Multiplicity results for superlinear boundary value problems with impulsive effects

We study the existence and multiplicity of solutions for a nonlinear boundary value problem subject to perturbations of impulsive terms. Under suitable assumptions on the potential of the nonlinearity, the existence of one or two solutions is established. Our approach is based on a local minimum the...

Full description

Saved in:
Bibliographic Details
Published inMathematical methods in the applied sciences Vol. 39; no. 5; pp. 1060 - 1068
Main Authors D'Aguì, Giuseppina, Di Bella, Beatrice, Tersian, Stepan
Format Journal Article
LanguageEnglish
Published Freiburg Blackwell Publishing Ltd 01.04.2016
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN0170-4214
1099-1476
DOI10.1002/mma.3545

Cover

Abstract We study the existence and multiplicity of solutions for a nonlinear boundary value problem subject to perturbations of impulsive terms. Under suitable assumptions on the potential of the nonlinearity, the existence of one or two solutions is established. Our approach is based on a local minimum theorem and a two non‐zero critical points for differentiable functionals. Copyright © 2015 John Wiley & Sons, Ltd.
AbstractList We study the existence and multiplicity of solutions for a nonlinear boundary value problem subject to perturbations of impulsive terms. Under suitable assumptions on the potential of the nonlinearity, the existence of one or two solutions is established. Our approach is based on a local minimum theorem and a two non‐zero critical points for differentiable functionals. Copyright © 2015 John Wiley & Sons, Ltd.
We study the existence and multiplicity of solutions for a nonlinear boundary value problem subject to perturbations of impulsive terms. Under suitable assumptions on the potential of the nonlinearity, the existence of one or two solutions is established. Our approach is based on a local minimum theorem and a two non-zero critical points for differentiable functionals.
Author D'Aguì, Giuseppina
Di Bella, Beatrice
Tersian, Stepan
Author_xml – sequence: 1
  givenname: Giuseppina
  surname: D'Aguì
  fullname: D'Aguì, Giuseppina
  email: Correspondence to: Giuseppina D'Aguì, Department of Civil, Computer, Construction, Environmental Engineering and Applied Mathematics, University of Messina, 98166 Messina, Italy., dagui@unime.it
  organization: Department of Civil, Computer, Construction, Environmental Engineering and Applied Mathematics, University of Messina, 98166 Messina, Italy
– sequence: 2
  givenname: Beatrice
  surname: Di Bella
  fullname: Di Bella, Beatrice
  organization: Department of Mathematics and Computer Science, University of Messina, 98166 Messina, Italy
– sequence: 3
  givenname: Stepan
  surname: Tersian
  fullname: Tersian, Stepan
  organization: Department of Mathematics, University of Ruse, 7017 Ruse, Bulgaria
BookMark eNp1kFtrGzEQRkVJoY5T6E8Q5KUv6-iu3cfg5gZxQmlLH4WsnaVKtJdKu3H87yPjkJKSPA0DZz6-OYfooOs7QOgLJQtKCDtpW7vgUsgPaEZJVRVUaHWAZoRqUghGxSd0mNIdIaSklM3Qj9UURj8E7_y4xRFSXhNu-ojTNEAMvgMb8bqfutrGLX6wYQI8xH4doE1448c_2LfDFJJ_AAxNA25MR-hjY0OCz89zjn6dn_1cXhbXtxdXy9PrwgkuZOH4moOT3MqK2kZKULmwrpyS4JxyIJQqoS61rWhZrzljdckJc8zVSteUlnyOvu5zc5-_E6TRtD45CMF20E_J0JIQUeZHRUaP_0Pv-il2uZ2hWpMcxhXL1GJPudinFKEx2Yodfd-N0fpgKDE7xyY7NjvH_xq8HAzRt1nUW2ixRzc-wPZdzqxWp695n0Z4fOFtvDdKcy3N75sLc8nUtxtCl-Y7fwJ5q5w0
CODEN MMSCDB
CitedBy_id crossref_primary_10_1007_s40840_019_00797_7
crossref_primary_10_1155_2018_9256192
crossref_primary_10_1186_s13661_018_1012_0
crossref_primary_10_1007_s00229_016_0903_6
crossref_primary_10_1016_j_aml_2018_02_015
crossref_primary_10_1007_s41980_018_0025_x
crossref_primary_10_1186_s13662_019_2037_0
crossref_primary_10_3390_math7100880
crossref_primary_10_4236_eng_2021_132007
crossref_primary_10_1186_s13661_016_0635_2
crossref_primary_10_1186_s13662_018_1783_8
crossref_primary_10_1515_math_2022_0519
crossref_primary_10_1186_s13661_017_0855_0
crossref_primary_10_3934_dcds_2017252
Cites_doi 10.1016/j.jmaa.2006.09.021
10.2478/s13540-014-0196-y
10.1016/j.nonrwa.2007.10.022
10.1016/j.na.2011.12.003
10.1155/9789775945501
10.1515/anona-2012-0003
10.1016/j.jmaa.2004.08.034
10.1002/mma.2777
10.1142/0906
ContentType Journal Article
Copyright Copyright © 2015 John Wiley & Sons, Ltd.
Copyright © 2016 John Wiley & Sons, Ltd.
Copyright_xml – notice: Copyright © 2015 John Wiley & Sons, Ltd.
– notice: Copyright © 2016 John Wiley & Sons, Ltd.
DBID BSCLL
AAYXX
CITATION
7TB
8FD
FR3
JQ2
KR7
DOI 10.1002/mma.3545
DatabaseName Istex
CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
DatabaseTitleList CrossRef
Civil Engineering Abstracts

Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Mathematics
EISSN 1099-1476
EndPage 1068
ExternalDocumentID 3970520831
10_1002_mma_3545
MMA3545
ark_67375_WNG_H26DN01C_Q
Genre article
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AIQQE
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMVHM
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CO8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GBZZK
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6O
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
RYL
SAMSI
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WOHZO
WQJ
WXSBR
WYISQ
XBAML
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
AAHHS
ACCFJ
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
RWI
RWS
WRC
AAYXX
CITATION
7TB
8FD
FR3
JQ2
KR7
ID FETCH-LOGICAL-c4345-c3b3ec53a591af55e610979c65ecc6ce4668ed87a918db322d8302c2cd67d1183
IEDL.DBID DR2
ISSN 0170-4214
IngestDate Thu Jul 10 23:43:13 EDT 2025
Fri Jul 25 12:24:07 EDT 2025
Thu Apr 24 23:03:24 EDT 2025
Tue Jul 01 00:19:01 EDT 2025
Wed Jan 22 16:46:56 EST 2025
Sun Sep 21 06:16:51 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4345-c3b3ec53a591af55e610979c65ecc6ce4668ed87a918db322d8302c2cd67d1183
Notes istex:E83D38B68590FF96F41A7DB8CEFA5F95F2E46E74
ark:/67375/WNG-H26DN01C-Q
ArticleID:MMA3545
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 1770183362
PQPubID 1016386
PageCount 9
ParticipantIDs proquest_miscellaneous_1800480814
proquest_journals_1770183362
crossref_citationtrail_10_1002_mma_3545
crossref_primary_10_1002_mma_3545
wiley_primary_10_1002_mma_3545_MMA3545
istex_primary_ark_67375_WNG_H26DN01C_Q
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2016
PublicationDateYYYYMMDD 2016-04-01
PublicationDate_xml – month: 04
  year: 2016
  text: April 2016
PublicationDecade 2010
PublicationPlace Freiburg
PublicationPlace_xml – name: Freiburg
PublicationTitle Mathematical methods in the applied sciences
PublicationTitleAlternate Math. Meth. Appl. Sci
PublicationYear 2016
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Bonanno G, Rodriguez-Lopez R, Tersian S. Existence of solutions to boundary value problem for impulsive fractional differential equations. Fractional Calculus and Applied Analysis 2014; 17/3:717-744.
Benchohra M, Henderson J, Ntouyas N. Impulsive Differential Equations and Inclusions. Hindawi Publ. Corp.: New York, NY, USA, 2006.
Cabada A, Tersian S. Existence and multiplicity of solutions to boundary value problems for fourth-order impulsive differential equations. Boundary Value Problems 2014; 105:1-12.
Lakshmikantham V, Bainov DD, Simeonov PS. Theory of Impulsive Differential Equations. World Scientific: Singapore, 1989.
Drábek P, Langerová M. Quasilinear boundary value problem with impulses: variational approach to resonance problem. Bound. Value Probl 2014; 64:1-14.
Mawhin J. Topological Degree and Boundary Value Problems for Nonlinear Differential Equations, Topological methods for ordinary differential equations, Lecture Notes in Math., vol. 1537. Springer: Berlin, 1993, 74-142.
Qian D, Li X. Periodic solutions for ordinary differential equations with sublinear impulsive effects. Journal on Mathematical Analysis 2005; 303:288-303.
Chen H, He Z. Variational approach to some damped Dirichlet problems with impulses. Math. Methods Appl. Sci 2013; 36/18:2564-2575.
Bonanno G, Di Bella B, Henderson J. Existence of solutions to second-order boundary-value problems with small pertubations of impulses. Electronic Journal of Differential Equations 2013; 126:1-14.
Chen J, Tisdell CC, Yuan R. On the solvability of periodic boundary value problems with impulse. Journal on Mathematical Analysis 2007; 331:902-912.
Nieto JJ, O'Regan D. Variational approach to impulsive differential equations. Nonlinear Analysis, Real World Applications 2009; 70:680-690.
Bonanno G. Relations between the mountain pass theorem and local minima. Advances in Nonlinear Analysis 2012; 1:205-220.
Bonanno G. A critical point theorem via the Ekeland variational principle. Nonlinear Analysis 2012; 75:2992-3007.
Bonanno G, Di Bella B, Henderson J. Infinitely many solutions for a boundary value problem with impulsive effects. Boundary Value Problems 2013; 278.
2014; 17/3
2014; 105
2012; 1
2009; 70
2007; 331
2013; 126
2005; 303
2006
2013; 278
1993
2013; 36/18
2012; 75
1989
2014; 64
e_1_2_5_15_1
e_1_2_5_14_1
e_1_2_5_16_1
e_1_2_5_11_1
e_1_2_5_6_1
e_1_2_5_13_1
e_1_2_5_4_1
e_1_2_5_3_1
e_1_2_5_2_1
Mawhin J (e_1_2_5_5_1) 1993
Bonanno G (e_1_2_5_7_1) 2013; 126
Bonanno G (e_1_2_5_8_1) 2013; 278
Drábek P (e_1_2_5_12_1) 2014; 64
Bonanno G (e_1_2_5_9_1) 2014; 17
Cabada A (e_1_2_5_10_1) 2014; 105
References_xml – reference: Bonanno G, Di Bella B, Henderson J. Infinitely many solutions for a boundary value problem with impulsive effects. Boundary Value Problems 2013; 278.
– reference: Bonanno G. A critical point theorem via the Ekeland variational principle. Nonlinear Analysis 2012; 75:2992-3007.
– reference: Bonanno G, Di Bella B, Henderson J. Existence of solutions to second-order boundary-value problems with small pertubations of impulses. Electronic Journal of Differential Equations 2013; 126:1-14.
– reference: Bonanno G, Rodriguez-Lopez R, Tersian S. Existence of solutions to boundary value problem for impulsive fractional differential equations. Fractional Calculus and Applied Analysis 2014; 17/3:717-744.
– reference: Bonanno G. Relations between the mountain pass theorem and local minima. Advances in Nonlinear Analysis 2012; 1:205-220.
– reference: Cabada A, Tersian S. Existence and multiplicity of solutions to boundary value problems for fourth-order impulsive differential equations. Boundary Value Problems 2014; 105:1-12.
– reference: Qian D, Li X. Periodic solutions for ordinary differential equations with sublinear impulsive effects. Journal on Mathematical Analysis 2005; 303:288-303.
– reference: Nieto JJ, O'Regan D. Variational approach to impulsive differential equations. Nonlinear Analysis, Real World Applications 2009; 70:680-690.
– reference: Mawhin J. Topological Degree and Boundary Value Problems for Nonlinear Differential Equations, Topological methods for ordinary differential equations, Lecture Notes in Math., vol. 1537. Springer: Berlin, 1993, 74-142.
– reference: Chen H, He Z. Variational approach to some damped Dirichlet problems with impulses. Math. Methods Appl. Sci 2013; 36/18:2564-2575.
– reference: Lakshmikantham V, Bainov DD, Simeonov PS. Theory of Impulsive Differential Equations. World Scientific: Singapore, 1989.
– reference: Drábek P, Langerová M. Quasilinear boundary value problem with impulses: variational approach to resonance problem. Bound. Value Probl 2014; 64:1-14.
– reference: Benchohra M, Henderson J, Ntouyas N. Impulsive Differential Equations and Inclusions. Hindawi Publ. Corp.: New York, NY, USA, 2006.
– reference: Chen J, Tisdell CC, Yuan R. On the solvability of periodic boundary value problems with impulse. Journal on Mathematical Analysis 2007; 331:902-912.
– start-page: 74
  year: 1993
  end-page: 142
– volume: 303
  start-page: 288
  year: 2005
  end-page: 303
  article-title: Periodic solutions for ordinary differential equations with sublinear impulsive effects
  publication-title: Journal on Mathematical Analysis
– volume: 70
  start-page: 680
  year: 2009
  end-page: 690
  article-title: Variational approach to impulsive differential equations
  publication-title: Nonlinear Analysis, Real World Applications
– volume: 36/18
  start-page: 2564
  year: 2013
  end-page: 2575
  article-title: Variational approach to some damped Dirichlet problems with impulses
  publication-title: Math. Methods Appl. Sci
– volume: 331
  start-page: 902
  year: 2007
  end-page: 912
  article-title: On the solvability of periodic boundary value problems with impulse
  publication-title: Journal on Mathematical Analysis
– volume: 105
  start-page: 1
  year: 2014
  end-page: 12
  article-title: Existence and multiplicity of solutions to boundary value problems for fourth‐order impulsive differential equations
  publication-title: Boundary Value Problems
– volume: 126
  start-page: 1
  year: 2013
  end-page: 14
  article-title: Existence of solutions to second‐order boundary‐value problems with small pertubations of impulses
  publication-title: Electronic Journal of Differential Equations
– volume: 1
  start-page: 205
  year: 2012
  end-page: 220
  article-title: Relations between the mountain pass theorem and local minima
  publication-title: Advances in Nonlinear Analysis
– year: 2006
– year: 1989
– volume: 278
  year: 2013
  article-title: Infinitely many solutions for a boundary value problem with impulsive effects
  publication-title: Boundary Value Problems
– volume: 64
  start-page: 1
  year: 2014
  end-page: 14
  article-title: Quasilinear boundary value problem with impulses: variational approach to resonance problem
  publication-title: Bound. Value Probl
– volume: 75
  start-page: 2992
  year: 2012
  end-page: 3007
  article-title: A critical point theorem via the Ekeland variational principle
  publication-title: Nonlinear Analysis
– volume: 17/3
  start-page: 717
  year: 2014
  end-page: 744
  article-title: Existence of solutions to boundary value problem for impulsive fractional differential equations
  publication-title: Fractional Calculus and Applied Analysis
– ident: e_1_2_5_4_1
  doi: 10.1016/j.jmaa.2006.09.021
– volume: 17
  start-page: 717
  year: 2014
  ident: e_1_2_5_9_1
  article-title: Existence of solutions to boundary value problem for impulsive fractional differential equations
  publication-title: Fractional Calculus and Applied Analysis
  doi: 10.2478/s13540-014-0196-y
– ident: e_1_2_5_13_1
  doi: 10.1016/j.nonrwa.2007.10.022
– ident: e_1_2_5_16_1
  doi: 10.1016/j.na.2011.12.003
– ident: e_1_2_5_2_1
  doi: 10.1155/9789775945501
– ident: e_1_2_5_14_1
  doi: 10.1515/anona-2012-0003
– ident: e_1_2_5_15_1
– start-page: 74
  volume-title: Topological Degree and Boundary Value Problems for Nonlinear Differential Equations
  year: 1993
  ident: e_1_2_5_5_1
– ident: e_1_2_5_6_1
  doi: 10.1016/j.jmaa.2004.08.034
– volume: 278
  year: 2013
  ident: e_1_2_5_8_1
  article-title: Infinitely many solutions for a boundary value problem with impulsive effects
  publication-title: Boundary Value Problems
– volume: 64
  start-page: 1
  year: 2014
  ident: e_1_2_5_12_1
  article-title: Quasilinear boundary value problem with impulses: variational approach to resonance problem
  publication-title: Bound. Value Probl
– volume: 105
  start-page: 1
  year: 2014
  ident: e_1_2_5_10_1
  article-title: Existence and multiplicity of solutions to boundary value problems for fourth‐order impulsive differential equations
  publication-title: Boundary Value Problems
– ident: e_1_2_5_11_1
  doi: 10.1002/mma.2777
– ident: e_1_2_5_3_1
  doi: 10.1142/0906
– volume: 126
  start-page: 1
  year: 2013
  ident: e_1_2_5_7_1
  article-title: Existence of solutions to second‐order boundary‐value problems with small pertubations of impulses
  publication-title: Electronic Journal of Differential Equations
SSID ssj0008112
Score 2.16518
Snippet We study the existence and multiplicity of solutions for a nonlinear boundary value problem subject to perturbations of impulsive terms. Under suitable...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1060
SubjectTerms Boundary value problems
Critical point
critical point theory
Dirichlet boundary conditions
impulsive differential equations
Mathematical analysis
Nonlinearity
Perturbation methods
Theorems
Title Multiplicity results for superlinear boundary value problems with impulsive effects
URI https://api.istex.fr/ark:/67375/WNG-H26DN01C-Q/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmma.3545
https://www.proquest.com/docview/1770183362
https://www.proquest.com/docview/1800480814
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1La9wwEIBFSC_toc2jpdsmRYWStgdv1tZzjyGvpeCFpA0N9CD0WgjJbpb1Gpr--oxk2WlKCiEnYzzGsjSjGUmjTwh9ArXxVHCTaTogGZVUZwbcbKbJxAw5c4WLOIZyzEdn9Ns5O09ZlWEvTMOH6CbcgmXE_joYuDbV7h00dDrVfQL-H7rfnPCAzT84vSNHyTwudAY6TEaLnLbc2UGx2754zxM9C5X6-16Y-XewGr3N0Sv0qy1nk2Ry2a-Xpm___INwfNqPrKGXKQjFe43WrKMVP9tAL8qO4FptoPVk9BX-ksjUXzfR97JJP7ywELtjGKjDbYUh7MVVPY_cLLAbbOJJTYsbHEDiHqcjayocpnzxxXReX4WUeZwySV6js6PDH_ujLJ3KkFlKKMssMcRbRjQb5nrCmA_AdjG0nIE2cOsp59I7KfQwl85Af-ECYswW1nHhYDhD3qDV2fXMv0XYQXwgJsJzC0pCudSScK0n1HoO3a5xPfS5bSFlE7I8nJxxpRrYcqGg7lSoux762EnOG0zHAzI7sZE7Ab24DGltgqmf42M1KvjBeJDvq5Me2mq1QCWLrlQuxAAKD_4evtU9BlsMCyx65q9rkJFxi77MKXwrNvl_C6PKci9c3z1W8D16DrEab5KGttDqclH7bYiHluZD1Pxbqd8HTw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3Lb9QwEIdHpT0AB0oLiIUCRkI8DtluYsf2qqeqUBZoVgJa0QOS5ddKVbvb1WYjQf_6jp1HKQIJcYqiTBTHnrF_sSefAV6g23gmuEk0G9CESaYTg8NsounEDHnuMhdxDMWYj47Yx-P8eAV22n9haj5EN-EWIiP21yHAw4T09hU1dDrVfYoC4AasxeW5oIi-XLGjZBqXOgMfJmFZylry7CDbbu-8NhathWr9cU1o_ipX43izvw7f25LWaSan_Wpp-vbiN4jjf77KXbjT6FCyWzvOBqz42SbcLjqIa7kJG03cl-R1A6d-cw--FnUG4olF-U7wWx1PS4LKl5TVPKKzMHSIiZs1LX6SwBL3pNm1piRh1pecTOfVWciaJ00yyX042n93uDdKmo0ZEssoyxNLDfU2pzofpnqS5z4w28XQ8hwdglvPOJfeSaGHqXQGuwwXKGM2s44Lh1809AGszs5n_iEQhxJBTITnFv2Ecakl5VpPmPUce17jevCqbSJlG2p52DzjTNW85Uxh3alQdz143lnOa1LHH2xexlbuDPTiNGS2iVx9G79Xo4y_HQ_SPfW5B1utG6gmqEuVCjHAwuOQj8_qLmM4hjUWPfPnFdrI-Je-TBk-K7b5XwujimI3HB_9q-EzuDk6LA7UwYfxp8dwC6Ubr3OItmB1uaj8E5RHS_M0hsElFQgLbQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3ba9RAFIcHbUH0QW1VXK06gnh5yHaTue5jaV3XSxZvxYIPw9wCpd3tstmA-td7ZjJJrSiITyHkhExmzpnzS3LyDUJPwG08Fdxkmo5IRiXVmYE0m2lSmTFnrnARx1DO-PSQvjliR6mqMvwL0_Ih-hduITLifB0CfOmq3XNo6HyuhwTy_2W0STlkySCIPp6jo2Qev3QGPExGi5x24NlRsdudeSEVbYZe_XZBZ_6qVmO6mdxAX7uGtlUmJ8NmbYb2x28Mx_-7k5voelKheK91my10yS-20bWyR7jW22grRX2Nnyc09Ytb6FPZ1h8eWxDvGJ7UYbfGoHtx3SwjOAsCB5u4VNPqOw4kcY_TmjU1Du988fF82ZyGmnmcSkluo8PJy8_70ywty5BZSijLLDHEW0Y0G-e6YswHYrsYW87AHbj1lHPpnRR6nEtnYMJwgTFmC-u4cPA8Q-6gjcXZwt9F2IFAEJXw3IKXUC61JFzrilrPYd41boCedSOkbGKWh6UzTlVLWy4U9J0KfTdAj3vLZcvp-IPN0zjIvYFenYS6NsHUl9krNS34wWyU76sPA7TTeYFKIV2rXIgRNB4SPlyrPwzBGL6w6IU_a8BGxn_0ZU7hWnHI_9oYVZZ7YXvvXw0foSvvDybq3evZ2_voKug23hYQ7aCN9arxD0Abrc3DGAQ_AfH7Chw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiplicity+results+for+superlinear+boundary+value+problems+with+impulsive+effects&rft.jtitle=Mathematical+methods+in+the+applied+sciences&rft.au=D%27Agu%C3%AC%2C+Giuseppina&rft.au=Di+Bella%2C+Beatrice&rft.au=Tersian%2C+Stepan&rft.date=2016-04-01&rft.issn=0170-4214&rft.eissn=1099-1476&rft.volume=39&rft.issue=5&rft.spage=1060&rft.epage=1068&rft_id=info:doi/10.1002%2Fmma.3545&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_mma_3545
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0170-4214&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0170-4214&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0170-4214&client=summon