Effect of taxonomic diversification of microalgae harvested from eutrophicated reservoirs on the chemical composition of biomass and effectiveness of methane fermentation

The objective of this study was to determine the possibility of using microalgae biomass from natural water bodies as a substrate for methane fermentation and to verify the effect of taxonomic structure and other physicochemical traits of the biomass on the technological effectiveness of the process...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental progress & sustainable energy Vol. 34; no. 3; pp. 858 - 865
Main Authors Dębowski, M., Zieliński, M., Kupczyk, K., Rokicka, M., Hajduk, A.
Format Journal Article
LanguageEnglish
Published Blackwell Publishing Ltd 01.05.2015
Subjects
Online AccessGet full text
ISSN1944-7442
1944-7450
DOI10.1002/ep.12038

Cover

Abstract The objective of this study was to determine the possibility of using microalgae biomass from natural water bodies as a substrate for methane fermentation and to verify the effect of taxonomic structure and other physicochemical traits of the biomass on the technological effectiveness of the process. Harvested algae was characterized by a diversified taxonomic structure and on the content of nitrogen compounds and concentration of organic compounds in biomass, that was subject to seasonal dynamics of changes. The highest technological effects of the methane fermentation process were achieved with microalgae biomass harvested in July. In this period, the predominating taxonomic group were the Cyanoprokaryota, with a significant contribution of Chlorophyta. The mean yield of biogas production reached 441.15 ± 19.03 cm3/g o.d.m., at the mean production rate of r = 98.99 cm3/day and a reaction constant of k = 0.224 1/day. The mean content of methane in biogas accounted for 68.68 ± 1.67%. The lowest technological effects linked with biogas production were determined in November. These were the periods of the vegetative season with Bacillariophyceae constituting the predominating taxonomic group. The total production of biogas accounted for 333.65 ± 18.85 cm3/g o.d.m. The methane content were at mean levels of 54.19 ± 2.31%. © 2014 American Institute of Chemical Engineers Environ Prog, 34: 858–865, 2015
AbstractList The objective of this study was to determine the possibility of using microalgae biomass from natural water bodies as a substrate for methane fermentation and to verify the effect of taxonomic structure and other physicochemical traits of the biomass on the technological effectiveness of the process. Harvested algae was characterized by a diversified taxonomic structure and on the content of nitrogen compounds and concentration of organic compounds in biomass, that was subject to seasonal dynamics of changes. The highest technological effects of the methane fermentation process were achieved with microalgae biomass harvested in July. In this period, the predominating taxonomic group were the Cyanoprokaryota, with a significant contribution of Chlorophyta. The mean yield of biogas production reached 441.15 ± 19.03 cm3/g o.d.m., at the mean production rate of r = 98.99 cm3/day and a reaction constant of k = 0.224 1/day. The mean content of methane in biogas accounted for 68.68 ± 1.67%. The lowest technological effects linked with biogas production were determined in November. These were the periods of the vegetative season with Bacillariophyceae constituting the predominating taxonomic group. The total production of biogas accounted for 333.65 ± 18.85 cm3/g o.d.m. The methane content were at mean levels of 54.19 ± 2.31%. © 2014 American Institute of Chemical Engineers Environ Prog, 34: 858–865, 2015
The objective of this study was to determine the possibility of using microalgae biomass from natural water bodies as a substrate for methane fermentation and to verify the effect of taxonomic structure and other physicochemical traits of the biomass on the technological effectiveness of the process . Harvested algae was characterized by a diversified taxonomic structure and on the content of nitrogen compounds and concentration of organic compounds in biomass, that was subject to seasonal dynamics of changes. The highest technological effects of the methane fermentation process were achieved with microalgae biomass harvested in July. In this period, the predominating taxonomic group were the Cyanoprokaryota, with a significant contribution of Chlorophyta. The mean yield of biogas production reached 441.15 ± 19.03 cm 3 /g o.d.m., at the mean production rate of r = 98.99 cm 3 /day and a reaction constant of k = 0.224 1/day. The mean content of methane in biogas accounted for 68.68 ± 1.67%. The lowest technological effects linked with biogas production were determined in November. These were the periods of the vegetative season with Bacillariophyceae constituting the predominating taxonomic group. The total production of biogas accounted for 333.65 ± 18.85 cm 3 /g o.d.m. The methane content were at mean levels of 54.19 ± 2.31%. © 2014 American Institute of Chemical Engineers Environ Prog, 34: 858–865, 2015
Author Rokicka, M.
Hajduk, A.
Zieliński, M.
Dębowski, M.
Kupczyk, K.
Author_xml – sequence: 1
  givenname: M.
  surname: Dębowski
  fullname: Dębowski, M.
  organization: Department of Environment Engineering, University of Warmia and Mazury in Olsztyn, Warszawska 117 st., 10-720, Olsztyn
– sequence: 2
  givenname: M.
  surname: Zieliński
  fullname: Zieliński, M.
  organization: Department of Environment Engineering, University of Warmia and Mazury in Olsztyn, Warszawska 117 st., 10-720, Olsztyn
– sequence: 3
  givenname: K.
  surname: Kupczyk
  fullname: Kupczyk, K.
  organization: Department of Environment Engineering, University of Warmia and Mazury in Olsztyn, Warszawska 117 st., 10-720, Olsztyn
– sequence: 4
  givenname: M.
  surname: Rokicka
  fullname: Rokicka, M.
  email: Polandmagdalena.rokicka@uwm.edu.pl
  organization: Department of Environment Engineering, University of Warmia and Mazury in Olsztyn, Warszawska 117 st., 10-720, Olsztyn
– sequence: 5
  givenname: A.
  surname: Hajduk
  fullname: Hajduk, A.
  organization: Department of Environment Engineering, University of Warmia and Mazury in Olsztyn, Warszawska 117 st., 10-720, Olsztyn
BookMark eNp1kd1O3DAQha2KSvwUiUfwJTfZ2rGTbC7Rsg1ICJAK4tKynXHjNolT27vAK_Up8e4ClVB7ZWv8nXNmPIdob3QjIHRCyYwSkn-FaUZzwuaf0AGtOc8qXpC99zvP99FhCD8JKRmv6wP0Z2kM6IidwVE-udENVuPWrsEHa6yW0bpx85jK3sn-hwTcSb-GEKHFxrsBwyp6N3UbNpU8BPBrZ33ASRg7wLqDJJY91m6YXLBvjsq6QYaA5dhi2DaRUkdIlU0cxE6OgA34Aca4beML-mxkH-D49TxC99-Wd4uL7OqmuVycXWWaMz7PVJEXhaoIEGWgpO2c0LwmdK5zrTivuSGEKKYUYbRgWjFjCl2QFvKcVXWi2RE63flO3v1epUnFYIOGvk8NuVUQtKyTY5li_qLpc0LwYMTk7SD9s6BEbNYhYBLbdSR09gHVdjdX9NL2_xJkO8Gj7eH5v8ZiefuBt2k3T--89L9EWbGqEA_XjThfNE3z_eJc3LIXt9KwUA
CitedBy_id crossref_primary_10_1016_j_biteb_2021_100895
crossref_primary_10_1016_j_jece_2025_116101
crossref_primary_10_3390_su12239980
crossref_primary_10_1002_ep_12294
Cites_doi 10.1016/j.rser.2009.07.020
10.1016/j.enconman.2009.11.008
10.1021/es900705j
10.1016/j.biortech.2010.06.154
10.1039/c0ee00452a
10.4155/bfs.11.157
10.1080/15435075.2014.891122
10.1016/0031-9422(95)00952-3
10.1016/j.ijhydene.2013.11.082
10.1016/0304-3967(79)90002-7
10.1016/j.rser.2009.10.009
10.1016/0022-5193(80)90103-4
10.1016/j.rser.2006.07.014
10.1007/s00253-009-1935-6
10.1002/bit.260240822
10.1016/j.biombioe.2010.10.007
10.1016/j.rser.2013.07.029
10.1128/am.5.1.47-55.1957
10.1016/j.jhazmat.2010.01.047
10.1016/j.biortech.2010.10.010
10.1016/j.biortech.2012.02.111
10.1016/j.apenergy.2011.08.017
10.1016/j.biombioe.2005.11.014
10.1111/j.0022-3646.1991.00224.x
10.1016/j.biortech.2010.06.146
10.1080/09593330.2012.752874
10.1016/0005-2736(86)90344-5
10.1016/0961-9534(93)90010-2
10.1093/oxfordjournals.jbchem.a122143
10.1016/j.biombioe.2007.10.005
10.1021/ef900704h
10.1016/j.biortech.2010.09.017
10.1016/j.jbiotec.2010.07.030
10.1016/j.ecoleng.2009.04.003
10.1016/j.biortech.2005.11.010
10.1016/0031-9422(88)80115-8
ContentType Journal Article
Copyright 2014 American Institute of Chemical Engineers Environ Prog
Copyright_xml – notice: 2014 American Institute of Chemical Engineers Environ Prog
DBID BSCLL
AAYXX
CITATION
F1W
H95
H98
L.G
M7N
DOI 10.1002/ep.12038
DatabaseName Istex
CrossRef
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Aquaculture Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) Aquaculture Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
DatabaseTitleList
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1944-7450
EndPage 865
ExternalDocumentID 10_1002_ep_12038
EP12038
ark_67375_WNG_DCGGGSHD_P
Genre article
GroupedDBID ..I
.3N
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8FE
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABJCF
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFS
ACGOD
ACIWK
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADMGS
ADNMO
ADOZA
ADXAS
AEFGJ
AEIGN
AEIMD
AENEX
AEUYN
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFKRA
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BCU
BDRZF
BEC
BFHJK
BGLVJ
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CCPQU
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EDH
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GODZA
GUQSH
H.T
H.X
HF~
HGLYW
HVGLF
HZ~
ITG
ITH
IX1
J0M
JPC
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M7S
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PATMY
PHGZM
PHGZT
PQGLB
PQQKQ
PROAC
PTHSS
PUEGO
PYCSY
Q.N
Q11
QB0
QRW
R.K
ROL
RX1
S0X
SJFOW
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WIH
WIK
WLBEL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XV2
~IA
~WT
3V.
AAHHS
ACCFJ
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
RWI
WRC
AAYXX
CITATION
F1W
H95
H98
L.G
M7N
ID FETCH-LOGICAL-c4348-b5255b70e0bfe61d80129018c2cb4494f000b3bb03153cb3ff5c50de22379d803
IEDL.DBID DR2
ISSN 1944-7442
IngestDate Tue Aug 05 10:48:06 EDT 2025
Thu Apr 24 23:08:02 EDT 2025
Wed Oct 01 00:53:07 EDT 2025
Wed Jan 22 16:28:51 EST 2025
Sun Sep 21 06:18:41 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4348-b5255b70e0bfe61d80129018c2cb4494f000b3bb03153cb3ff5c50de22379d803
Notes ArticleID:EP12038
ark:/67375/WNG-DCGGGSHD-P
istex:6EDB6A31A0D05CEC46D1C1CC7FC14403C5F9E723
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1691296525
PQPubID 23462
PageCount 8
ParticipantIDs proquest_miscellaneous_1691296525
crossref_primary_10_1002_ep_12038
crossref_citationtrail_10_1002_ep_12038
wiley_primary_10_1002_ep_12038_EP12038
istex_primary_ark_67375_WNG_DCGGGSHD_P
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May/June 2015
PublicationDateYYYYMMDD 2015-05-01
PublicationDate_xml – month: 05
  year: 2015
  text: May/June 2015
PublicationDecade 2010
PublicationTitle Environmental progress & sustainable energy
PublicationTitleAlternate Environ. Prog. Sustainable Energy
PublicationYear 2015
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References Takeda, H. (1991). Sugar composition of the cell wall and the taxonomy of Chlorella (Chlorophyceae), Journal of Phycology, 27, 224-232.
Nakano, Y., Urade, Y., Urade, R., & Kitaoka, S. (1987). Isolation, purification and characterization of the pellicle of Euglena gracilis, Journal of Biochemistry, 102, 1053-1063.
Börjesson, P., & Berglund, M. (2006). Environmental systems analysis of biogas systems-part I: Fuel-cycle emissions, Biomass Bioenergy, 30, 469-485.
Dębowski, M., Zieliński, M., Grala, A., & Dudek, M. (2013). Algae biomass as an alternative substrate in biogas production technologies-review, Renewable and Sustainable Energy Reviews, 27, 596-604.
Samson, R., & Leduy, A. (1982). Biogas production from anaerobic digestion of Spirulina maxima algal biomass, Biotechnology and Bioengineering, 24, 1919-1924.
Harun, R., Davidson, M., Doyle, M., Gopiraj, R., Danquah, M., & Forde, G. (2011). Technoeconomic analysis of an integrated microalgae photobioreactor, biodiesel and biogas production facility, Biomass and Bioenergy, 35, 741-747.
Miller, D.H., Miller, M., & Lamport, D.T.A. (1972). Hydroxyproline heterooligosaccharides in Chlamydomonas, Science, 176, 918-920.
Goyal, H.B., Seal, D., & Saxena, R.C. (2008). Bio-fuels from thermochemical conversion of renewable resources: A review, Renewable and Sustainable Energy Reviews, 12, 504-517.
Vergara-Fernàndez, A., Vargas, G., Alarcon, N., & Antonio, A. (2008). Evaluation of marine algae as a source of biogas in a two-stage anaerobic reactor system. Biomass and Bioenergy, 32, 338-344.
Dębowski, M., Zieliński, M., Krzemieniewski, M., Dudek, M., & Grala, A. (2012). Microalgae-cultivation methods, Polish Journal of Nature Science, 27, 151-164.
Lardon, L., Helias, A., Sialve, B., Steyer, J., & Bernard, O. (2009). Life-cycle assessment of biodiesel production from microalgae, Environmental Science and Technology, 43, 6475-6481.
Hildebrand, M., Davis, A.K., Smith, S.R., Traller, J.C., & Abbriano, R. (2012). The place of diatoms in the biofuels industry, Biofuels, 3, 221-240.
Mata, T., Martins, A., & Caetano, N. (2010). Microalgae for biodiesel production and other applications: A review, Renewable and Sustainable Energy Reviews, 14, 217-232.
Chynoweth, D.P., Turick, C.E., Owens, J.M., Jerger, D.E, & Peck, M.W. (1993). Biochemical methane potential of biomass and waste feedstocks, Biomass Bioenergy, 5, 95-111.
Collet, P., Hélias, A., Lardon, L., Ras, M., Goy, R.A., & Steyer, J.P. (2011). Life-cycle assessment of microalgae culture coupled to biogas production, Bioresource Technology, 102, 207-214.
Johansson, D., & Azar, C.A. (2007). Scenario based analysis of land competition between food and bioenergy production in the us. Climatic Change, 82, 267-291.
Dębowski, M., Krzemieniewski, M., Zieliński, M., Dudek, M., & Grala, A. (2013). Respirometric studies on the effectiveness of biogas production from wastewaters originating from dairy, sugar and tanning industry, Environmental Technology, 34, 1439-1446.
Sheffer, M., Fried, A., Gottlieb, H.E., Tietz, A., & Avron, M. (1986). Lipid composition of the plasma-membrane of the halotolerant alga, Dunaliella salina, Biochim Biophysics Acta, 857, 165-172.
Johnson, M., & Wen, Z. (2009). Production of biodiesel fuel from the microalga Schizochytrium limacinum by direct transesterification of algal biomass, Energy Fuels, 23, 294-306.
Douškovà, I., Kaštanek, F., Maleterova, Y., Kaštanek, P., Doucha, J., & Zachleder, V. (2010). Utilization of distillery stillage for energy generation and concurrent production of valuable microalgal biomass in the sequence: Biogas-cogeneration-microalgae-products. Energy Conservative Management, 51, 606-611.
Bruhn, A., Dahl, J., Nielsen, H.B., Nikolaisen, L., Rasmussen, M.B., Markager, S., Olesen, B., Arias, C., & Jensen, P.D. (2011). Bioenergy potential of Ulva lactuca: Biomass yield, methane production and combustion. Bioresource Technology, 102, 2595-2604.
Mandal, S., & Mallick, N. (2009). Microalga Scenedesmus obliquus as a potential source for biodiesel production, Applied Microbiology and Biotechnology, 84, 281-291.
Wise, D.L., Augenstein, D.C., & Ryther, J.H. (1979). Methane fermentation of aquatic biomass, Resource Recovery Conservative, 4, 217-237.
Guo, L. (2007). Doing battle with the green monster of Taihu Lake, Science, 317, 1166.
Yuan, X.Z., Shi, X.S., Zhang, D.L., Qiu, Y.L., Guo, R.B., & Wang, L.S. (2011). Biogas production and microcystin biodegradation in anaerobic digestion of blue algae. Energy Environmental Science, 4, 1511-1515.
Golueke, C., Oswald, W., & Gotaas, H. (1957). Anaerobic digestion of algae, Applied Environmental Microbiology, 5, 47-55.
Qin, B. (2009). Lake eutrophication: Control countermeasures and recycling exploitation, Ecological Engineering, 35, 1569-1573.
Takeda, H. (1996). Cell wall sugars of some Scenedesmus species, Phytochemistry, 42, 673-675.
Zhong, W., Zhongzhi, Z., Yijing, L., Wei, Q., Meng, X., & Min, Z. (2012). Biogas productivity by co-digesting Taihu blue algae with corn straw as an external carbon source, Bioresource Technology, 114, 281-286.
Brennan, L., Owende, P. (2010). Biofuels from microalgae: A review of technologies for production, processing, and extractions of biofuels and co-product, Renewable and Sustainable Energy Reviews, 14, 557-577.
Dębowski M., Zieliński M., Rokicka M., & Kupczyk K. (2014). The possibility of using macroalgae biomass from natural reservoirs as a substrate in the methane fermentation process, International Journal of Green Energy, doi: 10.1080/15435075.2014.891122.
Mussgnug, J.H., Klassen, V., Schlüter, A., & Kruse, O. (2010). Microalgae as substrates for fermentative biogas production in a combined biorefinery concept, Journal of Biotechnology, 150, 51-56.
Searchinger, T., Heimlich, R., Houghton, R., Dong, F., Elobeid, A., Fabiosa, J., Tokgoz, S., Hayes, D., & Yu, T. (2008). Use of us croplands for biofuels increases greenhouse gases through emissions from land-use change, Science, 319, 1238-1240.
Grala, A., Zieliński, M., Dębowski, M., & Dudek, M. (2012). Effects of hydrothermal depolymerization and enzymatic hydrolysis of algae biomass on yield of methane fermentation process. Polish Journal of Environmental Studies, 21, 361-366.
Yen, H.W., & Brune, D.E. (2007). Anaerobic co-digestion of algal sludge and waste paper to produce methane, Bioresource and Technology, 98, 130-134.
Dębowski, M., Korzeniewska, E., Filipkowska, Z., Zieliński, M., & Kwiatkowski, R. (2014). Possibility of hydrogen production during cheese whey fermentation process by different strains of psychrophilic bacteria, International Journal of Hydrogen Energy, 39, 1972-1978.
Fargione, J., Hill, J., Tilman, D., Polasky, S., & Hawthorne, P. (2008). Land clearing and the biofuel carbon debt, Science, 319, 1235-1238.
Zamalloa, C., Boon, N., & Verstraete, W. (2012). Anaerobic digestibility of Scenedesmus obliquus and Phaeodactylum tricornutum under mesophilic and thermophilic conditions, Applied Energy, 92, 733-738.
van Eykelenburg, C., Fuchs, & A., Schmidt, G.H. (1980). Some theoretical considerations on the in vitro shape of the cross-walls in Spirulina spp. Journal of Theoretical Biology, 82, 271-282.
Zeng, S.J., Yuan, X.Z., Shi, X.S., & Qiu, Y.L. (2010). Effect of inoculum/substrate ratio on methane yield and orthophosphate release from anaerobic digestion of Microcystis spp, Journal of Hazardous Materials, 178, 89-93.
Ras, M., Lardon, L., Bruno, S., Bernet, N., & Steyer, J.P. (2011). Experimental study on a coupled process of production and anaerobic digestion of Chlorella vulgaris, Bioresource Technology, 102, 200-206.
Zamalloa, C., Vulsteke, E., Albrecht, J., & Verstraete, W. (2011). The techno-economic potential of renewable energy through the anaerobic digestion of microalgae, Bioresource and Technology, 102, 1149-1158.
Burczyk, J., & Dworzanski, J. (1988). Comparison of sporopollenin like algal resistant polymer from cell-wall of Botryococcus, Scenedesmus and Lycopodium clavatum by GC pyrolysis, Phytochemistry, 27, 2151-2153.
2009; 23
1986; 857
2006; 30
2009; 84
1987; 102
2009; 43
2010; 14
2013; 27
2008
2008; 12
2007
2008; 32
2011; 35
1972
2011; 4
2007; 98
1957; 5
1993; 5
1982; 24
2012; 92
2011; 102
2009; 35
1991; 27
2012; 3
2013; 34
2010; 178
1988; 27
1979; 4
2010; 150
1980; 82
2012; 27
2014
2014; 39
2012; 114
2012; 21
2010; 51
1996; 42
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_11_1
e_1_2_7_10_1
Grala A. (e_1_2_7_22_1) 2012; 21
e_1_2_7_26_1
e_1_2_7_27_1
Guo L. (e_1_2_7_28_1) 2007
e_1_2_7_29_1
Fargione J. (e_1_2_7_4_1) 2008
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_21_1
e_1_2_7_35_1
Johansson D. (e_1_2_7_6_1) 2007
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_39_1
Dębowski M. (e_1_2_7_17_1) 2012; 27
Miller D.H. (e_1_2_7_38_1) 1972
Nakano Y. (e_1_2_7_40_1) 1987; 102
Golueke C. (e_1_2_7_34_1) 1957; 5
Searchinger T. (e_1_2_7_5_1) 2008
References_xml – reference: Wise, D.L., Augenstein, D.C., & Ryther, J.H. (1979). Methane fermentation of aquatic biomass, Resource Recovery Conservative, 4, 217-237.
– reference: Dębowski, M., Zieliński, M., Grala, A., & Dudek, M. (2013). Algae biomass as an alternative substrate in biogas production technologies-review, Renewable and Sustainable Energy Reviews, 27, 596-604.
– reference: Sheffer, M., Fried, A., Gottlieb, H.E., Tietz, A., & Avron, M. (1986). Lipid composition of the plasma-membrane of the halotolerant alga, Dunaliella salina, Biochim Biophysics Acta, 857, 165-172.
– reference: Qin, B. (2009). Lake eutrophication: Control countermeasures and recycling exploitation, Ecological Engineering, 35, 1569-1573.
– reference: Mussgnug, J.H., Klassen, V., Schlüter, A., & Kruse, O. (2010). Microalgae as substrates for fermentative biogas production in a combined biorefinery concept, Journal of Biotechnology, 150, 51-56.
– reference: Samson, R., & Leduy, A. (1982). Biogas production from anaerobic digestion of Spirulina maxima algal biomass, Biotechnology and Bioengineering, 24, 1919-1924.
– reference: Dębowski, M., Krzemieniewski, M., Zieliński, M., Dudek, M., & Grala, A. (2013). Respirometric studies on the effectiveness of biogas production from wastewaters originating from dairy, sugar and tanning industry, Environmental Technology, 34, 1439-1446.
– reference: Goyal, H.B., Seal, D., & Saxena, R.C. (2008). Bio-fuels from thermochemical conversion of renewable resources: A review, Renewable and Sustainable Energy Reviews, 12, 504-517.
– reference: Nakano, Y., Urade, Y., Urade, R., & Kitaoka, S. (1987). Isolation, purification and characterization of the pellicle of Euglena gracilis, Journal of Biochemistry, 102, 1053-1063.
– reference: Zhong, W., Zhongzhi, Z., Yijing, L., Wei, Q., Meng, X., & Min, Z. (2012). Biogas productivity by co-digesting Taihu blue algae with corn straw as an external carbon source, Bioresource Technology, 114, 281-286.
– reference: Takeda, H. (1996). Cell wall sugars of some Scenedesmus species, Phytochemistry, 42, 673-675.
– reference: Burczyk, J., & Dworzanski, J. (1988). Comparison of sporopollenin like algal resistant polymer from cell-wall of Botryococcus, Scenedesmus and Lycopodium clavatum by GC pyrolysis, Phytochemistry, 27, 2151-2153.
– reference: Douškovà, I., Kaštanek, F., Maleterova, Y., Kaštanek, P., Doucha, J., & Zachleder, V. (2010). Utilization of distillery stillage for energy generation and concurrent production of valuable microalgal biomass in the sequence: Biogas-cogeneration-microalgae-products. Energy Conservative Management, 51, 606-611.
– reference: Mata, T., Martins, A., & Caetano, N. (2010). Microalgae for biodiesel production and other applications: A review, Renewable and Sustainable Energy Reviews, 14, 217-232.
– reference: Guo, L. (2007). Doing battle with the green monster of Taihu Lake, Science, 317, 1166.
– reference: Grala, A., Zieliński, M., Dębowski, M., & Dudek, M. (2012). Effects of hydrothermal depolymerization and enzymatic hydrolysis of algae biomass on yield of methane fermentation process. Polish Journal of Environmental Studies, 21, 361-366.
– reference: Vergara-Fernàndez, A., Vargas, G., Alarcon, N., & Antonio, A. (2008). Evaluation of marine algae as a source of biogas in a two-stage anaerobic reactor system. Biomass and Bioenergy, 32, 338-344.
– reference: Börjesson, P., & Berglund, M. (2006). Environmental systems analysis of biogas systems-part I: Fuel-cycle emissions, Biomass Bioenergy, 30, 469-485.
– reference: Brennan, L., Owende, P. (2010). Biofuels from microalgae: A review of technologies for production, processing, and extractions of biofuels and co-product, Renewable and Sustainable Energy Reviews, 14, 557-577.
– reference: Johnson, M., & Wen, Z. (2009). Production of biodiesel fuel from the microalga Schizochytrium limacinum by direct transesterification of algal biomass, Energy Fuels, 23, 294-306.
– reference: Yen, H.W., & Brune, D.E. (2007). Anaerobic co-digestion of algal sludge and waste paper to produce methane, Bioresource and Technology, 98, 130-134.
– reference: Chynoweth, D.P., Turick, C.E., Owens, J.M., Jerger, D.E, & Peck, M.W. (1993). Biochemical methane potential of biomass and waste feedstocks, Biomass Bioenergy, 5, 95-111.
– reference: Lardon, L., Helias, A., Sialve, B., Steyer, J., & Bernard, O. (2009). Life-cycle assessment of biodiesel production from microalgae, Environmental Science and Technology, 43, 6475-6481.
– reference: Golueke, C., Oswald, W., & Gotaas, H. (1957). Anaerobic digestion of algae, Applied Environmental Microbiology, 5, 47-55.
– reference: Bruhn, A., Dahl, J., Nielsen, H.B., Nikolaisen, L., Rasmussen, M.B., Markager, S., Olesen, B., Arias, C., & Jensen, P.D. (2011). Bioenergy potential of Ulva lactuca: Biomass yield, methane production and combustion. Bioresource Technology, 102, 2595-2604.
– reference: Collet, P., Hélias, A., Lardon, L., Ras, M., Goy, R.A., & Steyer, J.P. (2011). Life-cycle assessment of microalgae culture coupled to biogas production, Bioresource Technology, 102, 207-214.
– reference: Zamalloa, C., Vulsteke, E., Albrecht, J., & Verstraete, W. (2011). The techno-economic potential of renewable energy through the anaerobic digestion of microalgae, Bioresource and Technology, 102, 1149-1158.
– reference: Fargione, J., Hill, J., Tilman, D., Polasky, S., & Hawthorne, P. (2008). Land clearing and the biofuel carbon debt, Science, 319, 1235-1238.
– reference: Zamalloa, C., Boon, N., & Verstraete, W. (2012). Anaerobic digestibility of Scenedesmus obliquus and Phaeodactylum tricornutum under mesophilic and thermophilic conditions, Applied Energy, 92, 733-738.
– reference: Dębowski M., Zieliński M., Rokicka M., & Kupczyk K. (2014). The possibility of using macroalgae biomass from natural reservoirs as a substrate in the methane fermentation process, International Journal of Green Energy, doi: 10.1080/15435075.2014.891122.
– reference: Searchinger, T., Heimlich, R., Houghton, R., Dong, F., Elobeid, A., Fabiosa, J., Tokgoz, S., Hayes, D., & Yu, T. (2008). Use of us croplands for biofuels increases greenhouse gases through emissions from land-use change, Science, 319, 1238-1240.
– reference: Dębowski, M., Zieliński, M., Krzemieniewski, M., Dudek, M., & Grala, A. (2012). Microalgae-cultivation methods, Polish Journal of Nature Science, 27, 151-164.
– reference: Yuan, X.Z., Shi, X.S., Zhang, D.L., Qiu, Y.L., Guo, R.B., & Wang, L.S. (2011). Biogas production and microcystin biodegradation in anaerobic digestion of blue algae. Energy Environmental Science, 4, 1511-1515.
– reference: Hildebrand, M., Davis, A.K., Smith, S.R., Traller, J.C., & Abbriano, R. (2012). The place of diatoms in the biofuels industry, Biofuels, 3, 221-240.
– reference: Harun, R., Davidson, M., Doyle, M., Gopiraj, R., Danquah, M., & Forde, G. (2011). Technoeconomic analysis of an integrated microalgae photobioreactor, biodiesel and biogas production facility, Biomass and Bioenergy, 35, 741-747.
– reference: Mandal, S., & Mallick, N. (2009). Microalga Scenedesmus obliquus as a potential source for biodiesel production, Applied Microbiology and Biotechnology, 84, 281-291.
– reference: Ras, M., Lardon, L., Bruno, S., Bernet, N., & Steyer, J.P. (2011). Experimental study on a coupled process of production and anaerobic digestion of Chlorella vulgaris, Bioresource Technology, 102, 200-206.
– reference: Miller, D.H., Miller, M., & Lamport, D.T.A. (1972). Hydroxyproline heterooligosaccharides in Chlamydomonas, Science, 176, 918-920.
– reference: Johansson, D., & Azar, C.A. (2007). Scenario based analysis of land competition between food and bioenergy production in the us. Climatic Change, 82, 267-291.
– reference: Takeda, H. (1991). Sugar composition of the cell wall and the taxonomy of Chlorella (Chlorophyceae), Journal of Phycology, 27, 224-232.
– reference: van Eykelenburg, C., Fuchs, & A., Schmidt, G.H. (1980). Some theoretical considerations on the in vitro shape of the cross-walls in Spirulina spp. Journal of Theoretical Biology, 82, 271-282.
– reference: Zeng, S.J., Yuan, X.Z., Shi, X.S., & Qiu, Y.L. (2010). Effect of inoculum/substrate ratio on methane yield and orthophosphate release from anaerobic digestion of Microcystis spp, Journal of Hazardous Materials, 178, 89-93.
– reference: Dębowski, M., Korzeniewska, E., Filipkowska, Z., Zieliński, M., & Kwiatkowski, R. (2014). Possibility of hydrogen production during cheese whey fermentation process by different strains of psychrophilic bacteria, International Journal of Hydrogen Energy, 39, 1972-1978.
– volume: 102
  start-page: 207
  year: 2011
  end-page: 214
  article-title: Life‐cycle assessment of microalgae culture coupled to biogas production
  publication-title: Bioresource Technology
– volume: 23
  start-page: 294
  year: 2009
  end-page: 306
  article-title: Production of biodiesel fuel from the microalga Schizochytrium limacinum by direct transesterification of algal biomass
  publication-title: Energy Fuels
– volume: 14
  start-page: 217
  year: 2010
  end-page: 232
  article-title: Microalgae for biodiesel production and other applications: A review
  publication-title: Renewable and Sustainable Energy Reviews
– volume: 12
  start-page: 504
  year: 2008
  end-page: 517
  article-title: Bio‐fuels from thermochemical conversion of renewable resources: A review
  publication-title: Renewable and Sustainable Energy Reviews
– volume: 102
  start-page: 200
  year: 2011
  end-page: 206
  article-title: Experimental study on a coupled process of production and anaerobic digestion of
  publication-title: Bioresource Technology
– volume: 27
  start-page: 596
  year: 2013
  end-page: 604
  article-title: Algae biomass as an alternative substrate in biogas production technologies—review
  publication-title: Renewable and Sustainable Energy Reviews
– volume: 42
  start-page: 673
  year: 1996
  end-page: 675
  article-title: Cell wall sugars of some Scenedesmus species
  publication-title: Phytochemistry
– volume: 24
  start-page: 1919
  year: 1982
  end-page: 1924
  article-title: Biogas production from anaerobic digestion of algal biomass
  publication-title: Biotechnology and Bioengineering
– volume: 102
  start-page: 2595
  year: 2011
  end-page: 2604
  article-title: Bioenergy potential of : Biomass yield, methane production and combustion
  publication-title: Bioresource Technology
– year: 2014
  article-title: The possibility of using macroalgae biomass from natural reservoirs as a substrate in the methane fermentation process
  publication-title: International Journal of Green Energy
– volume: 39
  start-page: 1972
  year: 2014
  end-page: 1978
  article-title: Possibility of hydrogen production during cheese whey fermentation process by different strains of psychrophilic bacteria
  publication-title: International Journal of Hydrogen Energy
– volume: 4
  start-page: 217
  year: 1979
  end-page: 237
  article-title: Methane fermentation of aquatic biomass
  publication-title: Resource Recovery Conservative
– volume: 34
  start-page: 1439
  year: 2013
  end-page: 1446
  article-title: Respirometric studies on the effectiveness of biogas production from wastewaters originating from dairy, sugar and tanning industry
  publication-title: Environmental Technology
– volume: 3
  start-page: 221
  year: 2012
  end-page: 240
  article-title: The place of diatoms in the biofuels industry
  publication-title: Biofuels
– volume: 35
  start-page: 741
  year: 2011
  end-page: 747
  article-title: Technoeconomic analysis of an integrated microalgae photobioreactor, biodiesel and biogas production facility
  publication-title: Biomass and Bioenergy
– volume: 5
  start-page: 47
  year: 1957
  end-page: 55
  article-title: Anaerobic digestion of algae
  publication-title: Applied Environmental Microbiology
– volume: 4
  start-page: 1511
  year: 2011
  end-page: 1515
  article-title: Biogas production and microcystin biodegradation in anaerobic digestion of blue algae
  publication-title: Energy Environmental Science
– volume: 35
  start-page: 1569
  year: 2009
  end-page: 1573
  article-title: Lake eutrophication: Control countermeasures and recycling exploitation
  publication-title: Ecological Engineering
– volume: 82
  start-page: 271
  year: 1980
  end-page: 282
  article-title: Some theoretical considerations on the shape of the cross‐walls in spp
  publication-title: Journal of Theoretical Biology
– volume: 30
  start-page: 469
  year: 2006
  end-page: 485
  article-title: Environmental systems analysis of biogas systems—part I: Fuel‐cycle emissions
  publication-title: Biomass Bioenergy
– volume: 92
  start-page: 733
  year: 2012
  end-page: 738
  article-title: Anaerobic digestibility of and under mesophilic and thermophilic conditions
  publication-title: Applied Energy
– volume: 51
  start-page: 606
  year: 2010
  end-page: 611
  article-title: Utilization of distillery stillage for energy generation and concurrent production of valuable microalgal biomass in the sequence: Biogas‐cogeneration‐microalgae‐products
  publication-title: Energy Conservative Management
– volume: 150
  start-page: 51
  year: 2010
  end-page: 56
  article-title: Microalgae as substrates for fermentative biogas production in a combined biorefinery concept
  publication-title: Journal of Biotechnology
– volume: 32
  start-page: 338
  year: 2008
  end-page: 344
  article-title: Evaluation of marine algae as a source of biogas in a two‐stage anaerobic reactor system
  publication-title: Biomass and Bioenergy
– volume: 27
  start-page: 224
  year: 1991
  end-page: 232
  article-title: Sugar composition of the cell wall and the taxonomy of Chlorella (Chlorophyceae)
  publication-title: Journal of Phycology
– volume: 21
  start-page: 361
  year: 2012
  end-page: 366
  article-title: Effects of hydrothermal depolymerization and enzymatic hydrolysis of algae biomass on yield of methane fermentation process
  publication-title: Polish Journal of Environmental Studies
– volume: 27
  start-page: 2151
  year: 1988
  end-page: 2153
  article-title: Comparison of sporopollenin like algal resistant polymer from cell‐wall of Botryococcus, Scenedesmus and Lycopodium clavatum by GC pyrolysis
  publication-title: Phytochemistry
– start-page: 317, 1166
  year: 2007
  article-title: Doing battle with the green monster of Taihu Lake
  publication-title: Science
– start-page: 176, 918
  year: 1972
  end-page: 920
  article-title: Hydroxyproline heterooligosaccharides in Chlamydomonas
  publication-title: Science
– volume: 102
  start-page: 1149
  year: 2011
  end-page: 1158
  article-title: The techno‐economic potential of renewable energy through the anaerobic digestion of microalgae
  publication-title: Bioresource and Technology
– volume: 98
  start-page: 130
  year: 2007
  end-page: 134
  article-title: Anaerobic co‐digestion of algal sludge and waste paper to produce methane
  publication-title: Bioresource and Technology
– start-page: 319, 1235
  year: 2008
  end-page: 1238
  article-title: Land clearing and the biofuel carbon debt
  publication-title: Science
– volume: 43
  start-page: 6475
  year: 2009
  end-page: 6481
  article-title: Life‐cycle assessment of biodiesel production from microalgae
  publication-title: Environmental Science and Technology
– volume: 857
  start-page: 165
  year: 1986
  end-page: 172
  article-title: Lipid composition of the plasma‐membrane of the halotolerant alga
  publication-title: Dunaliella salina, Biochim Biophysics Acta
– volume: 84
  start-page: 281
  year: 2009
  end-page: 291
  article-title: Microalga as a potential source for biodiesel production
  publication-title: Applied Microbiology and Biotechnology
– volume: 178
  start-page: 89
  year: 2010
  end-page: 93
  article-title: Effect of inoculum/substrate ratio on methane yield and orthophosphate release from anaerobic digestion of spp
  publication-title: Journal of Hazardous Materials
– volume: 14
  start-page: 557
  year: 2010
  end-page: 577
  article-title: Biofuels from microalgae: A review of technologies for production, processing, and extractions of biofuels and co‐product
  publication-title: Renewable and Sustainable Energy Reviews
– volume: 27
  start-page: 151
  year: 2012
  end-page: 164
  article-title: Microalgae—cultivation methods
  publication-title: Polish Journal of Nature Science
– start-page: 319, 1238
  year: 2008
  end-page: 1240
  article-title: Use of us croplands for biofuels increases greenhouse gases through emissions from land‐use change
  publication-title: Science
– volume: 5
  start-page: 95
  year: 1993
  end-page: 111
  article-title: Biochemical methane potential of biomass and waste feedstocks
  publication-title: Biomass Bioenergy
– volume: 102
  start-page: 1053
  year: 1987
  end-page: 1063
  article-title: Isolation, purification and characterization of the pellicle of
  publication-title: Journal of Biochemistry
– volume: 114
  start-page: 281
  year: 2012
  end-page: 286
  article-title: Biogas productivity by co‐digesting Taihu blue algae with corn straw as an external carbon source
  publication-title: Bioresource Technology
– start-page: 267
  year: 2007
  end-page: 291
  article-title: Scenario based analysis of land competition between food and bioenergy production in the us. Climatic Change
  publication-title: 82
– ident: e_1_2_7_10_1
  doi: 10.1016/j.rser.2009.07.020
– ident: e_1_2_7_23_1
  doi: 10.1016/j.enconman.2009.11.008
– ident: e_1_2_7_8_1
  doi: 10.1021/es900705j
– ident: e_1_2_7_26_1
  doi: 10.1016/j.biortech.2010.06.154
– start-page: 319, 1235
  year: 2008
  ident: e_1_2_7_4_1
  article-title: Land clearing and the biofuel carbon debt
  publication-title: Science
– ident: e_1_2_7_20_1
  doi: 10.1039/c0ee00452a
– ident: e_1_2_7_44_1
  doi: 10.4155/bfs.11.157
– ident: e_1_2_7_33_1
  doi: 10.1080/15435075.2014.891122
– ident: e_1_2_7_42_1
  doi: 10.1016/0031-9422(95)00952-3
– ident: e_1_2_7_32_1
  doi: 10.1016/j.ijhydene.2013.11.082
– ident: e_1_2_7_15_1
  doi: 10.1016/0304-3967(79)90002-7
– ident: e_1_2_7_29_1
  doi: 10.1016/j.rser.2009.10.009
– start-page: 176, 918
  year: 1972
  ident: e_1_2_7_38_1
  article-title: Hydroxyproline heterooligosaccharides in Chlamydomonas
  publication-title: Science
– ident: e_1_2_7_39_1
  doi: 10.1016/0022-5193(80)90103-4
– ident: e_1_2_7_2_1
  doi: 10.1016/j.rser.2006.07.014
– ident: e_1_2_7_7_1
  doi: 10.1007/s00253-009-1935-6
– ident: e_1_2_7_12_1
  doi: 10.1002/bit.260240822
– ident: e_1_2_7_24_1
  doi: 10.1016/j.biombioe.2010.10.007
– ident: e_1_2_7_30_1
  doi: 10.1016/j.rser.2013.07.029
– start-page: 319, 1238
  year: 2008
  ident: e_1_2_7_5_1
  article-title: Use of us croplands for biofuels increases greenhouse gases through emissions from land‐use change
  publication-title: Science
– volume: 5
  start-page: 47
  year: 1957
  ident: e_1_2_7_34_1
  article-title: Anaerobic digestion of algae
  publication-title: Applied Environmental Microbiology
  doi: 10.1128/am.5.1.47-55.1957
– ident: e_1_2_7_19_1
  doi: 10.1016/j.jhazmat.2010.01.047
– ident: e_1_2_7_16_1
  doi: 10.1016/j.biortech.2010.10.010
– ident: e_1_2_7_18_1
  doi: 10.1016/j.biortech.2012.02.111
– ident: e_1_2_7_35_1
  doi: 10.1016/j.apenergy.2011.08.017
– ident: e_1_2_7_3_1
  doi: 10.1016/j.biombioe.2005.11.014
– start-page: 317, 1166
  year: 2007
  ident: e_1_2_7_28_1
  article-title: Doing battle with the green monster of Taihu Lake
  publication-title: Science
– ident: e_1_2_7_41_1
  doi: 10.1111/j.0022-3646.1991.00224.x
– ident: e_1_2_7_13_1
  doi: 10.1016/j.biortech.2010.06.146
– volume: 27
  start-page: 151
  year: 2012
  ident: e_1_2_7_17_1
  article-title: Microalgae—cultivation methods
  publication-title: Polish Journal of Nature Science
– ident: e_1_2_7_31_1
  doi: 10.1080/09593330.2012.752874
– ident: e_1_2_7_37_1
  doi: 10.1016/0005-2736(86)90344-5
– volume: 21
  start-page: 361
  year: 2012
  ident: e_1_2_7_22_1
  article-title: Effects of hydrothermal depolymerization and enzymatic hydrolysis of algae biomass on yield of methane fermentation process
  publication-title: Polish Journal of Environmental Studies
– ident: e_1_2_7_14_1
  doi: 10.1016/0961-9534(93)90010-2
– start-page: 267
  year: 2007
  ident: e_1_2_7_6_1
  article-title: Scenario based analysis of land competition between food and bioenergy production in the us. Climatic Change
  publication-title: 82
– volume: 102
  start-page: 1053
  year: 1987
  ident: e_1_2_7_40_1
  article-title: Isolation, purification and characterization of the pellicle of Euglena gracilis
  publication-title: Journal of Biochemistry
  doi: 10.1093/oxfordjournals.jbchem.a122143
– ident: e_1_2_7_21_1
  doi: 10.1016/j.biombioe.2007.10.005
– ident: e_1_2_7_9_1
  doi: 10.1021/ef900704h
– ident: e_1_2_7_25_1
  doi: 10.1016/j.biortech.2010.09.017
– ident: e_1_2_7_36_1
  doi: 10.1016/j.jbiotec.2010.07.030
– ident: e_1_2_7_27_1
  doi: 10.1016/j.ecoleng.2009.04.003
– ident: e_1_2_7_11_1
  doi: 10.1016/j.biortech.2005.11.010
– ident: e_1_2_7_43_1
  doi: 10.1016/0031-9422(88)80115-8
SSID ssj0063499
Score 2.066225
Snippet The objective of this study was to determine the possibility of using microalgae biomass from natural water bodies as a substrate for methane fermentation and...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 858
SubjectTerms biogas
methane fermentation
microalgae biomass
taxonomic structure
Title Effect of taxonomic diversification of microalgae harvested from eutrophicated reservoirs on the chemical composition of biomass and effectiveness of methane fermentation
URI https://api.istex.fr/ark:/67375/WNG-DCGGGSHD-P/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fep.12038
https://www.proquest.com/docview/1691296525
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1944-7442
  databaseCode: DR2
  dateStart: 20000101
  customDbUrl:
  isFulltext: true
  eissn: 1944-7450
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0063499
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZQucCBN6K8ZCQEp2yT-JHkiPrYFRJVBVRU4mDZjq2iQrLKZquKn8SvZMZ2lhaBhDjlkLGTOJ7xzPibz4S8lF4a57XMCtGajFeGgR2EwNU5yz2vhXSBrPrdoVwc87cn4iShKrEWJvJDbBJuqBnBXqOCa7Pa-UUa6pazoswZ1vkWTIQd2vcb5ijJeDg6EkJ0nlWclxPvbF7uTA2vrETXcVAvrriZl53VsNoc3Cafp_eMIJOz2Xo0M_v9NwrH__uQO-RWckLpmzhr7pJrrrtHbl6iJrxPfkRaY9p7OuqLWLxM2wji8CnPhze_IaAP60EcPdXDecieUqxZoW49Dv3yNNTYtRSrnIbz_suwotAQvE5qE1UBRVR7go5hj0gIAB491V1LI9okGeTwOIepfkc9LCipaqp7QI4P9j_uLrJ0rkNmOeN1ZgTEMabKXW68k0Vbh2RYUdvSGs4b7sFMG2YMHkDBrGHeCyvy1oEnUzUgzR6Sra7v3CNCHW_awlvRCNzxbXStZdkaq5nWGoKrepu8nv6xson0HM_e-KoiXXOp3FKF0d8mLzaSy0j08QeZV2GabAT0cIbAuEqoT4dztbc7n88_LPbUEXQ2zSMF6op7MDA2_XqlkJuobCSMAHQWZsVfn6b2j8L18b8KPiE3wJ0TEY75lGyNw9o9A5dpNM-DcvwEK3YWEQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKewAOlKcoTyMhOGWbxHYe4oS67S7QripoRQ9Ilu3YKiokqzRbVfwkfmVn7GRpEUiIUw4ZO8lkZjwznvlMyMvMZdo6lUWJqHTEc83ADkLgaq3hjhcisx6sem-WTQ_5-yNxtELeDL0wAR9imXBDzfD2GhUcE9Kbv1BD7XyUpDErrpE13J5DrRx_XGJHZYz7wyMhSOdRznk6IM_G6eYw8spatIZsPb_iaF52V_16s7NOvgxvGspMTkaLTo_Mj99AHP_zU26TW70fSt8GwblDVmx9l9y8hE54j_wMyMa0cbRT56F_mVahjsP1qT68-R1r-rAlxNJj1Z75BCrFthVqF13bzI99m11FsdGpPWu-tqcUBoLjSU2PVkCxsL2vHsMZERMAnHqq6oqGgpPeJvvHWcz2W-pgTekbp-r75HBn-2BrGvVHO0SGM15EWkAoo_PYxtrZLKkKnw9LCpMazXnJHVhqzbTGMyiY0cw5YURcWXBm8hKo2QOyWje1fUio5WWVOCNKgZu-pSpUllbaKKaUgviq2CCvh58sTY97jsdvfJMBsTmVdi499zfIiyXlPGB9_IHmlZeTJYFqT7A2Lhfy82wix1uTyeTTdCz3YbJBkCRoLG7DAG-axalEeKK0zIADMJkXi78-TW7v--ujfyV8Tq5PD_Z25e672YfH5AZ4dyJUZz4hq127sE_Bg-r0M68pF2zCGi0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaglRAceFe0vIyE4JRtHraTHFG3u8trtQIqKnGwbMdWUWkSpdmq4ifxK5mxs0uLQEKccsjYSRw_vhl_85mQ58IJbZ0SUcIrHbFcZzAPguNqrWGOFVxYL1b9fi5mB-zNIT8cWJWYCxP0IdYBNxwZfr7GAd5WbveXaKhtR0kaZ8VVsskEOFcIiD6spaNExvzZkeCjsyhnLF0Jz8bp7qrkpaVoE1v1_BLOvIhW_XIzuUW-rF40sEyOR8tej8z33zQc_-9LbpObAwqlr0K3uUOu2PouuXFBm_Ae-RF0jWnjaK_OQ_YyrQKLww2BPrx5gow-TAix9Eh1Zz58SjFphdpl3zXtkU-yqyimOXVnzdfulEJBgJ3UDFoFFGntA3cMa0RFAID0VNUVDXSTYUb2j7MY67fUwYoypE3V98nBZP_T3iwaDnaIDMtYEWkOjozOYxtrZ0VSFT4alhQmNZqxkjmYp3WmNZ5AkRmdOccNjysLUCYvwTrbIht1U9sHhFpWVokzvOS45VuqQom00kZlSinwropt8nL1j6UZVM_x8I1vMug1p9K20rf-Nnm2tmyD0scfbF74brI2UN0xMuNyLj_Pp3K8N51OP87GcgGVrfqRhPGKmzDQNs3yVKI4UVoKaAGozPeKvz5N7i_8dedfDZ-Sa4vxRL57PX_7kFwHaMcDNfMR2ei7pX0M8KnXT_w4-QkYmxjc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+taxonomic+diversification+of+microalgae+harvested+from+eutrophicated+reservoirs+on+the+chemical+composition+of+biomass+and+effectiveness+of+methane+fermentation&rft.jtitle=Environmental+progress+%26+sustainable+energy&rft.au=D%C4%99bowski%2C+M.&rft.au=Zieli%C5%84ski%2C+M.&rft.au=Kupczyk%2C+K.&rft.au=Rokicka%2C+M.&rft.date=2015-05-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=1944-7442&rft.eissn=1944-7450&rft.volume=34&rft.issue=3&rft.spage=858&rft.epage=865&rft_id=info:doi/10.1002%2Fep.12038&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_DCGGGSHD_P
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-7442&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-7442&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-7442&client=summon