Ritz-Galerkin method for solving a parabolic equation with non-local and time-dependent boundary conditions

The paper is devoted to the investigation of a parabolic partial differential equation with non‐local and time‐dependent boundary conditions arising from ductal carcinoma in situ model. Approximation solution of the present problem is implemented by the Ritz–Galerkin method, which is a first attempt...

Full description

Saved in:
Bibliographic Details
Published inMathematical methods in the applied sciences Vol. 39; no. 5; pp. 1241 - 1253
Main Authors Zhou, Jian-Rong, Li, Heng, Xu, Yongzhi
Format Journal Article
LanguageEnglish
Published Freiburg Blackwell Publishing Ltd 01.04.2016
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN0170-4214
1099-1476
DOI10.1002/mma.3568

Cover

Abstract The paper is devoted to the investigation of a parabolic partial differential equation with non‐local and time‐dependent boundary conditions arising from ductal carcinoma in situ model. Approximation solution of the present problem is implemented by the Ritz–Galerkin method, which is a first attempt at tackling parabolic equation with such non‐classical boundary conditions. In the process of dealing with the difficulty caused by integral term in non‐local boundary condition, we use a trick of introducing the transition function G(x,t) to convert non‐local boundary to another non‐classical boundary, which can be handled with the Ritz–Galerkin method. Illustrative examples are included to demonstrate the validity and applicability of the technique in this paper. Copyright © 2015 John Wiley & Sons, Ltd.
AbstractList The paper is devoted to the investigation of a parabolic partial differential equation with non-local and time-dependent boundary conditions arising from ductal carcinoma in situ model. Approximation solution of the present problem is implemented by the Ritz-Galerkin method, which is a first attempt at tackling parabolic equation with such non-classical boundary conditions. In the process of dealing with the difficulty caused by integral term in non-local boundary condition, we use a trick of introducing the transition function G(x,t) to convert non-local boundary to another non-classical boundary, which can be handled with the Ritz-Galerkin method. Illustrative examples are included to demonstrate the validity and applicability of the technique in this paper. Copyright © 2015 John Wiley & Sons, Ltd.
The paper is devoted to the investigation of a parabolic partial differential equation with non‐local and time‐dependent boundary conditions arising from ductal carcinoma in situ model. Approximation solution of the present problem is implemented by the Ritz–Galerkin method, which is a first attempt at tackling parabolic equation with such non‐classical boundary conditions. In the process of dealing with the difficulty caused by integral term in non‐local boundary condition, we use a trick of introducing the transition function G ( x , t ) to convert non‐local boundary to another non‐classical boundary, which can be handled with the Ritz–Galerkin method. Illustrative examples are included to demonstrate the validity and applicability of the technique in this paper. Copyright © 2015 John Wiley & Sons, Ltd.
The paper is devoted to the investigation of a parabolic partial differential equation with non-local and time-dependent boundary conditions arising from ductal carcinoma in situ model. Approximation solution of the present problem is implemented by the Ritz-Galerkin method, which is a first attempt at tackling parabolic equation with such non-classical boundary conditions. In the process of dealing with the difficulty caused by integral term in non-local boundary condition, we use a trick of introducing the transition function G(x,t) to convert non-local boundary to another non-classical boundary, which can be handled with the Ritz-Galerkin method. Illustrative examples are included to demonstrate the validity and applicability of the technique in this paper.
Author Xu, Yongzhi
Li, Heng
Zhou, Jian-Rong
Author_xml – sequence: 1
  givenname: Jian-Rong
  surname: Zhou
  fullname: Zhou, Jian-Rong
  organization: Department of Mathematics, Foshan University, Guangdong, Foshan 528000, China
– sequence: 2
  givenname: Heng
  surname: Li
  fullname: Li, Heng
  organization: Department of Mathematics, University of Louisville, Louisville, KY 40292, USA
– sequence: 3
  givenname: Yongzhi
  surname: Xu
  fullname: Xu, Yongzhi
  email: Correspondence to: Yongzhi Xu, Department of Mathematics, University of Louisville, Louisville, KY 40292, United States., ysxu0001@louisville.edu
  organization: Department of Mathematics, University of Louisville, Louisville, KY 40292, USA
BookMark eNp1kMFu1DAQhi1UJLYFiUewxIVLlnHije1jVehSaRekCsTRcuIJddext7ZDKU_fLEUgKjjN5fv_mfmOyVGIAQl5yWDJAOo342iWzaqVT8iCgVIV46I9IgtgAipeM_6MHOd8DQCSsXpBdpeu_KjWxmPauUBHLFfR0iEmmqP_5sJXaujeJNNF73qKN5MpLgZ668oVnTdXPvbGUxMsLW7EyuIeg8VQaBenYE26o30M1h1C-Tl5Ohif8cWveUI-n7_7dPa-2nxcX5ydbqqeN1xWlrfCwmC4wE5BLUy7UkM7GNsrRC44grTKDl1trcRaKtYxgx2wHoxS0prmhLx-6N2neDNhLnp0uUfvTcA4Zc0kABeKMzmjrx6h13FKYb5OMyFgJnit_hT2KeaccND75Mb5Oc1AH6zr2bo-WJ_R5SO0d-Wns5KM8_8KVA-BW-fx7r_Fers9_Zt3ueD337xJO92KRqz0lw9rXb9dbTeXEnTT3AOetKVs
CODEN MMSCDB
CitedBy_id crossref_primary_10_1080_00036811_2020_1715369
crossref_primary_10_1002_mma_7601
crossref_primary_10_1080_00036811_2018_1434512
crossref_primary_10_1016_j_camwa_2025_03_006
crossref_primary_10_1002_mma_4246
crossref_primary_10_1080_00036811_2018_1524139
Cites_doi 10.1142/9789812701732_0033
10.1080/17415970802583911
10.1108/09615531211188784
10.1016/0025-5564(94)00117-3
10.1155/S1085337503210010
10.1080/17476930600667825
10.1016/0020-7225(90)90086-X
10.1016/j.amc.2005.08.011
10.1016/S0167-8396(98)00009-0
10.1016/j.cam.2006.05.002
10.1016/j.apnum.2004.02.002
10.1142/2476
10.1016/0025-5564(96)00023-5
10.1007/978-0-8176-8119-7
10.1088/0305-4470/35/46/303
10.1007/s002850050149
10.3934/dcdsb.2004.4.337
10.1016/j.mcm.2008.02.014
10.1080/00036810600835243
10.1016/j.chaos.2005.11.010
10.1016/0020-7225(93)90010-R
10.1016/j.camwa.2013.04.005
10.1080/17415977.2012.701627
10.1093/imammb/20.3.277
10.1002/num.20071
10.1016/j.na.2007.07.008
10.1002/sapm1972514317
10.1016/j.matcom.2005.10.001
10.1016/j.cam.2009.01.012
10.1016/S0377-0427(00)00376-9
10.1002/num.20019
10.1016/0020-7225(90)90087-Y
10.1002/num.20297
ContentType Journal Article
Copyright Copyright © 2015 John Wiley & Sons, Ltd.
Copyright © 2016 John Wiley & Sons, Ltd.
Copyright_xml – notice: Copyright © 2015 John Wiley & Sons, Ltd.
– notice: Copyright © 2016 John Wiley & Sons, Ltd.
DBID BSCLL
AAYXX
CITATION
7TB
8FD
FR3
JQ2
KR7
DOI 10.1002/mma.3568
DatabaseName Istex
CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
DatabaseTitleList Civil Engineering Abstracts
CrossRef

Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Mathematics
EISSN 1099-1476
EndPage 1253
ExternalDocumentID 3970520921
10_1002_mma_3568
MMA3568
ark_67375_WNG_2D5MLR80_3
Genre article
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AIQQE
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMVHM
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CO8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GBZZK
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6O
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
RYL
SAMSI
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WOHZO
WQJ
WXSBR
WYISQ
XBAML
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
AAHHS
ACCFJ
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
RWI
RWS
WRC
AAYXX
CITATION
7TB
8FD
FR3
JQ2
KR7
ID FETCH-LOGICAL-c4348-d467d0fa47eb9027a659f6fadc9ee474e08d9dfb2dd8e2891b1aeb01c0a998da3
IEDL.DBID DR2
ISSN 0170-4214
IngestDate Thu Oct 02 09:51:22 EDT 2025
Fri Jul 25 12:12:06 EDT 2025
Thu Apr 24 23:02:20 EDT 2025
Wed Oct 01 00:37:06 EDT 2025
Wed Jan 22 16:46:56 EST 2025
Sun Sep 21 06:19:49 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4348-d467d0fa47eb9027a659f6fadc9ee474e08d9dfb2dd8e2891b1aeb01c0a998da3
Notes ark:/67375/WNG-2D5MLR80-3
istex:4D7FA8CDF0C2EF68ED2A787B2F4FC20B76E4E129
ArticleID:MMA3568
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 1770183429
PQPubID 1016386
PageCount 13
ParticipantIDs proquest_miscellaneous_1800479418
proquest_journals_1770183429
crossref_primary_10_1002_mma_3568
crossref_citationtrail_10_1002_mma_3568
wiley_primary_10_1002_mma_3568_MMA3568
istex_primary_ark_67375_WNG_2D5MLR80_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2016
PublicationDateYYYYMMDD 2016-04-01
PublicationDate_xml – month: 04
  year: 2016
  text: April 2016
PublicationDecade 2010
PublicationPlace Freiburg
PublicationPlace_xml – name: Freiburg
PublicationTitle Mathematical methods in the applied sciences
PublicationTitleAlternate Math. Meth. Appl. Sci
PublicationYear 2016
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Ang W. Numerical solution of a non-classical parabolic problem: anintegro-differential approach. Applied Mathematics and Computation 2006; 175(2): 969-979.
Friedman A, Reitich F. Analysis of a mathematical model for the growth of tumours. Journal of Mathematical Biology 1999; 38(3): 262-284.
Bouziani A, Merazga N, Benamira S. Galerkin method applied to a parabolic evolution problem with nonlocal boundary conditions. Nonlinear Analysis: Theory, Methods & Applications 2008; 69(5): 1515-1524.
Adam JA, Bellomo N. A Survey of Models for tumour-Immune System Dynamics Birkhauser: Boston, 1997.
Dehghan M. On the solution of an initial-boundary value problem that combines Neumann and integral condition for the wave equation. Numerical Methods for Partial Differential Equations 2005; 21: 24-40.
Cannon JR, Matheson AL. A numerical procedure for diffusion subject to the specification of mass. International Journal of Engineering Science 1993; 31(3): 347-355.
Datta KB, Mohan BM. Orthogonal Functions in Systems and Control World Scientific: River Edge, NJ, USA, 1995.
Xu Y, Gilbert R. Some inverse problems raised from a mathematical model of ductal carcinoma in situ. Mathematical and Computer Modelling 2009; 49(3): 814-828.
Behiry SH. A wavelet-Galerkin method for inhomogeneous diffusion equations subject to mass specification. Journal of Physics A: Mathematical and General 2002; 35(46): 9745-9753.
Dehghan M. A computational study of the one-dimensional parabolic equation subject to nonclassical boundary specifications. Numerical Methods for Partial Differential Equations 2006; 22(1): 220-257.
Dehghan M. The one-dimensional heat eqation subject to a boundary integral specification. Chaos, Solitons & Fractals 2007; 32: 661-675.
Cannon JR, Lin Y. A Galerkin procedure for diffusion equation with boundary integral conditions. International Journal of Engineering Science 1990; 28(7): 579-587.
Burton AC. Rate of growth of solid tumours as a problem of diffusion growth. Journal of Mathematical Biology 1966; 30(2): 157-176.
Byrne HM, Chaplain MAJ. Growth of necrotic tumours in the presence and absence of inhibitors. Mathematical Biosciences 1996; 135(2): 187-216.
Dehghan M. Finite difference procedures for solving a problem arising in modeling and design of certain optoelectronic devices Mathematics and Computers in Simulation. 2006; 71: 16-30.
Dehghan M. Efficient techniques for the second-order parabolic equation subject to nonlocal specifications. Applied Numerical Mathematics 2005; 52(1): 39-62.
Bouziani A. On the weak solution of a three-point boundary value problem for a class of parabolic equations with energy specification. Abstract and Applied Analysis 2003; 10: 573-589.
Franks SJ, Byrne HM, Mudhar HS, Underwood JC. Lewis CE mathematical modelling of comedo ductal carcinoma in situ of the breast. Mathematical Medicine and Biology 2003; 20(3): 277-308.
Cannon JR, Lin Y, Wang S. An implicit finite difference scheme for the diffusion equation subject to the specification of mass. International Journal of Engineering Science 1990; 28: 573-578.
Dehghan M, Tatari M. Use of radial basis functions for solving the second-order parabolic equation with nonlocal boundary conditions. Numerical Methods for Partial Differential Equations 2008; 24(3): 924-938.
Rashedi K, Adibi H, Dehghan M. Application of the Ritz-Galerkin method for recovering the spacewise-coefficients in the wave equation. Computers & Mathematicas with Applications 2013; 65(12): 1990-2008.
Bhatti MI, Bracken P. Solution of differential equations in a Bernstein polynomial basis. Journal of Computational and Applied Mathematics 2007; 205: 272-280.
Greenspan HP. Models for the growth of tumour by diffusion. Studies in Applied Mathematics 1972; 52(4): 317-340.
Xu Y. A free boundary problem model of ductal carcinoma in situ. Discrete and Continuous Dynamical Systems-Series B. 2004; 4(1): 337-348.
Yousefi SA. Finding a control parameter in a one-dimensional parabolic inverse problem by using the Bernstein Galerkin method. Inverse Problems in Science and Engineering 2009; 17(6): 821-828.
Farouki RT. Legendre-Bernstein basis transformations. Journal of Computational and Applied Mathematics 2000; 119(1- 2): 145-160.
Dehghan M, Yousefi SA, Rashedi K. Ritz-Galerkin method for solving an inverse heat conduction problem with a nonlinear source term via Bernstein multi-scaling functions and cubic B-spline functions. Inverse Problems in Science and Engineering 2013; 21(3): 500-523.
Byrne HM, Chaplain MAJ. Growth of onnecrotic tumours in the presence and absence of inhibitors. Mathematical Biosciences 1995; 130(2): 151-181.
Yousefi SA, Barikbin Z. Ritz-Galerkin method with Bernstein polynomial basis for finding the product solution form of heat equation with non-classic boundary conditions. International Journal of Numerical Methods for Heat & Fluid Flow 2012; 22(1): 39-48.
Xu Y. A free boundary problem of diffusion equation with integral condition. Applicable Analysis 2006; 85(9): 1143-1152.
Li YM, Zhang XY. Basis conversion among Bezier, Tchebyshev and Legendre. Computer Aided Geometric Design 1998; 15: 637-642.
Xu Y. A free boundary problem of parabolic complex equation. Complex Variables and Elliptic Equations 2006; 51(8- 11): 945-951.
Zhou Y, Cui M, Lin Y. Numerical algorithm for parabolic problems with non-classical conditions. Journal of Computational and Applied Mathematics 2009; 230(2): 770-780.
2006; 71
2006; 51
2007; 205
2013; 21
2013; 65
2002; 35
2000; 119
2004; 4
1997
2006; 175
2005; 21
1995
2005
2009; 230
2007; 32
1995; 130
1966; 30
2009; 49
2003; 10
1998; 15
2006; 85
1990; 28
2006; 22
1999; 38
1993; 31
2008; 69
2005; 52
2008; 24
1972; 52
1996; 135
2012; 22
2003; 20
2009; 17
e_1_2_9_30_1
e_1_2_9_31_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_12_1
e_1_2_9_33_1
Xu Y (e_1_2_9_14_1) 2005
e_1_2_9_15_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_16_1
e_1_2_9_19_1
e_1_2_9_18_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_21_1
e_1_2_9_24_1
e_1_2_9_23_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
Burton AC (e_1_2_9_6_1) 1966; 30
e_1_2_9_9_1
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_27_1
e_1_2_9_29_1
References_xml – reference: Dehghan M. On the solution of an initial-boundary value problem that combines Neumann and integral condition for the wave equation. Numerical Methods for Partial Differential Equations 2005; 21: 24-40.
– reference: Dehghan M, Yousefi SA, Rashedi K. Ritz-Galerkin method for solving an inverse heat conduction problem with a nonlinear source term via Bernstein multi-scaling functions and cubic B-spline functions. Inverse Problems in Science and Engineering 2013; 21(3): 500-523.
– reference: Behiry SH. A wavelet-Galerkin method for inhomogeneous diffusion equations subject to mass specification. Journal of Physics A: Mathematical and General 2002; 35(46): 9745-9753.
– reference: Zhou Y, Cui M, Lin Y. Numerical algorithm for parabolic problems with non-classical conditions. Journal of Computational and Applied Mathematics 2009; 230(2): 770-780.
– reference: Byrne HM, Chaplain MAJ. Growth of onnecrotic tumours in the presence and absence of inhibitors. Mathematical Biosciences 1995; 130(2): 151-181.
– reference: Rashedi K, Adibi H, Dehghan M. Application of the Ritz-Galerkin method for recovering the spacewise-coefficients in the wave equation. Computers & Mathematicas with Applications 2013; 65(12): 1990-2008.
– reference: Ang W. Numerical solution of a non-classical parabolic problem: anintegro-differential approach. Applied Mathematics and Computation 2006; 175(2): 969-979.
– reference: Dehghan M. A computational study of the one-dimensional parabolic equation subject to nonclassical boundary specifications. Numerical Methods for Partial Differential Equations 2006; 22(1): 220-257.
– reference: Adam JA, Bellomo N. A Survey of Models for tumour-Immune System Dynamics Birkhauser: Boston, 1997.
– reference: Xu Y. A free boundary problem of diffusion equation with integral condition. Applicable Analysis 2006; 85(9): 1143-1152.
– reference: Bhatti MI, Bracken P. Solution of differential equations in a Bernstein polynomial basis. Journal of Computational and Applied Mathematics 2007; 205: 272-280.
– reference: Datta KB, Mohan BM. Orthogonal Functions in Systems and Control World Scientific: River Edge, NJ, USA, 1995.
– reference: Dehghan M, Tatari M. Use of radial basis functions for solving the second-order parabolic equation with nonlocal boundary conditions. Numerical Methods for Partial Differential Equations 2008; 24(3): 924-938.
– reference: Byrne HM, Chaplain MAJ. Growth of necrotic tumours in the presence and absence of inhibitors. Mathematical Biosciences 1996; 135(2): 187-216.
– reference: Cannon JR, Lin Y. A Galerkin procedure for diffusion equation with boundary integral conditions. International Journal of Engineering Science 1990; 28(7): 579-587.
– reference: Farouki RT. Legendre-Bernstein basis transformations. Journal of Computational and Applied Mathematics 2000; 119(1- 2): 145-160.
– reference: Xu Y. A free boundary problem of parabolic complex equation. Complex Variables and Elliptic Equations 2006; 51(8- 11): 945-951.
– reference: Bouziani A, Merazga N, Benamira S. Galerkin method applied to a parabolic evolution problem with nonlocal boundary conditions. Nonlinear Analysis: Theory, Methods & Applications 2008; 69(5): 1515-1524.
– reference: Franks SJ, Byrne HM, Mudhar HS, Underwood JC. Lewis CE mathematical modelling of comedo ductal carcinoma in situ of the breast. Mathematical Medicine and Biology 2003; 20(3): 277-308.
– reference: Friedman A, Reitich F. Analysis of a mathematical model for the growth of tumours. Journal of Mathematical Biology 1999; 38(3): 262-284.
– reference: Yousefi SA, Barikbin Z. Ritz-Galerkin method with Bernstein polynomial basis for finding the product solution form of heat equation with non-classic boundary conditions. International Journal of Numerical Methods for Heat & Fluid Flow 2012; 22(1): 39-48.
– reference: Dehghan M. The one-dimensional heat eqation subject to a boundary integral specification. Chaos, Solitons & Fractals 2007; 32: 661-675.
– reference: Xu Y, Gilbert R. Some inverse problems raised from a mathematical model of ductal carcinoma in situ. Mathematical and Computer Modelling 2009; 49(3): 814-828.
– reference: Burton AC. Rate of growth of solid tumours as a problem of diffusion growth. Journal of Mathematical Biology 1966; 30(2): 157-176.
– reference: Li YM, Zhang XY. Basis conversion among Bezier, Tchebyshev and Legendre. Computer Aided Geometric Design 1998; 15: 637-642.
– reference: Yousefi SA. Finding a control parameter in a one-dimensional parabolic inverse problem by using the Bernstein Galerkin method. Inverse Problems in Science and Engineering 2009; 17(6): 821-828.
– reference: Xu Y. A free boundary problem model of ductal carcinoma in situ. Discrete and Continuous Dynamical Systems-Series B. 2004; 4(1): 337-348.
– reference: Cannon JR, Matheson AL. A numerical procedure for diffusion subject to the specification of mass. International Journal of Engineering Science 1993; 31(3): 347-355.
– reference: Greenspan HP. Models for the growth of tumour by diffusion. Studies in Applied Mathematics 1972; 52(4): 317-340.
– reference: Dehghan M. Finite difference procedures for solving a problem arising in modeling and design of certain optoelectronic devices Mathematics and Computers in Simulation. 2006; 71: 16-30.
– reference: Dehghan M. Efficient techniques for the second-order parabolic equation subject to nonlocal specifications. Applied Numerical Mathematics 2005; 52(1): 39-62.
– reference: Bouziani A. On the weak solution of a three-point boundary value problem for a class of parabolic equations with energy specification. Abstract and Applied Analysis 2003; 10: 573-589.
– reference: Cannon JR, Lin Y, Wang S. An implicit finite difference scheme for the diffusion equation subject to the specification of mass. International Journal of Engineering Science 1990; 28: 573-578.
– volume: 52
  start-page: 39
  issue: 1
  year: 2005
  end-page: 62
  article-title: Efficient techniques for the second‐order parabolic equation subject to nonlocal specifications
  publication-title: Applied Numerical Mathematics
– volume: 28
  start-page: 579
  issue: 7
  year: 1990
  end-page: 587
  article-title: A Galerkin procedure for diffusion equation with boundary integral conditions
  publication-title: International Journal of Engineering Science
– year: 2005
– volume: 85
  start-page: 1143
  issue: 9
  year: 2006
  end-page: 1152
  article-title: A free boundary problem of diffusion equation with integral condition
  publication-title: Applicable Analysis
– volume: 51
  start-page: 945
  issue: 8– 11
  year: 2006
  end-page: 951
  article-title: A free boundary problem of parabolic complex equation
  publication-title: Complex Variables and Elliptic Equations
– volume: 135
  start-page: 187
  issue: 2
  year: 1996
  end-page: 216
  article-title: Growth of necrotic tumours in the presence and absence of inhibitors
  publication-title: Mathematical Biosciences
– start-page: 1429
  year: 2005
  end-page: 1438
– volume: 175
  start-page: 969
  issue: 2
  year: 2006
  end-page: 979
  article-title: Numerical solution of a non‐classical parabolic problem: anintegro‐differential approach
  publication-title: Applied Mathematics and Computation
– volume: 4
  start-page: 337
  issue: 1
  year: 2004
  end-page: 348
  article-title: A free boundary problem model of ductal carcinoma in situ
  publication-title: Discrete and Continuous Dynamical Systems‐Series B
– volume: 35
  start-page: 9745
  issue: 46
  year: 2002
  end-page: 9753
  article-title: A wavelet‐Galerkin method for inhomogeneous diffusion equations subject to mass specification
  publication-title: Journal of Physics A: Mathematical and General
– volume: 31
  start-page: 347
  issue: 3
  year: 1993
  end-page: 355
  article-title: A numerical procedure for diffusion subject to the specification of mass
  publication-title: International Journal of Engineering Science
– volume: 130
  start-page: 151
  issue: 2
  year: 1995
  end-page: 181
  article-title: Growth of onnecrotic tumours in the presence and absence of inhibitors
  publication-title: Mathematical Biosciences
– volume: 230
  start-page: 770
  issue: 2
  year: 2009
  end-page: 780
  article-title: Numerical algorithm for parabolic problems with non‐classical conditions
  publication-title: Journal of Computational and Applied Mathematics
– volume: 52
  start-page: 317
  issue: 4
  year: 1972
  end-page: 340
  article-title: Models for the growth of tumour by diffusion
  publication-title: Studies in Applied Mathematics
– volume: 65
  start-page: 1990
  issue: 12
  year: 2013
  end-page: 2008
  article-title: Application of the Ritz–Galerkin method for recovering the spacewise‐coefficients in the wave equation
  publication-title: Computers & Mathematicas with Applications
– volume: 69
  start-page: 1515
  issue: 5
  year: 2008
  end-page: 1524
  article-title: Galerkin method applied to a parabolic evolution problem with nonlocal boundary conditions
  publication-title: Nonlinear Analysis: Theory, Methods & Applications
– volume: 49
  start-page: 814
  issue: 3
  year: 2009
  end-page: 828
  article-title: Some inverse problems raised from a mathematical model of ductal carcinoma in situ
  publication-title: Mathematical and Computer Modelling
– volume: 21
  start-page: 24
  year: 2005
  end-page: 40
  article-title: On the solution of an initial‐boundary value problem that combines Neumann and integral condition for the wave equation
  publication-title: Numerical Methods for Partial Differential Equations
– volume: 71
  start-page: 16
  year: 2006
  end-page: 30
  article-title: Finite difference procedures for solving a problem arising in modeling and design of certain optoelectronic devices
  publication-title: Mathematics and Computers in Simulation
– volume: 10
  start-page: 573
  year: 2003
  end-page: 589
  article-title: On the weak solution of a three‐point boundary value problem for a class of parabolic equations with energy specification
  publication-title: Abstract and Applied Analysis
– volume: 119
  start-page: 145
  issue: 1– 2
  year: 2000
  end-page: 160
  article-title: Legendre–Bernstein basis transformations
  publication-title: Journal of Computational and Applied Mathematics
– volume: 38
  start-page: 262
  issue: 3
  year: 1999
  end-page: 284
  article-title: Analysis of a mathematical model for the growth of tumours
  publication-title: Journal of Mathematical Biology
– volume: 15
  start-page: 637
  year: 1998
  end-page: 642
  article-title: Basis conversion among Bezier, Tchebyshev and Legendre
  publication-title: Computer Aided Geometric Design
– volume: 22
  start-page: 39
  issue: 1
  year: 2012
  end-page: 48
  article-title: Ritz–Galerkin method with Bernstein polynomial basis for finding the product solution form of heat equation with non‐classic boundary conditions
  publication-title: International Journal of Numerical Methods for Heat & Fluid Flow
– volume: 24
  start-page: 924
  issue: 3
  year: 2008
  end-page: 938
  article-title: Use of radial basis functions for solving the second‐order parabolic equation with nonlocal boundary conditions
  publication-title: Numerical Methods for Partial Differential Equations
– volume: 17
  start-page: 821
  issue: 6
  year: 2009
  end-page: 828
  article-title: Finding a control parameter in a one‐dimensional parabolic inverse problem by using the Bernstein Galerkin method
  publication-title: Inverse Problems in Science and Engineering
– year: 1997
– volume: 20
  start-page: 277
  issue: 3
  year: 2003
  end-page: 308
  article-title: Lewis CE mathematical modelling of comedo ductal carcinoma in situ of the breast
  publication-title: Mathematical Medicine and Biology
– volume: 28
  start-page: 573
  year: 1990
  end-page: 578
  article-title: An implicit finite difference scheme for the diffusion equation subject to the specification of mass
  publication-title: International Journal of Engineering Science
– year: 1995
– volume: 22
  start-page: 220
  issue: 1
  year: 2006
  end-page: 257
  article-title: A computational study of the one‐dimensional parabolic equation subject to nonclassical boundary specifications
  publication-title: Numerical Methods for Partial Differential Equations
– volume: 205
  start-page: 272
  year: 2007
  end-page: 280
  article-title: Solution of differential equations in a Bernstein polynomial basis
  publication-title: Journal of Computational and Applied Mathematics
– volume: 21
  start-page: 500
  issue: 3
  year: 2013
  end-page: 523
  article-title: Ritz–Galerkin method for solving an inverse heat conduction problem with a nonlinear source term via Bernstein multi‐scaling functions and cubic B‐spline functions
  publication-title: Inverse Problems in Science and Engineering
– volume: 30
  start-page: 157
  issue: 2
  year: 1966
  end-page: 176
  article-title: Rate of growth of solid tumours as a problem of diffusion growth
  publication-title: Journal of Mathematical Biology
– volume: 32
  start-page: 661
  year: 2007
  end-page: 675
  article-title: The one‐dimensional heat eqation subject to a boundary integral specification
  publication-title: Chaos, Solitons & Fractals
– ident: e_1_2_9_11_1
  doi: 10.1142/9789812701732_0033
– ident: e_1_2_9_27_1
  doi: 10.1080/17415970802583911
– ident: e_1_2_9_26_1
  doi: 10.1108/09615531211188784
– ident: e_1_2_9_2_1
  doi: 10.1016/0025-5564(94)00117-3
– ident: e_1_2_9_32_1
  doi: 10.1155/S1085337503210010
– ident: e_1_2_9_13_1
  doi: 10.1080/17476930600667825
– ident: e_1_2_9_28_1
  doi: 10.1016/0020-7225(90)90086-X
– ident: e_1_2_9_15_1
  doi: 10.1016/j.amc.2005.08.011
– ident: e_1_2_9_36_1
  doi: 10.1016/S0167-8396(98)00009-0
– ident: e_1_2_9_33_1
  doi: 10.1016/j.cam.2006.05.002
– ident: e_1_2_9_19_1
  doi: 10.1016/j.apnum.2004.02.002
– ident: e_1_2_9_35_1
  doi: 10.1142/2476
– ident: e_1_2_9_3_1
  doi: 10.1016/0025-5564(96)00023-5
– ident: e_1_2_9_5_1
  doi: 10.1007/978-0-8176-8119-7
– ident: e_1_2_9_16_1
  doi: 10.1088/0305-4470/35/46/303
– ident: e_1_2_9_4_1
  doi: 10.1007/s002850050149
– ident: e_1_2_9_10_1
  doi: 10.3934/dcdsb.2004.4.337
– ident: e_1_2_9_9_1
  doi: 10.1016/j.mcm.2008.02.014
– ident: e_1_2_9_12_1
  doi: 10.1080/00036810600835243
– ident: e_1_2_9_31_1
  doi: 10.1016/j.chaos.2005.11.010
– ident: e_1_2_9_18_1
  doi: 10.1016/0020-7225(93)90010-R
– ident: e_1_2_9_25_1
  doi: 10.1016/j.camwa.2013.04.005
– ident: e_1_2_9_24_1
  doi: 10.1080/17415977.2012.701627
– ident: e_1_2_9_7_1
  doi: 10.1093/imammb/20.3.277
– ident: e_1_2_9_20_1
  doi: 10.1002/num.20071
– ident: e_1_2_9_23_1
  doi: 10.1016/j.na.2007.07.008
– ident: e_1_2_9_8_1
  doi: 10.1002/sapm1972514317
– ident: e_1_2_9_29_1
  doi: 10.1016/j.matcom.2005.10.001
– start-page: 1429
  volume-title: More Progresses in Analysis
  year: 2005
  ident: e_1_2_9_14_1
– volume: 30
  start-page: 157
  issue: 2
  year: 1966
  ident: e_1_2_9_6_1
  article-title: Rate of growth of solid tumours as a problem of diffusion growth
  publication-title: Journal of Mathematical Biology
– ident: e_1_2_9_22_1
  doi: 10.1016/j.cam.2009.01.012
– ident: e_1_2_9_34_1
  doi: 10.1016/S0377-0427(00)00376-9
– ident: e_1_2_9_30_1
  doi: 10.1002/num.20019
– ident: e_1_2_9_17_1
  doi: 10.1016/0020-7225(90)90087-Y
– ident: e_1_2_9_21_1
  doi: 10.1002/num.20297
SSID ssj0008112
Score 2.1023436
Snippet The paper is devoted to the investigation of a parabolic partial differential equation with non‐local and time‐dependent boundary conditions arising from...
The paper is devoted to the investigation of a parabolic partial differential equation with non-local and time-dependent boundary conditions arising from...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1241
SubjectTerms Approximation
approximation solution
Bernstein polynomial basis
Boundaries
Boundary conditions
Dealing
ductal carcinoma in situ (DCIS) model
initial boundary value problem
Integrals
Mathematical analysis
Mathematical models
non-local boundary condition
parabolic equation
Partial differential equations
Ritz-Galerkin method
time-dependent boundary condition
Title Ritz-Galerkin method for solving a parabolic equation with non-local and time-dependent boundary conditions
URI https://api.istex.fr/ark:/67375/WNG-2D5MLR80-3/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmma.3568
https://www.proquest.com/docview/1770183429
https://www.proquest.com/docview/1800479418
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Mathematics Source - HOST
  customDbUrl:
  eissn: 1099-1476
  dateEnd: 20241105
  omitProxy: false
  ssIdentifier: ssj0008112
  issn: 0170-4214
  databaseCode: AMVHM
  dateStart: 20120715
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0170-4214
  databaseCode: DR2
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  eissn: 1099-1476
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008112
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYquMChLY-qUKiMVPE4ZIm9zuuIaAFVhMMKBBIHy44dCS2EspuVWk78BCT-Ib-EGTsJBbVS1VOkZCI7zoznm8nkG0K-aHB7POImAGtSgUisDTQveQCeCtArz4x2ecj8KD44Ed_PorOmqhL_hfH8EF3CDS3D7ddo4EqPt59JQ6-uVK8fxfifL-vHLpoaPDNHpcx96ER2mEBwJlre2ZBvtze-8ETTuKg_X8DM38Gq8zZ778h5O09fZDLsTWrdK25fUTj-34O8J28bEEp3vNbMkTe2miezecfgOp4nc43Rj-lmw0y9tUBuBhf17ePdwz54FcyxU99_mgLwpaDDmJugiiKbuEa6YWpvPJE4xWwvra6rx7t75zypqgzFtvZwom3DW1PtWjyNflGI0Y0vJVskJ3vfjncPgqZnQ1CIvkgDAxuvCUsFb11nEPKqOMrKuFSmyKwVibBhajJTam5MaiHYY5opq0NWhAoCP6P6H8gUTMd-JNQmWRkxw7lhmSg4ACcLYJAnGdyPXc6WyEb7_mTREJpjX41L6amYuYSVlbiyS2Stk_zhSTz-ILPuVKATUKMhFr0lkTw92pf8a5QfDtJQwrArrY7Ixt7HkiVJCJsjKDeM1V0GS8XPL6qy1xOQST2fP8OxnEL8dTIyz3fwuPyvgp_IDCC52JcUrZCpejSxq4CWav3Z2cUTAVcUzQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB6V9gAcgBYQhQJGQvwcso29zp84VUC7wGYPq1b0UMmyY0dCpSndzUrQUx8BiTfskzATJylFICFOkZKJ7Ngznm_GzjcATw26PREJG6A16UAmzgVGlCJAT4XoVWTWNHnIfBKP9uT7_Wh_CV51_8J4fog-4UaW0azXZOCUkN68YA09OtKDYRSnV2BFxhimECKaXnBHpbzZ6iR-mEAKLjvm2VBsdm9e8kUrNKxfLwHNX-Fq42-2b8JB11N_zORwsKjNoDj9jcTxPz_lFtxocSjb8oqzCkuuWoPreU_iOl-D1dbu5-xFS0798jacTD_Vp-dnP3bQsVCanfkS1AyxL0M1pvQE04wIxQ0xDjN34rnEGSV8WXVcnZ99b_wn05VlVNkeb3SVeGtmmipPs28Mw3TrT5Pdgb3tt7uvR0FbtiEo5FCmgcW114alxok3GUa9Oo6yMi61LTLnZCJdmNrMlkZYmzqM97jh2pmQF6HG2M_q4V1Yxu64e8BckpURt0JYnslCIHZyiAdFkuH7VOhsHZ53E6iKltOcSmt8Vp6NWSgcWUUjuw5PeskvnsfjDzLPGh3oBfTskM69JZH6ONlR4k2Uj6dpqLDZjU5JVGvyc8WTJMT1EfUb2-ofo7HSDoyu3PECZVJP6c-prUYj_toZledbdL3_r4KP4epoNx-r8bvJhwdwDYFd7E8YbcByPVu4hwieavOoMZKfO2UY7g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKKyE4FFpA9AVGQjwO2cZe52Fxqli2BZoVWlHRQyXLjh0JtU3b3awEPfUnIPEP-0s6EycpRSAhTpGSiezYM57P48k3hDw34PZ4xG0A1qQDkTgXGF7wADwVoFcuranjkNko3tkTH_aj_Tnypv0XxvNDdAE3tIx6vUYDd6e22LxmDT0-1r1-FKe3yIKIZIr5fIPxNXdUyuqjTuSHCQRnomWeDflm--YNX7SAw_rtBtD8Fa7W_mZ4jxy0PfVpJoe9WWV6-flvJI7_-Sn3yWKDQ-mWV5wlMufKZXI360hcp8tkqbH7KX3VkFO_fkDOxl-r88uLn9vgWDDMTn0JagrYl4IaY3iCaoqE4gYZh6k781ziFAO-tDwpLy9-1P6T6tJSrGwPN9pKvBU1dZWnyXcK23Trs8kekr3hu89vd4KmbEOQi75IAwtrrw0LDRNvJOx6dRzJIi60zaVzIhEuTK20heHWpg72e8ww7UzI8lDD3s_q_iMyD91xjwl1iSwiZjm3TIqcA3ZygAd5IuF9LHS2Ql62E6jyhtMcS2scKc_GzBWMrMKRXSHPOslTz-PxB5kXtQ50AnpyiHlvSaS-jLYVH0TZ7jgNFTS73iqJakx-qliShLA-gn5DW91jMFY8gdGlO5mBTOop_Rm2VWvEXzujsmwLr6v_KviU3P40GKrd96OPa-QO4LrYJxitk_lqMnMbgJ0q86S2kSvDABhy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ritz%E2%80%93Galerkin+method+for+solving+a+parabolic+equation+with+non%E2%80%90local+and+time%E2%80%90dependent+boundary+conditions&rft.jtitle=Mathematical+methods+in+the+applied+sciences&rft.au=Zhou%2C+Jian%E2%80%90Rong&rft.au=Li%2C+Heng&rft.au=Xu%2C+Yongzhi&rft.date=2016-04-01&rft.issn=0170-4214&rft.eissn=1099-1476&rft.volume=39&rft.issue=5&rft.spage=1241&rft.epage=1253&rft_id=info:doi/10.1002%2Fmma.3568&rft.externalDBID=10.1002%252Fmma.3568&rft.externalDocID=MMA3568
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0170-4214&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0170-4214&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0170-4214&client=summon