Visual Analysis of Time-Series Similarities for Anomaly Detection in Sensor Networks

We present a system to analyze time‐series data in sensor networks. Our approach supports exploratory tasks for the comparison of univariate, geo‐referenced sensor data, in particular for anomaly detection. We split the recordings into fixed‐length patterns and show them in order to compare them ove...

Full description

Saved in:
Bibliographic Details
Published inComputer graphics forum Vol. 33; no. 3; pp. 401 - 410
Main Authors Steiger, Martin, Bernard, Jürgen, Mittelstädt, Sebastian, Lücke-Tieke, Hendrik, Keim, Daniel, May, Thorsten, Kohlhammer, Jörn
Format Journal Article
LanguageEnglish
Published Oxford Blackwell Publishing Ltd 01.06.2014
Subjects
Online AccessGet full text
ISSN0167-7055
1467-8659
DOI10.1111/cgf.12396

Cover

Abstract We present a system to analyze time‐series data in sensor networks. Our approach supports exploratory tasks for the comparison of univariate, geo‐referenced sensor data, in particular for anomaly detection. We split the recordings into fixed‐length patterns and show them in order to compare them over time and space using two linked views. Apart from geo‐based comparison across sensors we also support different temporal patterns to discover seasonal effects, anomalies and periodicities. The methods we use are best practices in the information visualization domain. They cover the daily, the weekly and seasonal and patterns of the data. Daily patterns can be analyzed in a clustering‐based view, weekly patterns in a calendar‐based view and seasonal patters in a projection‐based view. The connectivity of the sensors can be analyzed through a dedicated topological network view. We assist the domain expert with interaction techniques to make the results understandable. As a result, the user can identify and analyze erroneous and suspicious measurements in the network. A case study with a domain expert verified the usefulness of our approach.
AbstractList We present a system to analyze time-series data in sensor networks. Our approach supports exploratory tasks for the comparison of univariate, geo-referenced sensor data, in particular for anomaly detection. We split the recordings into fixed-length patterns and show them in order to compare them over time and space using two linked views. Apart from geo-based comparison across sensors we also support different temporal patterns to discover seasonal effects, anomalies and periodicities. The methods we use are best practices in the information visualization domain. They cover the daily, the weekly and seasonal and patterns of the data. Daily patterns can be analyzed in a clustering-based view, weekly patterns in a calendar-based view and seasonal patters in a projection-based view. The connectivity of the sensors can be analyzed through a dedicated topological network view. We assist the domain expert with interaction techniques to make the results understandable. As a result, the user can identify and analyze erroneous and suspicious measurements in the network. A case study with a domain expert verified the usefulness of our approach. [PUBLICATION ABSTRACT]
We present a system to analyze time‐series data in sensor networks. Our approach supports exploratory tasks for the comparison of univariate, geo‐referenced sensor data, in particular for anomaly detection. We split the recordings into fixed‐length patterns and show them in order to compare them over time and space using two linked views. Apart from geo‐based comparison across sensors we also support different temporal patterns to discover seasonal effects, anomalies and periodicities. The methods we use are best practices in the information visualization domain. They cover the daily, the weekly and seasonal and patterns of the data. Daily patterns can be analyzed in a clustering‐based view, weekly patterns in a calendar‐based view and seasonal patters in a projection‐based view. The connectivity of the sensors can be analyzed through a dedicated topological network view. We assist the domain expert with interaction techniques to make the results understandable. As a result, the user can identify and analyze erroneous and suspicious measurements in the network. A case study with a domain expert verified the usefulness of our approach.
We present a system to analyze time-series data in sensor networks. Our approach supports exploratory tasks for the comparison of univariate, geo-referenced sensor data, in particular for anomaly detection. We split the recordings into fixed-length patterns and show them in order to compare them over time and space using two linked views. Apart from geo-based comparison across sensors we also support different temporal patterns to discover seasonal effects, anomalies and periodicities. The methods we use are best practices in the information visualization domain. They cover the daily, the weekly and seasonal and patterns of the data. Daily patterns can be analyzed in a clustering-based view, weekly patterns in a calendar-based view and seasonal patters in a projection-based view. The connectivity of the sensors can be analyzed through a dedicated topological network view. We assist the domain expert with interaction techniques to make the results understandable. As a result, the user can identify and analyze erroneous and suspicious measurements in the network. A case study with a domain expert verified the usefulness of our approach.
Author Bernard, Jürgen
Lücke-Tieke, Hendrik
May, Thorsten
Mittelstädt, Sebastian
Keim, Daniel
Steiger, Martin
Kohlhammer, Jörn
Author_xml – sequence: 1
  givenname: Martin
  surname: Steiger
  fullname: Steiger, Martin
  organization: Fraunhofer IGD, Germany
– sequence: 2
  givenname: Jürgen
  surname: Bernard
  fullname: Bernard, Jürgen
  organization: Fraunhofer IGD, Germany
– sequence: 3
  givenname: Sebastian
  surname: Mittelstädt
  fullname: Mittelstädt, Sebastian
  organization: University of Konstanz, Germany
– sequence: 4
  givenname: Hendrik
  surname: Lücke-Tieke
  fullname: Lücke-Tieke, Hendrik
  organization: Fraunhofer IGD, Germany
– sequence: 5
  givenname: Daniel
  surname: Keim
  fullname: Keim, Daniel
  organization: University of Konstanz, Germany
– sequence: 6
  givenname: Thorsten
  surname: May
  fullname: May, Thorsten
  organization: Fraunhofer IGD, Germany
– sequence: 7
  givenname: Jörn
  surname: Kohlhammer
  fullname: Kohlhammer, Jörn
  organization: Fraunhofer IGD, Germany
BookMark eNp1kF0vBDEUhhshsT4u_INJ3HAxtNOv6aUsdskGsYvLpsaplJkp7WzYf69jcSH0pj3p87zJeTfQautbQGiH4AOSzmH1aA9IQZVYQQPChMxLwdUqGmCS3hJzvo42YnzCGDMp-ADNbl2cmzo7ak29iC5m3mYz10A-heAgZlPXuNoE1_WD9SGBvklodgwdVJ3zbebabAptTH8X0L358By30Jo1dYTtr3sT3ZyezIbjfHI5OhseTfKKUSZyqagk5T1wosQD4VxYKKhhBQgpqVKAJblnxBrLsCAKSwYgDH7ghbDGWFHSTbS3zH0J_nUOsdONixXUtWnBz6NOmUqUWCma0N1f6JOfh7R0TzHe10Nwog6XVBV8jAGsrlxn-i27YFytCdZ9yzq1rD9bTsb-L-MluMaExZ_sV_qbq2HxP6iHo9NvI18aLnbw_mOY8KyFpJLru4uRLkbj63OMS31FPwBgZptK
CitedBy_id crossref_primary_10_1007_s11227_020_03580_9
crossref_primary_10_1007_s41095_020_0191_7
crossref_primary_10_1002_cpe_5861
crossref_primary_10_1109_ACCESS_2019_2926518
crossref_primary_10_1111_cgf_12906
crossref_primary_10_1007_s12193_017_0251_1
crossref_primary_10_1111_cgf_13264
crossref_primary_10_1109_TVCG_2024_3382760
crossref_primary_10_1155_2020_9084704
crossref_primary_10_1007_s10115_023_01835_4
crossref_primary_10_1109_TSC_2018_2824809
crossref_primary_10_1109_TVCG_2024_3495695
crossref_primary_10_1111_cgf_12640
crossref_primary_10_1109_TVCG_2020_3028956
crossref_primary_10_1080_13658816_2019_1594823
crossref_primary_10_1109_MCG_2023_3308962
crossref_primary_10_3390_electronics10233001
crossref_primary_10_1109_ACCESS_2020_3010693
crossref_primary_10_1109_TVCG_2018_2846735
crossref_primary_10_1016_j_cag_2017_08_006
crossref_primary_10_1109_TVCG_2015_2468078
crossref_primary_10_34133_research_0011
crossref_primary_10_1016_j_cag_2021_08_003
crossref_primary_10_1016_j_compbiomed_2024_109105
crossref_primary_10_3390_w14152342
crossref_primary_10_1007_s12650_024_00993_z
crossref_primary_10_1109_TVCG_2023_3326515
crossref_primary_10_1109_TVCG_2018_2865051
crossref_primary_10_1111_cgf_13711
crossref_primary_10_3390_s17040787
crossref_primary_10_1117_1_JBO_25_9_096006
crossref_primary_10_1109_TVCG_2021_3114878
crossref_primary_10_1109_TVCG_2019_2934655
crossref_primary_10_1109_ACCESS_2019_2958551
crossref_primary_10_1109_TVCG_2017_2746080
crossref_primary_10_1109_TVCG_2019_2934433
crossref_primary_10_1007_s10207_023_00720_z
crossref_primary_10_1109_TVCG_2016_2598592
crossref_primary_10_1016_j_eswa_2023_120252
crossref_primary_10_1049_cim2_12024
Cites_doi 10.1080/13658816.2010.508043
10.1109/TVCG.2008.197
10.1016/j.cag.2013.10.006
10.1007/BF02289565
10.1057/PALGRAVE.IVS.9500184
10.1145/2232817.2232844
10.1111/j.1467-8659.2011.01938.x
10.1111/j.1467-8659.2009.01467.x
10.1109/TVCG.2013.222
10.1109/VAST.2011.6102458
10.1109/IJCNN.2010.5596721
10.1109/TVCG.2013.178
10.1007/11618058_29
10.1117/12.697879
10.1109/TVCG.2009.122
10.3233/IDA-2007-11508
10.1145/2517957.2517966
10.1109/2945.841121
10.1007/BF02288916
10.1109/INFVIS.2005.1532151
10.14778/1454159.1454226
10.1109/TVCG.2011.220
10.1109/IV.2007.124
10.1016/j.engappai.2010.09.007
10.1007/978-0-85729-079-3
10.1007/978-3-642-00219-9_21
10.1111/j.1467-8659.2011.01919.x
10.1109/TVCG.2013.198
ContentType Journal Article
Copyright 2014 The Author(s) Computer Graphics Forum © 2014 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.
2014 The Eurographics Association and John Wiley & Sons Ltd.
Copyright_xml – notice: 2014 The Author(s) Computer Graphics Forum © 2014 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.
– notice: 2014 The Eurographics Association and John Wiley & Sons Ltd.
DBID BSCLL
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
F28
FR3
DOI 10.1111/cgf.12396
DatabaseName Istex
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Computer and Information Systems Abstracts
CrossRef
Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1467-8659
EndPage 410
ExternalDocumentID 3372545551
10_1111_cgf_12396
CGF12396
ark_67375_WNG_2GHRJ008_P
Genre article
Feature
GroupedDBID .3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
15B
1OB
1OC
29F
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8VB
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABDPE
ABEML
ABPVW
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFS
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AEMOZ
AENEX
AEUYR
AEYWJ
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHEFC
AHQJS
AIDQK
AIDYY
AIQQE
AITYG
AIURR
AJXKR
AKVCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CAG
COF
CS3
CWDTD
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EAD
EAP
EBA
EBO
EBR
EBS
EBU
EDO
EJD
EMK
EST
ESX
F00
F01
F04
F5P
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
I-F
IHE
IX1
J0M
K1G
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QWB
R.K
RDJ
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TH9
TN5
TUS
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WXSBR
WYISQ
WZISG
XG1
ZL0
ZZTAW
~IA
~IF
~WT
AAHHS
ACCFJ
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
WRC
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
F28
FR3
ID FETCH-LOGICAL-c4346-793718be5196d1556fe23a42e677399e071b41faf40619074ee6a0d526faaf683
IEDL.DBID DR2
ISSN 0167-7055
IngestDate Thu Oct 02 05:43:22 EDT 2025
Fri Jul 25 07:55:35 EDT 2025
Thu Apr 24 22:56:16 EDT 2025
Wed Oct 01 03:05:01 EDT 2025
Wed Jan 22 16:24:44 EST 2025
Sun Sep 21 06:23:51 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4346-793718be5196d1556fe23a42e677399e071b41faf40619074ee6a0d526faaf683
Notes ark:/67375/WNG-2GHRJ008-P
Supporting Information
istex:810D01C7895CF2F9355F5FB8BBDE2E47E0034647
ArticleID:CGF12396
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
PQID 1545016710
PQPubID 30877
PageCount 10
ParticipantIDs proquest_miscellaneous_1559680993
proquest_journals_1545016710
crossref_citationtrail_10_1111_cgf_12396
crossref_primary_10_1111_cgf_12396
wiley_primary_10_1111_cgf_12396_CGF12396
istex_primary_ark_67375_WNG_2GHRJ008_P
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2014
PublicationDateYYYYMMDD 2014-06-01
PublicationDate_xml – month: 06
  year: 2014
  text: June 2014
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Computer graphics forum
PublicationTitleAlternate Computer Graphics Forum
PublicationYear 2014
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References Bernard J., Wilhelm N., Krüger B., May T., Schreck T., Kohlhammer J.: MotionExplorer: Exploratory Search in Human Motion Capture Data Based on Hierarchical Aggregation. IEEE Transactions on Visualization and Computer Graphics 19, 12 (2013), 2257-2266. 4
Collins C., Penn G., Carpendale S.: Bubble sets: Revealing set relations with isocontours over existing visualizations. Visualization and Computer Graphics, IEEE Transactions on 15, 6 (2009), 1009-1016. 9
Zhao J., Forer P., Harvey A.S.: Activities, ringmaps and geovisualization of large human movement fields. Information Visualization 7, 3-4 (2008), 198-209. 3
Keim D.: Designing pixel-oriented visualization techniques: Theory and applications. IEEE Transactions on Visualization and Computer Graphics 6, 1 (2000). 6
Kruskal J.: Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika 29, 1 (1964), 1-27. doi:10.1007/BF02289565. 3
Hadlak S., Schumann H., Cap C.H., Wollenberg T.: Supporting the Visual Analysis of Dynamic Networks by Clustering associated Temporal Attributes. Visualization and Computer Graphics, IEEE Transactions on 19, 12 (2013), 2267-2276. doi:10.1109/TVCG.2013.198. 3, 4
Bögl M., Aigner W., Filzmoser P., Lammarsch T., Miksch S., Rind A.: Visual Analytics for Model Selection in Time Series Analysis. IEEE Trans. Vis. Comput. Graph. 19, 12 (2013), 2237-2246. 3
Fu T.-C.: A Review on Time Series Data Mining. Eng. Appl. Artif. Intell. 24, 1 (Feb. 2011), 164-181. doi:10.1016/j.engappai.2010.09.007. 3
Janetzko H., Stoffel F., Mittelstädt S., Keim D.A.: Anomaly Detection for Visual Analytics of Power Consumption Data. Computer & Graphics 38 (2014), 27-37. 3
Aigner W., Miksch S., Schumann H., Tominski C.: Visualization of Time-Oriented Data. Springer, London, UK, 2011. doi:10.1007/978-0-85729-079-3. 3
Salvador S., Chan P.: Toward accurate dynamic time warping in linear time and space. Intelligent Data Analysis 11, 5 (2007), 561-580. 4
Bernard J., Wilhelm N., Scherer M., May T., Schreck T.: TimeSeriesPaths: Projection-Based Explorative Analysis of Multivarate Time Series Data. Journal of WSCG 20, 2 (2012), 97-106. 3
Ding H., Trajcevski G., Scheuermann P., Wang X., Keogh E.: Querying and Mining of Time Series Data: Experimental Comparison of Representations and Distance Measures. Proc. VLDB Endow. 1, 2 (Aug. 2008), 1542-1552. 3
Sips M., Neubert B., Lewis J.P., Hanrahan P.: Selecting good views of high-dimensional data using class consistency. Computer Graphics Forum 28, 3 (2009), 831-838. doi:10.1111/j.1467-8659.2009.01467.x. 3, 4
Wong P.C., Schneider K., Mackey P., Foote H., Chin G., Guttromson R., Thomas J.: A Novel Visualization Technique for Electric Power Grid Analytics. IEEE Transactions on Visualization and Computer Graphics 15, 3 (2009), 410-423. doi:10.1109/TVCG.2008.197. 3
Andrienko G., Andrienko N., Demsar U., Dransch D., Dykes J., Fabrikant S.I., Jern M., Kraak M.-J., Schumann H., Tominski C.: Space, Time and Visual Analytics. Int. J. Geogr. Inf. Sci. 24, 10 (Oct. 2010), 1577-1600. doi:10.1080/13658816.2010.508043. 3
Jain A.K., Dubes R.C.: Algorithms for clustering data. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1988. 5
Joia P., Paulovich F.V., Coimbra D., Cuminato J.A., Nonato L.G.: Local affine multidimensional projection. IEEE Transactions on Visualization and Computer Graphics 17, 12 (2011), 2563-2571. 3, 4
Schreck T., Panse C.: A new metaphor for projection-based visual analysis and data exploration. Proc. SPIE 6495 (2007). doi:10.1117/12.697879. 7, 9
Bertini E., Tatu A., Keim D.A.: Quality Metrics in High-Dimensional Data Visualization: An Overview and Systematization. IEEE Symposium on Information Visualization (InfoVis) 17, 12 (Dec. 2011), pages 2203-2212. 3
Berndt D.J., Clifford J.: Using Dynamic Time Warping to Find Patterns in Time Series. In KDD workshop (1994), vol. 10/16, Seattle, WA, pp. 359-370. 4
Torgerson W.S.: Multidimensional scaling: I. Theory and Method. Psychometrika 17, 4 (1952), 401-419. doi:10.1007/BF02288916. 3
1994; 10/16
2007; 6495
2011; 30/3
2012
2000; 6
1964; 29
2011
2010
2009
2008
2008; 7
2007
2006; 3843
2005
2002
2011; 17
2008; 1
1952; 17
2007; 11
2009; 28
1999
2013; 19
2009; 5417
2010; 24
2014; 38
2011; 24
2013
2012; 20
2009; 15
1988
e_1_2_9_30_2
e_1_2_9_10_2
e_1_2_9_12_2
e_1_2_9_31_2
e_1_2_9_11_2
e_1_2_9_32_2
Jain A.K. (e_1_2_9_19_2) 1988
e_1_2_9_14_2
e_1_2_9_37_2
e_1_2_9_38_2
e_1_2_9_16_2
e_1_2_9_35_2
e_1_2_9_15_2
e_1_2_9_36_2
e_1_2_9_18_2
e_1_2_9_17_2
Tominski C. (e_1_2_9_33_2) 2008
e_1_2_9_21_2
e_1_2_9_20_2
e_1_2_9_23_2
Berndt D.J. (e_1_2_9_5_2) 1994; 10
e_1_2_9_22_2
e_1_2_9_7_2
Bertini E. (e_1_2_9_9_2) 2011; 17
Bernard J. (e_1_2_9_13_2) 2012; 20
e_1_2_9_6_2
e_1_2_9_4_2
e_1_2_9_3_2
e_1_2_9_2_2
e_1_2_9_8_2
e_1_2_9_25_2
e_1_2_9_24_2
Van Wijk J.J. (e_1_2_9_34_2) 1999
e_1_2_9_27_2
e_1_2_9_26_2
e_1_2_9_29_2
e_1_2_9_28_2
References_xml – reference: Wong P.C., Schneider K., Mackey P., Foote H., Chin G., Guttromson R., Thomas J.: A Novel Visualization Technique for Electric Power Grid Analytics. IEEE Transactions on Visualization and Computer Graphics 15, 3 (2009), 410-423. doi:10.1109/TVCG.2008.197. 3
– reference: Salvador S., Chan P.: Toward accurate dynamic time warping in linear time and space. Intelligent Data Analysis 11, 5 (2007), 561-580. 4
– reference: Hadlak S., Schumann H., Cap C.H., Wollenberg T.: Supporting the Visual Analysis of Dynamic Networks by Clustering associated Temporal Attributes. Visualization and Computer Graphics, IEEE Transactions on 19, 12 (2013), 2267-2276. doi:10.1109/TVCG.2013.198. 3, 4
– reference: Sips M., Neubert B., Lewis J.P., Hanrahan P.: Selecting good views of high-dimensional data using class consistency. Computer Graphics Forum 28, 3 (2009), 831-838. doi:10.1111/j.1467-8659.2009.01467.x. 3, 4
– reference: Bernard J., Wilhelm N., Krüger B., May T., Schreck T., Kohlhammer J.: MotionExplorer: Exploratory Search in Human Motion Capture Data Based on Hierarchical Aggregation. IEEE Transactions on Visualization and Computer Graphics 19, 12 (2013), 2257-2266. 4
– reference: Fu T.-C.: A Review on Time Series Data Mining. Eng. Appl. Artif. Intell. 24, 1 (Feb. 2011), 164-181. doi:10.1016/j.engappai.2010.09.007. 3
– reference: Bögl M., Aigner W., Filzmoser P., Lammarsch T., Miksch S., Rind A.: Visual Analytics for Model Selection in Time Series Analysis. IEEE Trans. Vis. Comput. Graph. 19, 12 (2013), 2237-2246. 3
– reference: Janetzko H., Stoffel F., Mittelstädt S., Keim D.A.: Anomaly Detection for Visual Analytics of Power Consumption Data. Computer & Graphics 38 (2014), 27-37. 3
– reference: Aigner W., Miksch S., Schumann H., Tominski C.: Visualization of Time-Oriented Data. Springer, London, UK, 2011. doi:10.1007/978-0-85729-079-3. 3
– reference: Kruskal J.: Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika 29, 1 (1964), 1-27. doi:10.1007/BF02289565. 3
– reference: Torgerson W.S.: Multidimensional scaling: I. Theory and Method. Psychometrika 17, 4 (1952), 401-419. doi:10.1007/BF02288916. 3
– reference: Collins C., Penn G., Carpendale S.: Bubble sets: Revealing set relations with isocontours over existing visualizations. Visualization and Computer Graphics, IEEE Transactions on 15, 6 (2009), 1009-1016. 9
– reference: Keim D.: Designing pixel-oriented visualization techniques: Theory and applications. IEEE Transactions on Visualization and Computer Graphics 6, 1 (2000). 6
– reference: Andrienko G., Andrienko N., Demsar U., Dransch D., Dykes J., Fabrikant S.I., Jern M., Kraak M.-J., Schumann H., Tominski C.: Space, Time and Visual Analytics. Int. J. Geogr. Inf. Sci. 24, 10 (Oct. 2010), 1577-1600. doi:10.1080/13658816.2010.508043. 3
– reference: Jain A.K., Dubes R.C.: Algorithms for clustering data. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1988. 5
– reference: Joia P., Paulovich F.V., Coimbra D., Cuminato J.A., Nonato L.G.: Local affine multidimensional projection. IEEE Transactions on Visualization and Computer Graphics 17, 12 (2011), 2563-2571. 3, 4
– reference: Berndt D.J., Clifford J.: Using Dynamic Time Warping to Find Patterns in Time Series. In KDD workshop (1994), vol. 10/16, Seattle, WA, pp. 359-370. 4
– reference: Bertini E., Tatu A., Keim D.A.: Quality Metrics in High-Dimensional Data Visualization: An Overview and Systematization. IEEE Symposium on Information Visualization (InfoVis) 17, 12 (Dec. 2011), pages 2203-2212. 3
– reference: Bernard J., Wilhelm N., Scherer M., May T., Schreck T.: TimeSeriesPaths: Projection-Based Explorative Analysis of Multivarate Time Series Data. Journal of WSCG 20, 2 (2012), 97-106. 3
– reference: Zhao J., Forer P., Harvey A.S.: Activities, ringmaps and geovisualization of large human movement fields. Information Visualization 7, 3-4 (2008), 198-209. 3
– reference: Ding H., Trajcevski G., Scheuermann P., Wang X., Keogh E.: Querying and Mining of Time Series Data: Experimental Comparison of Representations and Distance Measures. Proc. VLDB Endow. 1, 2 (Aug. 2008), 1542-1552. 3
– reference: Schreck T., Panse C.: A new metaphor for projection-based visual analysis and data exploration. Proc. SPIE 6495 (2007). doi:10.1117/12.697879. 7, 9
– year: 2011
– start-page: 833
  year: 2002
  end-page: 840
– volume: 6495
  year: 2007
  article-title: A new metaphor for projection‐based visual analysis and data exploration
  publication-title: Proc. SPIE
– start-page: 4
  year: 1999
  end-page: 9
– year: 2009
– start-page: 308
  year: 2007
  end-page: 315
– volume: 15
  start-page: 1009
  issue: 6
  year: 2009
  end-page: 1016
  article-title: Bubble sets: Revealing set relations with isocontours over existing visualizations
  publication-title: Visualization and Computer Graphics, IEEE Transactions on
– volume: 19
  start-page: 2257
  issue: 12
  year: 2013
  end-page: 2266
  article-title: MotionExplorer: Exploratory Search in Human Motion Capture Data Based on Hierarchical Aggregation
  publication-title: IEEE Transactions on Visualization and Computer Graphics
– volume: 17
  start-page: 2203
  issue: 12
  year: 2011
  end-page: 2212
  article-title: Quality Metrics in High‐Dimensional Data Visualization: An Overview and Systematization
  publication-title: IEEE Symposium on Information Visualization (InfoVis)
– volume: 11
  start-page: 561
  issue: 5
  year: 2007
  end-page: 580
  article-title: Toward accurate dynamic time warping in linear time and space
  publication-title: Intelligent Data Analysis
– volume: 6
  issue: 1
  year: 2000
  article-title: Designing pixel‐oriented visualization techniques: Theory and applications
  publication-title: IEEE Transactions on Visualization and Computer Graphics
– volume: 24
  start-page: 1577
  issue: 10
  year: 2010
  end-page: 1600
  article-title: Space, Time and Visual Analytics
  publication-title: Int. J. Geogr. Inf. Sci.
– volume: 1
  start-page: 1542
  issue: 2
  year: 2008
  end-page: 1552
  article-title: Querying and Mining of Time Series Data: Experimental Comparison of Representations and Distance Measures
  publication-title: Proc. VLDB Endow.
– start-page: 53
  year: 2008
  end-page: 56
– volume: 30/3
  start-page: 891
  year: 2011
  end-page: 900
– volume: 17
  start-page: 401
  issue: 4
  year: 1952
  end-page: 419
  article-title: Multidimensional scaling: I. Theory and Method
  publication-title: Psychometrika
– volume: 20
  start-page: 97
  issue: 2
  year: 2012
  end-page: 106
  article-title: TimeSeriesPaths: Projection‐Based Explorative Analysis of Multivarate Time Series Data
  publication-title: Journal of WSCG
– start-page: 701
  year: 2011
  end-page: 710
– start-page: 225
  year: 2005
  end-page: 232
– volume: 5417
  start-page: 218
  year: 2009
  end-page: 229
– volume: 24
  start-page: 164
  issue: 1
  year: 2011
  end-page: 181
  article-title: A Review on Time Series Data Mining
  publication-title: Eng. Appl. Artif. Intell.
– volume: 29
  start-page: 1
  issue: 1
  year: 1964
  end-page: 27
  article-title: Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis
  publication-title: Psychometrika
– start-page: 1
  year: 2010
  end-page: 8
– volume: 19
  start-page: 2237
  issue: 12
  year: 2013
  end-page: 2246
  article-title: Visual Analytics for Model Selection in Time Series Analysis
  publication-title: IEEE Trans. Vis. Comput. Graph.
– volume: 28
  start-page: 831
  issue: 3
  year: 2009
  end-page: 838
  article-title: Selecting good views of high‐dimensional data using class consistency
  publication-title: Computer Graphics Forum
– volume: 10/16
  start-page: 359
  year: 1994
  end-page: 370
  article-title: Using Dynamic Time Warping to Find Patterns in Time Series
  publication-title: KDD workshop
– volume: 3843
  start-page: 321
  year: 2006
  end-page: 333
– volume: 38
  start-page: 27
  year: 2014
  end-page: 37
  article-title: Anomaly Detection for Visual Analytics of Power Consumption Data
  publication-title: Computer & Graphics
– volume: 19
  start-page: 2267
  issue: 12
  year: 2013
  end-page: 2276
  article-title: Supporting the Visual Analysis of Dynamic Networks by Clustering associated Temporal Attributes
  publication-title: Visualization and Computer Graphics, IEEE Transactions on
– start-page: 39
  year: 2012
  end-page: 48
– year: 1988
– start-page: 201
  year: 2011
  end-page: 210
– volume: 7
  start-page: 198
  issue: 3–4
  year: 2008
  end-page: 209
  article-title: Activities, ringmaps and geovisualization of large human movement fields
  publication-title: Information Visualization
– volume: 17
  start-page: 2563
  issue: 12
  year: 2011
  end-page: 2571
  article-title: Local affine multidimensional projection
  publication-title: IEEE Transactions on Visualization and Computer Graphics
– volume: 15
  start-page: 410
  issue: 3
  year: 2009
  end-page: 423
  article-title: A Novel Visualization Technique for Electric Power Grid Analytics
  publication-title: IEEE Transactions on Visualization and Computer Graphics
– start-page: 139
  year: 2012
  end-page: 148
– start-page: 65
  year: 2013
  end-page: 72
– ident: e_1_2_9_2_2
  doi: 10.1080/13658816.2010.508043
– ident: e_1_2_9_36_2
  doi: 10.1109/TVCG.2008.197
– volume: 10
  start-page: 359
  year: 1994
  ident: e_1_2_9_5_2
  article-title: Using Dynamic Time Warping to Find Patterns in Time Series
  publication-title: KDD workshop
– volume: 17
  start-page: 2203
  issue: 12
  year: 2011
  ident: e_1_2_9_9_2
  article-title: Quality Metrics in High‐Dimensional Data Visualization: An Overview and Systematization
  publication-title: IEEE Symposium on Information Visualization (InfoVis)
– ident: e_1_2_9_21_2
  doi: 10.1016/j.cag.2013.10.006
– ident: e_1_2_9_23_2
  doi: 10.1007/BF02289565
– ident: e_1_2_9_37_2
  doi: 10.1057/PALGRAVE.IVS.9500184
– ident: e_1_2_9_10_2
– ident: e_1_2_9_8_2
  doi: 10.1145/2232817.2232844
– ident: e_1_2_9_11_2
  doi: 10.1111/j.1467-8659.2011.01938.x
– ident: e_1_2_9_30_2
  doi: 10.1111/j.1467-8659.2009.01467.x
– ident: e_1_2_9_4_2
  doi: 10.1109/TVCG.2013.222
– start-page: 53
  volume-title: Proceedings of the Annual SIGRAD Conference, Special Theme: Interactivity
  year: 2008
  ident: e_1_2_9_33_2
– ident: e_1_2_9_28_2
  doi: 10.1109/VAST.2011.6102458
– ident: e_1_2_9_24_2
  doi: 10.1109/IJCNN.2010.5596721
– ident: e_1_2_9_12_2
  doi: 10.1109/TVCG.2013.178
– ident: e_1_2_9_25_2
  doi: 10.1007/11618058_29
– ident: e_1_2_9_31_2
  doi: 10.1117/12.697879
– ident: e_1_2_9_14_2
  doi: 10.1109/TVCG.2009.122
– ident: e_1_2_9_26_2
  doi: 10.3233/IDA-2007-11508
– start-page: 4
  volume-title: Proceedings of the Symposium on Information Visualization
  year: 1999
  ident: e_1_2_9_34_2
– ident: e_1_2_9_27_2
  doi: 10.1145/2517957.2517966
– ident: e_1_2_9_22_2
  doi: 10.1109/2945.841121
– ident: e_1_2_9_32_2
  doi: 10.1007/BF02288916
– ident: e_1_2_9_29_2
  doi: 10.1109/INFVIS.2005.1532151
– ident: e_1_2_9_17_2
– ident: e_1_2_9_15_2
  doi: 10.14778/1454159.1454226
– ident: e_1_2_9_20_2
  doi: 10.1109/TVCG.2011.220
– ident: e_1_2_9_38_2
  doi: 10.1109/IV.2007.124
– ident: e_1_2_9_16_2
  doi: 10.1016/j.engappai.2010.09.007
– ident: e_1_2_9_3_2
  doi: 10.1007/978-0-85729-079-3
– ident: e_1_2_9_7_2
– volume-title: Algorithms for clustering data
  year: 1988
  ident: e_1_2_9_19_2
– ident: e_1_2_9_6_2
  doi: 10.1007/978-3-642-00219-9_21
– volume: 20
  start-page: 97
  issue: 2
  year: 2012
  ident: e_1_2_9_13_2
  article-title: TimeSeriesPaths: Projection‐Based Explorative Analysis of Multivarate Time Series Data
  publication-title: Journal of WSCG
– ident: e_1_2_9_35_2
  doi: 10.1111/j.1467-8659.2011.01919.x
– ident: e_1_2_9_18_2
  doi: 10.1109/TVCG.2013.198
SSID ssj0004765
Score 2.3707178
Snippet We present a system to analyze time‐series data in sensor networks. Our approach supports exploratory tasks for the comparison of univariate, geo‐referenced...
We present a system to analyze time-series data in sensor networks. Our approach supports exploratory tasks for the comparison of univariate, geo-referenced...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 401
SubjectTerms Analysis
Anomalies
C.2.3 [Computer-Communication Networks]: Network Operations-Network monitoring
Categories and Subject Descriptors (according to ACM CCS)
Data visualization
H.5.2 [Information Interfaces and Presentation]: User Interfaces-User-centered design
I.3.6 [Computer Graphics]: Methodology and Techniques-Interaction techniques
Information processing
Networks
Recording
Sensors
Studies
Tasks
Temporal logic
Time series
Visual
Visualization
Wireless networks
Title Visual Analysis of Time-Series Similarities for Anomaly Detection in Sensor Networks
URI https://api.istex.fr/ark:/67375/WNG-2GHRJ008-P/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcgf.12396
https://www.proquest.com/docview/1545016710
https://www.proquest.com/docview/1559680993
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1467-8659
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0004765
  issn: 0167-7055
  databaseCode: ABDBF
  dateStart: 19980301
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1467-8659
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0004765
  issn: 0167-7055
  databaseCode: ADMLS
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0167-7055
  databaseCode: DR2
  dateStart: 19970101
  customDbUrl:
  isFulltext: true
  eissn: 1467-8659
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004765
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS-RAEC5EL-7B1-7i-KJdFtlLhknS6Uzw5GtmEHYQXV0PQuh0umVQM2JmQDz5E_yN_hKrOg_HxQXxFugvodPVlf6qU_U1wE_JWzISrnISjD4crpTrSGQGTojrudTGkxGnQuHffdE75YfnwfkUbFe1MIU-RL3hRp5hv9fk4DLJJ5xcXZomfnYjktt2fWHDqeNX6SgeiqDS9SbFmFJViLJ46jvfrEUzNKz3b4jmJF21601nHi6qnhZpJlfN8Shpqod_RBw_-SoLMFfyULZTTJxFmNLZEnyZUCf8Cmdng3xMmFK3hA0No4qR58cn2lPTOTsZ3AwwMrairAzZL0KHNwhm-3pkU7wyNsjYCUbK2NYvEs7zb3DaOfiz13PKYxgcxX0uHFLQc9uJRq4nUqQfwmjPl9zTIgyR3mgkKQl3jTTEDSjW1lrIVhp4wkhpRNv_DtPZMNPLwKyaT0sRZ8JVMRVRalIlPJcKv_ChbgN-VQaJValRTkdlXMdVrIJDFduhasCPGnpbCHO8B9qyVq0R8u6KMtnCIP7b78Zet3d8SMdwHjVgrTJ7XDpxHhO7pPnjthqwWTej-9E_FZnp4ZgwQSTaSLN97Lu18f97E-91O_Zi5ePQVZhFisaL5LQ1mB7djfU60qBRsgEzO7v7u50NO-9fAHVNAmw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bT9swFD7i8gB72MYA0Q2GmaaJl1RN6jiNtJcJ1pZbhbj2BVmOY08VI51oK0172k_Yb9wv2TnOZQWBhHiL5C-R4-MTf8c55zPAR8UbKha-9hKMPjyute8pZAZehOu5MjZQMadC4aOe6J7z_X7Yn4HPZS1Mrg9RbbiRZ7jvNTk4bUhPebn-Zuv43Y3FLMxzgXEKUaKT_-JRPBJhqexNmjGFrhDl8VS33lmN5mlgf96hmtOE1a047VdwVfY1TzS5rk_GSV3_uifj-NyXeQ0vCyrKvuRzZwlmTPYGXkwJFC7DxcVgNCFMIV3ChpZR0cjf339oW82M2OngZoDBsdNlZUiAETq8QTDbNWOX5ZWxQcZOMVjGtl6ecz5agfP217OdrlecxOBp3uTCIxE9v5UYpHsiRQYirAmaigdGRBEyHIM8JeG-VZboAYXbxgjVSMNAWKWsaDVXYS4bZmYNmBP0aWiiTbgwpiJObapF4FPtFz7Ur8F2aRGpC5lyOi3juyzDFRwq6YaqBh8q6I9cm-Mh0Cdn1gqhbq8pmS0K5WWvI4NO92SfTuI8rsF6aXdZ-PFIEsGkCeQ3arBVNaMH0m8VlZnhhDBhLFrItJvYd2fkx3sjdzptd_H26dBNWOieHR3Kw73ewTtYRMbG81y1dZgb307MBrKicfLeTf5_hL4FGw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bT9swFD7iIiH2wGAwrcCGmRDaS6omdZxG2stE13awVYjbeEGW49hTBaSIttK0p_2E_cb9kp3jXCiISYi3SP4SOT4-8Xeccz4D7CjeULHwtZdg9OFxrX1PITPwIlzPlbGBijkVCn_ri94p3z8Pz2fgY1kLk-tDVBtu5Bnue00Obm5SO-Xl-oet43c3FrMwz8O4RQl97aM78SgeibBU9ibNmEJXiPJ4qlvvrUbzNLA_71HNacLqVpzOS7go-5onmlzWJ-Okrn89kHF87sssw1JBRdmnfO6swIzJXsGLKYHCVTg7G4wmhCmkS9jQMioa-fv7D22rmRE7HlwPMDh2uqwMCTBCh9cIZm0zdlleGRtk7BiDZWzr5znnozU47Xw-2et5xUkMnuZNLjwS0fNbiUG6J1JkIMKaoKl4YEQUIcMxyFMS7ltliR5QuG2MUI00DIRVyopW8zXMZcPMvAHmBH0ammgTLoypiFObahH4VPuFD_Vr8KG0iNSFTDmdlnEly3AFh0q6oarB-wp6k2tzPAbadWatEOr2kpLZolB-73dl0O0d7dNJnIc12CztLgs_HkkimDSB_EYNtqtm9ED6raIyM5wQJoxFC5l2E_vujPz_3si9bsddrD8dugULh-2O_Pqlf7ABi0jYeJ6qtglz49uJeYukaJy8c3P_HyU7BJ8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Visual+Analysis+of+Time-Series+Similarities+for+Anomaly+Detection+in+Sensor+Networks&rft.jtitle=Computer+graphics+forum&rft.au=Steiger%2C+Martin&rft.au=Bernard%2C+Juergen&rft.au=Mittelstaedt%2C+Sebastian&rft.au=Luecke-Tieke%2C+Hendrik&rft.date=2014-06-01&rft.issn=0167-7055&rft.eissn=1467-8659&rft.volume=33&rft.issue=3&rft.spage=401&rft.epage=410&rft_id=info:doi/10.1111%2Fcgf.12396&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-7055&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-7055&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-7055&client=summon