Topolow: a mapping algorithm for antigenic cross-reactivity and binding affinity assays

Abstract Motivation Understanding antigenic evolution through cross-reactivity assays is crucial for tracking rapidly evolving pathogens requiring regular vaccine updates. However, existing cartography methods, commonly based on multidimensional scaling (MDS), face significant challenges with sparse...

Full description

Saved in:
Bibliographic Details
Published inBioinformatics (Oxford, England) Vol. 41; no. 7
Main Authors Arhami, Omid, Rohani, Pejman
Format Journal Article
LanguageEnglish
Published England Oxford University Press 01.07.2025
Oxford Publishing Limited (England)
Subjects
Online AccessGet full text
ISSN1367-4811
1367-4803
1367-4811
DOI10.1093/bioinformatics/btaf372

Cover

Abstract Abstract Motivation Understanding antigenic evolution through cross-reactivity assays is crucial for tracking rapidly evolving pathogens requiring regular vaccine updates. However, existing cartography methods, commonly based on multidimensional scaling (MDS), face significant challenges with sparse and complex data, producing incomplete and inconsistent maps. There is an urgent need for robust computational methods that can accurately map antigenic relationships from incomplete experimental data while maintaining biological relevance, especially given that more than 95% of possible measurements could be missing in large-scale studies. Results We present Topolow, an algorithm that transforms cross-reactivity and binding affinity measurements into accurate positions in a phenotype space. Using a physics-inspired model, Topolow achieved comparable prediction accuracy to MDS for H3N2 influenza and 56% and 41% improved accuracy for dengue and HIV, while maintaining complete positioning of all antigens. The method effectively reduces experimental noise and bias, determines optimal dimensionality through likelihood-based estimation, avoiding distortions due to insufficient dimensions, and demonstrates orders of magnitude better stability across multiple runs. We also introduce antigenic velocity vectors, which measure the rate of antigenic advancement of each isolate per unit of time against its temporal and evolutionary related background, revealing the underlying antigenic relationships and cluster transitions. Availability and implementation Topolow is implemented in R and freely available at https://doi.org/10.5281/zenodo.15620983 and https://github.com/omid-arhami/topolow.
AbstractList Motivation Understanding antigenic evolution through cross-reactivity assays is crucial for tracking rapidly evolving pathogens requiring regular vaccine updates. However, existing cartography methods, commonly based on multidimensional scaling (MDS), face significant challenges with sparse and complex data, producing incomplete and inconsistent maps. There is an urgent need for robust computational methods that can accurately map antigenic relationships from incomplete experimental data while maintaining biological relevance, especially given that more than 95% of possible measurements could be missing in large-scale studies. Results We present Topolow, an algorithm that transforms cross-reactivity and binding affinity measurements into accurate positions in a phenotype space. Using a physics-inspired model, Topolow achieved comparable prediction accuracy to MDS for H3N2 influenza and 56% and 41% improved accuracy for dengue and HIV, while maintaining complete positioning of all antigens. The method effectively reduces experimental noise and bias, determines optimal dimensionality through likelihood-based estimation, avoiding distortions due to insufficient dimensions, and demonstrates orders of magnitude better stability across multiple runs. We also introduce antigenic velocity vectors, which measure the rate of antigenic advancement of each isolate per unit of time against its temporal and evolutionary related background, revealing the underlying antigenic relationships and cluster transitions. Availability and implementation Topolow is implemented in R and freely available at https://doi.org/10.5281/zenodo.15620983 and https://github.com/omid-arhami/topolow.
Understanding antigenic evolution through cross-reactivity assays is crucial for tracking rapidly evolving pathogens requiring regular vaccine updates. However, existing cartography methods, commonly based on multidimensional scaling (MDS), face significant challenges with sparse and complex data, producing incomplete and inconsistent maps. There is an urgent need for robust computational methods that can accurately map antigenic relationships from incomplete experimental data while maintaining biological relevance, especially given that more than 95% of possible measurements could be missing in large-scale studies. We present Topolow, an algorithm that transforms cross-reactivity and binding affinity measurements into accurate positions in a phenotype space. Using a physics-inspired model, Topolow achieved comparable prediction accuracy to MDS for H3N2 influenza and 56% and 41% improved accuracy for dengue and HIV, while maintaining complete positioning of all antigens. The method effectively reduces experimental noise and bias, determines optimal dimensionality through likelihood-based estimation, avoiding distortions due to insufficient dimensions, and demonstrates orders of magnitude better stability across multiple runs. We also introduce antigenic velocity vectors, which measure the rate of antigenic advancement of each isolate per unit of time against its temporal and evolutionary related background, revealing the underlying antigenic relationships and cluster transitions. Topolow is implemented in R and freely available at https://doi.org/10.5281/zenodo.15620983 and https://github.com/omid-arhami/topolow.
Abstract Motivation Understanding antigenic evolution through cross-reactivity assays is crucial for tracking rapidly evolving pathogens requiring regular vaccine updates. However, existing cartography methods, commonly based on multidimensional scaling (MDS), face significant challenges with sparse and complex data, producing incomplete and inconsistent maps. There is an urgent need for robust computational methods that can accurately map antigenic relationships from incomplete experimental data while maintaining biological relevance, especially given that more than 95% of possible measurements could be missing in large-scale studies. Results We present Topolow, an algorithm that transforms cross-reactivity and binding affinity measurements into accurate positions in a phenotype space. Using a physics-inspired model, Topolow achieved comparable prediction accuracy to MDS for H3N2 influenza and 56% and 41% improved accuracy for dengue and HIV, while maintaining complete positioning of all antigens. The method effectively reduces experimental noise and bias, determines optimal dimensionality through likelihood-based estimation, avoiding distortions due to insufficient dimensions, and demonstrates orders of magnitude better stability across multiple runs. We also introduce antigenic velocity vectors, which measure the rate of antigenic advancement of each isolate per unit of time against its temporal and evolutionary related background, revealing the underlying antigenic relationships and cluster transitions. Availability and implementation Topolow is implemented in R and freely available at https://doi.org/10.5281/zenodo.15620983 and https://github.com/omid-arhami/topolow.
Understanding antigenic evolution through cross-reactivity assays is crucial for tracking rapidly evolving pathogens requiring regular vaccine updates. However, existing cartography methods, commonly based on multidimensional scaling (MDS), face significant challenges with sparse and complex data, producing incomplete and inconsistent maps. There is an urgent need for robust computational methods that can accurately map antigenic relationships from incomplete experimental data while maintaining biological relevance, especially given that more than 95% of possible measurements could be missing in large-scale studies.MOTIVATIONUnderstanding antigenic evolution through cross-reactivity assays is crucial for tracking rapidly evolving pathogens requiring regular vaccine updates. However, existing cartography methods, commonly based on multidimensional scaling (MDS), face significant challenges with sparse and complex data, producing incomplete and inconsistent maps. There is an urgent need for robust computational methods that can accurately map antigenic relationships from incomplete experimental data while maintaining biological relevance, especially given that more than 95% of possible measurements could be missing in large-scale studies.We present Topolow, an algorithm that transforms cross-reactivity and binding affinity measurements into accurate positions in a phenotype space. Using a physics-inspired model, Topolow achieved comparable prediction accuracy to MDS for H3N2 influenza and 56% and 41% improved accuracy for Dengue and HIV, while maintaining complete positioning of all antigens. The method effectively reduces experimental noise and bias, determines optimal dimensionality through likelihood-based estimation, avoiding distortions due to insufficient dimensions, and demonstrates orders of magnitude better stability across multiple runs. We also introduce antigenic velocity vectors, which measure the rate of antigenic advancement of each isolate per unit of time against its temporal and evolutionary related background, revealing the underlying antigenic relationships and cluster transitions.RESULTSWe present Topolow, an algorithm that transforms cross-reactivity and binding affinity measurements into accurate positions in a phenotype space. Using a physics-inspired model, Topolow achieved comparable prediction accuracy to MDS for H3N2 influenza and 56% and 41% improved accuracy for Dengue and HIV, while maintaining complete positioning of all antigens. The method effectively reduces experimental noise and bias, determines optimal dimensionality through likelihood-based estimation, avoiding distortions due to insufficient dimensions, and demonstrates orders of magnitude better stability across multiple runs. We also introduce antigenic velocity vectors, which measure the rate of antigenic advancement of each isolate per unit of time against its temporal and evolutionary related background, revealing the underlying antigenic relationships and cluster transitions.Topolow is implemented in R and freely available at [https://doi.org/10.5281/zenodo.15620983] and [https://github.com/omid-arhami/topolow].AVAILABILITY AND IMPLEMENTATIONTopolow is implemented in R and freely available at [https://doi.org/10.5281/zenodo.15620983] and [https://github.com/omid-arhami/topolow].Available at Bioinformatics online.SUPPLEMENTARY INFORMATIONAvailable at Bioinformatics online.
Author Arhami, Omid
Rohani, Pejman
Author_xml – sequence: 1
  givenname: Omid
  orcidid: 0009-0005-2681-6598
  surname: Arhami
  fullname: Arhami, Omid
– sequence: 2
  givenname: Pejman
  orcidid: 0000-0002-7221-3801
  surname: Rohani
  fullname: Rohani, Pejman
  email: rohani@uga.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40563242$$D View this record in MEDLINE/PubMed
BookMark eNqNkclOwzAQhi0EYim8QhWJC5eAt2xcEKrYJCQuRRwtx7Fbo8QOtkPVt8ddWE-cxvJ8_yz_HIFdY40EYIzgOYIVuai11UZZ1_Gghb-oA1ekwDvgEJG8SGmJ0O6P9wE48v4VQpjBLN8HBzQGgik-BC9T29vWLi4TnnS877WZJbydWafDvEtig4SboGfSaJEIZ71PneQi6HcdljHVJLU2zVqklDbrT-_50h-DPcVbL0-2cQSeb2-mk_v08enuYXL9mApKaEiJbBCv8qwiRdmUJZIYYqlULQQtMlRnJKsxrZEipRAY0YaopkRVWeW4yCERFRmBYlN3MD1fLnjbst7pjrslQ5CtrGK_rWJbq6LyaqPsh7qTjZAmOP6ttlyz3xmj52xm3xnCmBTRyFjhbFvB2bdB-sA67YVsW26kHTwjOFqc5ZjCiJ7-QV_t4Ex0JlIEZni1VKTGP0f6muXzXBHIN8D6FE6q_y-LNkI79P_VfADcOsQf
Cites_doi 10.1586/14760584.5.3.347
10.1093/bioinformatics/btm638
10.1126/science.adj0070
10.1371/journal.ppat.1005526
10.1016/0167-4730(88)90020-3
10.1038/nrg2583
10.1126/science.1244730
10.1038/nrg3868
10.1126/science.aac5017
10.1093/bioinformatics/btp423
10.1093/bioinformatics/btx390
10.1006/jtbi.2001.2347
10.1126/science.286.5446.1921
10.7554/eLife.01914
10.1371/journal.pcbi.1010885
10.1371/journal.pcbi.1000949
10.1126/science.1097211
10.1128/JVI.01861-14
10.1084/jem.78.5.407
10.1016/j.meegid.2011.12.011
10.1093/bioinformatics/btq160
10.1093/bioinformatics/bty457
10.1093/ve/vex029
10.1128/CVI.00613-15
10.1126/science.1178258
10.1093/bioinformatics/btn339
10.1093/nar/gkv404
10.1128/JVI.00872-07
10.1093/bib/bbae395
10.2307/2407703
10.1098/rstb.2012.0200
10.1093/bioinformatics/bty407
10.1073/pnas.1525578113
ContentType Journal Article
Copyright The Author(s) 2025. Published by Oxford University Press. 2025
The Author(s) 2025. Published by Oxford University Press.
Copyright_xml – notice: The Author(s) 2025. Published by Oxford University Press. 2025
– notice: The Author(s) 2025. Published by Oxford University Press.
DBID TOX
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TM
7TO
7U5
8BQ
8FD
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
P64
7X8
5PM
ADTOC
UNPAY
DOI 10.1093/bioinformatics/btaf372
DatabaseName Oxford Journals Open Access Collection
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Oncogenes and Growth Factors Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Materials Business File
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
AIDS and Cancer Research Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList Materials Research Database
MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: TOX
  name: Oxford Journals Open Access Collection
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1367-4811
ExternalDocumentID 10.1093/bioinformatics/btaf372
PMC12237505
40563242
10_1093_bioinformatics_btaf372
Genre Journal Article
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: 75N93021C00018
– fundername: NIAID Centers of Excellence for Influenza Research and Response, CEIRR
– fundername: ;
– fundername: ;
  grantid: 75N93021C00018
GroupedDBID ---
-E4
-~X
.-4
.2P
.DC
.GJ
.I3
0R~
1TH
23N
2WC
4.4
48X
53G
5GY
5WA
70D
AAIJN
AAIMJ
AAJKP
AAJQQ
AAKPC
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AAUQX
AAVAP
AAVLN
ABEFU
ABEJV
ABEUO
ABGNP
ABIXL
ABNGD
ABNKS
ABPQP
ABPTD
ABQLI
ABWST
ABXVV
ABZBJ
ACGFS
ACIWK
ACPRK
ACUFI
ACUKT
ACUXJ
ACYTK
ADBBV
ADEYI
ADEZT
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADMLS
ADOCK
ADPDF
ADRDM
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AECKG
AEGPL
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFNX
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AGINJ
AGKEF
AGQPQ
AGQXC
AGSYK
AHMBA
AHXPO
AI.
AIJHB
AJEEA
AJEUX
AKHUL
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
AMNDL
APIBT
APWMN
AQDSO
ARIXL
ASPBG
ATTQO
AVWKF
AXUDD
AYOIW
AZFZN
AZVOD
BAWUL
BAYMD
BHONS
BQDIO
BQUQU
BSWAC
BTQHN
C1A
C45
CAG
CDBKE
COF
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
EBD
EBS
EE~
EJD
ELUNK
EMOBN
F5P
F9B
FEDTE
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GROUPED_DOAJ
GX1
H13
H5~
HAR
HVGLF
HW0
HZ~
IOX
J21
JXSIZ
KAQDR
KOP
KQ8
KSI
KSN
M-Z
MK~
ML0
N9A
NGC
NLBLG
NMDNZ
NOMLY
NTWIH
NU-
NVLIB
O0~
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
O~Y
P2P
PAFKI
PB-
PEELM
PQQKQ
Q1.
Q5Y
R44
RD5
RNI
RNS
ROL
RPM
RUSNO
RW1
RXO
RZF
RZO
SV3
TEORI
TJP
TLC
TOX
TR2
VH1
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZGI
ZKX
~91
~KM
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TM
7TO
7U5
8BQ
8FD
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
P64
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c434t-3ed1a9659378d881e202effbcc4751b535b24b1f38cc214d3fd81989627603c93
IEDL.DBID UNPAY
ISSN 1367-4811
1367-4803
IngestDate Sun Oct 26 04:16:36 EDT 2025
Thu Aug 21 18:23:40 EDT 2025
Thu Jun 26 16:32:05 EDT 2025
Mon Oct 06 17:53:19 EDT 2025
Sat Jul 12 03:50:06 EDT 2025
Wed Oct 01 05:48:57 EDT 2025
Mon Sep 22 07:30:33 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
https://creativecommons.org/licenses/by/4.0
The Author(s) 2025. Published by Oxford University Press.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c434t-3ed1a9659378d881e202effbcc4751b535b24b1f38cc214d3fd81989627603c93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0009-0005-2681-6598
0000-0002-7221-3801
OpenAccessLink https://proxy.k.utb.cz/login?url=https://academic.oup.com/bioinformatics/advance-article-pdf/doi/10.1093/bioinformatics/btaf372/63582086/btaf372.pdf
PMID 40563242
PQID 3230521989
PQPubID 36124
ParticipantIDs unpaywall_primary_10_1093_bioinformatics_btaf372
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12237505
proquest_miscellaneous_3224256240
proquest_journals_3230521989
pubmed_primary_40563242
crossref_primary_10_1093_bioinformatics_btaf372
oup_primary_10_1093_bioinformatics_btaf372
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-07-01
PublicationDateYYYYMMDD 2025-07-01
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Bioinformatics (Oxford, England)
PublicationTitleAlternate Bioinformatics
PublicationYear 2025
Publisher Oxford University Press
Oxford Publishing Limited (England)
Publisher_xml – name: Oxford University Press
– name: Oxford Publishing Limited (England)
References Wilks (2025070907500762800_btaf372-B35) 2023; 382
Zacour (2025070907500762800_btaf372-B38) 2016; 23
Liao (2025070907500762800_btaf372-B26) 2008; 24
Xia (2025070907500762800_btaf372-B36) 2009; 25
Koel (2025070907500762800_btaf372-B21) 2013; 342
Jia (2025070907500762800_btaf372-B18) 2024; 25
Ritchie (2025070907500762800_btaf372-B30) 2015; 16
Harvey (2025070907500762800_btaf372-B13) 2023; 19
Neher (2025070907500762800_btaf372-B27) 2016; 113
Harvey (2025070907500762800_btaf372-B12) 2016; 12
Huang (2025070907500762800_btaf372-B17) 2017; 33
Lara (2025070907500762800_btaf372-B24) 2008; 24
Wikramaratna (2025070907500762800_btaf372-B33) 2013; 368
Fruchterman (2025070907500762800_btaf372-B9) 1991; 21
Buonaguro (2025070907500762800_btaf372-B5) 2007; 81
Lees (2025070907500762800_btaf372-B25) 2010; 26
Patino-Galindo (2025070907500762800_btaf372-B28) 2017; 3
Bucher (2025070907500762800_btaf372-B4) 1988; 5
Kobourov (2025070907500762800_btaf372-B20) 2012
Bush (2025070907500762800_btaf372-B6) 1999; 286
Steinbruck (2025070907500762800_btaf372-B32) 2014; 88
Costa (2025070907500762800_btaf372-B8) 2012; 12
Bravo (2025070907500762800_btaf372-B3) 2002
Hensley (2025070907500762800_btaf372-B15) 2009; 326
Arhami (2025070907500762800_btaf372-B1) 2025
Wilks (2025070907500762800_btaf372-B34) 2024
Haynes (2025070907500762800_btaf372-B14) 2006; 5
Lande (2025070907500762800_btaf372-B22) 1976; 30
Yoon (2025070907500762800_btaf372-B37) 2015; 43
Smith (2025070907500762800_btaf372-B31) 2004; 305
Bedford (2025070907500762800_btaf372-B2) 2014; 3
Han (2025070907500762800_btaf372-B11) 2019; 35
Hirst (2025070907500762800_btaf372-B16) 1943; 78
Katzelnick (2025070907500762800_btaf372-B19) 2015; 349
Cai (2025070907500762800_btaf372-B7) 2010; 6
Hadfield (2025070907500762800_btaf372-B10) 2018; 34
Lapedes (2025070907500762800_btaf372-B23) 2001; 212
Pybus (2025070907500762800_btaf372-B29) 2009; 10
References_xml – volume: 5
  start-page: 347
  year: 2006
  ident: 2025070907500762800_btaf372-B14
  article-title: Aiming to induce broadly reactive neutralizing antibody responses with HIV-1 vaccine candidates
  publication-title: Expert Rev Vaccines
  doi: 10.1586/14760584.5.3.347
– volume: 24
  start-page: 505
  year: 2008
  ident: 2025070907500762800_btaf372-B26
  article-title: Bioinformatics models for predicting antigenic variants of influenza a/H3N2 virus
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btm638
– volume: 382
  start-page: eadj0070
  year: 2023
  ident: 2025070907500762800_btaf372-B35
  article-title: Mapping SARS-CoV-2 antigenic relationships and serological responses
  publication-title: Science
  doi: 10.1126/science.adj0070
– volume: 12
  start-page: e1005526
  year: 2016
  ident: 2025070907500762800_btaf372-B12
  article-title: Identification of low- and high-impact hemagglutinin amino acid substitutions that drive antigenic drift of influenza A(H1N1) viruses
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1005526
– volume: 5
  start-page: 119
  year: 1988
  ident: 2025070907500762800_btaf372-B4
  article-title: Adaptive sampling—an iterative fast Monte Carlo procedure
  publication-title: Struct Saf
  doi: 10.1016/0167-4730(88)90020-3
– volume: 10
  start-page: 540
  year: 2009
  ident: 2025070907500762800_btaf372-B29
  article-title: Evolutionary analysis of the dynamics of viral infectious disease
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg2583
– year: 2024
  ident: 2025070907500762800_btaf372-B34
– volume: 342
  start-page: 976
  year: 2013
  ident: 2025070907500762800_btaf372-B21
  article-title: Substitutions near the receptor binding site determine major antigenic change during influenza virus evolution
  publication-title: Science
  doi: 10.1126/science.1244730
– year: 2012
  ident: 2025070907500762800_btaf372-B20
– volume: 16
  start-page: 85
  year: 2015
  ident: 2025070907500762800_btaf372-B30
  article-title: Methods of integrating data to uncover genotype–phenotype interactions
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg3868
– volume: 349
  start-page: 1338
  year: 2015
  ident: 2025070907500762800_btaf372-B19
  article-title: Dengue viruses cluster antigenically but not as discrete serotypes
  publication-title: Science
  doi: 10.1126/science.aac5017
– volume: 25
  start-page: 2309
  year: 2009
  ident: 2025070907500762800_btaf372-B36
  article-title: Using a mutual information-based site transition network to map the genetic evolution of influenza a/H3N2 virus
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp423
– volume: 33
  start-page: 3195
  year: 2017
  ident: 2025070907500762800_btaf372-B17
  article-title: Matrix completion with side information and its applications in predicting the antigenicity of influenza viruses
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx390
– volume: 212
  start-page: 57
  year: 2001
  ident: 2025070907500762800_btaf372-B23
  article-title: The geometry of shape space: application to influenza
  publication-title: J Theor Biol
  doi: 10.1006/jtbi.2001.2347
– volume: 286
  start-page: 1921
  year: 1999
  ident: 2025070907500762800_btaf372-B6
  article-title: Predicting the evolution of human influenza A
  publication-title: Science
  doi: 10.1126/science.286.5446.1921
– volume: 3
  start-page: e01914
  year: 2014
  ident: 2025070907500762800_btaf372-B2
  article-title: Integrating influenza antigenic dynamics with molecular evolution
  publication-title: eLife
  doi: 10.7554/eLife.01914
– volume: 19
  start-page: e1010885
  year: 2023
  ident: 2025070907500762800_btaf372-B13
  article-title: A Bayesian approach to incorporate structural data into the mapping of genotype to antigenic phenotype of influenza A(H3N2) viruses
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1010885
– volume: 6
  start-page: e1000949
  year: 2010
  ident: 2025070907500762800_btaf372-B7
  article-title: A computational framework for influenza antigenic cartography
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1000949
– volume: 305
  start-page: 371
  year: 2004
  ident: 2025070907500762800_btaf372-B31
  article-title: Mapping the antigenic and genetic evolution of influenza virus
  publication-title: Science
  doi: 10.1126/science.1097211
– volume: 88
  start-page: 12123
  year: 2014
  ident: 2025070907500762800_btaf372-B32
  article-title: Computational prediction of vaccine strains for human influenza A (H3N2) viruses
  publication-title: J Virol
  doi: 10.1128/JVI.01861-14
– year: 2025
  ident: 2025070907500762800_btaf372-B1
– volume: 78
  start-page: 407
  year: 1943
  ident: 2025070907500762800_btaf372-B16
  article-title: Studies of antigenic differences among strains of influenza a by means of red cell agglutination
  publication-title: J Exp Med
  doi: 10.1084/jem.78.5.407
– volume: 12
  start-page: 309
  year: 2012
  ident: 2025070907500762800_btaf372-B8
  article-title: Comparative evolutionary epidemiology of dengue virus serotypes
  publication-title: Infect Genet Evol
  doi: 10.1016/j.meegid.2011.12.011
– volume: 26
  start-page: 1403
  year: 2010
  ident: 2025070907500762800_btaf372-B25
  article-title: A computational analysis of the antigenic properties of haemagglutinin in influenza A H3N2
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq160
– volume: 35
  start-page: 77
  year: 2019
  ident: 2025070907500762800_btaf372-B11
  article-title: Graph-guided multi-task sparse learning model: a method for identifying antigenic variants of influenza A(H3N2) virus
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty457
– year: 2002
  ident: 2025070907500762800_btaf372-B3
– volume: 3
  start-page: vex029
  year: 2017
  ident: 2025070907500762800_btaf372-B28
  article-title: The substitution rate of HIV-1 subtypes: a genomic approach
  publication-title: Virus Evol
  doi: 10.1093/ve/vex029
– volume: 23
  start-page: 236
  year: 2016
  ident: 2025070907500762800_btaf372-B38
  article-title: Standardization of hemagglutination inhibition assay for influenza serology allows for high reproducibility between laboratories
  publication-title: Clin Vacc Immunol
  doi: 10.1128/CVI.00613-15
– volume: 326
  start-page: 734
  year: 2009
  ident: 2025070907500762800_btaf372-B15
  article-title: Hemagglutinin receptor binding avidity drives influenza a virus antigenic drift
  publication-title: Science
  doi: 10.1126/science.1178258
– volume: 24
  start-page: 1858
  year: 2008
  ident: 2025070907500762800_btaf372-B24
  article-title: Artificial neural network for prediction of antigenic activity for a major conformational epitope in the hepatitis C virus NS3 protein
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btn339
– volume: 43
  start-page: W213
  year: 2015
  ident: 2025070907500762800_btaf372-B37
  article-title: CATNAP: a tool to compile, analyze and tally neutralizing antibody panels
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkv404
– volume: 81
  start-page: 10209
  year: 2007
  ident: 2025070907500762800_btaf372-B5
  article-title: Human immunodeficiency virus type 1 subtype distribution in the worldwide epidemic: pathogenetic and therapeutic implications
  publication-title: J Virol
  doi: 10.1128/JVI.00872-07
– volume: 25
  start-page: bbae395
  year: 2024
  ident: 2025070907500762800_btaf372-B18
  article-title: MetaFluAD: meta-learning for predicting antigenic distances among influenza viruses
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbae395
– volume: 30
  start-page: 314
  year: 1976
  ident: 2025070907500762800_btaf372-B22
  article-title: Natural selection and random genetic drift in phenotypic evolution
  publication-title: Evolution
  doi: 10.2307/2407703
– volume: 21
  start-page: 1129
  year: 1991
  ident: 2025070907500762800_btaf372-B9
  article-title: Graph drawing by force-directed placement
  publication-title: Softw: Pract Exp
– volume: 368
  start-page: 20120200
  year: 2013
  ident: 2025070907500762800_btaf372-B33
  article-title: The antigenic evolution of influenza: drift or thrift?
  publication-title: Philos Trans R Soc Lond B Biol Sci
  doi: 10.1098/rstb.2012.0200
– volume: 34
  start-page: 4121
  year: 2018
  ident: 2025070907500762800_btaf372-B10
  article-title: Nextstrain: real-time tracking of pathogen evolution
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty407
– volume: 113
  start-page: E1701
  year: 2016
  ident: 2025070907500762800_btaf372-B27
  article-title: Prediction, dynamics, and visualization of antigenic phenotypes of seasonal influenza viruses
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1525578113
SSID ssj0005056
Score 2.4859152
Snippet Abstract Motivation Understanding antigenic evolution through cross-reactivity assays is crucial for tracking rapidly evolving pathogens requiring regular...
Understanding antigenic evolution through cross-reactivity assays is crucial for tracking rapidly evolving pathogens requiring regular vaccine updates....
Motivation Understanding antigenic evolution through cross-reactivity assays is crucial for tracking rapidly evolving pathogens requiring regular vaccine...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
oup
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
SubjectTerms Accuracy
Affinity
Algorithms
Antigens
Antigens - chemistry
Antigens - immunology
Antigens, Viral - chemistry
Antigens, Viral - immunology
Availability
Binding
Cartography
Computational Biology - methods
Cross Reactions
Cross-reactivity
Dengue Virus - immunology
Evolution
HIV - immunology
Humans
Influenza A Virus, H3N2 Subtype - immunology
Multidimensional methods
Multidimensional scaling
Original Paper
Phenotypes
Vector-borne diseases
Vectors
Title Topolow: a mapping algorithm for antigenic cross-reactivity and binding affinity assays
URI https://www.ncbi.nlm.nih.gov/pubmed/40563242
https://www.proquest.com/docview/3230521989
https://www.proquest.com/docview/3224256240
https://pubmed.ncbi.nlm.nih.gov/PMC12237505
https://academic.oup.com/bioinformatics/advance-article-pdf/doi/10.1093/bioinformatics/btaf372/63582086/btaf372.pdf
UnpaywallVersion publishedVersion
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: KQ8
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: Openly Available Collection - DOAJ
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: DOA
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: ADMLS
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: RPM
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVOVD
  databaseName: Journals@Ovid LWW All Open Access Journal Collection Rolling
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: OVEED
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://ovidsp.ovid.com/
  providerName: Ovid
– providerCode: PRVASL
  databaseName: Oxford Journals Open Access Collection
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: TOX
  dateStart: 19850101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwvV3Nb9MwFH8anRBcxjcLjMlInJDS1rGdpNwmxDQhMTi0opwi27G3iC6tllRT-Tv4g3lOnLIMIY0LlyjyZ_L8HP8cv_d7AG-kRRgQTXSobDwJeeLmXB6rkPEkERrXHGqdc_Kn0_hkxj_OxXwHqs4XRnqr8GHn0qCKpacQdbTFI38y3pmNhavc_iYhmLCbxVUtLUuiUewcQl1MIZ8wxHp3YDcWCOAHsDs7_XL0rfXQSkKeNvGU_T2lnV_xX1vvLWk9N7lraPVPo8t763IlN1dysbi2oh0_gJ-dLFpDlu_Dda2G-scNmsj_LKyHsOcRMjlqW3sEO6Z8DHfbmJmbJ_B12oR1uHpHJLmQjl3ijMjF2fKyqM8vCHZDUFccxWihSSOvEGGxbmNkYFZOVNE48hBpbVE2iVUlN9VTmB1_mL4_CX10iFBzxuuQmZxKR4fIkjRPU2qicWSsVVrzRFAlmFARV9SyVOuI8pzZPHUGYnGUxGOmJ-wZDMplafaBSNw3GW6soHnKIyMUpwYTEo27Z5uLcQCjboCzVUsCkrWH9yzryzDzIgvgLY7JrQsfdOqS-S9IlTHcGyK0wgcO4PU2G-e-O9CRpVmuXRm3YYwRlAXwvNWubZcIxB0TPzae9vRuW8DxivdzyuK84RenCBkRSIoAxlsVveWrvPj3Ki_hfuRiKjcm0AcwqC_X5hUCvVodNj9I8Dr9PD_0k_QXmXFdrA
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwvV1Lb9QwEB6VrRBceD8CBRmJE1J217GdZLlViKpCouLQFeUU-dlGbLOrJqtq-R38YMaJszRFSOXCLfIzGY_jb-SZbwDeSocwIJnpWLl0FvPM7zmTqpjxLBMazxzqfHDy56P0cM4_nYiTHaj7WBgZvMLHfUiDKpeBQtTTFk_CzXjvNhavjPtNQjBj15urRjqWJZPUB4T6nEKhYIz9bsFuKhDAj2B3fvRl_1sXoZXFPG_zKYdnSvu44r-OPjjSBmFyV9Dqn06Xd9bVSm4u5WJx5UQ7uA8_e1l0jizfx-tGjfWPazSR_1lYD-BeQMhkvxvtIezY6hHc7nJmbh7D1-M2rcPleyLJufTsEqdELk6XF2Vzdk5wGoK64ilGS01aecUIi3WXIwOrDFFlG8hDpHNl1RbWtdzUT2B-8PH4w2EcskPEmjPexMwaKj0dIstyk-fUJtPEOqe05pmgSjChEq6oY7nWCeWGOZN7B7E0ydIp0zP2FEbVsrLPgUi0myy3TlCT88QKxanFgkyj9eyMmEYw6Re4WHUkIEV3ec-KoQyLILII3uGa3LjxXq8uRfiD1AVD2xChFb5wBG-21bj3_YWOrOxy7dt4gzFFUBbBs067tlMiEPdM_Dh4PtC7bQPPKz6sqcqzll-cImREICkimG5V9Iaf8uLfu7yEu4nPqdy6QO_BqLlY21cI9Br1OmzMX0bOW5s
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Topolow%3A+a+mapping+algorithm+for+antigenic+cross-reactivity+and+binding+affinity+assays&rft.jtitle=Bioinformatics+%28Oxford%2C+England%29&rft.au=Arhami%2C+Omid&rft.au=Rohani%2C+Pejman&rft.date=2025-07-01&rft.eissn=1367-4811&rft.volume=41&rft.issue=7&rft_id=info:doi/10.1093%2Fbioinformatics%2Fbtaf372&rft_id=info%3Apmid%2F40563242&rft.externalDocID=40563242
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-4811&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-4811&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-4811&client=summon