Adaptive fusion of dual-view for grading prostate cancer
Accurate preoperative grading of prostate cancer is crucial for assisted diagnosis. Multi-parametric magnetic resonance imaging (MRI) is a commonly used non-invasive approach, however, the interpretation of MRI images is still subject to significant subjectivity due to variations in physicians’ expe...
Saved in:
| Published in | Computerized medical imaging and graphics Vol. 119; p. 102479 |
|---|---|
| Main Authors | , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Elsevier Ltd
01.01.2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0895-6111 1879-0771 1879-0771 |
| DOI | 10.1016/j.compmedimag.2024.102479 |
Cover
| Summary: | Accurate preoperative grading of prostate cancer is crucial for assisted diagnosis. Multi-parametric magnetic resonance imaging (MRI) is a commonly used non-invasive approach, however, the interpretation of MRI images is still subject to significant subjectivity due to variations in physicians’ expertise and experience. To achieve accurate, non-invasive, and efficient grading of prostate cancer, this paper proposes a deep learning method that adaptively fuses dual-view MRI images. Specifically, a dual-view adaptive fusion model is designed. The model employs encoders to extract embedded features from two MRI sequences: T2-weighted imaging (T2WI) and apparent diffusion coefficient (ADC). The model reconstructs the original input images using the embedded features and adopts a cross-embedding fusion module to adaptively fuse the embedded features from the two views. Adaptive fusion refers to dynamically adjusting the fusion weights of the features from the two views according to different input samples, thereby fully utilizing complementary information. Furthermore, the model adaptively weights the prediction results from the two views based on uncertainty estimation, further enhancing the grading performance. To verify the importance of effective multi-view fusion for prostate cancer grading, extensive experiments are designed. The experiments evaluate the performance of single-view models, dual-view models, and state-of-the-art multi-view fusion algorithms. The results demonstrate that the proposed dual-view adaptive fusion method achieves the best grading performance, confirming its effectiveness for assisted grading diagnosis of prostate cancer. This study provides a novel deep learning solution for preoperative grading of prostate cancer, which has the potential to assist clinical physicians in making more accurate diagnostic decisions and has significant clinical application value. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 0895-6111 1879-0771 1879-0771 |
| DOI: | 10.1016/j.compmedimag.2024.102479 |