Testing for high-dimensional geometry in random graphs
We study the problem of detecting the presence of an underlying high‐dimensional geometric structure in a random graph. Under the null hypothesis, the observed graph is a realization of an Erdős‐Rényi random graph G(n, p). Under the alternative, the graph is generated from the G(n,p,d) model, where...
Saved in:
Published in | Random structures & algorithms Vol. 49; no. 3; pp. 503 - 532 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Blackwell Publishing Ltd
01.10.2016
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
ISSN | 1042-9832 1098-2418 |
DOI | 10.1002/rsa.20633 |
Cover
Abstract | We study the problem of detecting the presence of an underlying high‐dimensional geometric structure in a random graph. Under the null hypothesis, the observed graph is a realization of an Erdős‐Rényi random graph G(n, p). Under the alternative, the graph is generated from the G(n,p,d) model, where each vertex corresponds to a latent independent random vector uniformly distributed on the sphere Sd−1, and two vertices are connected if the corresponding latent vectors are close enough. In the dense regime (i.e., p is a constant), we propose a near‐optimal and computationally efficient testing procedure based on a new quantity which we call signed triangles. The proof of the detection lower bound is based on a new bound on the total variation distance between a Wishart matrix and an appropriately normalized GOE matrix. In the sparse regime, we make a conjecture for the optimal detection boundary. We conclude the paper with some preliminary steps on the problem of estimating the dimension in G(n,p,d). © 2016 Wiley Periodicals, Inc. Random Struct. Alg., 49, 503–532, 2016 |
---|---|
AbstractList | We study the problem of detecting the presence of an underlying high-dimensional geometric structure in a random graph. Under the null hypothesis, the observed graph is a realization of an Erds-Rényi random graph G(n, p). Under the alternative, the graph is generated from the G (n ,p ,d ) model, where each vertex corresponds to a latent independent random vector uniformly distributed on the sphere S d -1, and two vertices are connected if the corresponding latent vectors are close enough. In the dense regime (i.e., p is a constant), we propose a near-optimal and computationally efficient testing procedure based on a new quantity which we call signed triangles. The proof of the detection lower bound is based on a new bound on the total variation distance between a Wishart matrix and an appropriately normalized GOE matrix. In the sparse regime, we make a conjecture for the optimal detection boundary. We conclude the paper with some preliminary steps on the problem of estimating the dimension in G (n ,p ,d ). © 2016 Wiley Periodicals, Inc. Random Struct. Alg., 49, 503-532, 2016 We study the problem of detecting the presence of an underlying high‐dimensional geometric structure in a random graph. Under the null hypothesis, the observed graph is a realization of an Erdős‐Rényi random graph G ( n, p ). Under the alternative, the graph is generated from the model, where each vertex corresponds to a latent independent random vector uniformly distributed on the sphere , and two vertices are connected if the corresponding latent vectors are close enough. In the dense regime (i.e., p is a constant), we propose a near‐optimal and computationally efficient testing procedure based on a new quantity which we call signed triangles. The proof of the detection lower bound is based on a new bound on the total variation distance between a Wishart matrix and an appropriately normalized GOE matrix. In the sparse regime, we make a conjecture for the optimal detection boundary. We conclude the paper with some preliminary steps on the problem of estimating the dimension in . © 2016 Wiley Periodicals, Inc. Random Struct. Alg., 49, 503–532, 2016 We study the problem of detecting the presence of an underlying high‐dimensional geometric structure in a random graph. Under the null hypothesis, the observed graph is a realization of an Erdős‐Rényi random graph G(n, p). Under the alternative, the graph is generated from the G(n,p,d) model, where each vertex corresponds to a latent independent random vector uniformly distributed on the sphere Sd−1, and two vertices are connected if the corresponding latent vectors are close enough. In the dense regime (i.e., p is a constant), we propose a near‐optimal and computationally efficient testing procedure based on a new quantity which we call signed triangles. The proof of the detection lower bound is based on a new bound on the total variation distance between a Wishart matrix and an appropriately normalized GOE matrix. In the sparse regime, we make a conjecture for the optimal detection boundary. We conclude the paper with some preliminary steps on the problem of estimating the dimension in G(n,p,d). © 2016 Wiley Periodicals, Inc. Random Struct. Alg., 49, 503–532, 2016 We study the problem of detecting the presence of an underlying high-dimensional geometric structure in a random graph. Under the null hypothesis, the observed graph is a realization of an Erds-Renyi random graph G(n, p). Under the alternative, the graph is generated from the [Formulaomitted] model, where each vertex corresponds to a latent independent random vector uniformly distributed on the sphere [Formulaomitted], and two vertices are connected if the corresponding latent vectors are close enough. In the dense regime (i.e., p is a constant), we propose a near-optimal and computationally efficient testing procedure based on a new quantity which we call signed triangles. The proof of the detection lower bound is based on a new bound on the total variation distance between a Wishart matrix and an appropriately normalized GOE matrix. In the sparse regime, we make a conjecture for the optimal detection boundary. We conclude the paper with some preliminary steps on the problem of estimating the dimension in [Formulaomitted]. Random Struct. Alg., 49, 503-532, 2016 |
Author | Bubeck, Sébastien Ding, Jian Eldan, Ronen Rácz, Miklós Z. |
Author_xml | – sequence: 1 givenname: Sébastien surname: Bubeck fullname: Bubeck, Sébastien email: sebubeck@microsoft.com organization: Theory Group, Microsoft Research, and Department of Operations Research and Financial Engineering, Princeton University, Berkeley – sequence: 2 givenname: Jian surname: Ding fullname: Ding, Jian email: jianding@galton.uchicago.edu organization: Department of Statistics, University of Chicago, Berkeley – sequence: 3 givenname: Ronen surname: Eldan fullname: Eldan, Ronen email: roneneldan@gmail.com organization: Department of Computer Science & Engineering, University of Washington, Berkeley – sequence: 4 givenname: Miklós Z. surname: Rácz fullname: Rácz, Miklós Z. email: racz@stat.berkeley.edu organization: Department of Statistics, University of California, Berkeley |
BookMark | eNp9kEFPwjAUxxuDiYAe_AZLvOhh0PZt7XZEVDQSTATDsSmlg-K2YjuifHuHqAcSPb13-P3-ee_fQo3Slhqhc4I7BGPadV52KGYAR6hJcJqENCJJY7dHNEwToCeo5f0KY8yBQhOxifaVKRdBZl2wNItlODeFLr2xpcyDhbaFrtw2MGXgZDm3RbBwcr30p-g4k7nXZ9-zjV7ubif9-3D4NHjo94ahiiCCUCZRqghnqVR4NuM0pZByzhmbSapiTKOUzVXG50RDhGtFA1AGLOYZo5grBm10uc9dO_u2qU8VhfFK57kstd14QRKIWVS_BTV6cYCu7MbVX-woQuKYpGQXeLWnlLPeO52JtTOFdFtBsNg1KOoGxVeDNds9YJWpZFVXUzlp8v-Md5Pr7d_R4nnc-zHCvWF8pT9-DeleBePAYzEdDcQ1TEeP_Zu-GMMneTSQcg |
CitedBy_id | crossref_primary_10_1103_PhysRevE_106_054303 crossref_primary_10_1016_j_ins_2024_121649 crossref_primary_10_1137_23M1545203 crossref_primary_10_1016_j_spa_2023_06_002 crossref_primary_10_1080_01621459_2024_2393471 crossref_primary_10_1016_j_jfa_2022_109639 crossref_primary_10_1214_21_EJP708 crossref_primary_10_1103_PhysRevE_102_012306 crossref_primary_10_1103_PhysRevE_106_054308 crossref_primary_10_1017_S0963548322000098 crossref_primary_10_1145_3632903 crossref_primary_10_1109_TIT_2024_3521305 crossref_primary_10_1214_24_EJS2331 crossref_primary_10_1214_17_EJP128 crossref_primary_10_1214_19_AOS1884 crossref_primary_10_1016_j_ejc_2023_103842 crossref_primary_10_1016_j_spl_2021_109269 crossref_primary_10_3150_22_BEJ1519 crossref_primary_10_1093_imrn_rnaa336 crossref_primary_10_1142_S2010326324500205 crossref_primary_10_1007_s00440_020_00998_3 crossref_primary_10_1214_23_BJPS574 crossref_primary_10_1214_24_AOS2400 crossref_primary_10_1007_s00440_017_0771_3 crossref_primary_10_1007_s10959_018_0808_2 crossref_primary_10_1109_TIT_2022_3145197 crossref_primary_10_1109_TIT_2022_3200577 crossref_primary_10_1142_S201032632250006X crossref_primary_10_1214_23_AOS2261 crossref_primary_10_1093_jrsssa_qnad066 crossref_primary_10_1002_rsa_21178 crossref_primary_10_1137_23M1559270 crossref_primary_10_3389_frai_2021_589632 crossref_primary_10_1016_j_spl_2019_108674 crossref_primary_10_1007_s10959_021_01133_1 crossref_primary_10_1080_01621459_2019_1700128 crossref_primary_10_1214_17_SS117 crossref_primary_10_1109_TIT_2023_3283172 crossref_primary_10_1214_18_AOS1760 crossref_primary_10_1007_s41468_023_00131_y crossref_primary_10_1002_rsa_20922 crossref_primary_10_1214_21_EJS1969 crossref_primary_10_1007_s10959_024_01328_2 crossref_primary_10_30757_ALEA_v18_59 crossref_primary_10_1007_s41109_020_00335_6 crossref_primary_10_1214_23_EJS2162 crossref_primary_10_1111_sjos_12750 crossref_primary_10_1090_bull_1857 crossref_primary_10_1145_3673651 crossref_primary_10_1214_21_AAP1690 crossref_primary_10_3150_22_BEJ1547 crossref_primary_10_1093_imrn_rnw243 crossref_primary_10_3150_20_BEJ1266 crossref_primary_10_1214_21_AOS2089 |
Cites_doi | 10.1016/S0925-7721(97)00014-X 10.1137/1.9781611973105.132 10.3150/13-BEJ565 10.1145/2554797.2554840 10.1214/EJP.v16-967 10.1093/biomet/20A.1-2.32 10.1214/aos/1009210544 10.1093/acprof:oso/9780198506263.001.0001 10.1109/TNSE.2015.2397592 10.1007/s11856-015-1169-5 10.1007/s00440-014-0576-6 10.1038/30918 10.1214/009117906000000917 10.1214/11-AOS904 10.1007/s10959-013-0519-7 10.1214/14-AOS1208 10.1198/016214502388618906 |
ContentType | Journal Article |
Copyright | 2016 Wiley Periodicals, Inc. |
Copyright_xml | – notice: 2016 Wiley Periodicals, Inc. |
DBID | BSCLL AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1002/rsa.20633 |
DatabaseName | Istex CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts CrossRef Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1098-2418 |
EndPage | 532 |
ExternalDocumentID | 4148150101 10_1002_rsa_20633 RSA20633 ark_67375_WNG_B3WNKCDC_S |
Genre | article |
GrantInformation_xml | – fundername: NSF DMS 1106999 – fundername: NSF DMS 1313596 |
GroupedDBID | -~X .3N .4S .DC .GA .Y3 05W 0R~ 10A 123 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCZN ACGFO ACGFS ACIWK ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AIAGR AIDQK AIDYY AIQQE AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMVHM AMYDB ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 FEDTE FSPIC G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HVGLF HZ~ H~9 IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6L MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TN5 TUS UB1 V2E V8K W8V W99 WBKPD WH7 WIB WIH WIK WOHZO WQJ WXSBR WYISQ XBAML XG1 XPP XSW XV2 ZZTAW ~IA ~WT AAHHS ACCFJ AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE RWI WRC WWM AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c4343-a849c1769ac0bb72923977766ba2c502496dcf7d1e340c43e33263657f6207c63 |
IEDL.DBID | DR2 |
ISSN | 1042-9832 |
IngestDate | Fri Jul 11 01:20:17 EDT 2025 Fri Jul 25 10:08:56 EDT 2025 Thu Apr 24 22:57:43 EDT 2025 Tue Jul 01 01:30:53 EDT 2025 Wed Jan 22 17:11:13 EST 2025 Sun Sep 21 06:18:36 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4343-a849c1769ac0bb72923977766ba2c502496dcf7d1e340c43e33263657f6207c63 |
Notes | ark:/67375/WNG-B3WNKCDC-S NSF DMS 1313596 istex:D33BB8AA7D7292B21ECD2C0232F76C85298AE6D0 Supported by NSF (to J.D.) (DMS 1313596); NSF (to M.Z.R.) (DMS 1106999). ArticleID:RSA20633 NSF DMS 1106999 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PQID | 1811551916 |
PQPubID | 1016429 |
PageCount | 30 |
ParticipantIDs | proquest_miscellaneous_1835648323 proquest_journals_1811551916 crossref_primary_10_1002_rsa_20633 crossref_citationtrail_10_1002_rsa_20633 wiley_primary_10_1002_rsa_20633_RSA20633 istex_primary_ark_67375_WNG_B3WNKCDC_S |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2016 |
PublicationDateYYYYMMDD | 2016-10-01 |
PublicationDate_xml | – month: 10 year: 2016 text: October 2016 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Random structures & algorithms |
PublicationTitleAlternate | Random Struct. Alg |
PublicationYear | 2016 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | I. M. Johnstone, On the distribution of the largest eigenvalue in principal components analysis, Ann Stat 29 (2001), 295-327. G. W. Anderson, A. Guionnet, and O. Zeitouni, An introduction to random matrices, Number 118, Cambridge University Press, Cambridge, UK, 2010. E. Arias-Castro and N. Verzelen, Community detection in dense random networks, Ann Stat 42 (2014), 940-969. D. J. Watts and S. H. Strogatz, Collective dynamics of 'small-world' networks, Nature 393 (1998), 440-442. E. Mossel, J. Neeman, and A. Sly, Reconstruction and estimation in the planted partition model, Probab Theory Relat Fields 162 (2015), 431-461. L. Devroye, A. György, G. Lugosi, and F. Udina, High-dimensional random geometric graphs and their clique number, Electron J Probab 16 (2011), 2481-2508. P. Erdős and A. Rényi, On the evolution of random graphs, Publ Math Inst Hungar Acad Sci 5 (1960), 17-61. M. Penrose, Random geometric graphs, Volume 5 of Oxford studies in probability, Oxford University Press, Oxford, UK, 2003. Z. Bai and J. W. Silverstein, Spectral analysis of large dimensional random matrices, 2nd edition, Springer, New York, 2009. R. Eldan, An efficiency upper bound for inverse covariance estimation, Israel J Math 207 (2015), 1-9. N. El Karoui, Tracy-Widom limit for the largest eigenvalue of a large class of complex sample covariance matrices, Ann Probab 35 (2007), 663-714. E. Arias-Castro, Ś. Bubeck, and ǵ. Lugosi, Detecting positive correlations in a multivariate sample, Bernoulli 21 (2015), 209-241. M. Abramowitz and I. A. Stegun, Handbook of mathematical functions, Dover, New York, NY, USA, 1964. J. Wishart, The generalised product moment distribution in samples from a normal multivariate population, Biometrika 20A (1928), 32-52. T. Jiang and D. Li, Approximation of rectangular beta-laguerre ensembles and large deviations, J Theory Probab 28 (2015), 804-847. P. D. Hoff, A. E. Raftery, and M. S. Handcock, Latent space approaches to social network analysis, J Am Stat Assoc 97 (2002), 1090-1098. H. Breu and D. G. Kirkpatrick, Unit disk graph recognition is NP-hard, Computat Geomet 9 (1998), 3-24. S. Bubeck, E. Mossel, and M. Z. Rácz, On the influence of the seed graph in the preferential attachment model, IEEE Trans Network Sci Eng 2 (2015), 30-39. P. J. Bickel, A. Chen, and E. Levina, The method of moments and degree distributions for network models, Ann Stat 39 (2011), 2280-2301. 2015; 2 2015; 162 1928; 20A 2015; 28 2002; 97 2010 1960; 5 2015; 21 1998 2009 1964 2008 2007 2015; 207 2014 2003 2013 2001; 29 2011; 39 2011; 16 2007; 35 1998; 393 1998; 9 2014; 42 e_1_2_10_23_1 e_1_2_10_24_1 e_1_2_10_21_1 e_1_2_10_22_1 e_1_2_10_20_1 e_1_2_10_2_1 e_1_2_10_3_1 Abramowitz M. (e_1_2_10_4_1) 1964 e_1_2_10_19_1 e_1_2_10_16_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_12_1 e_1_2_10_13_1 e_1_2_10_10_1 e_1_2_10_11_1 e_1_2_10_30_1 Bai Z. (e_1_2_10_9_1) 2009 Erdős P. (e_1_2_10_18_1) 1960; 5 e_1_2_10_29_1 Anderson G. W. (e_1_2_10_6_1) 2010 e_1_2_10_28_1 e_1_2_10_25_1 Sodin S. (e_1_2_10_27_1) 2007 e_1_2_10_26_1 |
References_xml | – reference: M. Abramowitz and I. A. Stegun, Handbook of mathematical functions, Dover, New York, NY, USA, 1964. – reference: R. Eldan, An efficiency upper bound for inverse covariance estimation, Israel J Math 207 (2015), 1-9. – reference: S. Bubeck, E. Mossel, and M. Z. Rácz, On the influence of the seed graph in the preferential attachment model, IEEE Trans Network Sci Eng 2 (2015), 30-39. – reference: P. J. Bickel, A. Chen, and E. Levina, The method of moments and degree distributions for network models, Ann Stat 39 (2011), 2280-2301. – reference: P. D. Hoff, A. E. Raftery, and M. S. Handcock, Latent space approaches to social network analysis, J Am Stat Assoc 97 (2002), 1090-1098. – reference: D. J. Watts and S. H. Strogatz, Collective dynamics of 'small-world' networks, Nature 393 (1998), 440-442. – reference: M. Penrose, Random geometric graphs, Volume 5 of Oxford studies in probability, Oxford University Press, Oxford, UK, 2003. – reference: T. Jiang and D. Li, Approximation of rectangular beta-laguerre ensembles and large deviations, J Theory Probab 28 (2015), 804-847. – reference: E. Arias-Castro and N. Verzelen, Community detection in dense random networks, Ann Stat 42 (2014), 940-969. – reference: E. Mossel, J. Neeman, and A. Sly, Reconstruction and estimation in the planted partition model, Probab Theory Relat Fields 162 (2015), 431-461. – reference: I. M. Johnstone, On the distribution of the largest eigenvalue in principal components analysis, Ann Stat 29 (2001), 295-327. – reference: G. W. Anderson, A. Guionnet, and O. Zeitouni, An introduction to random matrices, Number 118, Cambridge University Press, Cambridge, UK, 2010. – reference: E. Arias-Castro, Ś. Bubeck, and ǵ. Lugosi, Detecting positive correlations in a multivariate sample, Bernoulli 21 (2015), 209-241. – reference: H. Breu and D. G. Kirkpatrick, Unit disk graph recognition is NP-hard, Computat Geomet 9 (1998), 3-24. – reference: P. Erdős and A. Rényi, On the evolution of random graphs, Publ Math Inst Hungar Acad Sci 5 (1960), 17-61. – reference: L. Devroye, A. György, G. Lugosi, and F. Udina, High-dimensional random geometric graphs and their clique number, Electron J Probab 16 (2011), 2481-2508. – reference: Z. Bai and J. W. Silverstein, Spectral analysis of large dimensional random matrices, 2nd edition, Springer, New York, 2009. – reference: N. El Karoui, Tracy-Widom limit for the largest eigenvalue of a large class of complex sample covariance matrices, Ann Probab 35 (2007), 663-714. – reference: J. Wishart, The generalised product moment distribution in samples from a normal multivariate population, Biometrika 20A (1928), 32-52. – volume: 16 start-page: 2481 year: 2011 end-page: 2508 article-title: High‐dimensional random geometric graphs and their clique number publication-title: Electron J Probab – year: 2009 – start-page: 295 year: 2010 end-page: 307 – year: 1964 – volume: 20A start-page: 32 year: 1928 end-page: 52 article-title: The generalised product moment distribution in samples from a normal multivariate population publication-title: Biometrika – volume: 28 start-page: 804 year: 2015 end-page: 847 article-title: Approximation of rectangular beta‐laguerre ensembles and large deviations publication-title: J Theory Probab – year: 2003 – start-page: 271 year: 2007 end-page: 295 – start-page: 1046 year: 2013 end-page: 1066 – volume: 207 start-page: 1 year: 2015 end-page: 9 article-title: An efficiency upper bound for inverse covariance estimation publication-title: Israel J Math – volume: 29 start-page: 295 year: 2001 end-page: 327 article-title: On the distribution of the largest eigenvalue in principal components analysis publication-title: Ann Stat – year: 2014 – start-page: 594 year: 1998 end-page: 598 – year: 2010 – start-page: 471 year: 2014 end-page: 482 – volume: 97 start-page: 1090 year: 2002 end-page: 1098 article-title: Latent space approaches to social network analysis publication-title: J Am Stat Assoc – volume: 2 start-page: 30 year: 2015 end-page: 39 article-title: On the influence of the seed graph in the preferential attachment model publication-title: IEEE Trans Network Sci Eng – volume: 21 start-page: 209 year: 2015 end-page: 241 article-title: Detecting positive correlations in a multivariate sample publication-title: Bernoulli – volume: 42 start-page: 940 year: 2014 end-page: 969 article-title: Community detection in dense random networks publication-title: Ann Stat – volume: 9 start-page: 3 year: 1998 end-page: 24 article-title: Unit disk graph recognition is NP‐hard publication-title: Computat Geomet – volume: 35 start-page: 663 year: 2007 end-page: 714 article-title: Tracy‐Widom limit for the largest eigenvalue of a large class of complex sample covariance matrices publication-title: Ann Probab – volume: 393 start-page: 440 year: 1998 end-page: 442 article-title: Collective dynamics of ‘small‐world’ networks publication-title: Nature – volume: 162 start-page: 431 year: 2015 end-page: 461 article-title: Reconstruction and estimation in the planted partition model publication-title: Probab Theory Relat Fields – volume: 39 start-page: 2280 year: 2011 end-page: 2301 article-title: The method of moments and degree distributions for network models publication-title: Ann Stat – volume: 5 start-page: 17 year: 1960 end-page: 61 article-title: On the evolution of random graphs publication-title: Publ Math Inst Hungar Acad Sci – start-page: 1853 year: 2013 end-page: 1883 – start-page: 187 year: 2008 end-page: 198 – year: 2013 – ident: e_1_2_10_5_1 – ident: e_1_2_10_2_1 – ident: e_1_2_10_12_1 doi: 10.1016/S0925-7721(97)00014-X – ident: e_1_2_10_3_1 doi: 10.1137/1.9781611973105.132 – volume: 5 start-page: 17 year: 1960 ident: e_1_2_10_18_1 article-title: On the evolution of random graphs publication-title: Publ Math Inst Hungar Acad Sci – ident: e_1_2_10_10_1 – ident: e_1_2_10_28_1 – ident: e_1_2_10_7_1 doi: 10.3150/13-BEJ565 – ident: e_1_2_10_20_1 doi: 10.1145/2554797.2554840 – ident: e_1_2_10_14_1 doi: 10.1214/EJP.v16-967 – ident: e_1_2_10_30_1 doi: 10.1093/biomet/20A.1-2.32 – ident: e_1_2_10_19_1 – ident: e_1_2_10_23_1 doi: 10.1214/aos/1009210544 – ident: e_1_2_10_25_1 doi: 10.1093/acprof:oso/9780198506263.001.0001 – ident: e_1_2_10_26_1 – ident: e_1_2_10_13_1 doi: 10.1109/TNSE.2015.2397592 – ident: e_1_2_10_17_1 doi: 10.1007/s11856-015-1169-5 – ident: e_1_2_10_24_1 doi: 10.1007/s00440-014-0576-6 – ident: e_1_2_10_29_1 doi: 10.1038/30918 – ident: e_1_2_10_16_1 doi: 10.1214/009117906000000917 – ident: e_1_2_10_11_1 doi: 10.1214/11-AOS904 – ident: e_1_2_10_15_1 – ident: e_1_2_10_22_1 doi: 10.1007/s10959-013-0519-7 – volume-title: Handbook of mathematical functions year: 1964 ident: e_1_2_10_4_1 – ident: e_1_2_10_8_1 doi: 10.1214/14-AOS1208 – start-page: 271 volume-title: Geometric aspects of functional analysis, Volume 1910 of lecture notes in mathematics year: 2007 ident: e_1_2_10_27_1 – volume-title: An introduction to random matrices, Number 118 year: 2010 ident: e_1_2_10_6_1 – ident: e_1_2_10_21_1 doi: 10.1198/016214502388618906 – volume-title: Spectral analysis of large dimensional random matrices year: 2009 ident: e_1_2_10_9_1 |
SSID | ssj0007323 |
Score | 2.511996 |
Snippet | We study the problem of detecting the presence of an underlying high‐dimensional geometric structure in a random graph. Under the null hypothesis, the observed... We study the problem of detecting the presence of an underlying high-dimensional geometric structure in a random graph. Under the null hypothesis, the observed... |
SourceID | proquest crossref wiley istex |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 503 |
SubjectTerms | Boundaries Computational efficiency Constants Graphs high-dimensional geometric structure hypothesis testing Mathematical analysis Null hypothesis Optimization random geometric graphs random graphs signed triangles Vectors (mathematics) |
Title | Testing for high-dimensional geometry in random graphs |
URI | https://api.istex.fr/ark:/67375/WNG-B3WNKCDC-S/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Frsa.20633 https://www.proquest.com/docview/1811551916 https://www.proquest.com/docview/1835648323 |
Volume | 49 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1042-9832 databaseCode: DR2 dateStart: 19960101 customDbUrl: isFulltext: true eissn: 1098-2418 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007323 providerName: Wiley-Blackwell |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3NbtQwEMdHVXspB_oBiC1tlSKEekmb2LG9UU9l21KBuod-qD0gWbbjVKg0iza7EnDiEXhGnoQZZ5O2CCTELVLGsmPPxP_E458BXgln-mWfpXEhlYwzZkVsvChiFMclOlCpTNgLczKUxxfZuytxNQd77V6Yhg_R_XCjyAjvawpwY-vdO2jouCZskORE-ky5CEu0p3foKMVZk1yfsTjHWluqUMJ2u5IP5qIF6tYvD4Tmfbka5pujJfjQtrRJM7nZmU7sjvv2G8TxPx9lGR7PdGi03zjOCsz5ahUenXQQ1_oJ9M-JwFFdR6hrI8Ia__z-o6DDABqQR3TtR7d-Mv4afawinPGK0W0U8Nf1U7g4OjwfHMezgxZiRxtLY9PPcpcqmRuXWItym5EsVFJaw5wgqKAsXKmK1PMswSKeo-jjUqhSskQ5yZ_BfDWq_HOIEo8fNC7NbY46xUh0EQLO2NIbLgxTZQ-22y7XbkYhp8MwPumGn8w0doYOndGDl53p5wa98Sej12HcOgszvqFcNSX05fCtfsMvh-8HBwN91oP1dmD1LExrjfKGJCNK5B5sdbcxwGjVxFR-NCUbdK4MPQjr2g6j-PfW6NOz_XCx9u-mL2ARRZhsEgTXYX4ynvoNFDoTuxk8-hfGAPd3 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1LT9wwEMdHFA4tB-gLsUDbtKoqLoGsHdsbqRe6lG4LuwdYBBdkOY6DEJBF-5BoT3yEfkY-CTPOJpSqlareImUsJ-OZ-B8_fgZ4L6xp5S3WDDOpZBizVITGiSxEcZxjAOXK-L0w3Z7sHMbfjsXxDHys9sKUfIh6wI0yw3-vKcFpQHrznho6HBE3SHL-COZofo7Scnv_Hh6lOCuX18csTLDeiisUsc266IPeaI4ce_1Aav4qWH2Ps7MIJ9WzlgtNzjcm43TD_vgN4_i_L_MUFqZSNNgqY-cZzLjiOcx3a47r6AW0-gThKE4DlLYBkY1vb35mdB5AyfIITt3g0o2H34OzIsBOLxtcBp6APXoJhzuf--1OOD1rIbS0tzQ0rTixTSUTY6M0RcXNSBkqKVPDrCCuoMxsrrKm43GERRxH3celULlkkbKSL8FsMSjcMgSRw38a20zSBKWKkRglxJxJc2e4MEzlDVivfK7tFERO52Fc6BKhzDQ6Q3tnNOBdbXpV0jf-ZPTBN1xtYYbntFxNCX3U-6I_8aPebnu7rQ8asFa1rJ5m6kijwiHViCq5AW_r25hjNHFiCjeYkA0XMsYQwrrWfTP-_Wn0_sGWv1j5d9M38LjT7-7pva-93VV4gppMlusF12B2PJy4V6h7xulrH953P2L7kw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1LT9wwEMdHdJEqOLT0gdiW0rSqKi6BrB3bG3GiS7e0lFXFQ3BAshzHQQg2i_YhtZz4CHzGfpLOOJtQqlZCvUXKWHbGM_Hfif0zwDthTTtvs1aYSSXDmKUiNE5kIYrjHAMoV8bvhdntye3D-MuxOJ6BjWovTMmHqD-4UWb49zUl-GWWr99CQ4cjwgZJzh_AbCxxdkWKaO-WHaU4K1fXxyxMsNoKKxSx9broncFolvz6_Y7S_F2v-gGn-xhOqqaW60zO1ybjdM1e_UFx_M9nWYBHUyEabJaR8wRmXPEU5ndriuvoGbQPCMFRnAYobAPiGv-8vsnoNICS5BGcukHfjYc_grMiwCEvG_QDz78ePYfD7seDznY4PWkhtLSzNDTtOLEtJRNjozRFvc1IFyopU8OsIKqgzGyuspbjcYRFHEfVx6VQuWSRspIvQqMYFG4JgsjhjMa2kjRBoWIkxggRZ9LcGS4MU3kTViuXazvFkNNpGBe6BCgzjc7Q3hlNeFubXpbsjb8Zvff9VluY4TktVlNCH_U-6Q_8qLfT2ero_SYsVx2rp3k60qhvSDOiRm7Cm_o2Zhj9NjGFG0zIhgsZYwRhXau-F__dGr23v-kvXtzf9DU8_LbV1V8_93ZewhwKMlkuFlyGxng4ca9Q9IzTFR_cvwBRdPpC |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Testing+for+high-dimensional+geometry+in+random+graphs&rft.jtitle=Random+structures+%26+algorithms&rft.au=Bubeck%2C+S%C3%A9bastien&rft.au=Ding%2C+Jian&rft.au=Eldan%2C+Ronen&rft.au=R%C3%A1cz%2C+Mikl%C3%B3s+Z.&rft.date=2016-10-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=1042-9832&rft.eissn=1098-2418&rft.volume=49&rft.issue=3&rft.spage=503&rft.epage=532&rft_id=info:doi/10.1002%2Frsa.20633&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_B3WNKCDC_S |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1042-9832&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1042-9832&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1042-9832&client=summon |