CAGAN: Classifier‐augmented generative adversarial networks for weakly‐supervised COVID‐19 lung lesion localisation

The Coronavirus Disease 2019 (COVID‐19) epidemic has constituted a Public Health Emergency of International Concern. Chest computed tomography (CT) can help early reveal abnormalities indicative of lung disease. Thus, accurate and automatic localisation of lung lesions is particularly important to a...

Full description

Saved in:
Bibliographic Details
Published inIET computer vision Vol. 18; no. 1; pp. 1 - 14
Main Authors Li, Xiaojie, Fei, Xin, Yan, Zhe, Ren, Hongping, Shi, Canghong, Zhang, Xian, Mumtaz, Imran, Luo, Yong, Wu, Xi
Format Journal Article
LanguageEnglish
Published Stevenage John Wiley & Sons, Inc 01.02.2024
Wiley
Subjects
Online AccessGet full text
ISSN1751-9632
1751-9640
DOI10.1049/cvi2.12216

Cover

Abstract The Coronavirus Disease 2019 (COVID‐19) epidemic has constituted a Public Health Emergency of International Concern. Chest computed tomography (CT) can help early reveal abnormalities indicative of lung disease. Thus, accurate and automatic localisation of lung lesions is particularly important to assist physicians in rapid diagnosis of COVID‐19 patients. The authors propose a classifier‐augmented generative adversarial network framework for weakly supervised COVID‐19 lung lesion localisation. It consists of an abnormality map generator, discriminator and classifier. The generator aims to produce the abnormality feature map M to locate lesion regions and then constructs images of the pseudo‐healthy subjects by adding M to the input patient images. Besides constraining the generated images of healthy subjects with real distribution by the discriminator, a pre‐trained classifier is introduced to enhance the generated images of healthy subjects to possess similar feature representations with real healthy people in terms of high‐level semantic features. Moreover, an attention gate is employed in the generator to reduce the noise effect in the irrelevant regions of M. Experimental results on the COVID‐19 CT dataset show that the method is effective in capturing more lesion areas and generating less noise in unrelated areas, and it has significant advantages in terms of quantitative and qualitative results over existing methods. (1) The authors propose an effective classifier‐augmented generative adversarial network framework for COVID‐19 lung lesion localisation, which provides a more accurate feature map indicating the lesion regions. The proposed framework incorporating the pre‐trained classifier enforces the output of the generator to have similar intermediate feature representations (M) with normal people and thus leads to improved precise lesion localisation. (2) The authors construct an L1 norm reconstruction loss and regularisation loss on M, which keep the patient’s lung structure unchanged when lesion location maps are generated.
AbstractList Abstract The Coronavirus Disease 2019 (COVID‐19) epidemic has constituted a Public Health Emergency of International Concern. Chest computed tomography (CT) can help early reveal abnormalities indicative of lung disease. Thus, accurate and automatic localisation of lung lesions is particularly important to assist physicians in rapid diagnosis of COVID‐19 patients. The authors propose a classifier‐augmented generative adversarial network framework for weakly supervised COVID‐19 lung lesion localisation. It consists of an abnormality map generator, discriminator and classifier. The generator aims to produce the abnormality feature map M to locate lesion regions and then constructs images of the pseudo‐healthy subjects by adding M to the input patient images. Besides constraining the generated images of healthy subjects with real distribution by the discriminator, a pre‐trained classifier is introduced to enhance the generated images of healthy subjects to possess similar feature representations with real healthy people in terms of high‐level semantic features. Moreover, an attention gate is employed in the generator to reduce the noise effect in the irrelevant regions of M. Experimental results on the COVID‐19 CT dataset show that the method is effective in capturing more lesion areas and generating less noise in unrelated areas, and it has significant advantages in terms of quantitative and qualitative results over existing methods.
The Coronavirus Disease 2019 (COVID‐19) epidemic has constituted a Public Health Emergency of International Concern. Chest computed tomography (CT) can help early reveal abnormalities indicative of lung disease. Thus, accurate and automatic localisation of lung lesions is particularly important to assist physicians in rapid diagnosis of COVID‐19 patients. The authors propose a classifier‐augmented generative adversarial network framework for weakly supervised COVID‐19 lung lesion localisation. It consists of an abnormality map generator, discriminator and classifier. The generator aims to produce the abnormality feature map M to locate lesion regions and then constructs images of the pseudo‐healthy subjects by adding M to the input patient images. Besides constraining the generated images of healthy subjects with real distribution by the discriminator, a pre‐trained classifier is introduced to enhance the generated images of healthy subjects to possess similar feature representations with real healthy people in terms of high‐level semantic features. Moreover, an attention gate is employed in the generator to reduce the noise effect in the irrelevant regions of M. Experimental results on the COVID‐19 CT dataset show that the method is effective in capturing more lesion areas and generating less noise in unrelated areas, and it has significant advantages in terms of quantitative and qualitative results over existing methods. (1) The authors propose an effective classifier‐augmented generative adversarial network framework for COVID‐19 lung lesion localisation, which provides a more accurate feature map indicating the lesion regions. The proposed framework incorporating the pre‐trained classifier enforces the output of the generator to have similar intermediate feature representations (M) with normal people and thus leads to improved precise lesion localisation. (2) The authors construct an L1 norm reconstruction loss and regularisation loss on M, which keep the patient’s lung structure unchanged when lesion location maps are generated.
The Coronavirus Disease 2019 (COVID‐19) epidemic has constituted a Public Health Emergency of International Concern. Chest computed tomography (CT) can help early reveal abnormalities indicative of lung disease. Thus, accurate and automatic localisation of lung lesions is particularly important to assist physicians in rapid diagnosis of COVID‐19 patients. The authors propose a classifier‐augmented generative adversarial network framework for weakly supervised COVID‐19 lung lesion localisation. It consists of an abnormality map generator, discriminator and classifier. The generator aims to produce the abnormality feature map M to locate lesion regions and then constructs images of the pseudo‐healthy subjects by adding M to the input patient images. Besides constraining the generated images of healthy subjects with real distribution by the discriminator, a pre‐trained classifier is introduced to enhance the generated images of healthy subjects to possess similar feature representations with real healthy people in terms of high‐level semantic features. Moreover, an attention gate is employed in the generator to reduce the noise effect in the irrelevant regions of M . Experimental results on the COVID‐19 CT dataset show that the method is effective in capturing more lesion areas and generating less noise in unrelated areas, and it has significant advantages in terms of quantitative and qualitative results over existing methods.
Author Zhang, Xian
Shi, Canghong
Luo, Yong
Wu, Xi
Yan, Zhe
Ren, Hongping
Mumtaz, Imran
Li, Xiaojie
Fei, Xin
Author_xml – sequence: 1
  givenname: Xiaojie
  orcidid: 0000-0003-3341-4034
  surname: Li
  fullname: Li, Xiaojie
  organization: Chengdu University of Information Technology
– sequence: 2
  givenname: Xin
  orcidid: 0000-0001-8637-0923
  surname: Fei
  fullname: Fei, Xin
  organization: Chengdu University of Information Technology
– sequence: 3
  givenname: Zhe
  surname: Yan
  fullname: Yan, Zhe
  organization: Chengdu University of Information Technology
– sequence: 4
  givenname: Hongping
  surname: Ren
  fullname: Ren, Hongping
  organization: Chengdu University of Information Technology
– sequence: 5
  givenname: Canghong
  surname: Shi
  fullname: Shi, Canghong
  organization: Xihua University
– sequence: 6
  givenname: Xian
  surname: Zhang
  fullname: Zhang, Xian
  organization: Chengdu University of Information Technology
– sequence: 7
  givenname: Imran
  surname: Mumtaz
  fullname: Mumtaz, Imran
  organization: University of Agriculture Faisalabad
– sequence: 8
  givenname: Yong
  surname: Luo
  fullname: Luo, Yong
  email: luoyonghx@163.com
  organization: Sichuan University
– sequence: 9
  givenname: Xi
  surname: Wu
  fullname: Wu, Xi
  organization: Chengdu University of Information Technology
BookMark eNp9kcFu1DAQhi1UJNqFC08QiRvSFttxnJjbKkBZqaIX6NWa2JOVt2682Mmu9sYj8Ix9krob1ANCnGY0-r9_RvNfkLMhDEjIW0YvGRXqg9k7fsk4Z_IFOWd1xZZKCnr23Jf8FblIaUtpJZUS5-TYrq5W3z4WrYeUXO8wPvz6DdPmHocRbbHBASOMbo8F2D3GBNGBLwYcDyHepaIPsTgg3PljxtK0w7h3KXPtze36Ux4xVfhp2BQekwtD4YMB71I2DMNr8rIHn_DNn7ogP758_t5-XV7fXK3b1fXSiFLIZWNlRW2fT694DaVglleN7WhnKAoLoJhtUDaV4k1TCq5UWXU9t3VNqWXMVOWCrGdfG2Crd9HdQzzqAE6fBiFuNMTRGY-6ElIhctb1NQhsZNewWpbGlAYbBbkuyLvZaxfDzwnTqLdhikM-X5eccVmruuZZ9X5WmRhSitg_b2VUP8Wkn2LSp5iymP4lNm48PWiM4Py_ETYjB-fx-B9z3d6u-cw8AmuRqds
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3515160
crossref_primary_10_1109_JTEHM_2024_3399261
Cites_doi 10.1007/978-3-030-59719-1_3
10.1109/ISBI48211.2021.9433806
10.32604/cmc.2020.010069
10.1007/s10723‐020‐09513‐3
10.1109/CVPR.2016.90
10.1007/978-3-319-24574-4_28
10.1109/tmi.2020.2995965
10.1007/978-3-030-32239-7_24
10.1109/ICCV.2019.00028
10.1109/CVPR.2016.319
10.1016/j.cmpb.2022.106731
10.1007/978-3-319-10590-1_53
10.1109/CVPR.2018.00685
10.1016/s0140‐6736(20)30211‐7
10.1007/978-3-319-46475-6_43
10.1007/s11263‐015‐0816‐y
10.1109/ICCV.2017.74
10.1007/978-3-319-46723-8_49
10.1109/CVPR.2018.00867
10.1109/tnnls.2019.2892409
10.1109/ICCV.2017.324
10.32604/csse.2023.034172
10.1109/jbhi.2021.3067465
10.1016/j.neucom.2021.06.012
10.1109/jsen.2021.3062442
10.1109/WACV.2018.00097
10.1016/j.cell.2020.08.029
10.1109/ICCV.2017.244
10.1109/CVPR.2017.369
ContentType Journal Article
Copyright 2023 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.
2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.
– notice: 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
3V.
7XB
8AL
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
M0N
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
S0W
DOA
DOI 10.1049/cvi2.12216
DatabaseName Wiley-Blackwell Open Access Titles
CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Computing Database
Engineering Database
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
ProQuest Central Basic
DELNET Engineering & Technology Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest DELNET Engineering and Technology Collection
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList

CrossRef
Computer Science Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Public Health
EISSN 1751-9640
EndPage 14
ExternalDocumentID oai_doaj_org_article_5469ee21bf7a4e86b81763cc3ce89acc
10_1049_cvi2_12216
CVI212216
Genre article
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: Natural Science Foundation of Sichuan Province
  funderid: 2022NSFSC0964
– fundername: Nanchong Science and Technology Program
  funderid: 22YYJCYJ0086
– fundername: Sichuan Science and Technology
  funderid: 23NSFSC2224; 2021YFQ0053; 2023ZHCG0018; 2023NSFSC0482
GroupedDBID .DC
0R~
0ZK
1OC
24P
29I
3V.
5GY
6IK
8FE
8FG
8VB
AAHHS
AAHJG
AAJGR
ABJCF
ABQXS
ABUWG
ACCFJ
ACCMX
ACESK
ACGFO
ACGFS
ACIWK
ACXQS
ADEYR
ADZOD
AEEZP
AEGXH
AENEX
AEQDE
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ARAPS
AVUZU
AZQEC
BENPR
BGLVJ
BPHCQ
CCPQU
CS3
DU5
DWQXO
EBS
EJD
ESX
GNUQQ
GROUPED_DOAJ
HCIFZ
HZ~
IAO
IFIPE
IPLJI
ITC
J9A
JAVBF
K1G
K6V
K7-
L6V
LAI
LXU
M0N
M43
M7S
MCNEO
MS~
NADUK
NXXTH
O9-
OCL
OK1
P62
PQQKQ
PROAC
PTHSS
QWB
RIE
RNS
RUI
S0W
UNMZH
ZL0
~ZZ
AAMMB
AAYXX
AEFGJ
AGXDD
AIDQK
AIDYY
CITATION
IDLOA
PHGZM
PHGZT
PQGLB
PUEGO
WIN
7XB
8AL
8FK
JQ2
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c4346-8d650df963527a341d258db0bc0e4daa91d8e68592883429935bf2d7700d11c53
IEDL.DBID 24P
ISSN 1751-9632
IngestDate Wed Aug 27 01:30:27 EDT 2025
Wed Aug 13 04:35:26 EDT 2025
Wed Oct 01 06:39:53 EDT 2025
Thu Apr 24 22:56:55 EDT 2025
Wed Jan 22 16:16:19 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4346-8d650df963527a341d258db0bc0e4daa91d8e68592883429935bf2d7700d11c53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8637-0923
0000-0003-3341-4034
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fcvi2.12216
PQID 3212679772
PQPubID 1936354
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_5469ee21bf7a4e86b81763cc3ce89acc
proquest_journals_3212679772
crossref_primary_10_1049_cvi2_12216
crossref_citationtrail_10_1049_cvi2_12216
wiley_primary_10_1049_cvi2_12216_CVI212216
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2024
2024-02-00
20240201
2024-02-01
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 02
  year: 2024
  text: February 2024
PublicationDecade 2020
PublicationPlace Stevenage
PublicationPlace_xml – name: Stevenage
PublicationTitle IET computer vision
PublicationYear 2024
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References 2021; 25
2021; 22
2017; 70
2015; 115
2019; 30
2020; 63
2021
2020; 395
2020
2021; 458
2020; 181
2019; 11767
2014; 8689
2020; 39
2019
2018
2017
2016
2023; 1
2015
2014
2020; 65
2022; 218
2020; 18
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_24_1
e_1_2_10_45_1
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_22_1
e_1_2_10_20_1
e_1_2_10_41_1
e_1_2_10_40_1
Luo C. (e_1_2_10_26_1) 2020; 63
Simonyan K. (e_1_2_10_42_1) 2015
Choi Y. (e_1_2_10_43_1) 2018
Ohata E.F. (e_1_2_10_16_1) 2020
Shinde S. (e_1_2_10_31_1) 2019
e_1_2_10_2_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_6_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_37_1
Ioffe S. (e_1_2_10_38_1) 2015
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_33_1
e_1_2_10_11_1
e_1_2_10_30_1
Jolicoeur‐Martineau A. (e_1_2_10_10_1) 2019
Kingma D.P. (e_1_2_10_47_1) 2015
Wang H. (e_1_2_10_7_1) 2020
Odena A. (e_1_2_10_32_1) 2017
Lin M. (e_1_2_10_29_1) 2014
Miyato T. (e_1_2_10_39_1) 2018
e_1_2_10_27_1
e_1_2_10_28_1
e_1_2_10_25_1
e_1_2_10_48_1
References_xml – volume: 30
  start-page: 3484
  issue: 11
  year: 2019
  end-page: 3495
  article-title: Evaluate the malignancy of pulmonary nodules using the 3‐d deep leaky noisy‐or network
  publication-title: IEEE Transact. Neural Networks Learn. Syst.
– start-page: 234
  year: 2015
  end-page: 241
– start-page: 8309
  year: 2018
  end-page: 8319
– volume: 458
  start-page: 232
  year: 2021
  end-page: 245
  article-title: Deep supervised learning using self‐adaptive auxiliary loss for COVID‐19 diagnosis from imbalanced CT images
  publication-title: Neurocomputing
– start-page: 770
  year: 2016
  end-page: 778
– volume: 70
  start-page: 2642
  year: 2017
  end-page: 2651
– start-page: 25
  year: 2020
  end-page: 34
– start-page: 839
  year: 2018
  end-page: 847
– volume: 22
  start-page: 17431
  issue: 18
  year: 2021
  end-page: 17438
  article-title: AVNC: attention‐based VGG‐style network for COVID‐19 diagnosis by CBAM
  publication-title: IEEE Sensor. J.
– volume: 18
  start-page: 211
  issue: 2
  year: 2020
  end-page: 226
  article-title: Estimating CT from MR abdominal images using novel generative adversarial networks
  publication-title: J. Grid Comput.
– start-page: 424
  year: 2016
  end-page: 432
– volume: 65
  start-page: 1771
  issue: 2
  year: 2020
  end-page: 1780
  article-title: Tissue segmentation in nasopharyngeal CT images using two‐stage learning
  publication-title: Comput. Mater. Continua
– year: 2018
– volume: 1
  start-page: 13
  year: 2023
  end-page: 26
  article-title: SNELM: SqueezeNet‐guided ELM for COVID‐19 recognition
  publication-title: Comput. Syst. Sci. Eng.
– start-page: 239
  year: 2020
  end-page: 248
  article-title: Automatic detection of COVID‐19 infection using chest X‐ray images through transfer learning
  publication-title: IEEE/CAA J. Autom. Sin. 8(3)
– year: 2014
– volume: 8689
  start-page: 818
  year: 2014
  end-page: 833
– volume: 181
  start-page: 1423
  issue: 5
  year: 2020
  end-page: 1433.e11
  article-title: Clinically applicable AI system for accurate diagnosis, quantitative measurements, and prognosis of COVID‐19 pneumonia using computed tomography
  publication-title: Cell
– volume: 11767
  start-page: 298
  year: 2019
  end-page: 306
– start-page: 8789
  year: 2018
  end-page: 8797
– volume: 115
  start-page: 211
  issue: 3
  year: 2015
  end-page: 252
  article-title: ImageNet large scale visual recognition challenge
  publication-title: Int. J. Comput. Vis.
– start-page: 3462
  year: 2017
  end-page: 3471
– start-page: 1966
  year: 2021
  end-page: 1970
– start-page: 209
  year: 2019
  end-page: 217
– start-page: 191
  year: 2019
  end-page: 200
– start-page: 618
  year: 2017
  end-page: 626
– volume: 218
  year: 2022
  article-title: Supervised and weakly supervised deep learning models for COVID‐19 CT diagnosis: a systematic review
  publication-title: Comput. Methods Progr. Biomed.
– start-page: 6546
  year: 2018
  end-page: 6555
– start-page: 694
  year: 2016
  end-page: 711
– year: 2020
– start-page: 2921
  year: 2016
  end-page: 2929
– volume: 395
  start-page: 507
  issue: 10223
  year: 2020
  end-page: 513
  article-title: Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study
  publication-title: Lancet
– volume: 25
  start-page: 1864
  issue: 6
  year: 2021
  end-page: 1872
  article-title: Lung lesion localization of COVID‐19 from chest CT image: a novel weakly supervised learning method
  publication-title: IEEE J. Biomed. Health Inf.
– year: 2017
– start-page: 448
  year: 2015
  end-page: 456
– year: 2019
– volume: 39
  start-page: 2615
  issue: 8
  year: 2020
  end-page: 2625
  article-title: A weakly‐supervised framework for COVID‐19 classification and lesion localization from chest CT
  publication-title: IEEE Trans. Med. Imag.
– volume: 63
  start-page: 995
  year: 2020
  end-page: 1012
  article-title: Multi‐task learning using attention‐based convolutional encoder‐decoder for dilated cardiomyopathy CMR segmentation and classification
  publication-title: Comput. Mater. Continua
– year: 2015
– start-page: 2999
  year: 2017
  end-page: 3007
– ident: e_1_2_10_44_1
– volume-title: 2nd International Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, April 14–16, 2014, Conference Track Proceedings
  year: 2014
  ident: e_1_2_10_29_1
– ident: e_1_2_10_45_1
  doi: 10.1007/978-3-030-59719-1_3
– start-page: 2642
  volume-title: Proceedings of the 34th International Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6–11 August 2017, Proceedings of Machine Learning Research
  year: 2017
  ident: e_1_2_10_32_1
– ident: e_1_2_10_35_1
  doi: 10.1109/ISBI48211.2021.9433806
– ident: e_1_2_10_25_1
  doi: 10.32604/cmc.2020.010069
– ident: e_1_2_10_33_1
  doi: 10.1007/s10723‐020‐09513‐3
– ident: e_1_2_10_34_1
  doi: 10.1109/CVPR.2016.90
– ident: e_1_2_10_27_1
  doi: 10.1007/978-3-319-24574-4_28
– ident: e_1_2_10_18_1
  doi: 10.1109/tmi.2020.2995965
– ident: e_1_2_10_37_1
  doi: 10.1007/978-3-030-32239-7_24
– ident: e_1_2_10_36_1
  doi: 10.1109/ICCV.2019.00028
– ident: e_1_2_10_4_1
  doi: 10.1109/CVPR.2016.319
– start-page: 239
  year: 2020
  ident: e_1_2_10_16_1
  article-title: Automatic detection of COVID‐19 infection using chest X‐ray images through transfer learning
  publication-title: IEEE/CAA J. Autom. Sin. 8(3)
– ident: e_1_2_10_24_1
  doi: 10.1016/j.cmpb.2022.106731
– ident: e_1_2_10_13_1
  doi: 10.1007/978-3-319-10590-1_53
– start-page: 298
  volume-title: Medical Image Computing and Computer Assisted Intervention ‐ MICCAI 2019 ‐ 22nd International Conference, Shenzhen, China, October 13–17, 2019, Proceedings, Part IV, Lecture Notes in Computer Science
  year: 2019
  ident: e_1_2_10_31_1
– ident: e_1_2_10_40_1
  doi: 10.1109/CVPR.2018.00685
– ident: e_1_2_10_8_1
– ident: e_1_2_10_2_1
  doi: 10.1016/s0140‐6736(20)30211‐7
– ident: e_1_2_10_41_1
  doi: 10.1007/978-3-319-46475-6_43
– volume-title: The IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops
  year: 2020
  ident: e_1_2_10_7_1
– ident: e_1_2_10_17_1
  doi: 10.1007/s11263‐015‐0816‐y
– ident: e_1_2_10_5_1
  doi: 10.1109/ICCV.2017.74
– ident: e_1_2_10_9_1
– volume-title: International Conference on Learning Representations
  year: 2018
  ident: e_1_2_10_39_1
– volume-title: International Conference on Learning Representations
  year: 2015
  ident: e_1_2_10_42_1
– ident: e_1_2_10_28_1
  doi: 10.1007/978-3-319-46723-8_49
– ident: e_1_2_10_12_1
  doi: 10.1109/CVPR.2018.00867
– ident: e_1_2_10_19_1
  doi: 10.1109/tnnls.2019.2892409
– volume: 63
  start-page: 995
  year: 2020
  ident: e_1_2_10_26_1
  article-title: Multi‐task learning using attention‐based convolutional encoder‐decoder for dilated cardiomyopathy CMR segmentation and classification
  publication-title: Comput. Mater. Continua
– ident: e_1_2_10_14_1
– start-page: 448
  volume-title: International Conference on Machine Learning
  year: 2015
  ident: e_1_2_10_38_1
– ident: e_1_2_10_46_1
  doi: 10.1109/ICCV.2017.324
– ident: e_1_2_10_20_1
  doi: 10.32604/csse.2023.034172
– ident: e_1_2_10_22_1
  doi: 10.1109/jbhi.2021.3067465
– ident: e_1_2_10_23_1
  doi: 10.1016/j.neucom.2021.06.012
– ident: e_1_2_10_21_1
  doi: 10.1109/jsen.2021.3062442
– start-page: 8789
  volume-title: 2018 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, June 18–22, 2018
  year: 2018
  ident: e_1_2_10_43_1
– ident: e_1_2_10_6_1
  doi: 10.1109/WACV.2018.00097
– ident: e_1_2_10_3_1
– ident: e_1_2_10_15_1
  doi: 10.1016/j.cell.2020.08.029
– ident: e_1_2_10_11_1
  doi: 10.1109/ICCV.2017.244
– ident: e_1_2_10_30_1
  doi: 10.1109/CVPR.2017.369
– volume-title: 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7–9, 2015, Conference Track Proceedings
  year: 2015
  ident: e_1_2_10_47_1
– volume-title: International Conference on Learning Representations
  year: 2019
  ident: e_1_2_10_10_1
– ident: e_1_2_10_48_1
SSID ssj0056994
Score 2.3219192
Snippet The Coronavirus Disease 2019 (COVID‐19) epidemic has constituted a Public Health Emergency of International Concern. Chest computed tomography (CT) can help...
Abstract The Coronavirus Disease 2019 (COVID‐19) epidemic has constituted a Public Health Emergency of International Concern. Chest computed tomography (CT)...
SourceID doaj
proquest
crossref
wiley
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Abnormalities
Algorithms
Artificial intelligence
biomedical MRI
Computed tomography
computer graphics
COVID-19
Deep learning
Discriminators
Disease
Feature maps
Generative adversarial networks
Health care
Lesions
Localization
Lungs
Machine learning
Medical imaging
Methods
patient diagnosis
Patients
Pneumonia
Public health
Severe acute respiratory syndrome coronavirus 2
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYQp16AvsRSqCy1lyKlrJ341dt2Wx6VCpeCuFmOx0ErVlvUsK248RP6G_tLOuNk0SJVcOktsuzImhnP9zkZzcfYW9MABF3bIoKsi8rFsgjSxkKAlgZKq3Si75Bfj_XhafXlXJ0vSX1RTVjXHrgz3J7C-1tKUtSNCVWy-FqBRyLGMibrQoyUfRHGFpepLgcr7bIEImKjKDDE5KIxaeX24s-JfC-kJIXzJSjKHfvv0cxlsprRZn-DrfU0kY-67T1lK2n2jK33lJH3B7J9zm7Go4PR8QeetS0nDWLcn9vfYX6RW20Cv8hNpSmj8UDKy22geOOzrva75chY-a8ULqc3uKydX1HiaHHd-OTs6BMOCcenmA34NNFHNZ6Br6__ecFO9z9_Gx8WvZpCEauy0oUFJGPQoDWUNAHBC6SyUA_rOEwVhOAE2KStcqQ_TChVqrqRYMxwCEJEVb5kq7Pvs7TJOOUFBzoGIjSuNhZSiZaOjXAOTFAD9m5hWB_7VuOkeDH1-Zd35Tw5wWcnDNibu7lXXYONf876SP65m0FNsfMAhorvQ8U_FioDtr3wru9PautLxG5tkAXLAdvNHn9gG358diTz09b_2NAr9kQiR-qKwLfZ6vWPedpBjnNdv87h_BcfwPtT
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwELWgXJAQHwXEQkGW4AKS6dqJv7igZWHbIlEutOrNcmxnhVjtLk1XqDd-Ar-RX8KM45Qiod6ixLYiz_jN02Qyj5AXuo3Rq8awEEXDahsq5oUJjEcldKyMVAnzkJ8O1f5R_fFEnpSEW1fKKgdMzEAdVwFz5LsVYKzSwFbE2_V3hqpR-HW1SGhcJzfgaYUlXWa2NyCxVDYLIUKE5AwcTQztSWu7C4uK11wI1Dm_FJBy3_5_yOZlyppjzuwuuV3IIp301r1HrqXlNrlTiCMtx7LbJrf65Bvt_ym6T86nk73J4RuaFS-_thD5fv_85Tfz3IAz0nluNY04Rz3qMXcevZAu-4rwjgKPpT-S_7Y4h2ndZo1w0sG86efjg_dwi1u6AIygi4SpNprDYakKekCOZh--TPdZ0Vhgoa5qxUwEihZb2B0ptIeQFoU0sRk3YZzq6L3l0SRlpEVVYoxdlWxaEbUejyPnQVYPydZytUyPCEW0sFEFjzTHNtrEVMHOh5ZbG7WXI_Jy2GgXSgNy1MFYuPwhvLYOjeKyUUbk-cXYdd9247-j3qG9LkZgq-x8Y3U6d-XkOVkrm5LgTat9nQz4JQdMDaEKyVgfwojsDNZ25fx27q-3jcir7AFXvIabHh-IfPX46rWekJsCOFFf9L1Dts5ON-kpcJqz5ll23D8GHvbZ
  priority: 102
  providerName: ProQuest
Title CAGAN: Classifier‐augmented generative adversarial networks for weakly‐supervised COVID‐19 lung lesion localisation
URI https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fcvi2.12216
https://www.proquest.com/docview/3212679772
https://doaj.org/article/5469ee21bf7a4e86b81763cc3ce89acc
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1751-9640
  dateEnd: 20241231
  omitProxy: true
  ssIdentifier: ssj0056994
  issn: 1751-9632
  databaseCode: DOA
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVBHI
  databaseName: IET Digital Library (Open Access)
  customDbUrl:
  eissn: 1751-9640
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0056994
  issn: 1751-9632
  databaseCode: IDLOA
  dateStart: 20130201
  isFulltext: true
  titleUrlDefault: https://digital-library.theiet.org/content/collections
  providerName: Institution of Engineering and Technology
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1751-9640
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0056994
  issn: 1751-9632
  databaseCode: BENPR
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: KBPluse Wiley Online Library: Open Access
  customDbUrl:
  eissn: 1751-9640
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0056994
  issn: 1751-9632
  databaseCode: AVUZU
  dateStart: 20130201
  isFulltext: true
  titleUrlDefault: https://www.kbplus.ac.uk/kbplus7/publicExport/pkg/559
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1751-9640
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0056994
  issn: 1751-9632
  databaseCode: 24P
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ba9RAFB5q--KLd3G1LgP6ohDdmcxVfNmu3baCaxF3Kb4Mc8tSumxL023pmz_B3-gv8cwkWS2I4EsSwgyEOZfvy8nkOwi9lFUIVjhV-EBdwbQvC0uVL0gQVIZScRFTHfLTROxP2ccjfrSB3nf_wjT6EOuCW4qMnK9TgFvXdCEBUgtG9JfH9A2hlIhbaIsk2E-6zuywy8Nc6NwGEfCRFOBmtBMnZfrt77k34Cir9t-gmn8S1ow443voTksV8bCx7X20EZcP0N2WNuI2KOuH6Ho03BtO3uHc3_K4Apz7-f2HXc2z3GbA8ywsnbIatqn7cm2Tz-Fls_-7xsBa8VW0J4trmFavzlLyqGHe6PPs4APcIhovICPgRUyFNZzBr90D9AhNx7tfR_tF21Gh8KxkolABCFmoYDU4lRYALFCughs4P4gsWKtJUFEorlMP4oRUJXcVDVIOBoEQz8vHaHN5uoxPEE65QQfhbSI12kkVYgkr7SuidZCW99CrbmGNb-XGU9eLhcmfvZk2yQgmG6GHXqzHnjUiG38dtZPssx6RhLHzjdPzuWnjzHB43Y-REldJy6ICLySQQb0vfVTaet9D2511TRuttSkBv4UEJkx76HW2-D8ew4xmBzRfPf2fwc_QbQp8qNnwvY02L85X8TnwmQvXz24LRzXe66Ot4Wz6bQrnnd3J4Zd-rhH8Amr198A
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dbtMwFLamcQES4meAKAywBFyAFFb_JLGRECodXcu2crNNuzOO7VSIqi3Lqql3PAJPwkPxJJzjJGNIaHe7iyzbSnyOv_PFP-cj5EVeem-zQiXO8yKR2onEcuUS5jOee6HSLOA65P44Gx7KT8fp8Rr51d6FwWOVLSZGoPZzh2vkWwIwNsuBrfD3i-8Jqkbh7moroVG7xW5YncEvW_VutA32fcn54ONBf5g0qgKJk0JmifJASnwJjpfy3AKIe54qX3QL1w3SW6uZVyFTqUYdXkRrkRYl93ne7XrGHKpEAORfk0IIzNWvBjst8qeZjsKLEJFZAv3zNh2q1FvwEfwN4xx11S8EwKgT8A-5vUiRY4wb3CG3GnJKe7U33SVrYbZBbjdElTYwUG2Qm_ViH63vMN0jq35vpzd-S6PC5tcSIu3vHz_tchITfno6iamtEVepRf3nyqLX01l9Ar2iwJvpWbDfpitoVi0XCF8VtOt_PhptQxHTdAqYRKcBl_ZoDL_NKaT75PBKRv8BWZ_NZ-EhoYhO2mfOIq3SRa58EDDyrmRa-9ymHfKqHWjjmoTnqLsxNXHjXWqDRjHRKB3y_Lzuok7z8d9aH9Be5zUwNXcsmJ9MTDPTTSozHQJnRZlbGRTMAwYY7pxwQWnrXIdsttY2DV5U5q93d8jr6AGXvIbpH414fHp0eV_PyPXhwf6e2RuNdx-TGxz4WH3gfJOsn54swxPgU6fF0-jElHy56lnzB39_MaA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3bbhMxELWqVEJIiEsBNVDAEvAA0pLYe7GNVKE0aWgohArRqm-L1_ZGiCgJ3UZV3vgEvovP4EuY8XpLkVDf-rZa2XvxjM-c9Y7nEPJMlNbqrJCRsbyIEmXiSHNpImYzLmws08zhOuSHcbZ3mLw7To_XyK9mLwymVTaY6IHazg2ukXdiwNhMAFvhnTKkRRwMhm8W3yNUkMI_rY2chg4yC3bblxsLmzz23eoMPueq7dEAbP-c8-Hu5_5eFBQHIpPESRZJC4TFluCUKRcaAN7yVNqiW5iuS6zWilnpMpkq1OhFJI_TouRWiG7XMmZQQQLCwbrA_aItsr6zOz741MSFNFNelhHiNYvgDrwplpqoDrwif8U4R9X1C-HRqwj8Q30vEmgfAYe3yc1AXWmv9rU7ZM3NNsitQGNpAIlqg9yolwJpvcPpLln1e29749fU629-LSEO__7xUy8nvhyopRNf-BpRl2pUh640zgk6q_PTKwqsmp45_W26gm7VcoHgVkG__sej0QBOMUWngFh06nDhj_rgHHKU7pHDKxn_-6Q1m8_cJqGIXcpmRiPpUoWQ1sUw8qZkSlmh0zZ50Qx0bkI5dFTlmOb-t3yicjRK7o3SJk_P2y7qIiD_bbWD9jpvgYW7_Yn5ySQPOJCnSaac46wohU6chFnCAOGNiY2TCjy3TbYaa-cBTar8r--3yUvvAZc8Rt4_GnF_9ODyaz0h12AG5e9H4_2H5DoHslZno2-R1unJ0j0CsnVaPA5eTMmXq544fwDZ6Tx6
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CAGAN%3A+Classifier%E2%80%90augmented+generative+adversarial+networks+for+weakly%E2%80%90supervised+COVID%E2%80%9019+lung+lesion+localisation&rft.jtitle=IET+computer+vision&rft.au=Li%2C+Xiaojie&rft.au=Fei%2C+Xin&rft.au=Yan%2C+Zhe&rft.au=Ren%2C+Hongping&rft.date=2024-02-01&rft.issn=1751-9632&rft.eissn=1751-9640&rft.volume=18&rft.issue=1&rft.spage=1&rft.epage=14&rft_id=info:doi/10.1049%2Fcvi2.12216&rft.externalDBID=n%2Fa&rft.externalDocID=10_1049_cvi2_12216
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-9632&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-9632&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-9632&client=summon