Adaptive fusion of dual-view for grading prostate cancer

Accurate preoperative grading of prostate cancer is crucial for assisted diagnosis. Multi-parametric magnetic resonance imaging (MRI) is a commonly used non-invasive approach, however, the interpretation of MRI images is still subject to significant subjectivity due to variations in physicians’ expe...

Full description

Saved in:
Bibliographic Details
Published inComputerized medical imaging and graphics Vol. 119; p. 102479
Main Authors He, Yaolin, Li, Bowen, He, Ruimin, Fu, Guangming, Sun, Dan, Shan, Dongyong, Zhang, Zijian
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 01.01.2025
Subjects
Online AccessGet full text
ISSN0895-6111
1879-0771
1879-0771
DOI10.1016/j.compmedimag.2024.102479

Cover

More Information
Summary:Accurate preoperative grading of prostate cancer is crucial for assisted diagnosis. Multi-parametric magnetic resonance imaging (MRI) is a commonly used non-invasive approach, however, the interpretation of MRI images is still subject to significant subjectivity due to variations in physicians’ expertise and experience. To achieve accurate, non-invasive, and efficient grading of prostate cancer, this paper proposes a deep learning method that adaptively fuses dual-view MRI images. Specifically, a dual-view adaptive fusion model is designed. The model employs encoders to extract embedded features from two MRI sequences: T2-weighted imaging (T2WI) and apparent diffusion coefficient (ADC). The model reconstructs the original input images using the embedded features and adopts a cross-embedding fusion module to adaptively fuse the embedded features from the two views. Adaptive fusion refers to dynamically adjusting the fusion weights of the features from the two views according to different input samples, thereby fully utilizing complementary information. Furthermore, the model adaptively weights the prediction results from the two views based on uncertainty estimation, further enhancing the grading performance. To verify the importance of effective multi-view fusion for prostate cancer grading, extensive experiments are designed. The experiments evaluate the performance of single-view models, dual-view models, and state-of-the-art multi-view fusion algorithms. The results demonstrate that the proposed dual-view adaptive fusion method achieves the best grading performance, confirming its effectiveness for assisted grading diagnosis of prostate cancer. This study provides a novel deep learning solution for preoperative grading of prostate cancer, which has the potential to assist clinical physicians in making more accurate diagnostic decisions and has significant clinical application value.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0895-6111
1879-0771
1879-0771
DOI:10.1016/j.compmedimag.2024.102479