Multiplicity results for elliptic problems with variable exponent and nonhomogeneous Neumann conditions

Applying three critical point theorems, we prove the existence of at least three weak solutions for a class of differential equations with p(x)‐Laplacian and subject to small perturbations of nonhomogeneous Neumann conditions. Copyright © 2014 John Wiley & Sons, Ltd.

Saved in:
Bibliographic Details
Published inMathematical methods in the applied sciences Vol. 38; no. 12; pp. 2589 - 2599
Main Authors Heidarkhani, Shapour, Afrouzi, Ghasem A., Hadjian, Armin
Format Journal Article
LanguageEnglish
Published Freiburg Blackwell Publishing Ltd 01.08.2015
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN0170-4214
1099-1476
DOI10.1002/mma.3244

Cover

Abstract Applying three critical point theorems, we prove the existence of at least three weak solutions for a class of differential equations with p(x)‐Laplacian and subject to small perturbations of nonhomogeneous Neumann conditions. Copyright © 2014 John Wiley & Sons, Ltd.
AbstractList Applying three critical point theorems, we prove the existence of at least three weak solutions for a class of differential equations with p(x)‐Laplacian and subject to small perturbations of nonhomogeneous Neumann conditions. Copyright © 2014 John Wiley & Sons, Ltd.
Applying three critical point theorems, we prove the existence of at least three weak solutions for a class of differential equations with p ( x )‐Laplacian and subject to small perturbations of nonhomogeneous Neumann conditions. Copyright © 2014 John Wiley & Sons, Ltd.
Applying three critical point theorems, we prove the existence of at least three weak solutions for a class of differential equations with p(x)-Laplacian and subject to small perturbations of nonhomogeneous Neumann conditions.
Author Heidarkhani, Shapour
Afrouzi, Ghasem A.
Hadjian, Armin
Author_xml – sequence: 1
  givenname: Shapour
  surname: Heidarkhani
  fullname: Heidarkhani, Shapour
  email: Correspondence to: Shapour Heidarkhani, Department of Mathematics, Faculty of Sciences, Razi University, 67149 Kermanshah, Iran., s.heidarkhani@razi.ac.ir
  organization: Department of Mathematics, Faculty of Sciences, Razi University, 67149, Kermanshah, Iran
– sequence: 2
  givenname: Ghasem A.
  surname: Afrouzi
  fullname: Afrouzi, Ghasem A.
  organization: Department of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, Babolsar, Iran
– sequence: 3
  givenname: Armin
  surname: Hadjian
  fullname: Hadjian, Armin
  organization: Department of Mathematics, Faculty of Basic Sciences, University of Bojnord, P.O. Box 1339, Bojnord 94531, Iran
BookMark eNp1kE1v1DAQhi1UJLYFiZ9giQuXLHbsfPhYFiiVdrcCgThak2TSuiR2sB3a_fd4u1UrED2NRnpm5pn3mBxZZ5GQ15wtOWP5u3GEpcilfEYWnCmVcVmVR2TBeMUymXP5ghyHcM0YqznPF-RyMw_RTINpTdxRjyG1gfbOUxwGM0XT0sm7ZsAx0BsTr-hv8AZST_F2SpdtpGA7miSu3Ogu0aKbA93iPIK1tHW2M9E4G16S5z0MAV_d1xPy_dPHb6vP2fri7Hx1us5aKaTMJDJouBBFzztAWaqWFY0qOlQ99n1d9QBt1yhZK5RQQdvkSuZF3THFpICyECfk7WFvsv41Y4h6NKFNv8CdmeYVr1UhBK8S-uYf9NrN3iY7zUtVskLW5Z5aHqjWuxA89jolBfufogczaM70Pnedctf73B8NHgYmb0bwu_-h2QG9MQPunuT0ZnP6N29CxNsHHvxPnUyrQv_Ynulcfv2w-rJd6_fiD1y7pNg
CODEN MMSCDB
CitedBy_id crossref_primary_10_1007_s12591_017_0345_y
crossref_primary_10_1515_msds_2020_0108
crossref_primary_10_3103_S106836232201006X
crossref_primary_10_1002_mana_201900123
crossref_primary_10_54503_0002_3043_2022_57_1_64_76
crossref_primary_10_52846_ami_v48i1_1365
Cites_doi 10.21136/CMJ.1991.102493
10.1016/j.na.2010.12.013
10.1016/j.matpur.2007.10.006
10.1016/j.na.2009.03.009
10.3934/dcdss.2012.5.753
10.1007/s11565-006-0002-9
10.1016/j.na.2012.05.009
10.1016/j.na.2004.09.026
10.1006/jmaa.2000.7617
10.1016/S0377-0427(99)00269-1
10.1016/j.na.2009.05.007
10.1007/BFb0104029
10.1006/jmaa.2001.7618
10.1155/2009/670675
10.1016/j.jde.2008.02.025
10.1016/j.na.2006.09.060
10.1070/IM1987v029n01ABEH000958
10.1016/j.jmaa.2010.09.050
10.1017/CBO9780511760631
10.14232/ejqtde.2013.1.24
10.1080/17476933.2012.662225
10.1080/00036810903397438
10.1016/j.aml.2010.03.015
10.1155/2010/564363
10.1137/050624522
10.1002/mana.200810232
10.1002/mma.1568
ContentType Journal Article
Copyright Copyright © 2014 John Wiley & Sons, Ltd.
Copyright © 2015 John Wiley & Sons, Ltd.
Copyright_xml – notice: Copyright © 2014 John Wiley & Sons, Ltd.
– notice: Copyright © 2015 John Wiley & Sons, Ltd.
DBID BSCLL
AAYXX
CITATION
7TB
8FD
FR3
JQ2
KR7
DOI 10.1002/mma.3244
DatabaseName Istex
CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
DatabaseTitleList
CrossRef
Civil Engineering Abstracts
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Mathematics
EISSN 1099-1476
EndPage 2599
ExternalDocumentID 3742643641
10_1002_mma_3244
MMA3244
ark_67375_WNG_24RDCQNL_B
Genre article
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AIQQE
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMVHM
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CO8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GBZZK
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6O
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
RYL
SAMSI
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WOHZO
WQJ
WXSBR
WYISQ
XBAML
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
AAHHS
ACCFJ
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
RWI
RWS
WRC
AAYXX
CITATION
7TB
8FD
FR3
JQ2
KR7
ID FETCH-LOGICAL-c4344-4e0ab1335f1dae469c05b95de9feff87faacdb9489e4a7acb294258d09043a653
IEDL.DBID DR2
ISSN 0170-4214
IngestDate Fri Jul 11 06:37:19 EDT 2025
Fri Jul 25 12:16:19 EDT 2025
Tue Jul 01 00:19:00 EDT 2025
Thu Apr 24 23:03:24 EDT 2025
Wed Jan 22 16:41:58 EST 2025
Sun Sep 21 06:18:38 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4344-4e0ab1335f1dae469c05b95de9feff87faacdb9489e4a7acb294258d09043a653
Notes ark:/67375/WNG-24RDCQNL-B
ArticleID:MMA3244
istex:2921B2E95EF4892235179CD6D37C8645FC28A4DC
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6327-918X
PQID 1696054867
PQPubID 1016386
PageCount 11
ParticipantIDs proquest_miscellaneous_1718953317
proquest_journals_1696054867
crossref_citationtrail_10_1002_mma_3244
crossref_primary_10_1002_mma_3244
wiley_primary_10_1002_mma_3244_MMA3244
istex_primary_ark_67375_WNG_24RDCQNL_B
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2015
PublicationDateYYYYMMDD 2015-08-01
PublicationDate_xml – month: 08
  year: 2015
  text: August 2015
PublicationDecade 2010
PublicationPlace Freiburg
PublicationPlace_xml – name: Freiburg
PublicationTitle Mathematical methods in the applied sciences
PublicationTitleAlternate Math. Meth. Appl. Sci
PublicationYear 2015
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Fan XL, Deng SG. Remarks on Ricceri's variational principle and applications to the p(x)-Laplacian equations. Nonlinear Analysis 2007; 67:3064-3075.
Bonanno G, Candito P. Non-differentiable functionals and applications to elliptic problems with discontinuous nonlinearities. Journal of Differential Equations 2008; 244:3031-3059.
Bonanno G, Chinnì A. Existence results of infinitely many solutions for p(x)-Laplacian elliptic Dirichlet problems. Complex Variables and Elliptic Equations 2012; 57:1233-1246.
Bonanno G, Chinnì A. Discontinuous elliptic problems involving the p(x)-Laplacian. Mathematische Nachrichten 2011; 284:639-652.
Kristály A, Rădulescu V, Varga C. Variational Principles in Mathematical Physics, Geometry, and Economics: Qualitative Analysis of Nonlinear Equations and Unilateral Problems, Encyclopedia of Mathematics and its Applications, Vol. 136. Cambridge University Press: Cambridge, 2010.
D'Aguì G, Heidarkhani S, Molica Bisci G. Multiple solutions for a perturbed mixed boundary value problem involving the one-dimensional p-Laplacian. Electronic Journal of Qualitative Theory of Differential Equations 2013; 24:1-14.
Bonanno G, Marano SA. On the structure of the critical set of non-differentiable functions with a weak compactness condition. Applied Analysis 2010; 89:1-10.
Chen Y, Levine S, Rao M. Variable exponent linear growth functional in image restoration. SIAM Journal on Applied Mathematics 2006; 66(4):1383-1406.
Antontsev SN, Shmarev SI. A model porous medium equation with variable exponent of nonlinearity: existence, uniqueness and localization properties of solutions. Nonlinear Analysis 2005; 60:515-545.
Ricceri B. A general variational principle and some of its applications. Journal of Computational and Applied Mathematics 2000; 113:401-410.
D'Aguì G, Sciammetta A. Infinitely many solutions to elliptic problems with variable exponent and nonhomogeneous Neumann conditions. Nonlinear Analysis 2012; 75:5612-5619.
Allaoui M, El Amrouss AR, Ourraoui A. Existence and multiplicity of solutions for a Steklov problem involving the p(x)-Laplace operator. Electronic Journal of Differential Equations 2012; 132:1-12.
Bonanno G, Molica Bisci G. Infinitely many solutions for a boundary value problem with discontinuous nonlinearities. Boundary Value Problems 2009; 2009:1-20.
Ruz̆ic̆ka M. Electro-rheological Fluids: Modeling and Mathematical Theory, Lecture Notes in Math., vol. 1784. Springer-Verlag: Berlin, 2000.
Cammaroto F, Chinnì A, Di Bella B. Multiple solutions for a Neumann problem involving the p(x)-Laplacian. Nonlinear Analysis 2009; 71:4486-4492.
Bonanno G, Chinnì A. Existence of three solutions for a perturbed two-point boundary value problem. Applied Mathematics Letters 2010; 23:807-811.
Fan XL, Zhao D. On the spaces Lp(x)(Ω) and Wm,p(x)(Ω). Journal of Mathematical Analysis and Applications 2001; 263:424-446.
Ji C. Remarks on the existence of three solutions for the p(x)-Laplacian equations. Nonlinear Analysis 2011; 74:2908-2915.
Chinnì A, Livrea R. Multiple solutions for a Neumann-type differential inclusion problem involving the p(.)-Laplacian. Discrete and Continuous Dynamical Systems-Series S (DCDS-S) 2012; 5:753-764.
Bonanno G, Chinnì A. Multiple solutions for elliptic problems involving the p(x)-Laplacian. Matematiche (Catania) 2011; 66:105-113.
Bonanno G, D'Aguì G. Multiplicity results for a perturbed elliptic Neumann problem. Abstract and Applied Analysis 2010; 1-10.
Zhikov VV. Averaging of functionals of the calculus of variations and elasticity theory. Mathematics of the USSR-Izvestiya 1987; 29:33-66.
Bonanno G, Di Bella B, Henderson J. Existence of solutions to second-order boundary-value problems with small perturbations of impulses. Electronic Journal of Differential Equations 2013; 126:1-14.
Antontsev SN, Rodrigues JF. On stationary thermo-rheological viscous flows. Annali dell'Universitá di Ferrara. Sezione VII. Scienze Matematiche 2006; 52:19-36.
Dai G. Infinitely many non-negative solutions for a Dirichlet problem involving p(x)-Laplacian. Nonlinear Analysis 2009; 71:5840-5849.
Fan XL, Shen JS, Zhao D. Sobolev embedding theorems for spaces Wk,p(x)(Ω). Journal of Mathematical Analysis and Applications 2001; 262:749-760.
Yin H. Existence of three solutions for a Neumann problem involving the p(x)-Laplace operator. Mathematical Methods in the Applied Sciences 2012; 35:307-313.
Harjulehto P, Hästö P, Latvala V. Minimizers of the variable exponent, non-uniformly convex Dirichlet energy. Journal de Mathématiques Pures et Appliquées 2008; 89:174-197.
Kovác̆ik O, Rákosník J. On spaces Lp(x) and Wk,p(x). Czechoslovak Mathematical Journal 1991; 41:592-618.
Candito P, D'Aguì G. Three solutions to a perturbed nonlinear discrete Dirichlet problem. Journal of Mathematical Analysis and Applications 2011; 375:594-601.
2006; 52
2001; 263
2001; 262
2000; 113
2010
2013; 24
2013; 126
2011; 74
2005; 60
2008; 244
2012; 57
2012; 35
2012; 75
2011; 375
2010; 89
2010; 23
2009; 2009
2012; 132
2000
2006; 66
2009; 71
1991; 41
2008; 89
2011; 66
2011; 284
2012; 5
2007; 67
1987; 29
Bonanno G (e_1_2_4_30_1) 2013; 126
Bonanno G (e_1_2_4_29_1) 2010
e_1_2_4_21_1
e_1_2_4_20_1
e_1_2_4_23_1
e_1_2_4_22_1
e_1_2_4_25_1
e_1_2_4_24_1
e_1_2_4_27_1
e_1_2_4_26_1
e_1_2_4_28_1
e_1_2_4_3_1
Antontsev SN (e_1_2_4_7_1) 2005; 60
Allaoui M (e_1_2_4_10_1) 2012; 132
e_1_2_4_2_1
e_1_2_4_5_1
e_1_2_4_4_1
e_1_2_4_6_1
e_1_2_4_8_1
Kovác̆ik O (e_1_2_4_9_1) 1991; 41
e_1_2_4_32_1
e_1_2_4_31_1
e_1_2_4_12_1
e_1_2_4_13_1
e_1_2_4_15_1
e_1_2_4_16_1
e_1_2_4_18_1
e_1_2_4_17_1
Chinnì A (e_1_2_4_14_1) 2012; 5
e_1_2_4_19_1
Bonanno G (e_1_2_4_11_1) 2011; 66
References_xml – reference: Harjulehto P, Hästö P, Latvala V. Minimizers of the variable exponent, non-uniformly convex Dirichlet energy. Journal de Mathématiques Pures et Appliquées 2008; 89:174-197.
– reference: Bonanno G, Molica Bisci G. Infinitely many solutions for a boundary value problem with discontinuous nonlinearities. Boundary Value Problems 2009; 2009:1-20.
– reference: Bonanno G, Chinnì A. Discontinuous elliptic problems involving the p(x)-Laplacian. Mathematische Nachrichten 2011; 284:639-652.
– reference: Kristály A, Rădulescu V, Varga C. Variational Principles in Mathematical Physics, Geometry, and Economics: Qualitative Analysis of Nonlinear Equations and Unilateral Problems, Encyclopedia of Mathematics and its Applications, Vol. 136. Cambridge University Press: Cambridge, 2010.
– reference: Dai G. Infinitely many non-negative solutions for a Dirichlet problem involving p(x)-Laplacian. Nonlinear Analysis 2009; 71:5840-5849.
– reference: Bonanno G, Chinnì A. Existence of three solutions for a perturbed two-point boundary value problem. Applied Mathematics Letters 2010; 23:807-811.
– reference: Fan XL, Shen JS, Zhao D. Sobolev embedding theorems for spaces Wk,p(x)(Ω). Journal of Mathematical Analysis and Applications 2001; 262:749-760.
– reference: Antontsev SN, Shmarev SI. A model porous medium equation with variable exponent of nonlinearity: existence, uniqueness and localization properties of solutions. Nonlinear Analysis 2005; 60:515-545.
– reference: Ricceri B. A general variational principle and some of its applications. Journal of Computational and Applied Mathematics 2000; 113:401-410.
– reference: Bonanno G, Chinnì A. Multiple solutions for elliptic problems involving the p(x)-Laplacian. Matematiche (Catania) 2011; 66:105-113.
– reference: Chinnì A, Livrea R. Multiple solutions for a Neumann-type differential inclusion problem involving the p(.)-Laplacian. Discrete and Continuous Dynamical Systems-Series S (DCDS-S) 2012; 5:753-764.
– reference: Yin H. Existence of three solutions for a Neumann problem involving the p(x)-Laplace operator. Mathematical Methods in the Applied Sciences 2012; 35:307-313.
– reference: Fan XL, Zhao D. On the spaces Lp(x)(Ω) and Wm,p(x)(Ω). Journal of Mathematical Analysis and Applications 2001; 263:424-446.
– reference: Bonanno G, Candito P. Non-differentiable functionals and applications to elliptic problems with discontinuous nonlinearities. Journal of Differential Equations 2008; 244:3031-3059.
– reference: D'Aguì G, Heidarkhani S, Molica Bisci G. Multiple solutions for a perturbed mixed boundary value problem involving the one-dimensional p-Laplacian. Electronic Journal of Qualitative Theory of Differential Equations 2013; 24:1-14.
– reference: Bonanno G, D'Aguì G. Multiplicity results for a perturbed elliptic Neumann problem. Abstract and Applied Analysis 2010; 1-10.
– reference: Ji C. Remarks on the existence of three solutions for the p(x)-Laplacian equations. Nonlinear Analysis 2011; 74:2908-2915.
– reference: D'Aguì G, Sciammetta A. Infinitely many solutions to elliptic problems with variable exponent and nonhomogeneous Neumann conditions. Nonlinear Analysis 2012; 75:5612-5619.
– reference: Fan XL, Deng SG. Remarks on Ricceri's variational principle and applications to the p(x)-Laplacian equations. Nonlinear Analysis 2007; 67:3064-3075.
– reference: Bonanno G, Marano SA. On the structure of the critical set of non-differentiable functions with a weak compactness condition. Applied Analysis 2010; 89:1-10.
– reference: Cammaroto F, Chinnì A, Di Bella B. Multiple solutions for a Neumann problem involving the p(x)-Laplacian. Nonlinear Analysis 2009; 71:4486-4492.
– reference: Zhikov VV. Averaging of functionals of the calculus of variations and elasticity theory. Mathematics of the USSR-Izvestiya 1987; 29:33-66.
– reference: Kovác̆ik O, Rákosník J. On spaces Lp(x) and Wk,p(x). Czechoslovak Mathematical Journal 1991; 41:592-618.
– reference: Bonanno G, Di Bella B, Henderson J. Existence of solutions to second-order boundary-value problems with small perturbations of impulses. Electronic Journal of Differential Equations 2013; 126:1-14.
– reference: Ruz̆ic̆ka M. Electro-rheological Fluids: Modeling and Mathematical Theory, Lecture Notes in Math., vol. 1784. Springer-Verlag: Berlin, 2000.
– reference: Bonanno G, Chinnì A. Existence results of infinitely many solutions for p(x)-Laplacian elliptic Dirichlet problems. Complex Variables and Elliptic Equations 2012; 57:1233-1246.
– reference: Allaoui M, El Amrouss AR, Ourraoui A. Existence and multiplicity of solutions for a Steklov problem involving the p(x)-Laplace operator. Electronic Journal of Differential Equations 2012; 132:1-12.
– reference: Antontsev SN, Rodrigues JF. On stationary thermo-rheological viscous flows. Annali dell'Universitá di Ferrara. Sezione VII. Scienze Matematiche 2006; 52:19-36.
– reference: Chen Y, Levine S, Rao M. Variable exponent linear growth functional in image restoration. SIAM Journal on Applied Mathematics 2006; 66(4):1383-1406.
– reference: Candito P, D'Aguì G. Three solutions to a perturbed nonlinear discrete Dirichlet problem. Journal of Mathematical Analysis and Applications 2011; 375:594-601.
– volume: 132
  start-page: 1
  year: 2012
  end-page: 12
  article-title: Existence and multiplicity of solutions for a Steklov problem involving the ( )‐Laplace operator
  publication-title: Electronic Journal of Differential Equations
– volume: 284
  start-page: 639
  year: 2011
  end-page: 652
  article-title: Discontinuous elliptic problems involving the ( )‐Laplacian
  publication-title: Mathematische Nachrichten
– volume: 126
  start-page: 1
  year: 2013
  end-page: 14
  article-title: Existence of solutions to second‐order boundary‐value problems with small perturbations of impulses
  publication-title: Electronic Journal of Differential Equations
– volume: 29
  start-page: 33
  year: 1987
  end-page: 66
  article-title: Averaging of functionals of the calculus of variations and elasticity theory
  publication-title: Mathematics of the USSR‐Izvestiya
– volume: 67
  start-page: 3064
  year: 2007
  end-page: 3075
  article-title: Remarks on Ricceri's variational principle and applications to the ( )‐Laplacian equations
  publication-title: Nonlinear Analysis
– volume: 5
  start-page: 753
  year: 2012
  end-page: 764
  article-title: Multiple solutions for a Neumann‐type differential inclusion problem involving the (.)‐Laplacian
  publication-title: Discrete and Continuous Dynamical Systems‐Series S (DCDS‐S)
– volume: 113
  start-page: 401
  year: 2000
  end-page: 410
  article-title: A general variational principle and some of its applications
  publication-title: Journal of Computational and Applied Mathematics
– start-page: 1
  year: 2010
  end-page: 10
  article-title: Multiplicity results for a perturbed elliptic Neumann problem
  publication-title: Abstract and Applied Analysis
– volume: 57
  start-page: 1233
  year: 2012
  end-page: 1246
  article-title: Existence results of infinitely many solutions for ( )‐Laplacian elliptic Dirichlet problems
  publication-title: Complex Variables and Elliptic Equations
– volume: 71
  start-page: 4486
  year: 2009
  end-page: 4492
  article-title: Multiple solutions for a Neumann problem involving the ( )‐Laplacian
  publication-title: Nonlinear Analysis
– year: 2000
– volume: 244
  start-page: 3031
  year: 2008
  end-page: 3059
  article-title: Non‐differentiable functionals and applications to elliptic problems with discontinuous nonlinearities
  publication-title: Journal of Differential Equations
– volume: 35
  start-page: 307
  year: 2012
  end-page: 313
  article-title: Existence of three solutions for a Neumann problem involving the ( )‐Laplace operator
  publication-title: Mathematical Methods in the Applied Sciences
– volume: 52
  start-page: 19
  year: 2006
  end-page: 36
  article-title: On stationary thermo‐rheological viscous flows
  publication-title: Annali dell'Universitá di Ferrara. Sezione VII. Scienze Matematiche
– volume: 74
  start-page: 2908
  year: 2011
  end-page: 2915
  article-title: Remarks on the existence of three solutions for the ( )‐Laplacian equations
  publication-title: Nonlinear Analysis
– year: 2010
– volume: 60
  start-page: 515
  year: 2005
  end-page: 545
  article-title: A model porous medium equation with variable exponent of nonlinearity: existence, uniqueness and localization properties of solutions
  publication-title: Nonlinear Analysis
– volume: 41
  start-page: 592
  year: 1991
  end-page: 618
  article-title: On spaces and
  publication-title: Czechoslovak Mathematical Journal
– volume: 75
  start-page: 5612
  year: 2012
  end-page: 5619
  article-title: Infinitely many solutions to elliptic problems with variable exponent and nonhomogeneous Neumann conditions
  publication-title: Nonlinear Analysis
– volume: 263
  start-page: 424
  year: 2001
  end-page: 446
  article-title: On the spaces (Ω) and (Ω)
  publication-title: Journal of Mathematical Analysis and Applications
– volume: 66
  start-page: 105
  year: 2011
  end-page: 113
  article-title: Multiple solutions for elliptic problems involving the ( )‐Laplacian
  publication-title: Matematiche (Catania)
– volume: 66
  start-page: 1383
  issue: 4
  year: 2006
  end-page: 1406
  article-title: Variable exponent linear growth functional in image restoration
  publication-title: SIAM Journal on Applied Mathematics
– volume: 24
  start-page: 1
  year: 2013
  end-page: 14
  article-title: Multiple solutions for a perturbed mixed boundary value problem involving the one‐dimensional ‐Laplacian
  publication-title: Electronic Journal of Qualitative Theory of Differential Equations
– volume: 89
  start-page: 174
  year: 2008
  end-page: 197
  article-title: Minimizers of the variable exponent, non‐uniformly convex Dirichlet energy
  publication-title: Journal de Mathématiques Pures et Appliquées
– volume: 262
  start-page: 749
  year: 2001
  end-page: 760
  article-title: Sobolev embedding theorems for spaces (Ω)
  publication-title: Journal of Mathematical Analysis and Applications
– volume: 89
  start-page: 1
  year: 2010
  end-page: 10
  article-title: On the structure of the critical set of non‐differentiable functions with a weak compactness condition
  publication-title: Applied Analysis
– volume: 375
  start-page: 594
  year: 2011
  end-page: 601
  article-title: Three solutions to a perturbed nonlinear discrete Dirichlet problem
  publication-title: Journal of Mathematical Analysis and Applications
– volume: 23
  start-page: 807
  year: 2010
  end-page: 811
  article-title: Existence of three solutions for a perturbed two‐point boundary value problem
  publication-title: Applied Mathematics Letters
– volume: 71
  start-page: 5840
  year: 2009
  end-page: 5849
  article-title: Infinitely many non‐negative solutions for a Dirichlet problem involving ( )‐Laplacian
  publication-title: Nonlinear Analysis
– volume: 2009
  start-page: 1
  year: 2009
  end-page: 20
  article-title: Infinitely many solutions for a boundary value problem with discontinuous nonlinearities
  publication-title: Boundary Value Problems
– volume: 41
  start-page: 592
  year: 1991
  ident: e_1_2_4_9_1
  article-title: On spaces L p(x) and W k,p(x)
  publication-title: Czechoslovak Mathematical Journal
  doi: 10.21136/CMJ.1991.102493
– ident: e_1_2_4_19_1
  doi: 10.1016/j.na.2010.12.013
– ident: e_1_2_4_5_1
  doi: 10.1016/j.matpur.2007.10.006
– ident: e_1_2_4_13_1
  doi: 10.1016/j.na.2009.03.009
– volume: 5
  start-page: 753
  year: 2012
  ident: e_1_2_4_14_1
  article-title: Multiple solutions for a Neumann‐type differential inclusion problem involving the p(.)‐Laplacian
  publication-title: Discrete and Continuous Dynamical Systems‐Series S (DCDS‐S)
  doi: 10.3934/dcdss.2012.5.753
– volume: 132
  start-page: 1
  year: 2012
  ident: e_1_2_4_10_1
  article-title: Existence and multiplicity of solutions for a Steklov problem involving the p(x)‐Laplace operator
  publication-title: Electronic Journal of Differential Equations
– ident: e_1_2_4_18_1
  doi: 10.1016/j.matpur.2007.10.006
– ident: e_1_2_4_6_1
  doi: 10.1007/s11565-006-0002-9
– ident: e_1_2_4_16_1
  doi: 10.1016/j.na.2012.05.009
– volume: 60
  start-page: 515
  year: 2005
  ident: e_1_2_4_7_1
  article-title: A model porous medium equation with variable exponent of nonlinearity: existence, uniqueness and localization properties of solutions
  publication-title: Nonlinear Analysis
  doi: 10.1016/j.na.2004.09.026
– ident: e_1_2_4_8_1
  doi: 10.1006/jmaa.2000.7617
– ident: e_1_2_4_22_1
  doi: 10.1016/S0377-0427(99)00269-1
– volume: 66
  start-page: 105
  year: 2011
  ident: e_1_2_4_11_1
  article-title: Multiple solutions for elliptic problems involving the p(x)‐Laplacian
  publication-title: Matematiche (Catania)
– ident: e_1_2_4_15_1
  doi: 10.1016/j.na.2009.05.007
– volume: 126
  start-page: 1
  year: 2013
  ident: e_1_2_4_30_1
  article-title: Existence of solutions to second‐order boundary‐value problems with small perturbations of impulses
  publication-title: Electronic Journal of Differential Equations
– ident: e_1_2_4_2_1
  doi: 10.1007/BFb0104029
– ident: e_1_2_4_26_1
  doi: 10.1006/jmaa.2001.7618
– ident: e_1_2_4_23_1
  doi: 10.1155/2009/670675
– ident: e_1_2_4_25_1
  doi: 10.1016/j.jde.2008.02.025
– ident: e_1_2_4_17_1
  doi: 10.1016/j.na.2006.09.060
– ident: e_1_2_4_3_1
  doi: 10.1070/IM1987v029n01ABEH000958
– ident: e_1_2_4_31_1
  doi: 10.1016/j.jmaa.2010.09.050
– ident: e_1_2_4_27_1
  doi: 10.1017/CBO9780511760631
– ident: e_1_2_4_32_1
  doi: 10.14232/ejqtde.2013.1.24
– ident: e_1_2_4_12_1
  doi: 10.1080/17476933.2012.662225
– ident: e_1_2_4_24_1
  doi: 10.1080/00036810903397438
– ident: e_1_2_4_28_1
  doi: 10.1016/j.aml.2010.03.015
– start-page: 1
  year: 2010
  ident: e_1_2_4_29_1
  article-title: Multiplicity results for a perturbed elliptic Neumann problem
  publication-title: Abstract and Applied Analysis
  doi: 10.1155/2010/564363
– ident: e_1_2_4_4_1
  doi: 10.1137/050624522
– ident: e_1_2_4_21_1
  doi: 10.1002/mana.200810232
– ident: e_1_2_4_20_1
  doi: 10.1002/mma.1568
SSID ssj0008112
Score 2.0778496
Snippet Applying three critical point theorems, we prove the existence of at least three weak solutions for a class of differential equations with p(x)‐Laplacian and...
Applying three critical point theorems, we prove the existence of at least three weak solutions for a class of differential equations with p ( x )‐Laplacian...
Applying three critical point theorems, we prove the existence of at least three weak solutions for a class of differential equations with p(x)-Laplacian and...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2589
SubjectTerms Critical point
Differential equations
Existence theorems
Exponents
Mathematical analysis
multiple solutions
Neumann problem
p(x)-Laplacian
Perturbation methods
Theorems
variable exponent Sobolev spaces
Title Multiplicity results for elliptic problems with variable exponent and nonhomogeneous Neumann conditions
URI https://api.istex.fr/ark:/67375/WNG-24RDCQNL-B/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmma.3244
https://www.proquest.com/docview/1696054867
https://www.proquest.com/docview/1718953317
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9VAEF6kvuiDtlXxtLWsIFUfcppNZnN5rL1YxBywWCz4sOwtWupJSnOOFH-9M7nVioL4FEImbDI7s_PN7uy3jL1wBjFrAjKwrpQBJNoFOZgogNJgj0MZJoY2Chez5PgU3p3Js76qkvbCdPwQ44QbeUY7XpODa9Ps3pCGzud6imiAqEBFnBBt_sHJDXNUJtqFTmKHCSASMPDOhtHu8OKtSHSXlHp9C2b-ClbbaHP0kH0evrMrMrmYLhdman_8RuH4fz-yyh70IJTvdVazxu74ap3dL0YG12adrfVO3_BXPTP160fsS9GVH55bxO4cE3W8bTjCXk60njj4WN4fUNNwmuDl3zETp71Z3F9f1hXGN64rx6u6-lrPazRdXy8bPvO0kFBxzMxdV0D2mJ0eHX7cPw76kxoCCzFAAD7UBrNdWQqnPWbcNpQml87npS_LLC21ts7kkOUedKqtiXIcKzIX5iHEOpHxE7aCbfunjAtII-Igy0CUkBib5QZTWJdSZml0LCbs5dBryvY05nSaxjfVETBHCvWpSJ8T9nyUvOyoO_4gs9N2_Cigry6o1C2V6tPsrYrg5GD_w-y9ejNhW4NlqN7LGyUSzP8kcRZiW-Nj9E9adNGtDpXA4E8lvAJldloz-OvHqKLYo-vGvwpusnuI32RXj7jFVhZXS_8MMdLCbLfe8BPUnQ8A
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKewAOQAuIhQJGQgUO2SbZcR7iVAplgU0kqlbtAcnyK4DKJlWziyp-PTN5lSKQEKcoykROxh7PN57xZ8aeWo2YNQLhGVsIDyJlvRR06EGhsceh8CNNG4WzPJoewvtjcbzCXvZ7YVp-iGHBjSyjma_JwGlBevuCNXQ-V2OEA3CFrTXpOUJE-xfcUUnQpDqJH8aDMICeedYPt_s3L_miNVLr-SWg-StcbfzN3k32qf_StszkZLxc6LH58RuJ43_-yi12o8OhfKcdOOtsxZUb7Ho2kLjWG2y9s_uaP-_IqV_cZp-ztgLxq0H4zjFWx9uaI_LlxOyJ84_h3Rk1Nac1Xv4dg3HansXd-WlVoovjqrS8rMov1bzC0euqZc1zR7mEkmNwbtsasjvscO_Nwe7U6w5r8AxMADxwvtIY8IoisMph0G18oVNhXVq4okjiQiljdQpJ6kDFyugwxekisX7qw0RFYnKXrWLb7h7jAcQh0ZAlEBQQaZOkGqNYG1NwqdUkGLFnfbdJ0zGZ04Ea32TLwRxK1KckfY7Yk0HytGXv-IPMVtPzg4A6O6Fqt1jIo_ytDGH_9e7HfCZfjdhmPzRkZ-i1DCIMAQXRFmJbw2M0Ucq7qEaHMkD_T1W8AcpsNePgrx8js2yHrvf_VfAxuzo9yGZy9i7_8IBdQzgn2vLETba6OFu6hwiZFvpRYxo_AbWoEx4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaglRA9AC0gFgoYCRU4ZJtkx3kcS8tSoImgoqISB8uO7YLKJqtmF1X8embyKkUgIU5RlImcjGc839jjz4w9NRoxawTCK4wTHkTKeCno0AOnscfB-ZGmjcJZHu0fwdtjcdxVVdJemJYfYphwI89oxmty8Llx2xekobOZGiMagKtsFSKMkgSIDi-oo5KgWekkehgPwgB64lk_3O7fvBSKVkmr55dw5q9otQk305vsc_-hbZXJ6Xi50OPix28cjv_3J7fYjQ6F8p3WbNbZFVtusLVsoHCtN9h65_U1f95RU7-4zU6ytv7wa4HgnWOmjrc1R9zLidcTR5-CdyfU1JxmePl3TMVpcxa35_OqxADHVWl4WZVfqlmFtmurZc1zSysJJcfU3LQVZHfY0fTVx919rzuqwStgAuCB9ZXGdFe4wCiLKXfhC50KY1NnnUtip1RhdApJakHFqtBhioNFYvzUh4mKxOQuW8G27T3GA4hDIiFLIHAQ6SJJNeawJqbUUqtJMGLP-l6TRcdjTsdpfJMtA3MoUZ-S9DliTwbJecvd8QeZrabjBwF1dkq1brGQn_LXMoTDvd0P-YF8OWKbvWXIzs1rGUSYAAoiLcS2hsfooLTqohodygCjP9XwBiiz1ZjBXz9GZtkOXe__q-Bjdu393lQevMnfPWDXEcuJtjZxk60szpb2IeKlhX7UOMZPdrwRzQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiplicity+results+for+elliptic+problems+with+variable+exponent+and+nonhomogeneous+Neumann+conditions&rft.jtitle=Mathematical+methods+in+the+applied+sciences&rft.au=Heidarkhani%2C+Shapour&rft.au=Afrouzi%2C+Ghasem+A.&rft.au=Hadjian%2C+Armin&rft.date=2015-08-01&rft.issn=0170-4214&rft.eissn=1099-1476&rft.volume=38&rft.issue=12&rft.spage=2589&rft.epage=2599&rft_id=info:doi/10.1002%2Fmma.3244&rft.externalDBID=10.1002%252Fmma.3244&rft.externalDocID=MMA3244
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0170-4214&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0170-4214&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0170-4214&client=summon