Topolow: a mapping algorithm for antigenic cross-reactivity and binding affinity assays
Abstract Motivation Understanding antigenic evolution through cross-reactivity assays is crucial for tracking rapidly evolving pathogens requiring regular vaccine updates. However, existing cartography methods, commonly based on multidimensional scaling (MDS), face significant challenges with sparse...
Saved in:
| Published in | Bioinformatics (Oxford, England) Vol. 41; no. 7 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
England
Oxford University Press
01.07.2025
Oxford Publishing Limited (England) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1367-4811 1367-4803 1367-4811 |
| DOI | 10.1093/bioinformatics/btaf372 |
Cover
| Abstract | Abstract
Motivation
Understanding antigenic evolution through cross-reactivity assays is crucial for tracking rapidly evolving pathogens requiring regular vaccine updates. However, existing cartography methods, commonly based on multidimensional scaling (MDS), face significant challenges with sparse and complex data, producing incomplete and inconsistent maps. There is an urgent need for robust computational methods that can accurately map antigenic relationships from incomplete experimental data while maintaining biological relevance, especially given that more than 95% of possible measurements could be missing in large-scale studies.
Results
We present Topolow, an algorithm that transforms cross-reactivity and binding affinity measurements into accurate positions in a phenotype space. Using a physics-inspired model, Topolow achieved comparable prediction accuracy to MDS for H3N2 influenza and 56% and 41% improved accuracy for dengue and HIV, while maintaining complete positioning of all antigens. The method effectively reduces experimental noise and bias, determines optimal dimensionality through likelihood-based estimation, avoiding distortions due to insufficient dimensions, and demonstrates orders of magnitude better stability across multiple runs. We also introduce antigenic velocity vectors, which measure the rate of antigenic advancement of each isolate per unit of time against its temporal and evolutionary related background, revealing the underlying antigenic relationships and cluster transitions.
Availability and implementation
Topolow is implemented in R and freely available at https://doi.org/10.5281/zenodo.15620983 and https://github.com/omid-arhami/topolow. |
|---|---|
| AbstractList | Motivation Understanding antigenic evolution through cross-reactivity assays is crucial for tracking rapidly evolving pathogens requiring regular vaccine updates. However, existing cartography methods, commonly based on multidimensional scaling (MDS), face significant challenges with sparse and complex data, producing incomplete and inconsistent maps. There is an urgent need for robust computational methods that can accurately map antigenic relationships from incomplete experimental data while maintaining biological relevance, especially given that more than 95% of possible measurements could be missing in large-scale studies. Results We present Topolow, an algorithm that transforms cross-reactivity and binding affinity measurements into accurate positions in a phenotype space. Using a physics-inspired model, Topolow achieved comparable prediction accuracy to MDS for H3N2 influenza and 56% and 41% improved accuracy for dengue and HIV, while maintaining complete positioning of all antigens. The method effectively reduces experimental noise and bias, determines optimal dimensionality through likelihood-based estimation, avoiding distortions due to insufficient dimensions, and demonstrates orders of magnitude better stability across multiple runs. We also introduce antigenic velocity vectors, which measure the rate of antigenic advancement of each isolate per unit of time against its temporal and evolutionary related background, revealing the underlying antigenic relationships and cluster transitions. Availability and implementation Topolow is implemented in R and freely available at https://doi.org/10.5281/zenodo.15620983 and https://github.com/omid-arhami/topolow. Understanding antigenic evolution through cross-reactivity assays is crucial for tracking rapidly evolving pathogens requiring regular vaccine updates. However, existing cartography methods, commonly based on multidimensional scaling (MDS), face significant challenges with sparse and complex data, producing incomplete and inconsistent maps. There is an urgent need for robust computational methods that can accurately map antigenic relationships from incomplete experimental data while maintaining biological relevance, especially given that more than 95% of possible measurements could be missing in large-scale studies. We present Topolow, an algorithm that transforms cross-reactivity and binding affinity measurements into accurate positions in a phenotype space. Using a physics-inspired model, Topolow achieved comparable prediction accuracy to MDS for H3N2 influenza and 56% and 41% improved accuracy for dengue and HIV, while maintaining complete positioning of all antigens. The method effectively reduces experimental noise and bias, determines optimal dimensionality through likelihood-based estimation, avoiding distortions due to insufficient dimensions, and demonstrates orders of magnitude better stability across multiple runs. We also introduce antigenic velocity vectors, which measure the rate of antigenic advancement of each isolate per unit of time against its temporal and evolutionary related background, revealing the underlying antigenic relationships and cluster transitions. Topolow is implemented in R and freely available at https://doi.org/10.5281/zenodo.15620983 and https://github.com/omid-arhami/topolow. Abstract Motivation Understanding antigenic evolution through cross-reactivity assays is crucial for tracking rapidly evolving pathogens requiring regular vaccine updates. However, existing cartography methods, commonly based on multidimensional scaling (MDS), face significant challenges with sparse and complex data, producing incomplete and inconsistent maps. There is an urgent need for robust computational methods that can accurately map antigenic relationships from incomplete experimental data while maintaining biological relevance, especially given that more than 95% of possible measurements could be missing in large-scale studies. Results We present Topolow, an algorithm that transforms cross-reactivity and binding affinity measurements into accurate positions in a phenotype space. Using a physics-inspired model, Topolow achieved comparable prediction accuracy to MDS for H3N2 influenza and 56% and 41% improved accuracy for dengue and HIV, while maintaining complete positioning of all antigens. The method effectively reduces experimental noise and bias, determines optimal dimensionality through likelihood-based estimation, avoiding distortions due to insufficient dimensions, and demonstrates orders of magnitude better stability across multiple runs. We also introduce antigenic velocity vectors, which measure the rate of antigenic advancement of each isolate per unit of time against its temporal and evolutionary related background, revealing the underlying antigenic relationships and cluster transitions. Availability and implementation Topolow is implemented in R and freely available at https://doi.org/10.5281/zenodo.15620983 and https://github.com/omid-arhami/topolow. Understanding antigenic evolution through cross-reactivity assays is crucial for tracking rapidly evolving pathogens requiring regular vaccine updates. However, existing cartography methods, commonly based on multidimensional scaling (MDS), face significant challenges with sparse and complex data, producing incomplete and inconsistent maps. There is an urgent need for robust computational methods that can accurately map antigenic relationships from incomplete experimental data while maintaining biological relevance, especially given that more than 95% of possible measurements could be missing in large-scale studies.MOTIVATIONUnderstanding antigenic evolution through cross-reactivity assays is crucial for tracking rapidly evolving pathogens requiring regular vaccine updates. However, existing cartography methods, commonly based on multidimensional scaling (MDS), face significant challenges with sparse and complex data, producing incomplete and inconsistent maps. There is an urgent need for robust computational methods that can accurately map antigenic relationships from incomplete experimental data while maintaining biological relevance, especially given that more than 95% of possible measurements could be missing in large-scale studies.We present Topolow, an algorithm that transforms cross-reactivity and binding affinity measurements into accurate positions in a phenotype space. Using a physics-inspired model, Topolow achieved comparable prediction accuracy to MDS for H3N2 influenza and 56% and 41% improved accuracy for Dengue and HIV, while maintaining complete positioning of all antigens. The method effectively reduces experimental noise and bias, determines optimal dimensionality through likelihood-based estimation, avoiding distortions due to insufficient dimensions, and demonstrates orders of magnitude better stability across multiple runs. We also introduce antigenic velocity vectors, which measure the rate of antigenic advancement of each isolate per unit of time against its temporal and evolutionary related background, revealing the underlying antigenic relationships and cluster transitions.RESULTSWe present Topolow, an algorithm that transforms cross-reactivity and binding affinity measurements into accurate positions in a phenotype space. Using a physics-inspired model, Topolow achieved comparable prediction accuracy to MDS for H3N2 influenza and 56% and 41% improved accuracy for Dengue and HIV, while maintaining complete positioning of all antigens. The method effectively reduces experimental noise and bias, determines optimal dimensionality through likelihood-based estimation, avoiding distortions due to insufficient dimensions, and demonstrates orders of magnitude better stability across multiple runs. We also introduce antigenic velocity vectors, which measure the rate of antigenic advancement of each isolate per unit of time against its temporal and evolutionary related background, revealing the underlying antigenic relationships and cluster transitions.Topolow is implemented in R and freely available at [https://doi.org/10.5281/zenodo.15620983] and [https://github.com/omid-arhami/topolow].AVAILABILITY AND IMPLEMENTATIONTopolow is implemented in R and freely available at [https://doi.org/10.5281/zenodo.15620983] and [https://github.com/omid-arhami/topolow].Available at Bioinformatics online.SUPPLEMENTARY INFORMATIONAvailable at Bioinformatics online. |
| Author | Arhami, Omid Rohani, Pejman |
| Author_xml | – sequence: 1 givenname: Omid orcidid: 0009-0005-2681-6598 surname: Arhami fullname: Arhami, Omid – sequence: 2 givenname: Pejman orcidid: 0000-0002-7221-3801 surname: Rohani fullname: Rohani, Pejman email: rohani@uga.edu |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40563242$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkclOwzAQhi0EYim8QhWJC5eAt2xcEKrYJCQuRRwtx7Fbo8QOtkPVt8ddWE-cxvJ8_yz_HIFdY40EYIzgOYIVuai11UZZ1_Gghb-oA1ekwDvgEJG8SGmJ0O6P9wE48v4VQpjBLN8HBzQGgik-BC9T29vWLi4TnnS877WZJbydWafDvEtig4SboGfSaJEIZ71PneQi6HcdljHVJLU2zVqklDbrT-_50h-DPcVbL0-2cQSeb2-mk_v08enuYXL9mApKaEiJbBCv8qwiRdmUJZIYYqlULQQtMlRnJKsxrZEipRAY0YaopkRVWeW4yCERFRmBYlN3MD1fLnjbst7pjrslQ5CtrGK_rWJbq6LyaqPsh7qTjZAmOP6ttlyz3xmj52xm3xnCmBTRyFjhbFvB2bdB-sA67YVsW26kHTwjOFqc5ZjCiJ7-QV_t4Ex0JlIEZni1VKTGP0f6muXzXBHIN8D6FE6q_y-LNkI79P_VfADcOsQf |
| Cites_doi | 10.1586/14760584.5.3.347 10.1093/bioinformatics/btm638 10.1126/science.adj0070 10.1371/journal.ppat.1005526 10.1016/0167-4730(88)90020-3 10.1038/nrg2583 10.1126/science.1244730 10.1038/nrg3868 10.1126/science.aac5017 10.1093/bioinformatics/btp423 10.1093/bioinformatics/btx390 10.1006/jtbi.2001.2347 10.1126/science.286.5446.1921 10.7554/eLife.01914 10.1371/journal.pcbi.1010885 10.1371/journal.pcbi.1000949 10.1126/science.1097211 10.1128/JVI.01861-14 10.1084/jem.78.5.407 10.1016/j.meegid.2011.12.011 10.1093/bioinformatics/btq160 10.1093/bioinformatics/bty457 10.1093/ve/vex029 10.1128/CVI.00613-15 10.1126/science.1178258 10.1093/bioinformatics/btn339 10.1093/nar/gkv404 10.1128/JVI.00872-07 10.1093/bib/bbae395 10.2307/2407703 10.1098/rstb.2012.0200 10.1093/bioinformatics/bty407 10.1073/pnas.1525578113 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2025. Published by Oxford University Press. 2025 The Author(s) 2025. Published by Oxford University Press. |
| Copyright_xml | – notice: The Author(s) 2025. Published by Oxford University Press. 2025 – notice: The Author(s) 2025. Published by Oxford University Press. |
| DBID | TOX AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TM 7TO 7U5 8BQ 8FD F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D P64 7X8 5PM ADTOC UNPAY |
| DOI | 10.1093/bioinformatics/btaf372 |
| DatabaseName | Oxford Journals Open Access Collection CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Oncogenes and Growth Factors Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Materials Business File Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Biotechnology Research Abstracts AIDS and Cancer Research Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts MEDLINE - Academic |
| DatabaseTitleList | Materials Research Database MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: TOX name: Oxford Journals Open Access Collection url: https://academic.oup.com/journals/ sourceTypes: Publisher – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1367-4811 |
| ExternalDocumentID | 10.1093/bioinformatics/btaf372 PMC12237505 40563242 10_1093_bioinformatics_btaf372 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: NIAID NIH HHS grantid: 75N93021C00018 – fundername: NIAID Centers of Excellence for Influenza Research and Response, CEIRR – fundername: ; – fundername: ; grantid: 75N93021C00018 |
| GroupedDBID | --- -E4 -~X .-4 .2P .DC .GJ .I3 0R~ 1TH 23N 2WC 4.4 48X 53G 5GY 5WA 70D AAIJN AAIMJ AAJKP AAJQQ AAKPC AAMDB AAMVS AAOGV AAPQZ AAPXW AAUQX AAVAP AAVLN ABEFU ABEJV ABEUO ABGNP ABIXL ABNGD ABNKS ABPQP ABPTD ABQLI ABWST ABXVV ABZBJ ACGFS ACIWK ACPRK ACUFI ACUKT ACUXJ ACYTK ADBBV ADEYI ADEZT ADFTL ADGKP ADGZP ADHKW ADHZD ADMLS ADOCK ADPDF ADRDM ADRTK ADVEK ADYVW ADZTZ ADZXQ AECKG AEGPL AEJOX AEKKA AEKSI AELWJ AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFFNX AFFZL AFGWE AFIYH AFOFC AFRAH AGINJ AGKEF AGQPQ AGQXC AGSYK AHMBA AHXPO AI. AIJHB AJEEA AJEUX AKHUL AKWXX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC AMNDL APIBT APWMN AQDSO ARIXL ASPBG ATTQO AVWKF AXUDD AYOIW AZFZN AZVOD BAWUL BAYMD BHONS BQDIO BQUQU BSWAC BTQHN C1A C45 CAG CDBKE COF CS3 CZ4 DAKXR DIK DILTD DU5 D~K EBD EBS EE~ EJD ELUNK EMOBN F5P F9B FEDTE FHSFR FLIZI FLUFQ FOEOM FQBLK GAUVT GJXCC GROUPED_DOAJ GX1 H13 H5~ HAR HVGLF HW0 HZ~ IOX J21 JXSIZ KAQDR KOP KQ8 KSI KSN M-Z MK~ ML0 N9A NGC NLBLG NMDNZ NOMLY NTWIH NU- NVLIB O0~ O9- OAWHX ODMLO OJQWA OK1 OVD OVEED O~Y P2P PAFKI PB- PEELM PQQKQ Q1. Q5Y R44 RD5 RNI RNS ROL RPM RUSNO RW1 RXO RZF RZO SV3 TEORI TJP TLC TOX TR2 VH1 W8F WOQ X7H YAYTL YKOAZ YXANX ZGI ZKX ~91 ~KM AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TM 7TO 7U5 8BQ 8FD F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D P64 7X8 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c434t-3ed1a9659378d881e202effbcc4751b535b24b1f38cc214d3fd81989627603c93 |
| IEDL.DBID | UNPAY |
| ISSN | 1367-4811 1367-4803 |
| IngestDate | Sun Oct 26 04:16:36 EDT 2025 Thu Aug 21 18:23:40 EDT 2025 Thu Jun 26 16:32:05 EDT 2025 Mon Oct 06 17:53:19 EDT 2025 Sat Jul 12 03:50:06 EDT 2025 Wed Oct 01 05:48:57 EDT 2025 Mon Sep 22 07:30:33 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Language | English |
| License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. https://creativecommons.org/licenses/by/4.0 The Author(s) 2025. Published by Oxford University Press. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c434t-3ed1a9659378d881e202effbcc4751b535b24b1f38cc214d3fd81989627603c93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0009-0005-2681-6598 0000-0002-7221-3801 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://academic.oup.com/bioinformatics/advance-article-pdf/doi/10.1093/bioinformatics/btaf372/63582086/btaf372.pdf |
| PMID | 40563242 |
| PQID | 3230521989 |
| PQPubID | 36124 |
| ParticipantIDs | unpaywall_primary_10_1093_bioinformatics_btaf372 pubmedcentral_primary_oai_pubmedcentral_nih_gov_12237505 proquest_miscellaneous_3224256240 proquest_journals_3230521989 pubmed_primary_40563242 crossref_primary_10_1093_bioinformatics_btaf372 oup_primary_10_1093_bioinformatics_btaf372 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2025-07-01 |
| PublicationDateYYYYMMDD | 2025-07-01 |
| PublicationDate_xml | – month: 07 year: 2025 text: 2025-07-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: Oxford |
| PublicationTitle | Bioinformatics (Oxford, England) |
| PublicationTitleAlternate | Bioinformatics |
| PublicationYear | 2025 |
| Publisher | Oxford University Press Oxford Publishing Limited (England) |
| Publisher_xml | – name: Oxford University Press – name: Oxford Publishing Limited (England) |
| References | Wilks (2025070907500762800_btaf372-B35) 2023; 382 Zacour (2025070907500762800_btaf372-B38) 2016; 23 Liao (2025070907500762800_btaf372-B26) 2008; 24 Xia (2025070907500762800_btaf372-B36) 2009; 25 Koel (2025070907500762800_btaf372-B21) 2013; 342 Jia (2025070907500762800_btaf372-B18) 2024; 25 Ritchie (2025070907500762800_btaf372-B30) 2015; 16 Harvey (2025070907500762800_btaf372-B13) 2023; 19 Neher (2025070907500762800_btaf372-B27) 2016; 113 Harvey (2025070907500762800_btaf372-B12) 2016; 12 Huang (2025070907500762800_btaf372-B17) 2017; 33 Lara (2025070907500762800_btaf372-B24) 2008; 24 Wikramaratna (2025070907500762800_btaf372-B33) 2013; 368 Fruchterman (2025070907500762800_btaf372-B9) 1991; 21 Buonaguro (2025070907500762800_btaf372-B5) 2007; 81 Lees (2025070907500762800_btaf372-B25) 2010; 26 Patino-Galindo (2025070907500762800_btaf372-B28) 2017; 3 Bucher (2025070907500762800_btaf372-B4) 1988; 5 Kobourov (2025070907500762800_btaf372-B20) 2012 Bush (2025070907500762800_btaf372-B6) 1999; 286 Steinbruck (2025070907500762800_btaf372-B32) 2014; 88 Costa (2025070907500762800_btaf372-B8) 2012; 12 Bravo (2025070907500762800_btaf372-B3) 2002 Hensley (2025070907500762800_btaf372-B15) 2009; 326 Arhami (2025070907500762800_btaf372-B1) 2025 Wilks (2025070907500762800_btaf372-B34) 2024 Haynes (2025070907500762800_btaf372-B14) 2006; 5 Lande (2025070907500762800_btaf372-B22) 1976; 30 Yoon (2025070907500762800_btaf372-B37) 2015; 43 Smith (2025070907500762800_btaf372-B31) 2004; 305 Bedford (2025070907500762800_btaf372-B2) 2014; 3 Han (2025070907500762800_btaf372-B11) 2019; 35 Hirst (2025070907500762800_btaf372-B16) 1943; 78 Katzelnick (2025070907500762800_btaf372-B19) 2015; 349 Cai (2025070907500762800_btaf372-B7) 2010; 6 Hadfield (2025070907500762800_btaf372-B10) 2018; 34 Lapedes (2025070907500762800_btaf372-B23) 2001; 212 Pybus (2025070907500762800_btaf372-B29) 2009; 10 |
| References_xml | – volume: 5 start-page: 347 year: 2006 ident: 2025070907500762800_btaf372-B14 article-title: Aiming to induce broadly reactive neutralizing antibody responses with HIV-1 vaccine candidates publication-title: Expert Rev Vaccines doi: 10.1586/14760584.5.3.347 – volume: 24 start-page: 505 year: 2008 ident: 2025070907500762800_btaf372-B26 article-title: Bioinformatics models for predicting antigenic variants of influenza a/H3N2 virus publication-title: Bioinformatics doi: 10.1093/bioinformatics/btm638 – volume: 382 start-page: eadj0070 year: 2023 ident: 2025070907500762800_btaf372-B35 article-title: Mapping SARS-CoV-2 antigenic relationships and serological responses publication-title: Science doi: 10.1126/science.adj0070 – volume: 12 start-page: e1005526 year: 2016 ident: 2025070907500762800_btaf372-B12 article-title: Identification of low- and high-impact hemagglutinin amino acid substitutions that drive antigenic drift of influenza A(H1N1) viruses publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1005526 – volume: 5 start-page: 119 year: 1988 ident: 2025070907500762800_btaf372-B4 article-title: Adaptive sampling—an iterative fast Monte Carlo procedure publication-title: Struct Saf doi: 10.1016/0167-4730(88)90020-3 – volume: 10 start-page: 540 year: 2009 ident: 2025070907500762800_btaf372-B29 article-title: Evolutionary analysis of the dynamics of viral infectious disease publication-title: Nat Rev Genet doi: 10.1038/nrg2583 – year: 2024 ident: 2025070907500762800_btaf372-B34 – volume: 342 start-page: 976 year: 2013 ident: 2025070907500762800_btaf372-B21 article-title: Substitutions near the receptor binding site determine major antigenic change during influenza virus evolution publication-title: Science doi: 10.1126/science.1244730 – year: 2012 ident: 2025070907500762800_btaf372-B20 – volume: 16 start-page: 85 year: 2015 ident: 2025070907500762800_btaf372-B30 article-title: Methods of integrating data to uncover genotype–phenotype interactions publication-title: Nat Rev Genet doi: 10.1038/nrg3868 – volume: 349 start-page: 1338 year: 2015 ident: 2025070907500762800_btaf372-B19 article-title: Dengue viruses cluster antigenically but not as discrete serotypes publication-title: Science doi: 10.1126/science.aac5017 – volume: 25 start-page: 2309 year: 2009 ident: 2025070907500762800_btaf372-B36 article-title: Using a mutual information-based site transition network to map the genetic evolution of influenza a/H3N2 virus publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp423 – volume: 33 start-page: 3195 year: 2017 ident: 2025070907500762800_btaf372-B17 article-title: Matrix completion with side information and its applications in predicting the antigenicity of influenza viruses publication-title: Bioinformatics doi: 10.1093/bioinformatics/btx390 – volume: 212 start-page: 57 year: 2001 ident: 2025070907500762800_btaf372-B23 article-title: The geometry of shape space: application to influenza publication-title: J Theor Biol doi: 10.1006/jtbi.2001.2347 – volume: 286 start-page: 1921 year: 1999 ident: 2025070907500762800_btaf372-B6 article-title: Predicting the evolution of human influenza A publication-title: Science doi: 10.1126/science.286.5446.1921 – volume: 3 start-page: e01914 year: 2014 ident: 2025070907500762800_btaf372-B2 article-title: Integrating influenza antigenic dynamics with molecular evolution publication-title: eLife doi: 10.7554/eLife.01914 – volume: 19 start-page: e1010885 year: 2023 ident: 2025070907500762800_btaf372-B13 article-title: A Bayesian approach to incorporate structural data into the mapping of genotype to antigenic phenotype of influenza A(H3N2) viruses publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1010885 – volume: 6 start-page: e1000949 year: 2010 ident: 2025070907500762800_btaf372-B7 article-title: A computational framework for influenza antigenic cartography publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1000949 – volume: 305 start-page: 371 year: 2004 ident: 2025070907500762800_btaf372-B31 article-title: Mapping the antigenic and genetic evolution of influenza virus publication-title: Science doi: 10.1126/science.1097211 – volume: 88 start-page: 12123 year: 2014 ident: 2025070907500762800_btaf372-B32 article-title: Computational prediction of vaccine strains for human influenza A (H3N2) viruses publication-title: J Virol doi: 10.1128/JVI.01861-14 – year: 2025 ident: 2025070907500762800_btaf372-B1 – volume: 78 start-page: 407 year: 1943 ident: 2025070907500762800_btaf372-B16 article-title: Studies of antigenic differences among strains of influenza a by means of red cell agglutination publication-title: J Exp Med doi: 10.1084/jem.78.5.407 – volume: 12 start-page: 309 year: 2012 ident: 2025070907500762800_btaf372-B8 article-title: Comparative evolutionary epidemiology of dengue virus serotypes publication-title: Infect Genet Evol doi: 10.1016/j.meegid.2011.12.011 – volume: 26 start-page: 1403 year: 2010 ident: 2025070907500762800_btaf372-B25 article-title: A computational analysis of the antigenic properties of haemagglutinin in influenza A H3N2 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq160 – volume: 35 start-page: 77 year: 2019 ident: 2025070907500762800_btaf372-B11 article-title: Graph-guided multi-task sparse learning model: a method for identifying antigenic variants of influenza A(H3N2) virus publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty457 – year: 2002 ident: 2025070907500762800_btaf372-B3 – volume: 3 start-page: vex029 year: 2017 ident: 2025070907500762800_btaf372-B28 article-title: The substitution rate of HIV-1 subtypes: a genomic approach publication-title: Virus Evol doi: 10.1093/ve/vex029 – volume: 23 start-page: 236 year: 2016 ident: 2025070907500762800_btaf372-B38 article-title: Standardization of hemagglutination inhibition assay for influenza serology allows for high reproducibility between laboratories publication-title: Clin Vacc Immunol doi: 10.1128/CVI.00613-15 – volume: 326 start-page: 734 year: 2009 ident: 2025070907500762800_btaf372-B15 article-title: Hemagglutinin receptor binding avidity drives influenza a virus antigenic drift publication-title: Science doi: 10.1126/science.1178258 – volume: 24 start-page: 1858 year: 2008 ident: 2025070907500762800_btaf372-B24 article-title: Artificial neural network for prediction of antigenic activity for a major conformational epitope in the hepatitis C virus NS3 protein publication-title: Bioinformatics doi: 10.1093/bioinformatics/btn339 – volume: 43 start-page: W213 year: 2015 ident: 2025070907500762800_btaf372-B37 article-title: CATNAP: a tool to compile, analyze and tally neutralizing antibody panels publication-title: Nucleic Acids Res doi: 10.1093/nar/gkv404 – volume: 81 start-page: 10209 year: 2007 ident: 2025070907500762800_btaf372-B5 article-title: Human immunodeficiency virus type 1 subtype distribution in the worldwide epidemic: pathogenetic and therapeutic implications publication-title: J Virol doi: 10.1128/JVI.00872-07 – volume: 25 start-page: bbae395 year: 2024 ident: 2025070907500762800_btaf372-B18 article-title: MetaFluAD: meta-learning for predicting antigenic distances among influenza viruses publication-title: Brief Bioinform doi: 10.1093/bib/bbae395 – volume: 30 start-page: 314 year: 1976 ident: 2025070907500762800_btaf372-B22 article-title: Natural selection and random genetic drift in phenotypic evolution publication-title: Evolution doi: 10.2307/2407703 – volume: 21 start-page: 1129 year: 1991 ident: 2025070907500762800_btaf372-B9 article-title: Graph drawing by force-directed placement publication-title: Softw: Pract Exp – volume: 368 start-page: 20120200 year: 2013 ident: 2025070907500762800_btaf372-B33 article-title: The antigenic evolution of influenza: drift or thrift? publication-title: Philos Trans R Soc Lond B Biol Sci doi: 10.1098/rstb.2012.0200 – volume: 34 start-page: 4121 year: 2018 ident: 2025070907500762800_btaf372-B10 article-title: Nextstrain: real-time tracking of pathogen evolution publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty407 – volume: 113 start-page: E1701 year: 2016 ident: 2025070907500762800_btaf372-B27 article-title: Prediction, dynamics, and visualization of antigenic phenotypes of seasonal influenza viruses publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1525578113 |
| SSID | ssj0005056 |
| Score | 2.4859152 |
| Snippet | Abstract
Motivation
Understanding antigenic evolution through cross-reactivity assays is crucial for tracking rapidly evolving pathogens requiring regular... Understanding antigenic evolution through cross-reactivity assays is crucial for tracking rapidly evolving pathogens requiring regular vaccine updates.... Motivation Understanding antigenic evolution through cross-reactivity assays is crucial for tracking rapidly evolving pathogens requiring regular vaccine... |
| SourceID | unpaywall pubmedcentral proquest pubmed crossref oup |
| SourceType | Open Access Repository Aggregation Database Index Database Publisher |
| SubjectTerms | Accuracy Affinity Algorithms Antigens Antigens - chemistry Antigens - immunology Antigens, Viral - chemistry Antigens, Viral - immunology Availability Binding Cartography Computational Biology - methods Cross Reactions Cross-reactivity Dengue Virus - immunology Evolution HIV - immunology Humans Influenza A Virus, H3N2 Subtype - immunology Multidimensional methods Multidimensional scaling Original Paper Phenotypes Vector-borne diseases Vectors |
| Title | Topolow: a mapping algorithm for antigenic cross-reactivity and binding affinity assays |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/40563242 https://www.proquest.com/docview/3230521989 https://www.proquest.com/docview/3224256240 https://pubmed.ncbi.nlm.nih.gov/PMC12237505 https://academic.oup.com/bioinformatics/advance-article-pdf/doi/10.1093/bioinformatics/btaf372/63582086/btaf372.pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 41 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1367-4811 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005056 issn: 1367-4811 databaseCode: KQ8 dateStart: 19960101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: Openly Available Collection - DOAJ customDbUrl: eissn: 1367-4811 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005056 issn: 1367-4811 databaseCode: DOA dateStart: 20230101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1367-4811 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005056 issn: 1367-4811 databaseCode: ADMLS dateStart: 19980101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1367-4811 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005056 issn: 1367-4811 databaseCode: RPM dateStart: 20070101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVOVD databaseName: Journals@Ovid LWW All Open Access Journal Collection Rolling customDbUrl: eissn: 1367-4811 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005056 issn: 1367-4811 databaseCode: OVEED dateStart: 20010101 isFulltext: true titleUrlDefault: http://ovidsp.ovid.com/ providerName: Ovid – providerCode: PRVASL databaseName: Oxford Journals Open Access Collection customDbUrl: eissn: 1367-4811 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005056 issn: 1367-4811 databaseCode: TOX dateStart: 19850101 isFulltext: true titleUrlDefault: https://academic.oup.com/journals/ providerName: Oxford University Press |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwvV3Nb9MwFH8anRBcxjcLjMlInJDS1rGdpNwmxDQhMTi0opwi27G3iC6tllRT-Tv4g3lOnLIMIY0LlyjyZ_L8HP8cv_d7AG-kRRgQTXSobDwJeeLmXB6rkPEkERrXHGqdc_Kn0_hkxj_OxXwHqs4XRnqr8GHn0qCKpacQdbTFI38y3pmNhavc_iYhmLCbxVUtLUuiUewcQl1MIZ8wxHp3YDcWCOAHsDs7_XL0rfXQSkKeNvGU_T2lnV_xX1vvLWk9N7lraPVPo8t763IlN1dysbi2oh0_gJ-dLFpDlu_Dda2G-scNmsj_LKyHsOcRMjlqW3sEO6Z8DHfbmJmbJ_B12oR1uHpHJLmQjl3ijMjF2fKyqM8vCHZDUFccxWihSSOvEGGxbmNkYFZOVNE48hBpbVE2iVUlN9VTmB1_mL4_CX10iFBzxuuQmZxKR4fIkjRPU2qicWSsVVrzRFAlmFARV9SyVOuI8pzZPHUGYnGUxGOmJ-wZDMplafaBSNw3GW6soHnKIyMUpwYTEo27Z5uLcQCjboCzVUsCkrWH9yzryzDzIgvgLY7JrQsfdOqS-S9IlTHcGyK0wgcO4PU2G-e-O9CRpVmuXRm3YYwRlAXwvNWubZcIxB0TPzae9vRuW8DxivdzyuK84RenCBkRSIoAxlsVveWrvPj3Ki_hfuRiKjcm0AcwqC_X5hUCvVodNj9I8Dr9PD_0k_QXmXFdrA |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwvV1Lb9QwEB6VrRBceD8CBRmJE1J217GdZLlViKpCouLQFeUU-dlGbLOrJqtq-R38YMaJszRFSOXCLfIzGY_jb-SZbwDeSocwIJnpWLl0FvPM7zmTqpjxLBMazxzqfHDy56P0cM4_nYiTHaj7WBgZvMLHfUiDKpeBQtTTFk_CzXjvNhavjPtNQjBj15urRjqWJZPUB4T6nEKhYIz9bsFuKhDAj2B3fvRl_1sXoZXFPG_zKYdnSvu44r-OPjjSBmFyV9Dqn06Xd9bVSm4u5WJx5UQ7uA8_e1l0jizfx-tGjfWPazSR_1lYD-BeQMhkvxvtIezY6hHc7nJmbh7D1-M2rcPleyLJufTsEqdELk6XF2Vzdk5wGoK64ilGS01aecUIi3WXIwOrDFFlG8hDpHNl1RbWtdzUT2B-8PH4w2EcskPEmjPexMwaKj0dIstyk-fUJtPEOqe05pmgSjChEq6oY7nWCeWGOZN7B7E0ydIp0zP2FEbVsrLPgUi0myy3TlCT88QKxanFgkyj9eyMmEYw6Re4WHUkIEV3ec-KoQyLILII3uGa3LjxXq8uRfiD1AVD2xChFb5wBG-21bj3_YWOrOxy7dt4gzFFUBbBs067tlMiEPdM_Dh4PtC7bQPPKz6sqcqzll-cImREICkimG5V9Iaf8uLfu7yEu4nPqdy6QO_BqLlY21cI9Br1OmzMX0bOW5s |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Topolow%3A+a+mapping+algorithm+for+antigenic+cross-reactivity+and+binding+affinity+assays&rft.jtitle=Bioinformatics+%28Oxford%2C+England%29&rft.au=Arhami%2C+Omid&rft.au=Rohani%2C+Pejman&rft.date=2025-07-01&rft.eissn=1367-4811&rft.volume=41&rft.issue=7&rft_id=info:doi/10.1093%2Fbioinformatics%2Fbtaf372&rft_id=info%3Apmid%2F40563242&rft.externalDocID=40563242 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-4811&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-4811&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-4811&client=summon |