Multiplicity results for superlinear boundary value problems with impulsive effects
We study the existence and multiplicity of solutions for a nonlinear boundary value problem subject to perturbations of impulsive terms. Under suitable assumptions on the potential of the nonlinearity, the existence of one or two solutions is established. Our approach is based on a local minimum the...
Saved in:
Published in | Mathematical methods in the applied sciences Vol. 39; no. 5; pp. 1060 - 1068 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Freiburg
Blackwell Publishing Ltd
01.04.2016
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
ISSN | 0170-4214 1099-1476 |
DOI | 10.1002/mma.3545 |
Cover
Abstract | We study the existence and multiplicity of solutions for a nonlinear boundary value problem subject to perturbations of impulsive terms. Under suitable assumptions on the potential of the nonlinearity, the existence of one or two solutions is established. Our approach is based on a local minimum theorem and a two non‐zero critical points for differentiable functionals. Copyright © 2015 John Wiley & Sons, Ltd. |
---|---|
AbstractList | We study the existence and multiplicity of solutions for a nonlinear boundary value problem subject to perturbations of impulsive terms. Under suitable assumptions on the potential of the nonlinearity, the existence of one or two solutions is established. Our approach is based on a local minimum theorem and a two non‐zero critical points for differentiable functionals. Copyright © 2015 John Wiley & Sons, Ltd. We study the existence and multiplicity of solutions for a nonlinear boundary value problem subject to perturbations of impulsive terms. Under suitable assumptions on the potential of the nonlinearity, the existence of one or two solutions is established. Our approach is based on a local minimum theorem and a two non-zero critical points for differentiable functionals. |
Author | D'Aguì, Giuseppina Di Bella, Beatrice Tersian, Stepan |
Author_xml | – sequence: 1 givenname: Giuseppina surname: D'Aguì fullname: D'Aguì, Giuseppina email: Correspondence to: Giuseppina D'Aguì, Department of Civil, Computer, Construction, Environmental Engineering and Applied Mathematics, University of Messina, 98166 Messina, Italy., dagui@unime.it organization: Department of Civil, Computer, Construction, Environmental Engineering and Applied Mathematics, University of Messina, 98166 Messina, Italy – sequence: 2 givenname: Beatrice surname: Di Bella fullname: Di Bella, Beatrice organization: Department of Mathematics and Computer Science, University of Messina, 98166 Messina, Italy – sequence: 3 givenname: Stepan surname: Tersian fullname: Tersian, Stepan organization: Department of Mathematics, University of Ruse, 7017 Ruse, Bulgaria |
BookMark | eNp1kFtrGzEQRkVJoY5T6E8Q5KUv6-iu3cfg5gZxQmlLH4WsnaVKtJdKu3H87yPjkJKSPA0DZz6-OYfooOs7QOgLJQtKCDtpW7vgUsgPaEZJVRVUaHWAZoRqUghGxSd0mNIdIaSklM3Qj9UURj8E7_y4xRFSXhNu-ojTNEAMvgMb8bqfutrGLX6wYQI8xH4doE1448c_2LfDFJJ_AAxNA25MR-hjY0OCz89zjn6dn_1cXhbXtxdXy9PrwgkuZOH4moOT3MqK2kZKULmwrpyS4JxyIJQqoS61rWhZrzljdckJc8zVSteUlnyOvu5zc5-_E6TRtD45CMF20E_J0JIQUeZHRUaP_0Pv-il2uZ2hWpMcxhXL1GJPudinFKEx2Yodfd-N0fpgKDE7xyY7NjvH_xq8HAzRt1nUW2ixRzc-wPZdzqxWp695n0Z4fOFtvDdKcy3N75sLc8nUtxtCl-Y7fwJ5q5w0 |
CODEN | MMSCDB |
CitedBy_id | crossref_primary_10_1007_s40840_019_00797_7 crossref_primary_10_1155_2018_9256192 crossref_primary_10_1186_s13661_018_1012_0 crossref_primary_10_1007_s00229_016_0903_6 crossref_primary_10_1016_j_aml_2018_02_015 crossref_primary_10_1007_s41980_018_0025_x crossref_primary_10_1186_s13662_019_2037_0 crossref_primary_10_3390_math7100880 crossref_primary_10_4236_eng_2021_132007 crossref_primary_10_1186_s13661_016_0635_2 crossref_primary_10_1186_s13662_018_1783_8 crossref_primary_10_1515_math_2022_0519 crossref_primary_10_1186_s13661_017_0855_0 crossref_primary_10_3934_dcds_2017252 |
Cites_doi | 10.1016/j.jmaa.2006.09.021 10.2478/s13540-014-0196-y 10.1016/j.nonrwa.2007.10.022 10.1016/j.na.2011.12.003 10.1155/9789775945501 10.1515/anona-2012-0003 10.1016/j.jmaa.2004.08.034 10.1002/mma.2777 10.1142/0906 |
ContentType | Journal Article |
Copyright | Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: Copyright © 2015 John Wiley & Sons, Ltd. – notice: Copyright © 2016 John Wiley & Sons, Ltd. |
DBID | BSCLL AAYXX CITATION 7TB 8FD FR3 JQ2 KR7 |
DOI | 10.1002/mma.3545 |
DatabaseName | Istex CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts |
DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection |
DatabaseTitleList | CrossRef Civil Engineering Abstracts Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Mathematics |
EISSN | 1099-1476 |
EndPage | 1068 |
ExternalDocumentID | 3970520831 10_1002_mma_3545 MMA3545 ark_67375_WNG_H26DN01C_Q |
Genre | article |
GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCZN ACGFS ACIWK ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AIDQK AIDYY AIQQE AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMVHM AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CO8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GBZZK GNP GODZA H.T H.X HBH HF~ HGLYW HHY HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6O MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ O66 O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RX1 RYL SAMSI SUPJJ UB1 V2E W8V W99 WBKPD WH7 WIB WIH WIK WOHZO WQJ WXSBR WYISQ XBAML XG1 XPP XV2 ZZTAW ~02 ~IA ~WT AAHHS ACCFJ AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE RWI RWS WRC AAYXX CITATION 7TB 8FD FR3 JQ2 KR7 |
ID | FETCH-LOGICAL-c4345-c3b3ec53a591af55e610979c65ecc6ce4668ed87a918db322d8302c2cd67d1183 |
IEDL.DBID | DR2 |
ISSN | 0170-4214 |
IngestDate | Thu Jul 10 23:43:13 EDT 2025 Fri Jul 25 12:24:07 EDT 2025 Thu Apr 24 23:03:24 EDT 2025 Tue Jul 01 00:19:01 EDT 2025 Wed Jan 22 16:46:56 EST 2025 Sun Sep 21 06:16:51 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4345-c3b3ec53a591af55e610979c65ecc6ce4668ed87a918db322d8302c2cd67d1183 |
Notes | istex:E83D38B68590FF96F41A7DB8CEFA5F95F2E46E74 ark:/67375/WNG-H26DN01C-Q ArticleID:MMA3545 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PQID | 1770183362 |
PQPubID | 1016386 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_1800480814 proquest_journals_1770183362 crossref_citationtrail_10_1002_mma_3545 crossref_primary_10_1002_mma_3545 wiley_primary_10_1002_mma_3545_MMA3545 istex_primary_ark_67375_WNG_H26DN01C_Q |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2016 |
PublicationDateYYYYMMDD | 2016-04-01 |
PublicationDate_xml | – month: 04 year: 2016 text: April 2016 |
PublicationDecade | 2010 |
PublicationPlace | Freiburg |
PublicationPlace_xml | – name: Freiburg |
PublicationTitle | Mathematical methods in the applied sciences |
PublicationTitleAlternate | Math. Meth. Appl. Sci |
PublicationYear | 2016 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | Bonanno G, Rodriguez-Lopez R, Tersian S. Existence of solutions to boundary value problem for impulsive fractional differential equations. Fractional Calculus and Applied Analysis 2014; 17/3:717-744. Benchohra M, Henderson J, Ntouyas N. Impulsive Differential Equations and Inclusions. Hindawi Publ. Corp.: New York, NY, USA, 2006. Cabada A, Tersian S. Existence and multiplicity of solutions to boundary value problems for fourth-order impulsive differential equations. Boundary Value Problems 2014; 105:1-12. Lakshmikantham V, Bainov DD, Simeonov PS. Theory of Impulsive Differential Equations. World Scientific: Singapore, 1989. Drábek P, Langerová M. Quasilinear boundary value problem with impulses: variational approach to resonance problem. Bound. Value Probl 2014; 64:1-14. Mawhin J. Topological Degree and Boundary Value Problems for Nonlinear Differential Equations, Topological methods for ordinary differential equations, Lecture Notes in Math., vol. 1537. Springer: Berlin, 1993, 74-142. Qian D, Li X. Periodic solutions for ordinary differential equations with sublinear impulsive effects. Journal on Mathematical Analysis 2005; 303:288-303. Chen H, He Z. Variational approach to some damped Dirichlet problems with impulses. Math. Methods Appl. Sci 2013; 36/18:2564-2575. Bonanno G, Di Bella B, Henderson J. Existence of solutions to second-order boundary-value problems with small pertubations of impulses. Electronic Journal of Differential Equations 2013; 126:1-14. Chen J, Tisdell CC, Yuan R. On the solvability of periodic boundary value problems with impulse. Journal on Mathematical Analysis 2007; 331:902-912. Nieto JJ, O'Regan D. Variational approach to impulsive differential equations. Nonlinear Analysis, Real World Applications 2009; 70:680-690. Bonanno G. Relations between the mountain pass theorem and local minima. Advances in Nonlinear Analysis 2012; 1:205-220. Bonanno G. A critical point theorem via the Ekeland variational principle. Nonlinear Analysis 2012; 75:2992-3007. Bonanno G, Di Bella B, Henderson J. Infinitely many solutions for a boundary value problem with impulsive effects. Boundary Value Problems 2013; 278. 2014; 17/3 2014; 105 2012; 1 2009; 70 2007; 331 2013; 126 2005; 303 2006 2013; 278 1993 2013; 36/18 2012; 75 1989 2014; 64 e_1_2_5_15_1 e_1_2_5_14_1 e_1_2_5_16_1 e_1_2_5_11_1 e_1_2_5_6_1 e_1_2_5_13_1 e_1_2_5_4_1 e_1_2_5_3_1 e_1_2_5_2_1 Mawhin J (e_1_2_5_5_1) 1993 Bonanno G (e_1_2_5_7_1) 2013; 126 Bonanno G (e_1_2_5_8_1) 2013; 278 Drábek P (e_1_2_5_12_1) 2014; 64 Bonanno G (e_1_2_5_9_1) 2014; 17 Cabada A (e_1_2_5_10_1) 2014; 105 |
References_xml | – reference: Bonanno G, Di Bella B, Henderson J. Infinitely many solutions for a boundary value problem with impulsive effects. Boundary Value Problems 2013; 278. – reference: Bonanno G. A critical point theorem via the Ekeland variational principle. Nonlinear Analysis 2012; 75:2992-3007. – reference: Bonanno G, Di Bella B, Henderson J. Existence of solutions to second-order boundary-value problems with small pertubations of impulses. Electronic Journal of Differential Equations 2013; 126:1-14. – reference: Bonanno G, Rodriguez-Lopez R, Tersian S. Existence of solutions to boundary value problem for impulsive fractional differential equations. Fractional Calculus and Applied Analysis 2014; 17/3:717-744. – reference: Bonanno G. Relations between the mountain pass theorem and local minima. Advances in Nonlinear Analysis 2012; 1:205-220. – reference: Cabada A, Tersian S. Existence and multiplicity of solutions to boundary value problems for fourth-order impulsive differential equations. Boundary Value Problems 2014; 105:1-12. – reference: Qian D, Li X. Periodic solutions for ordinary differential equations with sublinear impulsive effects. Journal on Mathematical Analysis 2005; 303:288-303. – reference: Nieto JJ, O'Regan D. Variational approach to impulsive differential equations. Nonlinear Analysis, Real World Applications 2009; 70:680-690. – reference: Mawhin J. Topological Degree and Boundary Value Problems for Nonlinear Differential Equations, Topological methods for ordinary differential equations, Lecture Notes in Math., vol. 1537. Springer: Berlin, 1993, 74-142. – reference: Chen H, He Z. Variational approach to some damped Dirichlet problems with impulses. Math. Methods Appl. Sci 2013; 36/18:2564-2575. – reference: Lakshmikantham V, Bainov DD, Simeonov PS. Theory of Impulsive Differential Equations. World Scientific: Singapore, 1989. – reference: Drábek P, Langerová M. Quasilinear boundary value problem with impulses: variational approach to resonance problem. Bound. Value Probl 2014; 64:1-14. – reference: Benchohra M, Henderson J, Ntouyas N. Impulsive Differential Equations and Inclusions. Hindawi Publ. Corp.: New York, NY, USA, 2006. – reference: Chen J, Tisdell CC, Yuan R. On the solvability of periodic boundary value problems with impulse. Journal on Mathematical Analysis 2007; 331:902-912. – start-page: 74 year: 1993 end-page: 142 – volume: 303 start-page: 288 year: 2005 end-page: 303 article-title: Periodic solutions for ordinary differential equations with sublinear impulsive effects publication-title: Journal on Mathematical Analysis – volume: 70 start-page: 680 year: 2009 end-page: 690 article-title: Variational approach to impulsive differential equations publication-title: Nonlinear Analysis, Real World Applications – volume: 36/18 start-page: 2564 year: 2013 end-page: 2575 article-title: Variational approach to some damped Dirichlet problems with impulses publication-title: Math. Methods Appl. Sci – volume: 331 start-page: 902 year: 2007 end-page: 912 article-title: On the solvability of periodic boundary value problems with impulse publication-title: Journal on Mathematical Analysis – volume: 105 start-page: 1 year: 2014 end-page: 12 article-title: Existence and multiplicity of solutions to boundary value problems for fourth‐order impulsive differential equations publication-title: Boundary Value Problems – volume: 126 start-page: 1 year: 2013 end-page: 14 article-title: Existence of solutions to second‐order boundary‐value problems with small pertubations of impulses publication-title: Electronic Journal of Differential Equations – volume: 1 start-page: 205 year: 2012 end-page: 220 article-title: Relations between the mountain pass theorem and local minima publication-title: Advances in Nonlinear Analysis – year: 2006 – year: 1989 – volume: 278 year: 2013 article-title: Infinitely many solutions for a boundary value problem with impulsive effects publication-title: Boundary Value Problems – volume: 64 start-page: 1 year: 2014 end-page: 14 article-title: Quasilinear boundary value problem with impulses: variational approach to resonance problem publication-title: Bound. Value Probl – volume: 75 start-page: 2992 year: 2012 end-page: 3007 article-title: A critical point theorem via the Ekeland variational principle publication-title: Nonlinear Analysis – volume: 17/3 start-page: 717 year: 2014 end-page: 744 article-title: Existence of solutions to boundary value problem for impulsive fractional differential equations publication-title: Fractional Calculus and Applied Analysis – ident: e_1_2_5_4_1 doi: 10.1016/j.jmaa.2006.09.021 – volume: 17 start-page: 717 year: 2014 ident: e_1_2_5_9_1 article-title: Existence of solutions to boundary value problem for impulsive fractional differential equations publication-title: Fractional Calculus and Applied Analysis doi: 10.2478/s13540-014-0196-y – ident: e_1_2_5_13_1 doi: 10.1016/j.nonrwa.2007.10.022 – ident: e_1_2_5_16_1 doi: 10.1016/j.na.2011.12.003 – ident: e_1_2_5_2_1 doi: 10.1155/9789775945501 – ident: e_1_2_5_14_1 doi: 10.1515/anona-2012-0003 – ident: e_1_2_5_15_1 – start-page: 74 volume-title: Topological Degree and Boundary Value Problems for Nonlinear Differential Equations year: 1993 ident: e_1_2_5_5_1 – ident: e_1_2_5_6_1 doi: 10.1016/j.jmaa.2004.08.034 – volume: 278 year: 2013 ident: e_1_2_5_8_1 article-title: Infinitely many solutions for a boundary value problem with impulsive effects publication-title: Boundary Value Problems – volume: 64 start-page: 1 year: 2014 ident: e_1_2_5_12_1 article-title: Quasilinear boundary value problem with impulses: variational approach to resonance problem publication-title: Bound. Value Probl – volume: 105 start-page: 1 year: 2014 ident: e_1_2_5_10_1 article-title: Existence and multiplicity of solutions to boundary value problems for fourth‐order impulsive differential equations publication-title: Boundary Value Problems – ident: e_1_2_5_11_1 doi: 10.1002/mma.2777 – ident: e_1_2_5_3_1 doi: 10.1142/0906 – volume: 126 start-page: 1 year: 2013 ident: e_1_2_5_7_1 article-title: Existence of solutions to second‐order boundary‐value problems with small pertubations of impulses publication-title: Electronic Journal of Differential Equations |
SSID | ssj0008112 |
Score | 2.16518 |
Snippet | We study the existence and multiplicity of solutions for a nonlinear boundary value problem subject to perturbations of impulsive terms. Under suitable... |
SourceID | proquest crossref wiley istex |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1060 |
SubjectTerms | Boundary value problems Critical point critical point theory Dirichlet boundary conditions impulsive differential equations Mathematical analysis Nonlinearity Perturbation methods Theorems |
Title | Multiplicity results for superlinear boundary value problems with impulsive effects |
URI | https://api.istex.fr/ark:/67375/WNG-H26DN01C-Q/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmma.3545 https://www.proquest.com/docview/1770183362 https://www.proquest.com/docview/1800480814 |
Volume | 39 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1La9wwEIBFSC_toc2jpdsmRYWStgdv1tZzjyGvpeCFpA0N9CD0WgjJbpb1Gpr--oxk2WlKCiEnYzzGsjSjGUmjTwh9ArXxVHCTaTogGZVUZwbcbKbJxAw5c4WLOIZyzEdn9Ns5O09ZlWEvTMOH6CbcgmXE_joYuDbV7h00dDrVfQL-H7rfnPCAzT84vSNHyTwudAY6TEaLnLbc2UGx2754zxM9C5X6-16Y-XewGr3N0Sv0qy1nk2Ry2a-Xpm___INwfNqPrKGXKQjFe43WrKMVP9tAL8qO4FptoPVk9BX-ksjUXzfR97JJP7ywELtjGKjDbYUh7MVVPY_cLLAbbOJJTYsbHEDiHqcjayocpnzxxXReX4WUeZwySV6js6PDH_ujLJ3KkFlKKMssMcRbRjQb5nrCmA_AdjG0nIE2cOsp59I7KfQwl85Af-ECYswW1nHhYDhD3qDV2fXMv0XYQXwgJsJzC0pCudSScK0n1HoO3a5xPfS5bSFlE7I8nJxxpRrYcqGg7lSoux762EnOG0zHAzI7sZE7Ab24DGltgqmf42M1KvjBeJDvq5Me2mq1QCWLrlQuxAAKD_4evtU9BlsMCyx65q9rkJFxi77MKXwrNvl_C6PKci9c3z1W8D16DrEab5KGttDqclH7bYiHluZD1Pxbqd8HTw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3Lb9QwEIdHpT0AB0oLiIUCRkI8DtluYsf2qqeqUBZoVgJa0QOS5ddKVbvb1WYjQf_6jp1HKQIJcYqiTBTHnrF_sSefAV6g23gmuEk0G9CESaYTg8NsounEDHnuMhdxDMWYj47Yx-P8eAV22n9haj5EN-EWIiP21yHAw4T09hU1dDrVfYoC4AasxeW5oIi-XLGjZBqXOgMfJmFZylry7CDbbu-8NhathWr9cU1o_ipX43izvw7f25LWaSan_Wpp-vbiN4jjf77KXbjT6FCyWzvOBqz42SbcLjqIa7kJG03cl-R1A6d-cw--FnUG4olF-U7wWx1PS4LKl5TVPKKzMHSIiZs1LX6SwBL3pNm1piRh1pecTOfVWciaJ00yyX042n93uDdKmo0ZEssoyxNLDfU2pzofpnqS5z4w28XQ8hwdglvPOJfeSaGHqXQGuwwXKGM2s44Lh1809AGszs5n_iEQhxJBTITnFv2Ecakl5VpPmPUce17jevCqbSJlG2p52DzjTNW85Uxh3alQdz143lnOa1LHH2xexlbuDPTiNGS2iVx9G79Xo4y_HQ_SPfW5B1utG6gmqEuVCjHAwuOQj8_qLmM4hjUWPfPnFdrI-Je-TBk-K7b5XwujimI3HB_9q-EzuDk6LA7UwYfxp8dwC6Ubr3OItmB1uaj8E5RHS_M0hsElFQgLbQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3ba9RAFIcHbUH0QW1VXK06gnh5yHaTue5jaV3XSxZvxYIPw9wCpd3tstmA-td7ZjJJrSiITyHkhExmzpnzS3LyDUJPwG08Fdxkmo5IRiXVmYE0m2lSmTFnrnARx1DO-PSQvjliR6mqMvwL0_Ih-hduITLifB0CfOmq3XNo6HyuhwTy_2W0STlkySCIPp6jo2Qev3QGPExGi5x24NlRsdudeSEVbYZe_XZBZ_6qVmO6mdxAX7uGtlUmJ8NmbYb2x28Mx_-7k5voelKheK91my10yS-20bWyR7jW22grRX2Nnyc09Ytb6FPZ1h8eWxDvGJ7UYbfGoHtx3SwjOAsCB5u4VNPqOw4kcY_TmjU1Du988fF82ZyGmnmcSkluo8PJy8_70ywty5BZSijLLDHEW0Y0G-e6YswHYrsYW87AHbj1lHPpnRR6nEtnYMJwgTFmC-u4cPA8Q-6gjcXZwt9F2IFAEJXw3IKXUC61JFzrilrPYd41boCedSOkbGKWh6UzTlVLWy4U9J0KfTdAj3vLZcvp-IPN0zjIvYFenYS6NsHUl9krNS34wWyU76sPA7TTeYFKIV2rXIgRNB4SPlyrPwzBGL6w6IU_a8BGxn_0ZU7hWnHI_9oYVZZ7YXvvXw0foSvvDybq3evZ2_voKug23hYQ7aCN9arxD0Abrc3DGAQ_AfH7Chw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiplicity+results+for+superlinear+boundary+value+problems+with+impulsive+effects&rft.jtitle=Mathematical+methods+in+the+applied+sciences&rft.au=D%27Agu%C3%AC%2C+Giuseppina&rft.au=Di+Bella%2C+Beatrice&rft.au=Tersian%2C+Stepan&rft.date=2016-04-01&rft.issn=0170-4214&rft.eissn=1099-1476&rft.volume=39&rft.issue=5&rft.spage=1060&rft.epage=1068&rft_id=info:doi/10.1002%2Fmma.3545&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_mma_3545 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0170-4214&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0170-4214&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0170-4214&client=summon |