A BCI based visual-haptic neurofeedback training improves cortical activations and classification performance during motor imagery

Objective. We proposed a brain-computer interface (BCI) based visual-haptic neurofeedback training (NFT) by incorporating synchronous visual scene and proprioceptive electrical stimulation feedback. The goal of this work was to improve sensorimotor cortical activations and classification performance...

Full description

Saved in:
Bibliographic Details
Published inJournal of neural engineering Vol. 16; no. 6; pp. 66012 - 66023
Main Authors Wang, Zhongpeng, Zhou, Yijie, Chen, Long, Gu, Bin, Liu, Shuang, Xu, Minpeng, Qi, Hongzhi, He, Feng, Ming, Dong
Format Journal Article
LanguageEnglish
Published England IOP Publishing 23.10.2019
Subjects
Online AccessGet full text
ISSN1741-2560
1741-2552
1741-2552
DOI10.1088/1741-2552/ab377d

Cover

Abstract Objective. We proposed a brain-computer interface (BCI) based visual-haptic neurofeedback training (NFT) by incorporating synchronous visual scene and proprioceptive electrical stimulation feedback. The goal of this work was to improve sensorimotor cortical activations and classification performance during motor imagery (MI). In addition, their correlations and brain network patterns were also investigated respectively. Approach. 64-channel electroencephalographic (EEG) data were recorded in nineteen healthy subjects during MI before and after NFT. During NFT sessions, the synchronous visual-haptic feedbacks were driven by real-time lateralized relative event-related desynchronization (lrERD). Main results. By comparison between previous and posterior control sessions, the cortical activations measured by multi-band (i.e. alpha_1: 8-10 Hz, alpha_2: 11-13 Hz, beta_1: 15-20 Hz and beta_2: 22-28 Hz) absolute ERD powers and lrERD patterns were significantly enhanced after the NFT. The classification performance was also significantly improved, achieving a ~9% improvement and reaching ~85% in mean classification accuracy from a relatively poor performance. Additionally, there were significant correlations between lrERD patterns and classification accuracies. The partial directed coherence based functional connectivity (FC) networks covering the sensorimotor area also showed an increase after the NFT. Significance. These findings validate the feasibility of our proposed NFT to improve sensorimotor cortical activations and BCI performance during motor imagery. And it is promising to optimize conventional NFT manner and evaluate the effectiveness of motor training.
AbstractList We proposed a brain-computer interface (BCI) based visual-haptic neurofeedback training (NFT) by incorporating synchronous visual scene and proprioceptive electrical stimulation feedback. The goal of this work was to improve sensorimotor cortical activations and classification performance during motor imagery (MI). In addition, their correlations and brain network patterns were also investigated respectively.OBJECTIVEWe proposed a brain-computer interface (BCI) based visual-haptic neurofeedback training (NFT) by incorporating synchronous visual scene and proprioceptive electrical stimulation feedback. The goal of this work was to improve sensorimotor cortical activations and classification performance during motor imagery (MI). In addition, their correlations and brain network patterns were also investigated respectively.64-channel electroencephalographic (EEG) data were recorded in nineteen healthy subjects during MI before and after NFT. During NFT sessions, the synchronous visual-haptic feedbacks were driven by real-time lateralized relative event-related desynchronization (lrERD).APPROACH64-channel electroencephalographic (EEG) data were recorded in nineteen healthy subjects during MI before and after NFT. During NFT sessions, the synchronous visual-haptic feedbacks were driven by real-time lateralized relative event-related desynchronization (lrERD).By comparison between previous and posterior control sessions, the cortical activations measured by multi-band (i.e. alpha_1: 8-10 Hz, alpha_2: 11-13 Hz, beta_1: 15-20 Hz and beta_2: 22-28 Hz) absolute ERD powers and lrERD patterns were significantly enhanced after the NFT. The classification performance was also significantly improved, achieving a ~9% improvement and reaching ~85% in mean classification accuracy from a relatively poor performance. Additionally, there were significant correlations between lrERD patterns and classification accuracies. The partial directed coherence based functional connectivity (FC) networks covering the sensorimotor area also showed an increase after the NFT.MAIN RESULTSBy comparison between previous and posterior control sessions, the cortical activations measured by multi-band (i.e. alpha_1: 8-10 Hz, alpha_2: 11-13 Hz, beta_1: 15-20 Hz and beta_2: 22-28 Hz) absolute ERD powers and lrERD patterns were significantly enhanced after the NFT. The classification performance was also significantly improved, achieving a ~9% improvement and reaching ~85% in mean classification accuracy from a relatively poor performance. Additionally, there were significant correlations between lrERD patterns and classification accuracies. The partial directed coherence based functional connectivity (FC) networks covering the sensorimotor area also showed an increase after the NFT.These findings validate the feasibility of our proposed NFT to improve sensorimotor cortical activations and BCI performance during motor imagery. And it is promising to optimize conventional NFT manner and evaluate the effectiveness of motor training.SIGNIFICANCEThese findings validate the feasibility of our proposed NFT to improve sensorimotor cortical activations and BCI performance during motor imagery. And it is promising to optimize conventional NFT manner and evaluate the effectiveness of motor training.
We proposed a brain-computer interface (BCI) based visual-haptic neurofeedback training (NFT) by incorporating synchronous visual scene and proprioceptive electrical stimulation feedback. The goal of this work was to improve sensorimotor cortical activations and classification performance during motor imagery (MI). In addition, their correlations and brain network patterns were also investigated respectively. 64-channel electroencephalographic (EEG) data were recorded in nineteen healthy subjects during MI before and after NFT. During NFT sessions, the synchronous visual-haptic feedbacks were driven by real-time lateralized relative event-related desynchronization (lrERD). By comparison between previous and posterior control sessions, the cortical activations measured by multi-band (i.e. alpha_1: 8-10 Hz, alpha_2: 11-13 Hz, beta_1: 15-20 Hz and beta_2: 22-28 Hz) absolute ERD powers and lrERD patterns were significantly enhanced after the NFT. The classification performance was also significantly improved, achieving a ~9% improvement and reaching ~85% in mean classification accuracy from a relatively poor performance. Additionally, there were significant correlations between lrERD patterns and classification accuracies. The partial directed coherence based functional connectivity (FC) networks covering the sensorimotor area also showed an increase after the NFT. These findings validate the feasibility of our proposed NFT to improve sensorimotor cortical activations and BCI performance during motor imagery. And it is promising to optimize conventional NFT manner and evaluate the effectiveness of motor training.
Objective. We proposed a brain-computer interface (BCI) based visual-haptic neurofeedback training (NFT) by incorporating synchronous visual scene and proprioceptive electrical stimulation feedback. The goal of this work was to improve sensorimotor cortical activations and classification performance during motor imagery (MI). In addition, their correlations and brain network patterns were also investigated respectively. Approach. 64-channel electroencephalographic (EEG) data were recorded in nineteen healthy subjects during MI before and after NFT. During NFT sessions, the synchronous visual-haptic feedbacks were driven by real-time lateralized relative event-related desynchronization (lrERD). Main results. By comparison between previous and posterior control sessions, the cortical activations measured by multi-band (i.e. alpha_1: 8-10 Hz, alpha_2: 11-13 Hz, beta_1: 15-20 Hz and beta_2: 22-28 Hz) absolute ERD powers and lrERD patterns were significantly enhanced after the NFT. The classification performance was also significantly improved, achieving a ~9% improvement and reaching ~85% in mean classification accuracy from a relatively poor performance. Additionally, there were significant correlations between lrERD patterns and classification accuracies. The partial directed coherence based functional connectivity (FC) networks covering the sensorimotor area also showed an increase after the NFT. Significance. These findings validate the feasibility of our proposed NFT to improve sensorimotor cortical activations and BCI performance during motor imagery. And it is promising to optimize conventional NFT manner and evaluate the effectiveness of motor training.
Author Qi, Hongzhi
Chen, Long
Gu, Bin
Zhou, Yijie
Xu, Minpeng
Ming, Dong
He, Feng
Wang, Zhongpeng
Liu, Shuang
Author_xml – sequence: 1
  givenname: Zhongpeng
  orcidid: 0000-0002-3002-1756
  surname: Wang
  fullname: Wang, Zhongpeng
  organization: Tianjin University Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin 300072, People's Republic of China
– sequence: 2
  givenname: Yijie
  orcidid: 0000-0003-1413-8425
  surname: Zhou
  fullname: Zhou, Yijie
  organization: Tianjin University Academy of Medical Engineering and Translational Medicine, Tianjin 300072, People's Republic of China
– sequence: 3
  givenname: Long
  surname: Chen
  fullname: Chen, Long
  email: cagor@tju.edu.cn
  organization: Tianjin University Academy of Medical Engineering and Translational Medicine, Tianjin 300072, People's Republic of China
– sequence: 4
  givenname: Bin
  surname: Gu
  fullname: Gu, Bin
  organization: Tianjin University Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin 300072, People's Republic of China
– sequence: 5
  givenname: Shuang
  surname: Liu
  fullname: Liu, Shuang
  organization: Tianjin University Academy of Medical Engineering and Translational Medicine, Tianjin 300072, People's Republic of China
– sequence: 6
  givenname: Minpeng
  surname: Xu
  fullname: Xu, Minpeng
  organization: Tianjin International Joint Research Center for Neural Engineering , Tianjin 300072, People's Republic of China
– sequence: 7
  givenname: Hongzhi
  surname: Qi
  fullname: Qi, Hongzhi
  organization: Tianjin International Joint Research Center for Neural Engineering , Tianjin 300072, People's Republic of China
– sequence: 8
  givenname: Feng
  surname: He
  fullname: He, Feng
  organization: Tianjin International Joint Research Center for Neural Engineering , Tianjin 300072, People's Republic of China
– sequence: 9
  givenname: Dong
  surname: Ming
  fullname: Ming, Dong
  email: richardming@tju.edu.cn
  organization: Tianjin International Joint Research Center for Neural Engineering , Tianjin 300072, People's Republic of China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31365911$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1v1DAQxS1URD_gzgn5BgdC_ZHYzrGsClSqxAXO1sSZFC9ZO9jJSr3yl-N0yx4Q6smj8e89jd47JychBiTkNWcfODPmkuuaV6JpxCV0Uuv-GTk7rk6Os2Kn5DznLWOS65a9IKeSS9W0nJ-R31f04-aGdpCxp3ufFxirHzDN3tGAS4oDYt-B-0nnBD74cEf9bkpxj5m6mAoGIwU3-z3MPoZMIfTUjZCzH8rfuqMTpiGmHQSHtF_S6rGLc0zFCe4w3b8kzwcYM756fC_I90_X3zZfqtuvn282V7eVq2U9VxxcA51S0pRJ1K3gpkOHGkTXmQaMMKJpdd1LobuGcwmNxIYbja1BzmstL8i7g2-5_9eCebY7nx2OIwSMS7ZCKK21aYUp6JtHdOl22NsplVvTvf2bWwHYAXAp5pxwOCKc2bUau2Zv1x7soZoiUf9InJ8fElqjHZ8Svj8IfZzsNi4plJSewt_-B98GtFxZZZlSjAs79YP8AyIvr1I
CODEN JNEIEZ
CitedBy_id crossref_primary_10_1088_1741_2552_ac74e0
crossref_primary_10_3389_fnins_2022_938518
crossref_primary_10_3233_NRE_201579
crossref_primary_10_1109_TNNLS_2023_3305621
crossref_primary_10_1371_journal_pone_0264354
crossref_primary_10_3389_fnins_2022_909434
crossref_primary_10_2478_sjph_2025_0009
crossref_primary_10_3389_fnagi_2023_1169683
crossref_primary_10_1080_2326263X_2023_2264000
crossref_primary_10_1016_j_measurement_2022_112304
crossref_primary_10_1088_1741_2552_ac823f
crossref_primary_10_1016_j_ifacol_2023_10_296
crossref_primary_10_1088_1741_2552_ad3eb3
crossref_primary_10_3389_fnhum_2024_1447662
crossref_primary_10_1109_THMS_2022_3168425
crossref_primary_10_3390_electronics11172706
crossref_primary_10_1038_s41598_023_44621_6
crossref_primary_10_1109_TBME_2022_3202189
crossref_primary_10_3390_s23135836
crossref_primary_10_1007_s11571_021_09732_8
crossref_primary_10_1109_TNSRE_2021_3102304
crossref_primary_10_1088_1741_2552_ac9338
crossref_primary_10_1109_TMRB_2020_3025364
crossref_primary_10_1038_s41598_024_72358_3
crossref_primary_10_1088_1741_2552_ac49a6
crossref_primary_10_3390_brainsci10110790
crossref_primary_10_3390_electronics12224697
crossref_primary_10_2139_ssrn_4147552
crossref_primary_10_3390_s22155802
crossref_primary_10_3389_fnhum_2021_634748
crossref_primary_10_1016_j_jneumeth_2020_108650
crossref_primary_10_1080_27706710_2022_2147404
crossref_primary_10_1109_JBHI_2023_3344176
crossref_primary_10_1016_j_jiixd_2024_06_003
crossref_primary_10_3389_fnins_2021_732545
crossref_primary_10_1109_TIM_2022_3147882
crossref_primary_10_1109_TNSRE_2023_3270175
crossref_primary_10_3390_s21062173
crossref_primary_10_3389_fnhum_2022_831995
crossref_primary_10_1109_RBME_2024_3449790
crossref_primary_10_1155_2021_8832686
crossref_primary_10_1080_29960355_2025_2471680
crossref_primary_10_1109_TNSRE_2023_3281855
Cites_doi 10.1016/j.neuroimage.2016.03.016
10.1016/j.humov.2014.08.014
10.3389/fneng.2014.00026
10.1016/j.nicl.2018.07.029
10.1109/TBME.2018.2799661
10.3389/fnhum.2017.00193
10.1016/j.clinph.2008.11.015
10.1038/s41467-018-04673-z
10.1161/STROKEAHA.112.653196
10.1186/1475-925X-13-158
10.1002/ana.24390
10.1038/nrneurol.2010.200
10.1155/2017/4653256
10.3389/fnhum.2013.00807
10.1016/j.clinph.2013.03.006
10.1016/j.jphysparis.2006.03.012
10.1088/1741-2560/7/2/026007
10.1177/1545968313490999
10.1016/j.neuropsychologia.2018.04.016
10.3389/fnins.2012.00039
10.1186/1743-0003-10-106
10.1088/1741-2560/8/2/025020
10.3389/fneng.2014.00019
10.1007/s10548-014-0402-6
10.1117/1.NPh.4.4.045003
10.1038/nrn.2016.164
10.3389/fnhum.2016.00692
10.1016/j.neuroscience.2016.05.044
10.1016/j.clinph.2018.09.008
10.1016/j.brainres.2014.09.001
10.1186/1743-0003-11-1
10.1016/j.brainresrev.2008.12.024
10.1007/s10548-018-0624-0
10.1109/86.895946
10.1016/j.neuroimage.2013.04.097
10.1093/brain/awr077
10.1016/j.neuroimage.2015.01.058
10.1186/1743-0003-9-56
10.1145/1961189.1961199
10.1109/TNSRE.2011.2168542
ContentType Journal Article
Copyright 2019 IOP Publishing Ltd
Copyright_xml – notice: 2019 IOP Publishing Ltd
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1088/1741-2552/ab377d
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
DocumentTitleAlternate A BCI based visual-haptic neurofeedback training improves cortical activations and classification performance during motor imagery
EISSN 1741-2552
ExternalDocumentID 31365911
10_1088_1741_2552_ab377d
jneab377d
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Tianjin Key Technology R&D Program
  grantid: 17ZXRGGX00020; 16ZXHLSY00270
– fundername: National Key Research and Development Program of China
  grantid: 2017YFB1300302
– fundername: National Natural Science Foundation of China
  grantid: 81630051; 91648122; 81601565
  funderid: https://doi.org/10.13039/501100001809
GroupedDBID ---
1JI
4.4
53G
5B3
5GY
5VS
5ZH
7.M
7.Q
AAGCD
AAJIO
AAJKP
AATNI
ABHWH
ABJNI
ABQJV
ABVAM
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CEBXE
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EMSAF
EPQRW
EQZZN
F5P
HAK
IHE
IJHAN
IOP
IZVLO
KOT
LAP
M45
N5L
N9A
P2P
PJBAE
RIN
RO9
ROL
RPA
SY9
W28
XPP
AAYXX
ADEQX
AEINN
CITATION
NPM
7X8
ID FETCH-LOGICAL-c434t-1ac5ab66381ac249218bece7a2bb85a82825974d327b5113a53e5187e98e11473
IEDL.DBID IOP
ISSN 1741-2560
1741-2552
IngestDate Fri Sep 05 11:47:47 EDT 2025
Mon Jul 21 06:03:15 EDT 2025
Wed Oct 01 02:41:30 EDT 2025
Thu Apr 24 23:03:54 EDT 2025
Wed Aug 21 03:33:55 EDT 2024
Fri Jan 08 09:41:24 EST 2021
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c434t-1ac5ab66381ac249218bece7a2bb85a82825974d327b5113a53e5187e98e11473
Notes JNE-102830.R3
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-3002-1756
0000-0003-1413-8425
PMID 31365911
PQID 2267778928
PQPubID 23479
PageCount 12
ParticipantIDs iop_journals_10_1088_1741_2552_ab377d
pubmed_primary_31365911
crossref_primary_10_1088_1741_2552_ab377d
crossref_citationtrail_10_1088_1741_2552_ab377d
proquest_miscellaneous_2267778928
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-10-23
PublicationDateYYYYMMDD 2019-10-23
PublicationDate_xml – month: 10
  year: 2019
  text: 2019-10-23
  day: 23
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Journal of neural engineering
PublicationTitleAbbrev JNE
PublicationTitleAlternate J. Neural Eng
PublicationYear 2019
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References 22
23
24
26
27
28
29
Pichiorri F (15) 2011; 8
Müller-Putz G R (25) 2014; 11
31
10
32
11
33
12
34
13
14
36
37
16
38
17
39
18
19
Allison B Z (35) 2010; 7
1
2
3
4
5
6
7
8
9
40
41
20
Yi W (30) 2016; 14
42
21
References_xml – ident: 2
  doi: 10.1016/j.neuroimage.2016.03.016
– ident: 7
  doi: 10.1016/j.humov.2014.08.014
– ident: 10
  doi: 10.3389/fneng.2014.00026
– ident: 40
  doi: 10.1016/j.nicl.2018.07.029
– volume: 14
  issn: 1741-2552
  year: 2016
  ident: 30
  publication-title: J. Neural Eng.
– ident: 39
  doi: 10.1109/TBME.2018.2799661
– ident: 26
  doi: 10.3389/fnhum.2017.00193
– ident: 20
  doi: 10.1016/j.clinph.2008.11.015
– ident: 12
  doi: 10.1038/s41467-018-04673-z
– ident: 18
  doi: 10.1161/STROKEAHA.112.653196
– ident: 38
  doi: 10.1186/1475-925X-13-158
– ident: 16
  doi: 10.1002/ana.24390
– ident: 4
  doi: 10.1038/nrneurol.2010.200
– ident: 11
  doi: 10.1155/2017/4653256
– ident: 13
  doi: 10.3389/fnhum.2013.00807
– ident: 21
  doi: 10.1016/j.clinph.2013.03.006
– ident: 24
  doi: 10.1016/j.jphysparis.2006.03.012
– volume: 7
  start-page: 26007
  issn: 1741-2552
  year: 2010
  ident: 35
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/7/2/026007
– ident: 19
  doi: 10.1177/1545968313490999
– ident: 22
  doi: 10.1016/j.neuropsychologia.2018.04.016
– ident: 31
  doi: 10.3389/fnins.2012.00039
– ident: 34
  doi: 10.1186/1743-0003-10-106
– volume: 8
  issn: 1741-2552
  year: 2011
  ident: 15
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/8/2/025020
– ident: 6
  doi: 10.3389/fneng.2014.00019
– volume: 11
  issn: 1741-2552
  year: 2014
  ident: 25
  publication-title: J. Neural Eng.
– ident: 42
  doi: 10.1007/s10548-014-0402-6
– ident: 27
  doi: 10.1117/1.NPh.4.4.045003
– ident: 1
  doi: 10.1038/nrn.2016.164
– ident: 8
  doi: 10.3389/fnhum.2016.00692
– ident: 28
  doi: 10.1016/j.neuroscience.2016.05.044
– ident: 37
  doi: 10.1016/j.clinph.2018.09.008
– ident: 41
  doi: 10.1016/j.brainres.2014.09.001
– ident: 29
  doi: 10.1186/1743-0003-11-1
– ident: 23
  doi: 10.1016/j.brainresrev.2008.12.024
– ident: 36
  doi: 10.1007/s10548-018-0624-0
– ident: 32
  doi: 10.1109/86.895946
– ident: 14
  doi: 10.1016/j.neuroimage.2013.04.097
– ident: 3
  doi: 10.1093/brain/awr077
– ident: 17
  doi: 10.1016/j.neuroimage.2015.01.058
– ident: 5
  doi: 10.1186/1743-0003-9-56
– ident: 33
  doi: 10.1145/1961189.1961199
– ident: 9
  doi: 10.1109/TNSRE.2011.2168542
SSID ssj0031790
Score 2.4608784
Snippet Objective. We proposed a brain-computer interface (BCI) based visual-haptic neurofeedback training (NFT) by incorporating synchronous visual scene and...
We proposed a brain-computer interface (BCI) based visual-haptic neurofeedback training (NFT) by incorporating synchronous visual scene and proprioceptive...
SourceID proquest
pubmed
crossref
iop
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 66012
SubjectTerms brain-computer interface
event-related desynchronization
motor imagery
neurofeedback training
proprioceptive electrical stimulation
Title A BCI based visual-haptic neurofeedback training improves cortical activations and classification performance during motor imagery
URI https://iopscience.iop.org/article/10.1088/1741-2552/ab377d
https://www.ncbi.nlm.nih.gov/pubmed/31365911
https://www.proquest.com/docview/2267778928
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIOP
  databaseName: IOP Science Platform
  customDbUrl:
  eissn: 1741-2552
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0031790
  issn: 1741-2560
  databaseCode: IOP
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://iopscience.iop.org/
  providerName: IOP Publishing
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB215cIFKAW6QNEgARKH7CZxHHvFaamoCgfgQKUekCzbcURpm101u0jlyC9nJk4WFUGFuEXRxLHHH_PGnnkGeOZsnaVeuUTXRcmk2mky9XKayMI7FaSse7bP9-XhUfHuWB5vwKt1Lsx80S_9Y3qMRMFRhX1AnJ4Qhs4SQsL5xDqhVLUJN4QmYMzZex8-DsuwYOqpmA3J0mXan1H-qYQrNmmT_vt3uNmZnYPb8HmocIw2OR2vlm7sv__G5fifLboDt3o4irMoug0bobkLO7OGXPHzS3yBXYBot_O-Az9m-Hr_LbLdq_DbSbuyZ8kXS0uOxyZSfITKWX-Kw7UTeNLtWIQWycXt9syR0yjiJnCLtqnQM3jnaKXuHS5-pTFgTKBEGkrzCyqJuTYu78HRwZtP-4dJf4VD4gtRLJPMemkdoRpNT0xOmGkaNEHZ3DktrebMWfJoKpErR9BPWCmCzLQKUx3IU1PiPmw18ybsAhZFlTob0prWHHLTck2qqmStylqRWxayEUyGTjS-5zfn9p6Z7pxda8NqNqxmE9U8gpfrLxaR2-Ma2efUe6af4O01cnhF7msTTFaa0hC0IyxgFlU9gqfD4DI0l_mAxjZhvmoNQWGllKa2jeBBHHXrigmORyTL9PAfK_IIbhK2m7KZzcVj2FperMIe4aele9LNk5-45hJF
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RIiEu5VGgCwUGCZA4ZDcvx97jUli1gEoPVOrN2I4j-squml2kcuSXd_xIURFUSNysyHbs8WO-sWc-A7zUqslSw3UimrJypNppMjZsnLDSaG4ZayLb5261vV9-OGAH8Z1THwszm8etf0jJQBQcRBgd4sSIMHSWEBLOR0oXnNejed2swE3PU-Ii-D7v9Vtx4einQkSkK1Gl8Z7yT7Vc0Usr9O-_Q06veqZ34Gvf6OBxcjxcLvTQ_PiNz_E_enUX1iIsxUnIfg9u2PY-rE9aMslPz_E1ekdRfwK_Dj8n-HZrB53-q_H7YbdUJ8k3RVuPwTZQfdhaK3OM_fMTeOhPLmyHZOr6s3N04RThMLhD1dZoHIh3Xkv-G85_hTNgCKREmlKzM6rJcW6cP4D96fsvW9tJfMohMWVRLpJMGaY0oRtBKUdSmAmaPJarXGvBlHARtGTZ1EXONUHAQrHCskxwOxaWLDZePITVdtbaDcCyrFOtbNrQ3kPmWi5IXDVreNVwMs9sNoBRP5DSRJ5z198T6e_bhZBO1NKJWgZRD-DNZYl54Pi4Ju8rGkEZF3p3TT68ku-otTKrZCUJ4hEmkDS6A3jRTzBJa9pd1KjWzpadJEjMORfUtwE8CjPvsmGF80skDfX4HxvyHG7tvZvKTzu7H5_AbYJ7Y6d582ITVhdnS_uUINVCP_PL5gKBaRem
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+BCI+based+visual-haptic+neurofeedback+training+improves+cortical+activations+and+classification+performance+during+motor+imagery&rft.jtitle=Journal+of+neural+engineering&rft.au=Wang%2C+Zhongpeng&rft.au=Zhou%2C+Yijie&rft.au=Chen%2C+Long&rft.au=Gu%2C+Bin&rft.date=2019-10-23&rft.issn=1741-2552&rft.eissn=1741-2552&rft.volume=16&rft.issue=6&rft.spage=66012&rft_id=info:doi/10.1088%2F1741-2552%2Fab377d&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1741_2552_ab377d
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1741-2560&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1741-2560&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1741-2560&client=summon