Effect of taxonomic diversification of microalgae harvested from eutrophicated reservoirs on the chemical composition of biomass and effectiveness of methane fermentation
The objective of this study was to determine the possibility of using microalgae biomass from natural water bodies as a substrate for methane fermentation and to verify the effect of taxonomic structure and other physicochemical traits of the biomass on the technological effectiveness of the process...
Saved in:
Published in | Environmental progress & sustainable energy Vol. 34; no. 3; pp. 858 - 865 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Blackwell Publishing Ltd
01.05.2015
|
Subjects | |
Online Access | Get full text |
ISSN | 1944-7442 1944-7450 |
DOI | 10.1002/ep.12038 |
Cover
Abstract | The objective of this study was to determine the possibility of using microalgae biomass from natural water bodies as a substrate for methane fermentation and to verify the effect of taxonomic structure and other physicochemical traits of the biomass on the technological effectiveness of the process. Harvested algae was characterized by a diversified taxonomic structure and on the content of nitrogen compounds and concentration of organic compounds in biomass, that was subject to seasonal dynamics of changes. The highest technological effects of the methane fermentation process were achieved with microalgae biomass harvested in July. In this period, the predominating taxonomic group were the Cyanoprokaryota, with a significant contribution of Chlorophyta. The mean yield of biogas production reached 441.15 ± 19.03 cm3/g o.d.m., at the mean production rate of r = 98.99 cm3/day and a reaction constant of k = 0.224 1/day. The mean content of methane in biogas accounted for 68.68 ± 1.67%. The lowest technological effects linked with biogas production were determined in November. These were the periods of the vegetative season with Bacillariophyceae constituting the predominating taxonomic group. The total production of biogas accounted for 333.65 ± 18.85 cm3/g o.d.m. The methane content were at mean levels of 54.19 ± 2.31%. © 2014 American Institute of Chemical Engineers Environ Prog, 34: 858–865, 2015 |
---|---|
AbstractList | The objective of this study was to determine the possibility of using microalgae biomass from natural water bodies as a substrate for methane fermentation and to verify the effect of taxonomic structure and other physicochemical traits of the biomass on the technological effectiveness of the process. Harvested algae was characterized by a diversified taxonomic structure and on the content of nitrogen compounds and concentration of organic compounds in biomass, that was subject to seasonal dynamics of changes. The highest technological effects of the methane fermentation process were achieved with microalgae biomass harvested in July. In this period, the predominating taxonomic group were the Cyanoprokaryota, with a significant contribution of Chlorophyta. The mean yield of biogas production reached 441.15 ± 19.03 cm3/g o.d.m., at the mean production rate of r = 98.99 cm3/day and a reaction constant of k = 0.224 1/day. The mean content of methane in biogas accounted for 68.68 ± 1.67%. The lowest technological effects linked with biogas production were determined in November. These were the periods of the vegetative season with Bacillariophyceae constituting the predominating taxonomic group. The total production of biogas accounted for 333.65 ± 18.85 cm3/g o.d.m. The methane content were at mean levels of 54.19 ± 2.31%. © 2014 American Institute of Chemical Engineers Environ Prog, 34: 858–865, 2015 The objective of this study was to determine the possibility of using microalgae biomass from natural water bodies as a substrate for methane fermentation and to verify the effect of taxonomic structure and other physicochemical traits of the biomass on the technological effectiveness of the process . Harvested algae was characterized by a diversified taxonomic structure and on the content of nitrogen compounds and concentration of organic compounds in biomass, that was subject to seasonal dynamics of changes. The highest technological effects of the methane fermentation process were achieved with microalgae biomass harvested in July. In this period, the predominating taxonomic group were the Cyanoprokaryota, with a significant contribution of Chlorophyta. The mean yield of biogas production reached 441.15 ± 19.03 cm 3 /g o.d.m., at the mean production rate of r = 98.99 cm 3 /day and a reaction constant of k = 0.224 1/day. The mean content of methane in biogas accounted for 68.68 ± 1.67%. The lowest technological effects linked with biogas production were determined in November. These were the periods of the vegetative season with Bacillariophyceae constituting the predominating taxonomic group. The total production of biogas accounted for 333.65 ± 18.85 cm 3 /g o.d.m. The methane content were at mean levels of 54.19 ± 2.31%. © 2014 American Institute of Chemical Engineers Environ Prog, 34: 858–865, 2015 |
Author | Rokicka, M. Hajduk, A. Zieliński, M. Dębowski, M. Kupczyk, K. |
Author_xml | – sequence: 1 givenname: M. surname: Dębowski fullname: Dębowski, M. organization: Department of Environment Engineering, University of Warmia and Mazury in Olsztyn, Warszawska 117 st., 10-720, Olsztyn – sequence: 2 givenname: M. surname: Zieliński fullname: Zieliński, M. organization: Department of Environment Engineering, University of Warmia and Mazury in Olsztyn, Warszawska 117 st., 10-720, Olsztyn – sequence: 3 givenname: K. surname: Kupczyk fullname: Kupczyk, K. organization: Department of Environment Engineering, University of Warmia and Mazury in Olsztyn, Warszawska 117 st., 10-720, Olsztyn – sequence: 4 givenname: M. surname: Rokicka fullname: Rokicka, M. email: Polandmagdalena.rokicka@uwm.edu.pl organization: Department of Environment Engineering, University of Warmia and Mazury in Olsztyn, Warszawska 117 st., 10-720, Olsztyn – sequence: 5 givenname: A. surname: Hajduk fullname: Hajduk, A. organization: Department of Environment Engineering, University of Warmia and Mazury in Olsztyn, Warszawska 117 st., 10-720, Olsztyn |
BookMark | eNp1kd1O3DAQha2KSvwUiUfwJTfZ2rGTbC7Rsg1ICJAK4tKynXHjNolT27vAK_Up8e4ClVB7ZWv8nXNmPIdob3QjIHRCyYwSkn-FaUZzwuaf0AGtOc8qXpC99zvP99FhCD8JKRmv6wP0Z2kM6IidwVE-udENVuPWrsEHa6yW0bpx85jK3sn-hwTcSb-GEKHFxrsBwyp6N3UbNpU8BPBrZ33ASRg7wLqDJJY91m6YXLBvjsq6QYaA5dhi2DaRUkdIlU0cxE6OgA34Aca4beML-mxkH-D49TxC99-Wd4uL7OqmuVycXWWaMz7PVJEXhaoIEGWgpO2c0LwmdK5zrTivuSGEKKYUYbRgWjFjCl2QFvKcVXWi2RE63flO3v1epUnFYIOGvk8NuVUQtKyTY5li_qLpc0LwYMTk7SD9s6BEbNYhYBLbdSR09gHVdjdX9NL2_xJkO8Gj7eH5v8ZiefuBt2k3T--89L9EWbGqEA_XjThfNE3z_eJc3LIXt9KwUA |
CitedBy_id | crossref_primary_10_1016_j_biteb_2021_100895 crossref_primary_10_1016_j_jece_2025_116101 crossref_primary_10_3390_su12239980 crossref_primary_10_1002_ep_12294 |
Cites_doi | 10.1016/j.rser.2009.07.020 10.1016/j.enconman.2009.11.008 10.1021/es900705j 10.1016/j.biortech.2010.06.154 10.1039/c0ee00452a 10.4155/bfs.11.157 10.1080/15435075.2014.891122 10.1016/0031-9422(95)00952-3 10.1016/j.ijhydene.2013.11.082 10.1016/0304-3967(79)90002-7 10.1016/j.rser.2009.10.009 10.1016/0022-5193(80)90103-4 10.1016/j.rser.2006.07.014 10.1007/s00253-009-1935-6 10.1002/bit.260240822 10.1016/j.biombioe.2010.10.007 10.1016/j.rser.2013.07.029 10.1128/am.5.1.47-55.1957 10.1016/j.jhazmat.2010.01.047 10.1016/j.biortech.2010.10.010 10.1016/j.biortech.2012.02.111 10.1016/j.apenergy.2011.08.017 10.1016/j.biombioe.2005.11.014 10.1111/j.0022-3646.1991.00224.x 10.1016/j.biortech.2010.06.146 10.1080/09593330.2012.752874 10.1016/0005-2736(86)90344-5 10.1016/0961-9534(93)90010-2 10.1093/oxfordjournals.jbchem.a122143 10.1016/j.biombioe.2007.10.005 10.1021/ef900704h 10.1016/j.biortech.2010.09.017 10.1016/j.jbiotec.2010.07.030 10.1016/j.ecoleng.2009.04.003 10.1016/j.biortech.2005.11.010 10.1016/0031-9422(88)80115-8 |
ContentType | Journal Article |
Copyright | 2014 American Institute of Chemical Engineers Environ Prog |
Copyright_xml | – notice: 2014 American Institute of Chemical Engineers Environ Prog |
DBID | BSCLL AAYXX CITATION F1W H95 H98 L.G M7N |
DOI | 10.1002/ep.12038 |
DatabaseName | Istex CrossRef ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Aquaculture Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Algology Mycology and Protozoology Abstracts (Microbiology C) |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) Aquaculture Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Algology Mycology and Protozoology Abstracts (Microbiology C) ASFA: Aquatic Sciences and Fisheries Abstracts |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1944-7450 |
EndPage | 865 |
ExternalDocumentID | 10_1002_ep_12038 EP12038 ark_67375_WNG_DCGGGSHD_P |
Genre | article |
GroupedDBID | ..I .3N .DC .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8FE 8UM 930 A03 AAESR AAEVG AAHBH AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABJCF ABJNI ABPVW ACAHQ ACBWZ ACCZN ACGFS ACGOD ACIWK ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADMGS ADNMO ADOZA ADXAS AEFGJ AEIGN AEIMD AENEX AEUYN AEUYR AEYWJ AFBPY AFFPM AFGKR AFKRA AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BCU BDRZF BEC BFHJK BGLVJ BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CCPQU D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EDH EJD F00 F01 F04 F5P FEDTE G-S G.N GODZA GUQSH H.T H.X HF~ HGLYW HVGLF HZ~ ITG ITH IX1 J0M JPC LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M7S MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PATMY PHGZM PHGZT PQGLB PQQKQ PROAC PTHSS PUEGO PYCSY Q.N Q11 QB0 QRW R.K ROL RX1 S0X SJFOW SUPJJ UB1 V2E W8V W99 WBKPD WIH WIK WLBEL WOHZO WQJ WXSBR WYISQ XG1 XV2 ~IA ~WT 3V. AAHHS ACCFJ ADZOD AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE RWI WRC AAYXX CITATION F1W H95 H98 L.G M7N |
ID | FETCH-LOGICAL-c4348-b5255b70e0bfe61d80129018c2cb4494f000b3bb03153cb3ff5c50de22379d803 |
IEDL.DBID | DR2 |
ISSN | 1944-7442 |
IngestDate | Tue Aug 05 10:48:06 EDT 2025 Thu Apr 24 23:08:02 EDT 2025 Wed Oct 01 00:53:07 EDT 2025 Wed Jan 22 16:28:51 EST 2025 Sun Sep 21 06:18:41 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4348-b5255b70e0bfe61d80129018c2cb4494f000b3bb03153cb3ff5c50de22379d803 |
Notes | ArticleID:EP12038 ark:/67375/WNG-DCGGGSHD-P istex:6EDB6A31A0D05CEC46D1C1CC7FC14403C5F9E723 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1691296525 |
PQPubID | 23462 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_1691296525 crossref_primary_10_1002_ep_12038 crossref_citationtrail_10_1002_ep_12038 wiley_primary_10_1002_ep_12038_EP12038 istex_primary_ark_67375_WNG_DCGGGSHD_P |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May/June 2015 |
PublicationDateYYYYMMDD | 2015-05-01 |
PublicationDate_xml | – month: 05 year: 2015 text: May/June 2015 |
PublicationDecade | 2010 |
PublicationTitle | Environmental progress & sustainable energy |
PublicationTitleAlternate | Environ. Prog. Sustainable Energy |
PublicationYear | 2015 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | Takeda, H. (1991). Sugar composition of the cell wall and the taxonomy of Chlorella (Chlorophyceae), Journal of Phycology, 27, 224-232. Nakano, Y., Urade, Y., Urade, R., & Kitaoka, S. (1987). Isolation, purification and characterization of the pellicle of Euglena gracilis, Journal of Biochemistry, 102, 1053-1063. Börjesson, P., & Berglund, M. (2006). Environmental systems analysis of biogas systems-part I: Fuel-cycle emissions, Biomass Bioenergy, 30, 469-485. Dębowski, M., Zieliński, M., Grala, A., & Dudek, M. (2013). Algae biomass as an alternative substrate in biogas production technologies-review, Renewable and Sustainable Energy Reviews, 27, 596-604. Samson, R., & Leduy, A. (1982). Biogas production from anaerobic digestion of Spirulina maxima algal biomass, Biotechnology and Bioengineering, 24, 1919-1924. Harun, R., Davidson, M., Doyle, M., Gopiraj, R., Danquah, M., & Forde, G. (2011). Technoeconomic analysis of an integrated microalgae photobioreactor, biodiesel and biogas production facility, Biomass and Bioenergy, 35, 741-747. Miller, D.H., Miller, M., & Lamport, D.T.A. (1972). Hydroxyproline heterooligosaccharides in Chlamydomonas, Science, 176, 918-920. Goyal, H.B., Seal, D., & Saxena, R.C. (2008). Bio-fuels from thermochemical conversion of renewable resources: A review, Renewable and Sustainable Energy Reviews, 12, 504-517. Vergara-Fernàndez, A., Vargas, G., Alarcon, N., & Antonio, A. (2008). Evaluation of marine algae as a source of biogas in a two-stage anaerobic reactor system. Biomass and Bioenergy, 32, 338-344. Dębowski, M., Zieliński, M., Krzemieniewski, M., Dudek, M., & Grala, A. (2012). Microalgae-cultivation methods, Polish Journal of Nature Science, 27, 151-164. Lardon, L., Helias, A., Sialve, B., Steyer, J., & Bernard, O. (2009). Life-cycle assessment of biodiesel production from microalgae, Environmental Science and Technology, 43, 6475-6481. Hildebrand, M., Davis, A.K., Smith, S.R., Traller, J.C., & Abbriano, R. (2012). The place of diatoms in the biofuels industry, Biofuels, 3, 221-240. Mata, T., Martins, A., & Caetano, N. (2010). Microalgae for biodiesel production and other applications: A review, Renewable and Sustainable Energy Reviews, 14, 217-232. Chynoweth, D.P., Turick, C.E., Owens, J.M., Jerger, D.E, & Peck, M.W. (1993). Biochemical methane potential of biomass and waste feedstocks, Biomass Bioenergy, 5, 95-111. Collet, P., Hélias, A., Lardon, L., Ras, M., Goy, R.A., & Steyer, J.P. (2011). Life-cycle assessment of microalgae culture coupled to biogas production, Bioresource Technology, 102, 207-214. Johansson, D., & Azar, C.A. (2007). Scenario based analysis of land competition between food and bioenergy production in the us. Climatic Change, 82, 267-291. Dębowski, M., Krzemieniewski, M., Zieliński, M., Dudek, M., & Grala, A. (2013). Respirometric studies on the effectiveness of biogas production from wastewaters originating from dairy, sugar and tanning industry, Environmental Technology, 34, 1439-1446. Sheffer, M., Fried, A., Gottlieb, H.E., Tietz, A., & Avron, M. (1986). Lipid composition of the plasma-membrane of the halotolerant alga, Dunaliella salina, Biochim Biophysics Acta, 857, 165-172. Johnson, M., & Wen, Z. (2009). Production of biodiesel fuel from the microalga Schizochytrium limacinum by direct transesterification of algal biomass, Energy Fuels, 23, 294-306. Douškovà, I., Kaštanek, F., Maleterova, Y., Kaštanek, P., Doucha, J., & Zachleder, V. (2010). Utilization of distillery stillage for energy generation and concurrent production of valuable microalgal biomass in the sequence: Biogas-cogeneration-microalgae-products. Energy Conservative Management, 51, 606-611. Bruhn, A., Dahl, J., Nielsen, H.B., Nikolaisen, L., Rasmussen, M.B., Markager, S., Olesen, B., Arias, C., & Jensen, P.D. (2011). Bioenergy potential of Ulva lactuca: Biomass yield, methane production and combustion. Bioresource Technology, 102, 2595-2604. Mandal, S., & Mallick, N. (2009). Microalga Scenedesmus obliquus as a potential source for biodiesel production, Applied Microbiology and Biotechnology, 84, 281-291. Wise, D.L., Augenstein, D.C., & Ryther, J.H. (1979). Methane fermentation of aquatic biomass, Resource Recovery Conservative, 4, 217-237. Guo, L. (2007). Doing battle with the green monster of Taihu Lake, Science, 317, 1166. Yuan, X.Z., Shi, X.S., Zhang, D.L., Qiu, Y.L., Guo, R.B., & Wang, L.S. (2011). Biogas production and microcystin biodegradation in anaerobic digestion of blue algae. Energy Environmental Science, 4, 1511-1515. Golueke, C., Oswald, W., & Gotaas, H. (1957). Anaerobic digestion of algae, Applied Environmental Microbiology, 5, 47-55. Qin, B. (2009). Lake eutrophication: Control countermeasures and recycling exploitation, Ecological Engineering, 35, 1569-1573. Takeda, H. (1996). Cell wall sugars of some Scenedesmus species, Phytochemistry, 42, 673-675. Zhong, W., Zhongzhi, Z., Yijing, L., Wei, Q., Meng, X., & Min, Z. (2012). Biogas productivity by co-digesting Taihu blue algae with corn straw as an external carbon source, Bioresource Technology, 114, 281-286. Brennan, L., Owende, P. (2010). Biofuels from microalgae: A review of technologies for production, processing, and extractions of biofuels and co-product, Renewable and Sustainable Energy Reviews, 14, 557-577. Dębowski M., Zieliński M., Rokicka M., & Kupczyk K. (2014). The possibility of using macroalgae biomass from natural reservoirs as a substrate in the methane fermentation process, International Journal of Green Energy, doi: 10.1080/15435075.2014.891122. Mussgnug, J.H., Klassen, V., Schlüter, A., & Kruse, O. (2010). Microalgae as substrates for fermentative biogas production in a combined biorefinery concept, Journal of Biotechnology, 150, 51-56. Searchinger, T., Heimlich, R., Houghton, R., Dong, F., Elobeid, A., Fabiosa, J., Tokgoz, S., Hayes, D., & Yu, T. (2008). Use of us croplands for biofuels increases greenhouse gases through emissions from land-use change, Science, 319, 1238-1240. Grala, A., Zieliński, M., Dębowski, M., & Dudek, M. (2012). Effects of hydrothermal depolymerization and enzymatic hydrolysis of algae biomass on yield of methane fermentation process. Polish Journal of Environmental Studies, 21, 361-366. Yen, H.W., & Brune, D.E. (2007). Anaerobic co-digestion of algal sludge and waste paper to produce methane, Bioresource and Technology, 98, 130-134. Dębowski, M., Korzeniewska, E., Filipkowska, Z., Zieliński, M., & Kwiatkowski, R. (2014). Possibility of hydrogen production during cheese whey fermentation process by different strains of psychrophilic bacteria, International Journal of Hydrogen Energy, 39, 1972-1978. Fargione, J., Hill, J., Tilman, D., Polasky, S., & Hawthorne, P. (2008). Land clearing and the biofuel carbon debt, Science, 319, 1235-1238. Zamalloa, C., Boon, N., & Verstraete, W. (2012). Anaerobic digestibility of Scenedesmus obliquus and Phaeodactylum tricornutum under mesophilic and thermophilic conditions, Applied Energy, 92, 733-738. van Eykelenburg, C., Fuchs, & A., Schmidt, G.H. (1980). Some theoretical considerations on the in vitro shape of the cross-walls in Spirulina spp. Journal of Theoretical Biology, 82, 271-282. Zeng, S.J., Yuan, X.Z., Shi, X.S., & Qiu, Y.L. (2010). Effect of inoculum/substrate ratio on methane yield and orthophosphate release from anaerobic digestion of Microcystis spp, Journal of Hazardous Materials, 178, 89-93. Ras, M., Lardon, L., Bruno, S., Bernet, N., & Steyer, J.P. (2011). Experimental study on a coupled process of production and anaerobic digestion of Chlorella vulgaris, Bioresource Technology, 102, 200-206. Zamalloa, C., Vulsteke, E., Albrecht, J., & Verstraete, W. (2011). The techno-economic potential of renewable energy through the anaerobic digestion of microalgae, Bioresource and Technology, 102, 1149-1158. Burczyk, J., & Dworzanski, J. (1988). Comparison of sporopollenin like algal resistant polymer from cell-wall of Botryococcus, Scenedesmus and Lycopodium clavatum by GC pyrolysis, Phytochemistry, 27, 2151-2153. 2009; 23 1986; 857 2006; 30 2009; 84 1987; 102 2009; 43 2010; 14 2013; 27 2008 2008; 12 2007 2008; 32 2011; 35 1972 2011; 4 2007; 98 1957; 5 1993; 5 1982; 24 2012; 92 2011; 102 2009; 35 1991; 27 2012; 3 2013; 34 2010; 178 1988; 27 1979; 4 2010; 150 1980; 82 2012; 27 2014 2014; 39 2012; 114 2012; 21 2010; 51 1996; 42 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_11_1 e_1_2_7_10_1 Grala A. (e_1_2_7_22_1) 2012; 21 e_1_2_7_26_1 e_1_2_7_27_1 Guo L. (e_1_2_7_28_1) 2007 e_1_2_7_29_1 Fargione J. (e_1_2_7_4_1) 2008 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_21_1 e_1_2_7_35_1 Johansson D. (e_1_2_7_6_1) 2007 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_37_1 e_1_2_7_39_1 Dębowski M. (e_1_2_7_17_1) 2012; 27 Miller D.H. (e_1_2_7_38_1) 1972 Nakano Y. (e_1_2_7_40_1) 1987; 102 Golueke C. (e_1_2_7_34_1) 1957; 5 Searchinger T. (e_1_2_7_5_1) 2008 |
References_xml | – reference: Wise, D.L., Augenstein, D.C., & Ryther, J.H. (1979). Methane fermentation of aquatic biomass, Resource Recovery Conservative, 4, 217-237. – reference: Dębowski, M., Zieliński, M., Grala, A., & Dudek, M. (2013). Algae biomass as an alternative substrate in biogas production technologies-review, Renewable and Sustainable Energy Reviews, 27, 596-604. – reference: Sheffer, M., Fried, A., Gottlieb, H.E., Tietz, A., & Avron, M. (1986). Lipid composition of the plasma-membrane of the halotolerant alga, Dunaliella salina, Biochim Biophysics Acta, 857, 165-172. – reference: Qin, B. (2009). Lake eutrophication: Control countermeasures and recycling exploitation, Ecological Engineering, 35, 1569-1573. – reference: Mussgnug, J.H., Klassen, V., Schlüter, A., & Kruse, O. (2010). Microalgae as substrates for fermentative biogas production in a combined biorefinery concept, Journal of Biotechnology, 150, 51-56. – reference: Samson, R., & Leduy, A. (1982). Biogas production from anaerobic digestion of Spirulina maxima algal biomass, Biotechnology and Bioengineering, 24, 1919-1924. – reference: Dębowski, M., Krzemieniewski, M., Zieliński, M., Dudek, M., & Grala, A. (2013). Respirometric studies on the effectiveness of biogas production from wastewaters originating from dairy, sugar and tanning industry, Environmental Technology, 34, 1439-1446. – reference: Goyal, H.B., Seal, D., & Saxena, R.C. (2008). Bio-fuels from thermochemical conversion of renewable resources: A review, Renewable and Sustainable Energy Reviews, 12, 504-517. – reference: Nakano, Y., Urade, Y., Urade, R., & Kitaoka, S. (1987). Isolation, purification and characterization of the pellicle of Euglena gracilis, Journal of Biochemistry, 102, 1053-1063. – reference: Zhong, W., Zhongzhi, Z., Yijing, L., Wei, Q., Meng, X., & Min, Z. (2012). Biogas productivity by co-digesting Taihu blue algae with corn straw as an external carbon source, Bioresource Technology, 114, 281-286. – reference: Takeda, H. (1996). Cell wall sugars of some Scenedesmus species, Phytochemistry, 42, 673-675. – reference: Burczyk, J., & Dworzanski, J. (1988). Comparison of sporopollenin like algal resistant polymer from cell-wall of Botryococcus, Scenedesmus and Lycopodium clavatum by GC pyrolysis, Phytochemistry, 27, 2151-2153. – reference: Douškovà, I., Kaštanek, F., Maleterova, Y., Kaštanek, P., Doucha, J., & Zachleder, V. (2010). Utilization of distillery stillage for energy generation and concurrent production of valuable microalgal biomass in the sequence: Biogas-cogeneration-microalgae-products. Energy Conservative Management, 51, 606-611. – reference: Mata, T., Martins, A., & Caetano, N. (2010). Microalgae for biodiesel production and other applications: A review, Renewable and Sustainable Energy Reviews, 14, 217-232. – reference: Guo, L. (2007). Doing battle with the green monster of Taihu Lake, Science, 317, 1166. – reference: Grala, A., Zieliński, M., Dębowski, M., & Dudek, M. (2012). Effects of hydrothermal depolymerization and enzymatic hydrolysis of algae biomass on yield of methane fermentation process. Polish Journal of Environmental Studies, 21, 361-366. – reference: Vergara-Fernàndez, A., Vargas, G., Alarcon, N., & Antonio, A. (2008). Evaluation of marine algae as a source of biogas in a two-stage anaerobic reactor system. Biomass and Bioenergy, 32, 338-344. – reference: Börjesson, P., & Berglund, M. (2006). Environmental systems analysis of biogas systems-part I: Fuel-cycle emissions, Biomass Bioenergy, 30, 469-485. – reference: Brennan, L., Owende, P. (2010). Biofuels from microalgae: A review of technologies for production, processing, and extractions of biofuels and co-product, Renewable and Sustainable Energy Reviews, 14, 557-577. – reference: Johnson, M., & Wen, Z. (2009). Production of biodiesel fuel from the microalga Schizochytrium limacinum by direct transesterification of algal biomass, Energy Fuels, 23, 294-306. – reference: Yen, H.W., & Brune, D.E. (2007). Anaerobic co-digestion of algal sludge and waste paper to produce methane, Bioresource and Technology, 98, 130-134. – reference: Chynoweth, D.P., Turick, C.E., Owens, J.M., Jerger, D.E, & Peck, M.W. (1993). Biochemical methane potential of biomass and waste feedstocks, Biomass Bioenergy, 5, 95-111. – reference: Lardon, L., Helias, A., Sialve, B., Steyer, J., & Bernard, O. (2009). Life-cycle assessment of biodiesel production from microalgae, Environmental Science and Technology, 43, 6475-6481. – reference: Golueke, C., Oswald, W., & Gotaas, H. (1957). Anaerobic digestion of algae, Applied Environmental Microbiology, 5, 47-55. – reference: Bruhn, A., Dahl, J., Nielsen, H.B., Nikolaisen, L., Rasmussen, M.B., Markager, S., Olesen, B., Arias, C., & Jensen, P.D. (2011). Bioenergy potential of Ulva lactuca: Biomass yield, methane production and combustion. Bioresource Technology, 102, 2595-2604. – reference: Collet, P., Hélias, A., Lardon, L., Ras, M., Goy, R.A., & Steyer, J.P. (2011). Life-cycle assessment of microalgae culture coupled to biogas production, Bioresource Technology, 102, 207-214. – reference: Zamalloa, C., Vulsteke, E., Albrecht, J., & Verstraete, W. (2011). The techno-economic potential of renewable energy through the anaerobic digestion of microalgae, Bioresource and Technology, 102, 1149-1158. – reference: Fargione, J., Hill, J., Tilman, D., Polasky, S., & Hawthorne, P. (2008). Land clearing and the biofuel carbon debt, Science, 319, 1235-1238. – reference: Zamalloa, C., Boon, N., & Verstraete, W. (2012). Anaerobic digestibility of Scenedesmus obliquus and Phaeodactylum tricornutum under mesophilic and thermophilic conditions, Applied Energy, 92, 733-738. – reference: Dębowski M., Zieliński M., Rokicka M., & Kupczyk K. (2014). The possibility of using macroalgae biomass from natural reservoirs as a substrate in the methane fermentation process, International Journal of Green Energy, doi: 10.1080/15435075.2014.891122. – reference: Searchinger, T., Heimlich, R., Houghton, R., Dong, F., Elobeid, A., Fabiosa, J., Tokgoz, S., Hayes, D., & Yu, T. (2008). Use of us croplands for biofuels increases greenhouse gases through emissions from land-use change, Science, 319, 1238-1240. – reference: Dębowski, M., Zieliński, M., Krzemieniewski, M., Dudek, M., & Grala, A. (2012). Microalgae-cultivation methods, Polish Journal of Nature Science, 27, 151-164. – reference: Yuan, X.Z., Shi, X.S., Zhang, D.L., Qiu, Y.L., Guo, R.B., & Wang, L.S. (2011). Biogas production and microcystin biodegradation in anaerobic digestion of blue algae. Energy Environmental Science, 4, 1511-1515. – reference: Hildebrand, M., Davis, A.K., Smith, S.R., Traller, J.C., & Abbriano, R. (2012). The place of diatoms in the biofuels industry, Biofuels, 3, 221-240. – reference: Harun, R., Davidson, M., Doyle, M., Gopiraj, R., Danquah, M., & Forde, G. (2011). Technoeconomic analysis of an integrated microalgae photobioreactor, biodiesel and biogas production facility, Biomass and Bioenergy, 35, 741-747. – reference: Mandal, S., & Mallick, N. (2009). Microalga Scenedesmus obliquus as a potential source for biodiesel production, Applied Microbiology and Biotechnology, 84, 281-291. – reference: Ras, M., Lardon, L., Bruno, S., Bernet, N., & Steyer, J.P. (2011). Experimental study on a coupled process of production and anaerobic digestion of Chlorella vulgaris, Bioresource Technology, 102, 200-206. – reference: Miller, D.H., Miller, M., & Lamport, D.T.A. (1972). Hydroxyproline heterooligosaccharides in Chlamydomonas, Science, 176, 918-920. – reference: Johansson, D., & Azar, C.A. (2007). Scenario based analysis of land competition between food and bioenergy production in the us. Climatic Change, 82, 267-291. – reference: Takeda, H. (1991). Sugar composition of the cell wall and the taxonomy of Chlorella (Chlorophyceae), Journal of Phycology, 27, 224-232. – reference: van Eykelenburg, C., Fuchs, & A., Schmidt, G.H. (1980). Some theoretical considerations on the in vitro shape of the cross-walls in Spirulina spp. Journal of Theoretical Biology, 82, 271-282. – reference: Zeng, S.J., Yuan, X.Z., Shi, X.S., & Qiu, Y.L. (2010). Effect of inoculum/substrate ratio on methane yield and orthophosphate release from anaerobic digestion of Microcystis spp, Journal of Hazardous Materials, 178, 89-93. – reference: Dębowski, M., Korzeniewska, E., Filipkowska, Z., Zieliński, M., & Kwiatkowski, R. (2014). Possibility of hydrogen production during cheese whey fermentation process by different strains of psychrophilic bacteria, International Journal of Hydrogen Energy, 39, 1972-1978. – volume: 102 start-page: 207 year: 2011 end-page: 214 article-title: Life‐cycle assessment of microalgae culture coupled to biogas production publication-title: Bioresource Technology – volume: 23 start-page: 294 year: 2009 end-page: 306 article-title: Production of biodiesel fuel from the microalga Schizochytrium limacinum by direct transesterification of algal biomass publication-title: Energy Fuels – volume: 14 start-page: 217 year: 2010 end-page: 232 article-title: Microalgae for biodiesel production and other applications: A review publication-title: Renewable and Sustainable Energy Reviews – volume: 12 start-page: 504 year: 2008 end-page: 517 article-title: Bio‐fuels from thermochemical conversion of renewable resources: A review publication-title: Renewable and Sustainable Energy Reviews – volume: 102 start-page: 200 year: 2011 end-page: 206 article-title: Experimental study on a coupled process of production and anaerobic digestion of publication-title: Bioresource Technology – volume: 27 start-page: 596 year: 2013 end-page: 604 article-title: Algae biomass as an alternative substrate in biogas production technologies—review publication-title: Renewable and Sustainable Energy Reviews – volume: 42 start-page: 673 year: 1996 end-page: 675 article-title: Cell wall sugars of some Scenedesmus species publication-title: Phytochemistry – volume: 24 start-page: 1919 year: 1982 end-page: 1924 article-title: Biogas production from anaerobic digestion of algal biomass publication-title: Biotechnology and Bioengineering – volume: 102 start-page: 2595 year: 2011 end-page: 2604 article-title: Bioenergy potential of : Biomass yield, methane production and combustion publication-title: Bioresource Technology – year: 2014 article-title: The possibility of using macroalgae biomass from natural reservoirs as a substrate in the methane fermentation process publication-title: International Journal of Green Energy – volume: 39 start-page: 1972 year: 2014 end-page: 1978 article-title: Possibility of hydrogen production during cheese whey fermentation process by different strains of psychrophilic bacteria publication-title: International Journal of Hydrogen Energy – volume: 4 start-page: 217 year: 1979 end-page: 237 article-title: Methane fermentation of aquatic biomass publication-title: Resource Recovery Conservative – volume: 34 start-page: 1439 year: 2013 end-page: 1446 article-title: Respirometric studies on the effectiveness of biogas production from wastewaters originating from dairy, sugar and tanning industry publication-title: Environmental Technology – volume: 3 start-page: 221 year: 2012 end-page: 240 article-title: The place of diatoms in the biofuels industry publication-title: Biofuels – volume: 35 start-page: 741 year: 2011 end-page: 747 article-title: Technoeconomic analysis of an integrated microalgae photobioreactor, biodiesel and biogas production facility publication-title: Biomass and Bioenergy – volume: 5 start-page: 47 year: 1957 end-page: 55 article-title: Anaerobic digestion of algae publication-title: Applied Environmental Microbiology – volume: 4 start-page: 1511 year: 2011 end-page: 1515 article-title: Biogas production and microcystin biodegradation in anaerobic digestion of blue algae publication-title: Energy Environmental Science – volume: 35 start-page: 1569 year: 2009 end-page: 1573 article-title: Lake eutrophication: Control countermeasures and recycling exploitation publication-title: Ecological Engineering – volume: 82 start-page: 271 year: 1980 end-page: 282 article-title: Some theoretical considerations on the shape of the cross‐walls in spp publication-title: Journal of Theoretical Biology – volume: 30 start-page: 469 year: 2006 end-page: 485 article-title: Environmental systems analysis of biogas systems—part I: Fuel‐cycle emissions publication-title: Biomass Bioenergy – volume: 92 start-page: 733 year: 2012 end-page: 738 article-title: Anaerobic digestibility of and under mesophilic and thermophilic conditions publication-title: Applied Energy – volume: 51 start-page: 606 year: 2010 end-page: 611 article-title: Utilization of distillery stillage for energy generation and concurrent production of valuable microalgal biomass in the sequence: Biogas‐cogeneration‐microalgae‐products publication-title: Energy Conservative Management – volume: 150 start-page: 51 year: 2010 end-page: 56 article-title: Microalgae as substrates for fermentative biogas production in a combined biorefinery concept publication-title: Journal of Biotechnology – volume: 32 start-page: 338 year: 2008 end-page: 344 article-title: Evaluation of marine algae as a source of biogas in a two‐stage anaerobic reactor system publication-title: Biomass and Bioenergy – volume: 27 start-page: 224 year: 1991 end-page: 232 article-title: Sugar composition of the cell wall and the taxonomy of Chlorella (Chlorophyceae) publication-title: Journal of Phycology – volume: 21 start-page: 361 year: 2012 end-page: 366 article-title: Effects of hydrothermal depolymerization and enzymatic hydrolysis of algae biomass on yield of methane fermentation process publication-title: Polish Journal of Environmental Studies – volume: 27 start-page: 2151 year: 1988 end-page: 2153 article-title: Comparison of sporopollenin like algal resistant polymer from cell‐wall of Botryococcus, Scenedesmus and Lycopodium clavatum by GC pyrolysis publication-title: Phytochemistry – start-page: 317, 1166 year: 2007 article-title: Doing battle with the green monster of Taihu Lake publication-title: Science – start-page: 176, 918 year: 1972 end-page: 920 article-title: Hydroxyproline heterooligosaccharides in Chlamydomonas publication-title: Science – volume: 102 start-page: 1149 year: 2011 end-page: 1158 article-title: The techno‐economic potential of renewable energy through the anaerobic digestion of microalgae publication-title: Bioresource and Technology – volume: 98 start-page: 130 year: 2007 end-page: 134 article-title: Anaerobic co‐digestion of algal sludge and waste paper to produce methane publication-title: Bioresource and Technology – start-page: 319, 1235 year: 2008 end-page: 1238 article-title: Land clearing and the biofuel carbon debt publication-title: Science – volume: 43 start-page: 6475 year: 2009 end-page: 6481 article-title: Life‐cycle assessment of biodiesel production from microalgae publication-title: Environmental Science and Technology – volume: 857 start-page: 165 year: 1986 end-page: 172 article-title: Lipid composition of the plasma‐membrane of the halotolerant alga publication-title: Dunaliella salina, Biochim Biophysics Acta – volume: 84 start-page: 281 year: 2009 end-page: 291 article-title: Microalga as a potential source for biodiesel production publication-title: Applied Microbiology and Biotechnology – volume: 178 start-page: 89 year: 2010 end-page: 93 article-title: Effect of inoculum/substrate ratio on methane yield and orthophosphate release from anaerobic digestion of spp publication-title: Journal of Hazardous Materials – volume: 14 start-page: 557 year: 2010 end-page: 577 article-title: Biofuels from microalgae: A review of technologies for production, processing, and extractions of biofuels and co‐product publication-title: Renewable and Sustainable Energy Reviews – volume: 27 start-page: 151 year: 2012 end-page: 164 article-title: Microalgae—cultivation methods publication-title: Polish Journal of Nature Science – start-page: 319, 1238 year: 2008 end-page: 1240 article-title: Use of us croplands for biofuels increases greenhouse gases through emissions from land‐use change publication-title: Science – volume: 5 start-page: 95 year: 1993 end-page: 111 article-title: Biochemical methane potential of biomass and waste feedstocks publication-title: Biomass Bioenergy – volume: 102 start-page: 1053 year: 1987 end-page: 1063 article-title: Isolation, purification and characterization of the pellicle of publication-title: Journal of Biochemistry – volume: 114 start-page: 281 year: 2012 end-page: 286 article-title: Biogas productivity by co‐digesting Taihu blue algae with corn straw as an external carbon source publication-title: Bioresource Technology – start-page: 267 year: 2007 end-page: 291 article-title: Scenario based analysis of land competition between food and bioenergy production in the us. Climatic Change publication-title: 82 – ident: e_1_2_7_10_1 doi: 10.1016/j.rser.2009.07.020 – ident: e_1_2_7_23_1 doi: 10.1016/j.enconman.2009.11.008 – ident: e_1_2_7_8_1 doi: 10.1021/es900705j – ident: e_1_2_7_26_1 doi: 10.1016/j.biortech.2010.06.154 – start-page: 319, 1235 year: 2008 ident: e_1_2_7_4_1 article-title: Land clearing and the biofuel carbon debt publication-title: Science – ident: e_1_2_7_20_1 doi: 10.1039/c0ee00452a – ident: e_1_2_7_44_1 doi: 10.4155/bfs.11.157 – ident: e_1_2_7_33_1 doi: 10.1080/15435075.2014.891122 – ident: e_1_2_7_42_1 doi: 10.1016/0031-9422(95)00952-3 – ident: e_1_2_7_32_1 doi: 10.1016/j.ijhydene.2013.11.082 – ident: e_1_2_7_15_1 doi: 10.1016/0304-3967(79)90002-7 – ident: e_1_2_7_29_1 doi: 10.1016/j.rser.2009.10.009 – start-page: 176, 918 year: 1972 ident: e_1_2_7_38_1 article-title: Hydroxyproline heterooligosaccharides in Chlamydomonas publication-title: Science – ident: e_1_2_7_39_1 doi: 10.1016/0022-5193(80)90103-4 – ident: e_1_2_7_2_1 doi: 10.1016/j.rser.2006.07.014 – ident: e_1_2_7_7_1 doi: 10.1007/s00253-009-1935-6 – ident: e_1_2_7_12_1 doi: 10.1002/bit.260240822 – ident: e_1_2_7_24_1 doi: 10.1016/j.biombioe.2010.10.007 – ident: e_1_2_7_30_1 doi: 10.1016/j.rser.2013.07.029 – start-page: 319, 1238 year: 2008 ident: e_1_2_7_5_1 article-title: Use of us croplands for biofuels increases greenhouse gases through emissions from land‐use change publication-title: Science – volume: 5 start-page: 47 year: 1957 ident: e_1_2_7_34_1 article-title: Anaerobic digestion of algae publication-title: Applied Environmental Microbiology doi: 10.1128/am.5.1.47-55.1957 – ident: e_1_2_7_19_1 doi: 10.1016/j.jhazmat.2010.01.047 – ident: e_1_2_7_16_1 doi: 10.1016/j.biortech.2010.10.010 – ident: e_1_2_7_18_1 doi: 10.1016/j.biortech.2012.02.111 – ident: e_1_2_7_35_1 doi: 10.1016/j.apenergy.2011.08.017 – ident: e_1_2_7_3_1 doi: 10.1016/j.biombioe.2005.11.014 – start-page: 317, 1166 year: 2007 ident: e_1_2_7_28_1 article-title: Doing battle with the green monster of Taihu Lake publication-title: Science – ident: e_1_2_7_41_1 doi: 10.1111/j.0022-3646.1991.00224.x – ident: e_1_2_7_13_1 doi: 10.1016/j.biortech.2010.06.146 – volume: 27 start-page: 151 year: 2012 ident: e_1_2_7_17_1 article-title: Microalgae—cultivation methods publication-title: Polish Journal of Nature Science – ident: e_1_2_7_31_1 doi: 10.1080/09593330.2012.752874 – ident: e_1_2_7_37_1 doi: 10.1016/0005-2736(86)90344-5 – volume: 21 start-page: 361 year: 2012 ident: e_1_2_7_22_1 article-title: Effects of hydrothermal depolymerization and enzymatic hydrolysis of algae biomass on yield of methane fermentation process publication-title: Polish Journal of Environmental Studies – ident: e_1_2_7_14_1 doi: 10.1016/0961-9534(93)90010-2 – start-page: 267 year: 2007 ident: e_1_2_7_6_1 article-title: Scenario based analysis of land competition between food and bioenergy production in the us. Climatic Change publication-title: 82 – volume: 102 start-page: 1053 year: 1987 ident: e_1_2_7_40_1 article-title: Isolation, purification and characterization of the pellicle of Euglena gracilis publication-title: Journal of Biochemistry doi: 10.1093/oxfordjournals.jbchem.a122143 – ident: e_1_2_7_21_1 doi: 10.1016/j.biombioe.2007.10.005 – ident: e_1_2_7_9_1 doi: 10.1021/ef900704h – ident: e_1_2_7_25_1 doi: 10.1016/j.biortech.2010.09.017 – ident: e_1_2_7_36_1 doi: 10.1016/j.jbiotec.2010.07.030 – ident: e_1_2_7_27_1 doi: 10.1016/j.ecoleng.2009.04.003 – ident: e_1_2_7_11_1 doi: 10.1016/j.biortech.2005.11.010 – ident: e_1_2_7_43_1 doi: 10.1016/0031-9422(88)80115-8 |
SSID | ssj0063499 |
Score | 2.066225 |
Snippet | The objective of this study was to determine the possibility of using microalgae biomass from natural water bodies as a substrate for methane fermentation and... |
SourceID | proquest crossref wiley istex |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 858 |
SubjectTerms | biogas methane fermentation microalgae biomass taxonomic structure |
Title | Effect of taxonomic diversification of microalgae harvested from eutrophicated reservoirs on the chemical composition of biomass and effectiveness of methane fermentation |
URI | https://api.istex.fr/ark:/67375/WNG-DCGGGSHD-P/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fep.12038 https://www.proquest.com/docview/1691296525 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1944-7442 databaseCode: DR2 dateStart: 20000101 customDbUrl: isFulltext: true eissn: 1944-7450 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0063499 providerName: Wiley-Blackwell |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZQucCBN6K8ZCQEp2yT-JHkiPrYFRJVBVRU4mDZjq2iQrLKZquKn8SvZMZ2lhaBhDjlkLGTOJ7xzPibz4S8lF4a57XMCtGajFeGgR2EwNU5yz2vhXSBrPrdoVwc87cn4iShKrEWJvJDbBJuqBnBXqOCa7Pa-UUa6pazoswZ1vkWTIQd2vcb5ijJeDg6EkJ0nlWclxPvbF7uTA2vrETXcVAvrriZl53VsNoc3Cafp_eMIJOz2Xo0M_v9NwrH__uQO-RWckLpmzhr7pJrrrtHbl6iJrxPfkRaY9p7OuqLWLxM2wji8CnPhze_IaAP60EcPdXDecieUqxZoW49Dv3yNNTYtRSrnIbz_suwotAQvE5qE1UBRVR7go5hj0gIAB491V1LI9okGeTwOIepfkc9LCipaqp7QI4P9j_uLrJ0rkNmOeN1ZgTEMabKXW68k0Vbh2RYUdvSGs4b7sFMG2YMHkDBrGHeCyvy1oEnUzUgzR6Sra7v3CNCHW_awlvRCNzxbXStZdkaq5nWGoKrepu8nv6xson0HM_e-KoiXXOp3FKF0d8mLzaSy0j08QeZV2GabAT0cIbAuEqoT4dztbc7n88_LPbUEXQ2zSMF6op7MDA2_XqlkJuobCSMAHQWZsVfn6b2j8L18b8KPiE3wJ0TEY75lGyNw9o9A5dpNM-DcvwEK3YWEQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKewAOlKcoTyMhOGWbxHYe4oS67S7QripoRQ9Ilu3YKiokqzRbVfwkfmVn7GRpEUiIUw4ZO8lkZjwznvlMyMvMZdo6lUWJqHTEc83ADkLgaq3hjhcisx6sem-WTQ_5-yNxtELeDL0wAR9imXBDzfD2GhUcE9Kbv1BD7XyUpDErrpE13J5DrRx_XGJHZYz7wyMhSOdRznk6IM_G6eYw8spatIZsPb_iaF52V_16s7NOvgxvGspMTkaLTo_Mj99AHP_zU26TW70fSt8GwblDVmx9l9y8hE54j_wMyMa0cbRT56F_mVahjsP1qT68-R1r-rAlxNJj1Z75BCrFthVqF13bzI99m11FsdGpPWu-tqcUBoLjSU2PVkCxsL2vHsMZERMAnHqq6oqGgpPeJvvHWcz2W-pgTekbp-r75HBn-2BrGvVHO0SGM15EWkAoo_PYxtrZLKkKnw9LCpMazXnJHVhqzbTGMyiY0cw5YURcWXBm8hKo2QOyWje1fUio5WWVOCNKgZu-pSpUllbaKKaUgviq2CCvh58sTY97jsdvfJMBsTmVdi499zfIiyXlPGB9_IHmlZeTJYFqT7A2Lhfy82wix1uTyeTTdCz3YbJBkCRoLG7DAG-axalEeKK0zIADMJkXi78-TW7v--ujfyV8Tq5PD_Z25e672YfH5AZ4dyJUZz4hq127sE_Bg-r0M68pF2zCGi0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaglRAceFe0vIyE4JRtHraTHFG3u8trtQIqKnGwbMdWUWkSpdmq4ifxK5mxs0uLQEKccsjYSRw_vhl_85mQ58IJbZ0SUcIrHbFcZzAPguNqrWGOFVxYL1b9fi5mB-zNIT8cWJWYCxP0IdYBNxwZfr7GAd5WbveXaKhtR0kaZ8VVsskEOFcIiD6spaNExvzZkeCjsyhnLF0Jz8bp7qrkpaVoE1v1_BLOvIhW_XIzuUW-rF40sEyOR8tej8z33zQc_-9LbpObAwqlr0K3uUOu2PouuXFBm_Ae-RF0jWnjaK_OQ_YyrQKLww2BPrx5gow-TAix9Eh1Zz58SjFphdpl3zXtkU-yqyimOXVnzdfulEJBgJ3UDFoFFGntA3cMa0RFAID0VNUVDXSTYUb2j7MY67fUwYoypE3V98nBZP_T3iwaDnaIDMtYEWkOjozOYxtrZ0VSFT4alhQmNZqxkjmYp3WmNZ5AkRmdOccNjysLUCYvwTrbIht1U9sHhFpWVokzvOS45VuqQom00kZlSinwropt8nL1j6UZVM_x8I1vMug1p9K20rf-Nnm2tmyD0scfbF74brI2UN0xMuNyLj_Pp3K8N51OP87GcgGVrfqRhPGKmzDQNs3yVKI4UVoKaAGozPeKvz5N7i_8dedfDZ-Sa4vxRL57PX_7kFwHaMcDNfMR2ei7pX0M8KnXT_w4-QkYmxjc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+taxonomic+diversification+of+microalgae+harvested+from+eutrophicated+reservoirs+on+the+chemical+composition+of+biomass+and+effectiveness+of+methane+fermentation&rft.jtitle=Environmental+progress+%26+sustainable+energy&rft.au=D%C4%99bowski%2C+M.&rft.au=Zieli%C5%84ski%2C+M.&rft.au=Kupczyk%2C+K.&rft.au=Rokicka%2C+M.&rft.date=2015-05-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=1944-7442&rft.eissn=1944-7450&rft.volume=34&rft.issue=3&rft.spage=858&rft.epage=865&rft_id=info:doi/10.1002%2Fep.12038&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_DCGGGSHD_P |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-7442&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-7442&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-7442&client=summon |