Visual Analysis of Time-Series Similarities for Anomaly Detection in Sensor Networks
We present a system to analyze time‐series data in sensor networks. Our approach supports exploratory tasks for the comparison of univariate, geo‐referenced sensor data, in particular for anomaly detection. We split the recordings into fixed‐length patterns and show them in order to compare them ove...
        Saved in:
      
    
          | Published in | Computer graphics forum Vol. 33; no. 3; pp. 401 - 410 | 
|---|---|
| Main Authors | , , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Oxford
          Blackwell Publishing Ltd
    
        01.06.2014
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0167-7055 1467-8659  | 
| DOI | 10.1111/cgf.12396 | 
Cover
| Abstract | We present a system to analyze time‐series data in sensor networks. Our approach supports exploratory tasks for the comparison of univariate, geo‐referenced sensor data, in particular for anomaly detection. We split the recordings into fixed‐length patterns and show them in order to compare them over time and space using two linked views. Apart from geo‐based comparison across sensors we also support different temporal patterns to discover seasonal effects, anomalies and periodicities.
The methods we use are best practices in the information visualization domain. They cover the daily, the weekly and seasonal and patterns of the data. Daily patterns can be analyzed in a clustering‐based view, weekly patterns in a calendar‐based view and seasonal patters in a projection‐based view. The connectivity of the sensors can be analyzed through a dedicated topological network view. We assist the domain expert with interaction techniques to make the results understandable. As a result, the user can identify and analyze erroneous and suspicious measurements in the network. A case study with a domain expert verified the usefulness of our approach. | 
    
|---|---|
| AbstractList | We present a system to analyze time-series data in sensor networks. Our approach supports exploratory tasks for the comparison of univariate, geo-referenced sensor data, in particular for anomaly detection. We split the recordings into fixed-length patterns and show them in order to compare them over time and space using two linked views. Apart from geo-based comparison across sensors we also support different temporal patterns to discover seasonal effects, anomalies and periodicities. The methods we use are best practices in the information visualization domain. They cover the daily, the weekly and seasonal and patterns of the data. Daily patterns can be analyzed in a clustering-based view, weekly patterns in a calendar-based view and seasonal patters in a projection-based view. The connectivity of the sensors can be analyzed through a dedicated topological network view. We assist the domain expert with interaction techniques to make the results understandable. As a result, the user can identify and analyze erroneous and suspicious measurements in the network. A case study with a domain expert verified the usefulness of our approach. [PUBLICATION ABSTRACT] We present a system to analyze time‐series data in sensor networks. Our approach supports exploratory tasks for the comparison of univariate, geo‐referenced sensor data, in particular for anomaly detection. We split the recordings into fixed‐length patterns and show them in order to compare them over time and space using two linked views. Apart from geo‐based comparison across sensors we also support different temporal patterns to discover seasonal effects, anomalies and periodicities. The methods we use are best practices in the information visualization domain. They cover the daily, the weekly and seasonal and patterns of the data. Daily patterns can be analyzed in a clustering‐based view, weekly patterns in a calendar‐based view and seasonal patters in a projection‐based view. The connectivity of the sensors can be analyzed through a dedicated topological network view. We assist the domain expert with interaction techniques to make the results understandable. As a result, the user can identify and analyze erroneous and suspicious measurements in the network. A case study with a domain expert verified the usefulness of our approach. We present a system to analyze time-series data in sensor networks. Our approach supports exploratory tasks for the comparison of univariate, geo-referenced sensor data, in particular for anomaly detection. We split the recordings into fixed-length patterns and show them in order to compare them over time and space using two linked views. Apart from geo-based comparison across sensors we also support different temporal patterns to discover seasonal effects, anomalies and periodicities. The methods we use are best practices in the information visualization domain. They cover the daily, the weekly and seasonal and patterns of the data. Daily patterns can be analyzed in a clustering-based view, weekly patterns in a calendar-based view and seasonal patters in a projection-based view. The connectivity of the sensors can be analyzed through a dedicated topological network view. We assist the domain expert with interaction techniques to make the results understandable. As a result, the user can identify and analyze erroneous and suspicious measurements in the network. A case study with a domain expert verified the usefulness of our approach.  | 
    
| Author | Bernard, Jürgen Lücke-Tieke, Hendrik May, Thorsten Mittelstädt, Sebastian Keim, Daniel Steiger, Martin Kohlhammer, Jörn  | 
    
| Author_xml | – sequence: 1 givenname: Martin surname: Steiger fullname: Steiger, Martin organization: Fraunhofer IGD, Germany – sequence: 2 givenname: Jürgen surname: Bernard fullname: Bernard, Jürgen organization: Fraunhofer IGD, Germany – sequence: 3 givenname: Sebastian surname: Mittelstädt fullname: Mittelstädt, Sebastian organization: University of Konstanz, Germany – sequence: 4 givenname: Hendrik surname: Lücke-Tieke fullname: Lücke-Tieke, Hendrik organization: Fraunhofer IGD, Germany – sequence: 5 givenname: Daniel surname: Keim fullname: Keim, Daniel organization: University of Konstanz, Germany – sequence: 6 givenname: Thorsten surname: May fullname: May, Thorsten organization: Fraunhofer IGD, Germany – sequence: 7 givenname: Jörn surname: Kohlhammer fullname: Kohlhammer, Jörn organization: Fraunhofer IGD, Germany  | 
    
| BookMark | eNp1kF0vBDEUhhshsT4u_INJ3HAxtNOv6aUsdskGsYvLpsaplJkp7WzYf69jcSH0pj3p87zJeTfQautbQGiH4AOSzmH1aA9IQZVYQQPChMxLwdUqGmCS3hJzvo42YnzCGDMp-ADNbl2cmzo7ak29iC5m3mYz10A-heAgZlPXuNoE1_WD9SGBvklodgwdVJ3zbebabAptTH8X0L358By30Jo1dYTtr3sT3ZyezIbjfHI5OhseTfKKUSZyqagk5T1wosQD4VxYKKhhBQgpqVKAJblnxBrLsCAKSwYgDH7ghbDGWFHSTbS3zH0J_nUOsdONixXUtWnBz6NOmUqUWCma0N1f6JOfh7R0TzHe10Nwog6XVBV8jAGsrlxn-i27YFytCdZ9yzq1rD9bTsb-L-MluMaExZ_sV_qbq2HxP6iHo9NvI18aLnbw_mOY8KyFpJLru4uRLkbj63OMS31FPwBgZptK | 
    
| CitedBy_id | crossref_primary_10_1007_s11227_020_03580_9 crossref_primary_10_1007_s41095_020_0191_7 crossref_primary_10_1002_cpe_5861 crossref_primary_10_1109_ACCESS_2019_2926518 crossref_primary_10_1111_cgf_12906 crossref_primary_10_1007_s12193_017_0251_1 crossref_primary_10_1111_cgf_13264 crossref_primary_10_1109_TVCG_2024_3382760 crossref_primary_10_1155_2020_9084704 crossref_primary_10_1007_s10115_023_01835_4 crossref_primary_10_1109_TSC_2018_2824809 crossref_primary_10_1109_TVCG_2024_3495695 crossref_primary_10_1111_cgf_12640 crossref_primary_10_1109_TVCG_2020_3028956 crossref_primary_10_1080_13658816_2019_1594823 crossref_primary_10_1109_MCG_2023_3308962 crossref_primary_10_3390_electronics10233001 crossref_primary_10_1109_ACCESS_2020_3010693 crossref_primary_10_1109_TVCG_2018_2846735 crossref_primary_10_1016_j_cag_2017_08_006 crossref_primary_10_1109_TVCG_2015_2468078 crossref_primary_10_34133_research_0011 crossref_primary_10_1016_j_cag_2021_08_003 crossref_primary_10_1016_j_compbiomed_2024_109105 crossref_primary_10_3390_w14152342 crossref_primary_10_1007_s12650_024_00993_z crossref_primary_10_1109_TVCG_2023_3326515 crossref_primary_10_1109_TVCG_2018_2865051 crossref_primary_10_1111_cgf_13711 crossref_primary_10_3390_s17040787 crossref_primary_10_1117_1_JBO_25_9_096006 crossref_primary_10_1109_TVCG_2021_3114878 crossref_primary_10_1109_TVCG_2019_2934655 crossref_primary_10_1109_ACCESS_2019_2958551 crossref_primary_10_1109_TVCG_2017_2746080 crossref_primary_10_1109_TVCG_2019_2934433 crossref_primary_10_1007_s10207_023_00720_z crossref_primary_10_1109_TVCG_2016_2598592 crossref_primary_10_1016_j_eswa_2023_120252 crossref_primary_10_1049_cim2_12024  | 
    
| Cites_doi | 10.1080/13658816.2010.508043 10.1109/TVCG.2008.197 10.1016/j.cag.2013.10.006 10.1007/BF02289565 10.1057/PALGRAVE.IVS.9500184 10.1145/2232817.2232844 10.1111/j.1467-8659.2011.01938.x 10.1111/j.1467-8659.2009.01467.x 10.1109/TVCG.2013.222 10.1109/VAST.2011.6102458 10.1109/IJCNN.2010.5596721 10.1109/TVCG.2013.178 10.1007/11618058_29 10.1117/12.697879 10.1109/TVCG.2009.122 10.3233/IDA-2007-11508 10.1145/2517957.2517966 10.1109/2945.841121 10.1007/BF02288916 10.1109/INFVIS.2005.1532151 10.14778/1454159.1454226 10.1109/TVCG.2011.220 10.1109/IV.2007.124 10.1016/j.engappai.2010.09.007 10.1007/978-0-85729-079-3 10.1007/978-3-642-00219-9_21 10.1111/j.1467-8659.2011.01919.x 10.1109/TVCG.2013.198  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2014 The Author(s) Computer Graphics Forum © 2014 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd. 2014 The Eurographics Association and John Wiley & Sons Ltd.  | 
    
| Copyright_xml | – notice: 2014 The Author(s) Computer Graphics Forum © 2014 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd. – notice: 2014 The Eurographics Association and John Wiley & Sons Ltd.  | 
    
| DBID | BSCLL AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D F28 FR3  | 
    
| DOI | 10.1111/cgf.12396 | 
    
| DatabaseName | Istex CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional ANTE: Abstracts in New Technology & Engineering Engineering Research Database  | 
    
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional Engineering Research Database ANTE: Abstracts in New Technology & Engineering  | 
    
| DatabaseTitleList | Computer and Information Systems Abstracts CrossRef Technology Research Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 1467-8659 | 
    
| EndPage | 410 | 
    
| ExternalDocumentID | 3372545551 10_1111_cgf_12396 CGF12396 ark_67375_WNG_2GHRJ008_P  | 
    
| Genre | article Feature  | 
    
| GroupedDBID | .3N .4S .DC .GA .Y3 05W 0R~ 10A 15B 1OB 1OC 29F 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5HH 5LA 5VS 66C 6J9 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 8VB 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABDPE ABEML ABPVW ACAHQ ACBWZ ACCZN ACFBH ACGFS ACPOU ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADNMO ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AEMOZ AENEX AEUYR AEYWJ AFBPY AFEBI AFFNX AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHEFC AHQJS AIDQK AIDYY AIQQE AITYG AIURR AJXKR AKVCP ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CAG COF CS3 CWDTD D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EAD EAP EBA EBO EBR EBS EBU EDO EJD EMK EST ESX F00 F01 F04 F5P FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ I-F IHE IX1 J0M K1G K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QWB R.K RDJ RIWAO RJQFR ROL RX1 SAMSI SUPJJ TH9 TN5 TUS UB1 V8K W8V W99 WBKPD WIH WIK WOHZO WQJ WXSBR WYISQ WZISG XG1 ZL0 ZZTAW ~IA ~IF ~WT AAHHS ACCFJ ADZOD AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE WRC AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D F28 FR3  | 
    
| ID | FETCH-LOGICAL-c4346-793718be5196d1556fe23a42e677399e071b41faf40619074ee6a0d526faaf683 | 
    
| IEDL.DBID | DR2 | 
    
| ISSN | 0167-7055 | 
    
| IngestDate | Thu Oct 02 05:43:22 EDT 2025 Fri Jul 25 07:55:35 EDT 2025 Thu Apr 24 22:56:16 EDT 2025 Wed Oct 01 03:05:01 EDT 2025 Wed Jan 22 16:24:44 EST 2025 Sun Sep 21 06:23:51 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 3 | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c4346-793718be5196d1556fe23a42e677399e071b41faf40619074ee6a0d526faaf683 | 
    
| Notes | ark:/67375/WNG-2GHRJ008-P Supporting Information istex:810D01C7895CF2F9355F5FB8BBDE2E47E0034647 ArticleID:CGF12396 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23  | 
    
| PQID | 1545016710 | 
    
| PQPubID | 30877 | 
    
| PageCount | 10 | 
    
| ParticipantIDs | proquest_miscellaneous_1559680993 proquest_journals_1545016710 crossref_citationtrail_10_1111_cgf_12396 crossref_primary_10_1111_cgf_12396 wiley_primary_10_1111_cgf_12396_CGF12396 istex_primary_ark_67375_WNG_2GHRJ008_P  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | June 2014 | 
    
| PublicationDateYYYYMMDD | 2014-06-01 | 
    
| PublicationDate_xml | – month: 06 year: 2014 text: June 2014  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | Oxford | 
    
| PublicationPlace_xml | – name: Oxford | 
    
| PublicationTitle | Computer graphics forum | 
    
| PublicationTitleAlternate | Computer Graphics Forum | 
    
| PublicationYear | 2014 | 
    
| Publisher | Blackwell Publishing Ltd | 
    
| Publisher_xml | – name: Blackwell Publishing Ltd | 
    
| References | Bernard J., Wilhelm N., Krüger B., May T., Schreck T., Kohlhammer J.: MotionExplorer: Exploratory Search in Human Motion Capture Data Based on Hierarchical Aggregation. IEEE Transactions on Visualization and Computer Graphics 19, 12 (2013), 2257-2266. 4 Collins C., Penn G., Carpendale S.: Bubble sets: Revealing set relations with isocontours over existing visualizations. Visualization and Computer Graphics, IEEE Transactions on 15, 6 (2009), 1009-1016. 9 Zhao J., Forer P., Harvey A.S.: Activities, ringmaps and geovisualization of large human movement fields. Information Visualization 7, 3-4 (2008), 198-209. 3 Keim D.: Designing pixel-oriented visualization techniques: Theory and applications. IEEE Transactions on Visualization and Computer Graphics 6, 1 (2000). 6 Kruskal J.: Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika 29, 1 (1964), 1-27. doi:10.1007/BF02289565. 3 Hadlak S., Schumann H., Cap C.H., Wollenberg T.: Supporting the Visual Analysis of Dynamic Networks by Clustering associated Temporal Attributes. Visualization and Computer Graphics, IEEE Transactions on 19, 12 (2013), 2267-2276. doi:10.1109/TVCG.2013.198. 3, 4 Bögl M., Aigner W., Filzmoser P., Lammarsch T., Miksch S., Rind A.: Visual Analytics for Model Selection in Time Series Analysis. IEEE Trans. Vis. Comput. Graph. 19, 12 (2013), 2237-2246. 3 Fu T.-C.: A Review on Time Series Data Mining. Eng. Appl. Artif. Intell. 24, 1 (Feb. 2011), 164-181. doi:10.1016/j.engappai.2010.09.007. 3 Janetzko H., Stoffel F., Mittelstädt S., Keim D.A.: Anomaly Detection for Visual Analytics of Power Consumption Data. Computer & Graphics 38 (2014), 27-37. 3 Aigner W., Miksch S., Schumann H., Tominski C.: Visualization of Time-Oriented Data. Springer, London, UK, 2011. doi:10.1007/978-0-85729-079-3. 3 Salvador S., Chan P.: Toward accurate dynamic time warping in linear time and space. Intelligent Data Analysis 11, 5 (2007), 561-580. 4 Bernard J., Wilhelm N., Scherer M., May T., Schreck T.: TimeSeriesPaths: Projection-Based Explorative Analysis of Multivarate Time Series Data. Journal of WSCG 20, 2 (2012), 97-106. 3 Ding H., Trajcevski G., Scheuermann P., Wang X., Keogh E.: Querying and Mining of Time Series Data: Experimental Comparison of Representations and Distance Measures. Proc. VLDB Endow. 1, 2 (Aug. 2008), 1542-1552. 3 Sips M., Neubert B., Lewis J.P., Hanrahan P.: Selecting good views of high-dimensional data using class consistency. Computer Graphics Forum 28, 3 (2009), 831-838. doi:10.1111/j.1467-8659.2009.01467.x. 3, 4 Wong P.C., Schneider K., Mackey P., Foote H., Chin G., Guttromson R., Thomas J.: A Novel Visualization Technique for Electric Power Grid Analytics. IEEE Transactions on Visualization and Computer Graphics 15, 3 (2009), 410-423. doi:10.1109/TVCG.2008.197. 3 Andrienko G., Andrienko N., Demsar U., Dransch D., Dykes J., Fabrikant S.I., Jern M., Kraak M.-J., Schumann H., Tominski C.: Space, Time and Visual Analytics. Int. J. Geogr. Inf. Sci. 24, 10 (Oct. 2010), 1577-1600. doi:10.1080/13658816.2010.508043. 3 Jain A.K., Dubes R.C.: Algorithms for clustering data. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1988. 5 Joia P., Paulovich F.V., Coimbra D., Cuminato J.A., Nonato L.G.: Local affine multidimensional projection. IEEE Transactions on Visualization and Computer Graphics 17, 12 (2011), 2563-2571. 3, 4 Schreck T., Panse C.: A new metaphor for projection-based visual analysis and data exploration. Proc. SPIE 6495 (2007). doi:10.1117/12.697879. 7, 9 Bertini E., Tatu A., Keim D.A.: Quality Metrics in High-Dimensional Data Visualization: An Overview and Systematization. IEEE Symposium on Information Visualization (InfoVis) 17, 12 (Dec. 2011), pages 2203-2212. 3 Berndt D.J., Clifford J.: Using Dynamic Time Warping to Find Patterns in Time Series. In KDD workshop (1994), vol. 10/16, Seattle, WA, pp. 359-370. 4 Torgerson W.S.: Multidimensional scaling: I. Theory and Method. Psychometrika 17, 4 (1952), 401-419. doi:10.1007/BF02288916. 3 1994; 10/16 2007; 6495 2011; 30/3 2012 2000; 6 1964; 29 2011 2010 2009 2008 2008; 7 2007 2006; 3843 2005 2002 2011; 17 2008; 1 1952; 17 2007; 11 2009; 28 1999 2013; 19 2009; 5417 2010; 24 2014; 38 2011; 24 2013 2012; 20 2009; 15 1988 e_1_2_9_30_2 e_1_2_9_10_2 e_1_2_9_12_2 e_1_2_9_31_2 e_1_2_9_11_2 e_1_2_9_32_2 Jain A.K. (e_1_2_9_19_2) 1988 e_1_2_9_14_2 e_1_2_9_37_2 e_1_2_9_38_2 e_1_2_9_16_2 e_1_2_9_35_2 e_1_2_9_15_2 e_1_2_9_36_2 e_1_2_9_18_2 e_1_2_9_17_2 Tominski C. (e_1_2_9_33_2) 2008 e_1_2_9_21_2 e_1_2_9_20_2 e_1_2_9_23_2 Berndt D.J. (e_1_2_9_5_2) 1994; 10 e_1_2_9_22_2 e_1_2_9_7_2 Bertini E. (e_1_2_9_9_2) 2011; 17 Bernard J. (e_1_2_9_13_2) 2012; 20 e_1_2_9_6_2 e_1_2_9_4_2 e_1_2_9_3_2 e_1_2_9_2_2 e_1_2_9_8_2 e_1_2_9_25_2 e_1_2_9_24_2 Van Wijk J.J. (e_1_2_9_34_2) 1999 e_1_2_9_27_2 e_1_2_9_26_2 e_1_2_9_29_2 e_1_2_9_28_2  | 
    
| References_xml | – reference: Wong P.C., Schneider K., Mackey P., Foote H., Chin G., Guttromson R., Thomas J.: A Novel Visualization Technique for Electric Power Grid Analytics. IEEE Transactions on Visualization and Computer Graphics 15, 3 (2009), 410-423. doi:10.1109/TVCG.2008.197. 3 – reference: Salvador S., Chan P.: Toward accurate dynamic time warping in linear time and space. Intelligent Data Analysis 11, 5 (2007), 561-580. 4 – reference: Hadlak S., Schumann H., Cap C.H., Wollenberg T.: Supporting the Visual Analysis of Dynamic Networks by Clustering associated Temporal Attributes. Visualization and Computer Graphics, IEEE Transactions on 19, 12 (2013), 2267-2276. doi:10.1109/TVCG.2013.198. 3, 4 – reference: Sips M., Neubert B., Lewis J.P., Hanrahan P.: Selecting good views of high-dimensional data using class consistency. Computer Graphics Forum 28, 3 (2009), 831-838. doi:10.1111/j.1467-8659.2009.01467.x. 3, 4 – reference: Bernard J., Wilhelm N., Krüger B., May T., Schreck T., Kohlhammer J.: MotionExplorer: Exploratory Search in Human Motion Capture Data Based on Hierarchical Aggregation. IEEE Transactions on Visualization and Computer Graphics 19, 12 (2013), 2257-2266. 4 – reference: Fu T.-C.: A Review on Time Series Data Mining. Eng. Appl. Artif. Intell. 24, 1 (Feb. 2011), 164-181. doi:10.1016/j.engappai.2010.09.007. 3 – reference: Bögl M., Aigner W., Filzmoser P., Lammarsch T., Miksch S., Rind A.: Visual Analytics for Model Selection in Time Series Analysis. IEEE Trans. Vis. Comput. Graph. 19, 12 (2013), 2237-2246. 3 – reference: Janetzko H., Stoffel F., Mittelstädt S., Keim D.A.: Anomaly Detection for Visual Analytics of Power Consumption Data. Computer & Graphics 38 (2014), 27-37. 3 – reference: Aigner W., Miksch S., Schumann H., Tominski C.: Visualization of Time-Oriented Data. Springer, London, UK, 2011. doi:10.1007/978-0-85729-079-3. 3 – reference: Kruskal J.: Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika 29, 1 (1964), 1-27. doi:10.1007/BF02289565. 3 – reference: Torgerson W.S.: Multidimensional scaling: I. Theory and Method. Psychometrika 17, 4 (1952), 401-419. doi:10.1007/BF02288916. 3 – reference: Collins C., Penn G., Carpendale S.: Bubble sets: Revealing set relations with isocontours over existing visualizations. Visualization and Computer Graphics, IEEE Transactions on 15, 6 (2009), 1009-1016. 9 – reference: Keim D.: Designing pixel-oriented visualization techniques: Theory and applications. IEEE Transactions on Visualization and Computer Graphics 6, 1 (2000). 6 – reference: Andrienko G., Andrienko N., Demsar U., Dransch D., Dykes J., Fabrikant S.I., Jern M., Kraak M.-J., Schumann H., Tominski C.: Space, Time and Visual Analytics. Int. J. Geogr. Inf. Sci. 24, 10 (Oct. 2010), 1577-1600. doi:10.1080/13658816.2010.508043. 3 – reference: Jain A.K., Dubes R.C.: Algorithms for clustering data. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1988. 5 – reference: Joia P., Paulovich F.V., Coimbra D., Cuminato J.A., Nonato L.G.: Local affine multidimensional projection. IEEE Transactions on Visualization and Computer Graphics 17, 12 (2011), 2563-2571. 3, 4 – reference: Berndt D.J., Clifford J.: Using Dynamic Time Warping to Find Patterns in Time Series. In KDD workshop (1994), vol. 10/16, Seattle, WA, pp. 359-370. 4 – reference: Bertini E., Tatu A., Keim D.A.: Quality Metrics in High-Dimensional Data Visualization: An Overview and Systematization. IEEE Symposium on Information Visualization (InfoVis) 17, 12 (Dec. 2011), pages 2203-2212. 3 – reference: Bernard J., Wilhelm N., Scherer M., May T., Schreck T.: TimeSeriesPaths: Projection-Based Explorative Analysis of Multivarate Time Series Data. Journal of WSCG 20, 2 (2012), 97-106. 3 – reference: Zhao J., Forer P., Harvey A.S.: Activities, ringmaps and geovisualization of large human movement fields. Information Visualization 7, 3-4 (2008), 198-209. 3 – reference: Ding H., Trajcevski G., Scheuermann P., Wang X., Keogh E.: Querying and Mining of Time Series Data: Experimental Comparison of Representations and Distance Measures. Proc. VLDB Endow. 1, 2 (Aug. 2008), 1542-1552. 3 – reference: Schreck T., Panse C.: A new metaphor for projection-based visual analysis and data exploration. Proc. SPIE 6495 (2007). doi:10.1117/12.697879. 7, 9 – year: 2011 – start-page: 833 year: 2002 end-page: 840 – volume: 6495 year: 2007 article-title: A new metaphor for projection‐based visual analysis and data exploration publication-title: Proc. SPIE – start-page: 4 year: 1999 end-page: 9 – year: 2009 – start-page: 308 year: 2007 end-page: 315 – volume: 15 start-page: 1009 issue: 6 year: 2009 end-page: 1016 article-title: Bubble sets: Revealing set relations with isocontours over existing visualizations publication-title: Visualization and Computer Graphics, IEEE Transactions on – volume: 19 start-page: 2257 issue: 12 year: 2013 end-page: 2266 article-title: MotionExplorer: Exploratory Search in Human Motion Capture Data Based on Hierarchical Aggregation publication-title: IEEE Transactions on Visualization and Computer Graphics – volume: 17 start-page: 2203 issue: 12 year: 2011 end-page: 2212 article-title: Quality Metrics in High‐Dimensional Data Visualization: An Overview and Systematization publication-title: IEEE Symposium on Information Visualization (InfoVis) – volume: 11 start-page: 561 issue: 5 year: 2007 end-page: 580 article-title: Toward accurate dynamic time warping in linear time and space publication-title: Intelligent Data Analysis – volume: 6 issue: 1 year: 2000 article-title: Designing pixel‐oriented visualization techniques: Theory and applications publication-title: IEEE Transactions on Visualization and Computer Graphics – volume: 24 start-page: 1577 issue: 10 year: 2010 end-page: 1600 article-title: Space, Time and Visual Analytics publication-title: Int. J. Geogr. Inf. Sci. – volume: 1 start-page: 1542 issue: 2 year: 2008 end-page: 1552 article-title: Querying and Mining of Time Series Data: Experimental Comparison of Representations and Distance Measures publication-title: Proc. VLDB Endow. – start-page: 53 year: 2008 end-page: 56 – volume: 30/3 start-page: 891 year: 2011 end-page: 900 – volume: 17 start-page: 401 issue: 4 year: 1952 end-page: 419 article-title: Multidimensional scaling: I. Theory and Method publication-title: Psychometrika – volume: 20 start-page: 97 issue: 2 year: 2012 end-page: 106 article-title: TimeSeriesPaths: Projection‐Based Explorative Analysis of Multivarate Time Series Data publication-title: Journal of WSCG – start-page: 701 year: 2011 end-page: 710 – start-page: 225 year: 2005 end-page: 232 – volume: 5417 start-page: 218 year: 2009 end-page: 229 – volume: 24 start-page: 164 issue: 1 year: 2011 end-page: 181 article-title: A Review on Time Series Data Mining publication-title: Eng. Appl. Artif. Intell. – volume: 29 start-page: 1 issue: 1 year: 1964 end-page: 27 article-title: Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis publication-title: Psychometrika – start-page: 1 year: 2010 end-page: 8 – volume: 19 start-page: 2237 issue: 12 year: 2013 end-page: 2246 article-title: Visual Analytics for Model Selection in Time Series Analysis publication-title: IEEE Trans. Vis. Comput. Graph. – volume: 28 start-page: 831 issue: 3 year: 2009 end-page: 838 article-title: Selecting good views of high‐dimensional data using class consistency publication-title: Computer Graphics Forum – volume: 10/16 start-page: 359 year: 1994 end-page: 370 article-title: Using Dynamic Time Warping to Find Patterns in Time Series publication-title: KDD workshop – volume: 3843 start-page: 321 year: 2006 end-page: 333 – volume: 38 start-page: 27 year: 2014 end-page: 37 article-title: Anomaly Detection for Visual Analytics of Power Consumption Data publication-title: Computer & Graphics – volume: 19 start-page: 2267 issue: 12 year: 2013 end-page: 2276 article-title: Supporting the Visual Analysis of Dynamic Networks by Clustering associated Temporal Attributes publication-title: Visualization and Computer Graphics, IEEE Transactions on – start-page: 39 year: 2012 end-page: 48 – year: 1988 – start-page: 201 year: 2011 end-page: 210 – volume: 7 start-page: 198 issue: 3–4 year: 2008 end-page: 209 article-title: Activities, ringmaps and geovisualization of large human movement fields publication-title: Information Visualization – volume: 17 start-page: 2563 issue: 12 year: 2011 end-page: 2571 article-title: Local affine multidimensional projection publication-title: IEEE Transactions on Visualization and Computer Graphics – volume: 15 start-page: 410 issue: 3 year: 2009 end-page: 423 article-title: A Novel Visualization Technique for Electric Power Grid Analytics publication-title: IEEE Transactions on Visualization and Computer Graphics – start-page: 139 year: 2012 end-page: 148 – start-page: 65 year: 2013 end-page: 72 – ident: e_1_2_9_2_2 doi: 10.1080/13658816.2010.508043 – ident: e_1_2_9_36_2 doi: 10.1109/TVCG.2008.197 – volume: 10 start-page: 359 year: 1994 ident: e_1_2_9_5_2 article-title: Using Dynamic Time Warping to Find Patterns in Time Series publication-title: KDD workshop – volume: 17 start-page: 2203 issue: 12 year: 2011 ident: e_1_2_9_9_2 article-title: Quality Metrics in High‐Dimensional Data Visualization: An Overview and Systematization publication-title: IEEE Symposium on Information Visualization (InfoVis) – ident: e_1_2_9_21_2 doi: 10.1016/j.cag.2013.10.006 – ident: e_1_2_9_23_2 doi: 10.1007/BF02289565 – ident: e_1_2_9_37_2 doi: 10.1057/PALGRAVE.IVS.9500184 – ident: e_1_2_9_10_2 – ident: e_1_2_9_8_2 doi: 10.1145/2232817.2232844 – ident: e_1_2_9_11_2 doi: 10.1111/j.1467-8659.2011.01938.x – ident: e_1_2_9_30_2 doi: 10.1111/j.1467-8659.2009.01467.x – ident: e_1_2_9_4_2 doi: 10.1109/TVCG.2013.222 – start-page: 53 volume-title: Proceedings of the Annual SIGRAD Conference, Special Theme: Interactivity year: 2008 ident: e_1_2_9_33_2 – ident: e_1_2_9_28_2 doi: 10.1109/VAST.2011.6102458 – ident: e_1_2_9_24_2 doi: 10.1109/IJCNN.2010.5596721 – ident: e_1_2_9_12_2 doi: 10.1109/TVCG.2013.178 – ident: e_1_2_9_25_2 doi: 10.1007/11618058_29 – ident: e_1_2_9_31_2 doi: 10.1117/12.697879 – ident: e_1_2_9_14_2 doi: 10.1109/TVCG.2009.122 – ident: e_1_2_9_26_2 doi: 10.3233/IDA-2007-11508 – start-page: 4 volume-title: Proceedings of the Symposium on Information Visualization year: 1999 ident: e_1_2_9_34_2 – ident: e_1_2_9_27_2 doi: 10.1145/2517957.2517966 – ident: e_1_2_9_22_2 doi: 10.1109/2945.841121 – ident: e_1_2_9_32_2 doi: 10.1007/BF02288916 – ident: e_1_2_9_29_2 doi: 10.1109/INFVIS.2005.1532151 – ident: e_1_2_9_17_2 – ident: e_1_2_9_15_2 doi: 10.14778/1454159.1454226 – ident: e_1_2_9_20_2 doi: 10.1109/TVCG.2011.220 – ident: e_1_2_9_38_2 doi: 10.1109/IV.2007.124 – ident: e_1_2_9_16_2 doi: 10.1016/j.engappai.2010.09.007 – ident: e_1_2_9_3_2 doi: 10.1007/978-0-85729-079-3 – ident: e_1_2_9_7_2 – volume-title: Algorithms for clustering data year: 1988 ident: e_1_2_9_19_2 – ident: e_1_2_9_6_2 doi: 10.1007/978-3-642-00219-9_21 – volume: 20 start-page: 97 issue: 2 year: 2012 ident: e_1_2_9_13_2 article-title: TimeSeriesPaths: Projection‐Based Explorative Analysis of Multivarate Time Series Data publication-title: Journal of WSCG – ident: e_1_2_9_35_2 doi: 10.1111/j.1467-8659.2011.01919.x – ident: e_1_2_9_18_2 doi: 10.1109/TVCG.2013.198  | 
    
| SSID | ssj0004765 | 
    
| Score | 2.3707178 | 
    
| Snippet | We present a system to analyze time‐series data in sensor networks. Our approach supports exploratory tasks for the comparison of univariate, geo‐referenced... We present a system to analyze time-series data in sensor networks. Our approach supports exploratory tasks for the comparison of univariate, geo-referenced...  | 
    
| SourceID | proquest crossref wiley istex  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 401 | 
    
| SubjectTerms | Analysis Anomalies C.2.3 [Computer-Communication Networks]: Network Operations-Network monitoring Categories and Subject Descriptors (according to ACM CCS) Data visualization H.5.2 [Information Interfaces and Presentation]: User Interfaces-User-centered design I.3.6 [Computer Graphics]: Methodology and Techniques-Interaction techniques Information processing Networks Recording Sensors Studies Tasks Temporal logic Time series Visual Visualization Wireless networks  | 
    
| Title | Visual Analysis of Time-Series Similarities for Anomaly Detection in Sensor Networks | 
    
| URI | https://api.istex.fr/ark:/67375/WNG-2GHRJ008-P/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcgf.12396 https://www.proquest.com/docview/1545016710 https://www.proquest.com/docview/1559680993  | 
    
| Volume | 33 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1467-8659 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0004765 issn: 0167-7055 databaseCode: ABDBF dateStart: 19980301 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1467-8659 dateEnd: 20241102 omitProxy: false ssIdentifier: ssj0004765 issn: 0167-7055 databaseCode: ADMLS dateStart: 19980101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0167-7055 databaseCode: DR2 dateStart: 19970101 customDbUrl: isFulltext: true eissn: 1467-8659 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004765 providerName: Wiley-Blackwell  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS-RAEC5EL-7B1-7i-KJdFtlLhknS6Uzw5GtmEHYQXV0PQuh0umVQM2JmQDz5E_yN_hKrOg_HxQXxFugvodPVlf6qU_U1wE_JWzISrnISjD4crpTrSGQGTojrudTGkxGnQuHffdE75YfnwfkUbFe1MIU-RL3hRp5hv9fk4DLJJ5xcXZomfnYjktt2fWHDqeNX6SgeiqDS9SbFmFJViLJ46jvfrEUzNKz3b4jmJF21601nHi6qnhZpJlfN8Shpqod_RBw_-SoLMFfyULZTTJxFmNLZEnyZUCf8Cmdng3xMmFK3hA0No4qR58cn2lPTOTsZ3AwwMrairAzZL0KHNwhm-3pkU7wyNsjYCUbK2NYvEs7zb3DaOfiz13PKYxgcxX0uHFLQc9uJRq4nUqQfwmjPl9zTIgyR3mgkKQl3jTTEDSjW1lrIVhp4wkhpRNv_DtPZMNPLwKyaT0sRZ8JVMRVRalIlPJcKv_ChbgN-VQaJValRTkdlXMdVrIJDFduhasCPGnpbCHO8B9qyVq0R8u6KMtnCIP7b78Zet3d8SMdwHjVgrTJ7XDpxHhO7pPnjthqwWTej-9E_FZnp4ZgwQSTaSLN97Lu18f97E-91O_Zi5ePQVZhFisaL5LQ1mB7djfU60qBRsgEzO7v7u50NO-9fAHVNAmw | 
    
| linkProvider | Wiley-Blackwell | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bT9swFD7i8gB72MYA0Q2GmaaJl1RN6jiNtJcJ1pZbhbj2BVmOY08VI51oK0172k_Yb9wv2TnOZQWBhHiL5C-R4-MTf8c55zPAR8UbKha-9hKMPjyute8pZAZehOu5MjZQMadC4aOe6J7z_X7Yn4HPZS1Mrg9RbbiRZ7jvNTk4bUhPebn-Zuv43Y3FLMxzgXEKUaKT_-JRPBJhqexNmjGFrhDl8VS33lmN5mlgf96hmtOE1a047VdwVfY1TzS5rk_GSV3_uifj-NyXeQ0vCyrKvuRzZwlmTPYGXkwJFC7DxcVgNCFMIV3ChpZR0cjf339oW82M2OngZoDBsdNlZUiAETq8QTDbNWOX5ZWxQcZOMVjGtl6ecz5agfP217OdrlecxOBp3uTCIxE9v5UYpHsiRQYirAmaigdGRBEyHIM8JeG-VZboAYXbxgjVSMNAWKWsaDVXYS4bZmYNmBP0aWiiTbgwpiJObapF4FPtFz7Ur8F2aRGpC5lyOi3juyzDFRwq6YaqBh8q6I9cm-Mh0Cdn1gqhbq8pmS0K5WWvI4NO92SfTuI8rsF6aXdZ-PFIEsGkCeQ3arBVNaMH0m8VlZnhhDBhLFrItJvYd2fkx3sjdzptd_H26dBNWOieHR3Kw73ewTtYRMbG81y1dZgb307MBrKicfLeTf5_hL4FGw | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bT9swFD7iIiH2wGAwrcCGmRDaS6omdZxG2stE13awVYjbeEGW49hTBaSIttK0p_2E_cb9kp3jXCiISYi3SP4SOT4-8Xeccz4D7CjeULHwtZdg9OFxrX1PITPwIlzPlbGBijkVCn_ri94p3z8Pz2fgY1kLk-tDVBtu5Bnue00Obm5SO-Xl-oet43c3FrMwz8O4RQl97aM78SgeibBU9ibNmEJXiPJ4qlvvrUbzNLA_71HNacLqVpzOS7go-5onmlzWJ-Okrn89kHF87sssw1JBRdmnfO6swIzJXsGLKYHCVTg7G4wmhCmkS9jQMioa-fv7D22rmRE7HlwPMDh2uqwMCTBCh9cIZm0zdlleGRtk7BiDZWzr5znnozU47Xw-2et5xUkMnuZNLjwS0fNbiUG6J1JkIMKaoKl4YEQUIcMxyFMS7ltliR5QuG2MUI00DIRVyopW8zXMZcPMvAHmBH0ammgTLoypiFObahH4VPuFD_Vr8KG0iNSFTDmdlnEly3AFh0q6oarB-wp6k2tzPAbadWatEOr2kpLZolB-73dl0O0d7dNJnIc12CztLgs_HkkimDSB_EYNtqtm9ED6raIyM5wQJoxFC5l2E_vujPz_3si9bsddrD8dugULh-2O_Pqlf7ABi0jYeJ6qtglz49uJeYukaJy8c3P_HyU7BJ8 | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Visual+Analysis+of+Time-Series+Similarities+for+Anomaly+Detection+in+Sensor+Networks&rft.jtitle=Computer+graphics+forum&rft.au=Steiger%2C+Martin&rft.au=Bernard%2C+Juergen&rft.au=Mittelstaedt%2C+Sebastian&rft.au=Luecke-Tieke%2C+Hendrik&rft.date=2014-06-01&rft.issn=0167-7055&rft.eissn=1467-8659&rft.volume=33&rft.issue=3&rft.spage=401&rft.epage=410&rft_id=info:doi/10.1111%2Fcgf.12396&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-7055&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-7055&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-7055&client=summon |