of dimethyl ether”
  publication-title: J. Fuel. Chem. Tech.
– volume: 83
  start-page: 2435
  year: 1998
  end-page: 2441
  ident: bib20
  article-title: “A gliding discharge applied to H
  publication-title: J. Appl. Phys.
– volume: 89
  start-page: 1187
  year: 2010
  end-page: 1192
  ident: bib28
  article-title: “On-board plasma-assisted conversion of heavy hydrocarbons into synthesis gas”
  publication-title: Fuel
– volume: 32
  start-page: 1067
  year: 2007
  end-page: 1079
  ident: bib26
  article-title: “Partial oxidation of methane with air for synthesis gas production in a multistage gliding arc discharge system”
  publication-title: Int. J. Hydrogen Energy
– volume: 18
  start-page: 441
  year: 2009
  end-page: 444
  ident: bib13
  article-title: “Effects of additive gases on dimethyl ether conversion through dielectric barrier discharge”
  publication-title: J. Nat. Gas. Chem.
– volume: 20
  start-page: 1674
  year: 2006
  end-page: 1679
  ident: bib6
  article-title: “Steam reforming of dimethyl ether by AC corona discharge plasma with various waveforms”
  publication-title: Energy Fuels
– volume: 101
  start-page: 690
  year: 2011
  end-page: 697
  ident: bib3
  article-title: “Hydrogen production by steam reforming of dimethyl ether over Pd-based catalytic monoliths”
  publication-title: Appl. Catal. B Environ.
– volume: 16
  start-page: 791
  year: 2007
  end-page: 797
  ident: bib19
  article-title: “Decomposition of toluene in a gliding arc discharge plasma reactor”
  publication-title: Plasma Sources Sci. Technol.
– volume: 33
  start-page: 5545
  year: 2008
  end-page: 5553
  ident: bib23
  article-title: “Plasma assisted dry methane reforming using gliding arc gas discharge: Effect of feed gases proportion”
  publication-title: Int. J. Hydrogen Energy
– volume: 33
  start-page: 5060
  year: 2008
  end-page: 5065
  ident: bib11
  article-title: “On board hydrogen production from partial oxidation of dimethyl ether by spark discharge plasma reforming”
  publication-title: Int. J. Hydrogen. Energy
– volume: 155
  start-page: 874
  year: 2009
  end-page: 880
  ident: bib27
  article-title: “Plasma-catalytic reforming of methane in AC microsized gliding arc discharge: Effect of input power, reactor thickness, and catalyst existence”
  publication-title: Chem. Eng. J.
– year: 2006
  ident: bib15
  publication-title: “Hydrogen generation from DME decomposition with corona discharge”
– year: 2008
  ident: bib14
  publication-title: “Study on the conversion of dimethyl ether through non-equilibrium plasma”
– volume: 20
  start-page: 58
  year: 2002
  end-page: 60
  ident: bib2
  article-title: “DME economy is a key option of solving China's energy and environment problems”
  publication-title: Sci. Tech. Rev.
– volume: 34
  start-page: 172
  year: 2009
  end-page: 177
  ident: bib24
  article-title: “Characteristics of methane reforming using gliding arc reactor”
  publication-title: Energy
– volume: 148
  start-page: 283
  year: 2009
  end-page: 289
  ident: bib25
  article-title: “Hydrogen generation from biogas reforming using a gliding arc plasma-catalyst reformer”
  publication-title: Catal. Today
– volume: 114
  start-page: 360
  year: 2010
  end-page: 368
  ident: bib18
  article-title: “Decomposition of naphthalene by dc gliding arc gas discharge”
  publication-title: J. Phys. Chem. A
– volume: 37
  start-page: 729
  year: 2008
  end-page: 732
  ident: bib12
  article-title: “GC-MS analysis of liquid products from conversion of dimethyl ether with dielectric barrier discharge plasma”
  publication-title: Petrochem. Tech.
– volume: 16
  start-page: 791
  issue: 4
  year: 2007
  ident: 10.1016/S1004-9541(14)60020-3_bib19
  article-title: “Decomposition of toluene in a gliding arc discharge plasma reactor”
  publication-title: Plasma Sources Sci. Technol.
  doi: 10.1088/0963-0252/16/4/014
– year: 2012
  ident: 10.1016/S1004-9541(14)60020-3_bib30
– volume: 37
  start-page: 729
  issue: 7
  year: 2008
  ident: 10.1016/S1004-9541(14)60020-3_bib12
  article-title: “GC-MS analysis of liquid products from conversion of dimethyl ether with dielectric barrier discharge plasma”
  publication-title: Petrochem. Tech.
– volume: 20
  start-page: 1674
  issue: 4
  year: 2006
  ident: 10.1016/S1004-9541(14)60020-3_bib6
  article-title: “Steam reforming of dimethyl ether by AC corona discharge plasma with various waveforms”
  publication-title: Energy Fuels
  doi: 10.1021/ef060098o
– volume: 155
  start-page: 874
  issue: 3
  year: 2009
  ident: 10.1016/S1004-9541(14)60020-3_bib27
  article-title: “Plasma-catalytic reforming of methane in AC microsized gliding arc discharge: Effect of input power, reactor thickness, and catalyst existence”
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2009.10.009
– year: 2006
  ident: 10.1016/S1004-9541(14)60020-3_bib15
– volume: 18
  start-page: 441
  issue: 4
  year: 2009
  ident: 10.1016/S1004-9541(14)60020-3_bib13
  article-title: “Effects of additive gases on dimethyl ether conversion through dielectric barrier discharge”
  publication-title: J. Nat. Gas. Chem.
  doi: 10.1016/S1003-9953(08)60140-1
– volume: 50
  start-page: 9466
  issue: 15
  year: 2011
  ident: 10.1016/S1004-9541(14)60020-3_bib29
  article-title: “Hydrogen generation by pulsed gliding arc discharge plasma with sprays of alcohol solutions”
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie101920n
– volume: 32
  start-page: 958
  issue: 8
  year: 2007
  ident: 10.1016/S1004-9541(14)60020-3_bib10
  article-title: “Hydrogen production from partial oxidation of dimethyl ether using corona discharge plasma”
  publication-title: Int. J. Hydrogen. Energy
  doi: 10.1016/j.ijhydene.2006.09.023
– volume: 32
  start-page: 1067
  issue: 8
  year: 2007
  ident: 10.1016/S1004-9541(14)60020-3_bib26
  article-title: “Partial oxidation of methane with air for synthesis gas production in a multistage gliding arc discharge system”
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2006.07.013
– volume: 38
  start-page: 201
  issue: 2
  year: 2010
  ident: 10.1016/S1004-9541(14)60020-3_bib17
  article-title: “Production of hydrogen-rich gas by plasma reforming of dimethyl ether”
  publication-title: J. Fuel. Chem. Tech.
  doi: 10.1016/S1872-5813(10)60030-8
– volume: 34
  start-page: 172
  issue: 2
  year: 2009
  ident: 10.1016/S1004-9541(14)60020-3_bib24
  article-title: “Characteristics of methane reforming using gliding arc reactor”
  publication-title: Energy
  doi: 10.1016/j.energy.2008.11.006
– year: 2008
  ident: 10.1016/S1004-9541(14)60020-3_bib14
– volume: 36
  start-page: 79
  issue: 1
  year: 2008
  ident: 10.1016/S1004-9541(14)60020-3_bib7
  article-title: “Hydrogen production from partial oxidation of dimethyl ether”
  publication-title: J. Fuel. Chem. Tech.
– volume: 33
  start-page: 5545
  issue: 20
  year: 2008
  ident: 10.1016/S1004-9541(14)60020-3_bib23
  article-title: “Plasma assisted dry methane reforming using gliding arc gas discharge: Effect of feed gases proportion”
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2008.05.101
– volume: 102
  start-page: 197
  issue: 3-4
  year: 2005
  ident: 10.1016/S1004-9541(14)60020-3_bib8
  article-title: “Hydrogen production from partial oxidation and reforming of DME”
  publication-title: Catal. Lett.
  doi: 10.1007/s10562-005-5855-5
– volume: 163
  start-page: 653
  issue: 2
  year: 2007
  ident: 10.1016/S1004-9541(14)60020-3_bib16
  article-title: “Hydrogen production from dimethyl ether using corona discharge plasma”
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2006.02.078
– volume: 33
  start-page: 5060
  issue: 19
  year: 2008
  ident: 10.1016/S1004-9541(14)60020-3_bib11
  article-title: “On board hydrogen production from partial oxidation of dimethyl ether by spark discharge plasma reforming”
  publication-title: Int. J. Hydrogen. Energy
  doi: 10.1016/j.ijhydene.2008.07.090
– volume: 148
  start-page: 283
  issue: 3-4
  year: 2009
  ident: 10.1016/S1004-9541(14)60020-3_bib25
  article-title: “Hydrogen generation from biogas reforming using a gliding arc plasma-catalyst reformer”
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2009.09.019
– volume: 156
  start-page: 497
  year: 2006
  ident: 10.1016/S1004-9541(14)60020-3_bib1
  article-title: “Dimethyl ether (DME) as an alternative fuel”
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2005.05.082
– volume: 202
  start-page: 5579
  issue: 22-23
  year: 2008
  ident: 10.1016/S1004-9541(14)60020-3_bib22
  article-title: “Gliding arc discharge-application for adhesion improvement of fibre reinforced polyester composites”
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2008.06.076
– volume: 90
  start-page: 205
  issue: 1
  year: 2007
  ident: 10.1016/S1004-9541(14)60020-3_bib5
  article-title: “Steam reforming of dimethyl ether to hydrogen-rich gas”
  publication-title: React. Kinet. Catal. Lett.
  doi: 10.1007/s11144-007-5082-8
– volume: 114
  start-page: 360
  issue: 1
  year: 2010
  ident: 10.1016/S1004-9541(14)60020-3_bib18
  article-title: “Decomposition of naphthalene by dc gliding arc gas discharge”
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp905082s
– volume: 89
  start-page: 1187
  issue: 6
  year: 2010
  ident: 10.1016/S1004-9541(14)60020-3_bib28
  article-title: “On-board plasma-assisted conversion of heavy hydrocarbons into synthesis gas”
  publication-title: Fuel
  doi: 10.1016/j.fuel.2009.11.039
– volume: 146
  start-page: 50
  issue: 1-2
  year: 2009
  ident: 10.1016/S1004-9541(14)60020-3_bib9
  article-title: “Hydrogen production via partial oxidation and reforming of dimethyl ether”
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2009.01.026
– volume: 304
  start-page: 40
  issue: 1
  year: 2006
  ident: 10.1016/S1004-9541(14)60020-3_bib4
  article-title: “Influence of solid-acid catalysts on steam reforming and hydrolysis of dimethyl ether for hydrogen production”
  publication-title: Appl. Catal. A Gen.
  doi: 10.1016/j.apcata.2006.02.021
– volume: 83
  start-page: 2435
  issue: 5
  year: 1998
  ident: 10.1016/S1004-9541(14)60020-3_bib20
  article-title: “A gliding discharge applied to H2S destruction”
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.367003
– volume: 205
  start-page: 490
  issue: 2
  year: 2011
  ident: 10.1016/S1004-9541(14)60020-3_bib21
  article-title: “Gliding arc surface treatment of glass-fiber-reinforced polyester enhanced by ultrasonic irradiation”
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2011.01.061
– volume: 20
  start-page: 58
  issue: 6
  year: 2002
  ident: 10.1016/S1004-9541(14)60020-3_bib2
  article-title: “DME economy is a key option of solving China's energy and environment problems”
  publication-title: Sci. Tech. Rev.
– volume: 101
  start-page: 690
  issue: 3-4
  year: 2011
  ident: 10.1016/S1004-9541(14)60020-3_bib3
  article-title: “Hydrogen production by steam reforming of dimethyl ether over Pd-based catalytic monoliths”
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2010.11.011
SSID ssj0020818
Score 2.0304725
Snippet Gliding arc gas discharge plasma was used for the generation of hydrogen from steam reforming of dimethyl ether (DME). A systemic procedure was employed to...
Gliding arc gas discharge plasma was used for the generation of hydrogen from steam reforming of dimethyl ether (DME). A systemic procedure was employed to...
SourceID proquest
crossref
elsevier
chongqing
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 104
SubjectTerms Conversion
Dimethyl ether
Electric arcs
Electrodes
Gas discharges
Gas flow
Gliding
gliding arc gas discharge
hydrogen production
Reforming
steam reforming
二甲醚
制氢
放电等离子体
气体
水蒸气重整
滑动弧
电极间隙
进气流量
Title Steam Reforming of Dimethyl Ether by Gliding Arc Gas Discharge Plasma for Hydrogen Production
URI http://lib.cqvip.com/qk/84275X/201401/48458146.html
https://dx.doi.org/10.1016/S1004-9541(14)60020-3
https://www.proquest.com/docview/1541430530
https://www.proquest.com/docview/1551060280
https://www.proquest.com/docview/1677994667
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 2210-321X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020818
  issn: 1004-9541
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier Freedom Collection
  customDbUrl:
  eissn: 2210-321X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020818
  issn: 1004-9541
  databaseCode: AIKHN
  dateStart: 20060201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 2210-321X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020818
  issn: 1004-9541
  databaseCode: ACRLP
  dateStart: 20060201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 2210-321X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020818
  issn: 1004-9541
  databaseCode: .~1
  dateStart: 20060201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 2210-321X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020818
  issn: 1004-9541
  databaseCode: AKRWK
  dateStart: 20060201
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9wwDI8QexkPaF-IuzGUSXuAh3Dt1W3Sx9MNuG0SQgwkXlCUpCk76WgZdzzcC3_77LS9bUgDaa-RY0V2aju1_TNjnwxGbSoprCD4JwHoQoSJCxAyAlsqm8bGhCrfk2xyAV8v08s1Nu56YaissrX9jU0P1rpdGbTSHNxOp4PvhHWWp0BttSGfRh3sIGmKwcHDqsxjSJBtIeMZgSDq3108DYewuBfDfmAiEsJY-FFX1z_Rc_zLVz2y2sEVHb1im20MyUfNMV-zNV-9YRt_IAu-ZVdUp3vDzzzFpLjC65J_ntK46OWMH1LQx-2SH8-m5LqQk-PHZo4U84Cc5PkpBtU3huNuPlkWdzVeM37agMOiIt-xi6PD8_FEtJMUhIMEFgK8LCNncm9SJa0ygJIrCiV9lnkCjCnLYSkBcmVs7qTNikwV1IWK0YF1zkbJFluv6spvMy6dTRQYJRMzBG8L69Dag0mzXMX43jU91l_JT982iBkaFKT0r7HHoBOodi0GOY3CmOlVsRnpRJNO8FGig0500mMHq20dy2c2qE5b-q_bpNFRPLf1Y6ddjV8apU9M5ev7uY5pYjqaxyR6igZtXEbp6idoMilzgvWX_f8_5nv2EpUDzc-gHba-uLv3HzA8WtjdcP932YvRl2-Tk19EJQbN
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYoPbQcEPShLtDiSj20B7PJZhI7x4rXtqUItSBxqSzbccpKSwLsctgLv50ZJ9kWpILUqzUeWTP2zNgz_oaxDwajNpUUVhD8kwB0IcLEBQgZgS2VTWNjQpXvYTY8ga-n6ekC2-7-wlBZZWv7G5serHU70m-l2b8Yjfo_CessT4G-1YZ82hP2FNKBpBvY1s28zmNAmG0h5RmBIPI_33gaFmHwYwyfAheREMjCWV39vkTX8S9ndc9sB1-0t8KW2yCSf27WucoWfPWCLf0FLfiS_aJC3XP-w1NQiiO8LvnOiPpFz8Z8l6I-bmd8fzwi34WcHN83E6SYBOgkz48wqj43HGfz4ay4qnGf8aMGHRY1-Yqd7O0ebw9F20pBOEhgKsDLMnIm9yZV0ioDKLqiUNJnmSfEmLIclBIgV8bmTtqsyFRB31AxPLDO2Sh5zRaruvJvGJfOJgqMkokZgLeFdWjuwaRZrmK88JoeW5vLT180kBkaFKT02Nhj0AlUuxaEnHphjPW82ox0okkneCvRQSc66bGt-bSO5SMTVKctfWc7afQUj01932lX41Gj_ImpfH090TG1TEf7mEQP0aCRyyhf_QBNJmVOuP5y7f-XucmeDY-_H-iDL4ff1tlzVBQ0L0MbbHF6de3fYqw0te_CWbgFR9gIYg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Steam+Reforming+of+Dimethyl+Ether+by+Gliding+Arc+Gas+Discharge+Plasma+for+Hydrogen+Production&rft.jtitle=%E4%B8%AD%E5%9B%BD%E5%8C%96%E5%AD%A6%E5%B7%A5%E7%A8%8B%E5%AD%A6%E6%8A%A5%EF%BC%9A%E8%8B%B1%E6%96%87%E7%89%88&rft.au=%E7%8E%8B%E4%BF%9D%E4%BC%9F+%E5%AD%99%E5%90%AF%E6%A2%85+%E5%90%95%E4%B8%80%E5%86%9B+%E6%9D%A8%E7%BE%8E%E7%90%B3+%E9%97%AB%E6%96%87%E5%A8%9F&rft.date=2014&rft.issn=1004-9541&rft.eissn=2210-321X&rft.issue=1&rft.spage=104&rft.epage=112&rft_id=info:doi/10.1016%2FS1004-9541%2814%2960020-3&rft.externalDocID=48458146
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F84275X%2F84275X.jpg