Testing for high-dimensional geometry in random graphs

We study the problem of detecting the presence of an underlying high‐dimensional geometric structure in a random graph. Under the null hypothesis, the observed graph is a realization of an Erdős‐Rényi random graph G(n, p). Under the alternative, the graph is generated from the G(n,p,d) model, where...

Full description

Saved in:
Bibliographic Details
Published inRandom structures & algorithms Vol. 49; no. 3; pp. 503 - 532
Main Authors Bubeck, Sébastien, Ding, Jian, Eldan, Ronen, Rácz, Miklós Z.
Format Journal Article
LanguageEnglish
Published Hoboken Blackwell Publishing Ltd 01.10.2016
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN1042-9832
1098-2418
DOI10.1002/rsa.20633

Cover

Abstract We study the problem of detecting the presence of an underlying high‐dimensional geometric structure in a random graph. Under the null hypothesis, the observed graph is a realization of an Erdős‐Rényi random graph G(n, p). Under the alternative, the graph is generated from the G(n,p,d) model, where each vertex corresponds to a latent independent random vector uniformly distributed on the sphere Sd−1, and two vertices are connected if the corresponding latent vectors are close enough. In the dense regime (i.e., p is a constant), we propose a near‐optimal and computationally efficient testing procedure based on a new quantity which we call signed triangles. The proof of the detection lower bound is based on a new bound on the total variation distance between a Wishart matrix and an appropriately normalized GOE matrix. In the sparse regime, we make a conjecture for the optimal detection boundary. We conclude the paper with some preliminary steps on the problem of estimating the dimension in G(n,p,d). © 2016 Wiley Periodicals, Inc. Random Struct. Alg., 49, 503–532, 2016
AbstractList We study the problem of detecting the presence of an underlying high-dimensional geometric structure in a random graph. Under the null hypothesis, the observed graph is a realization of an Erds-Rényi random graph G(n, p). Under the alternative, the graph is generated from the G (n ,p ,d ) model, where each vertex corresponds to a latent independent random vector uniformly distributed on the sphere S d -1, and two vertices are connected if the corresponding latent vectors are close enough. In the dense regime (i.e., p is a constant), we propose a near-optimal and computationally efficient testing procedure based on a new quantity which we call signed triangles. The proof of the detection lower bound is based on a new bound on the total variation distance between a Wishart matrix and an appropriately normalized GOE matrix. In the sparse regime, we make a conjecture for the optimal detection boundary. We conclude the paper with some preliminary steps on the problem of estimating the dimension in G (n ,p ,d ). © 2016 Wiley Periodicals, Inc. Random Struct. Alg., 49, 503-532, 2016
We study the problem of detecting the presence of an underlying high‐dimensional geometric structure in a random graph. Under the null hypothesis, the observed graph is a realization of an Erdős‐Rényi random graph G ( n, p ). Under the alternative, the graph is generated from the model, where each vertex corresponds to a latent independent random vector uniformly distributed on the sphere , and two vertices are connected if the corresponding latent vectors are close enough. In the dense regime (i.e., p is a constant), we propose a near‐optimal and computationally efficient testing procedure based on a new quantity which we call signed triangles. The proof of the detection lower bound is based on a new bound on the total variation distance between a Wishart matrix and an appropriately normalized GOE matrix. In the sparse regime, we make a conjecture for the optimal detection boundary. We conclude the paper with some preliminary steps on the problem of estimating the dimension in . © 2016 Wiley Periodicals, Inc. Random Struct. Alg., 49, 503–532, 2016
We study the problem of detecting the presence of an underlying high‐dimensional geometric structure in a random graph. Under the null hypothesis, the observed graph is a realization of an Erdős‐Rényi random graph G(n, p). Under the alternative, the graph is generated from the G(n,p,d) model, where each vertex corresponds to a latent independent random vector uniformly distributed on the sphere Sd−1, and two vertices are connected if the corresponding latent vectors are close enough. In the dense regime (i.e., p is a constant), we propose a near‐optimal and computationally efficient testing procedure based on a new quantity which we call signed triangles. The proof of the detection lower bound is based on a new bound on the total variation distance between a Wishart matrix and an appropriately normalized GOE matrix. In the sparse regime, we make a conjecture for the optimal detection boundary. We conclude the paper with some preliminary steps on the problem of estimating the dimension in G(n,p,d). © 2016 Wiley Periodicals, Inc. Random Struct. Alg., 49, 503–532, 2016
We study the problem of detecting the presence of an underlying high-dimensional geometric structure in a random graph. Under the null hypothesis, the observed graph is a realization of an Erds-Renyi random graph G(n, p). Under the alternative, the graph is generated from the [Formulaomitted] model, where each vertex corresponds to a latent independent random vector uniformly distributed on the sphere [Formulaomitted], and two vertices are connected if the corresponding latent vectors are close enough. In the dense regime (i.e., p is a constant), we propose a near-optimal and computationally efficient testing procedure based on a new quantity which we call signed triangles. The proof of the detection lower bound is based on a new bound on the total variation distance between a Wishart matrix and an appropriately normalized GOE matrix. In the sparse regime, we make a conjecture for the optimal detection boundary. We conclude the paper with some preliminary steps on the problem of estimating the dimension in [Formulaomitted]. Random Struct. Alg., 49, 503-532, 2016
Author Bubeck, Sébastien
Ding, Jian
Eldan, Ronen
Rácz, Miklós Z.
Author_xml – sequence: 1
  givenname: Sébastien
  surname: Bubeck
  fullname: Bubeck, Sébastien
  email: sebubeck@microsoft.com
  organization: Theory Group, Microsoft Research, and Department of Operations Research and Financial Engineering, Princeton University, Berkeley
– sequence: 2
  givenname: Jian
  surname: Ding
  fullname: Ding, Jian
  email: jianding@galton.uchicago.edu
  organization: Department of Statistics, University of Chicago, Berkeley
– sequence: 3
  givenname: Ronen
  surname: Eldan
  fullname: Eldan, Ronen
  email: roneneldan@gmail.com
  organization: Department of Computer Science & Engineering, University of Washington, Berkeley
– sequence: 4
  givenname: Miklós Z.
  surname: Rácz
  fullname: Rácz, Miklós Z.
  email: racz@stat.berkeley.edu
  organization: Department of Statistics, University of California, Berkeley
BookMark eNp9kEFPwjAUxxuDiYAe_AZLvOhh0PZt7XZEVDQSTATDsSmlg-K2YjuifHuHqAcSPb13-P3-ee_fQo3Slhqhc4I7BGPadV52KGYAR6hJcJqENCJJY7dHNEwToCeo5f0KY8yBQhOxifaVKRdBZl2wNItlODeFLr2xpcyDhbaFrtw2MGXgZDm3RbBwcr30p-g4k7nXZ9-zjV7ubif9-3D4NHjo94ahiiCCUCZRqghnqVR4NuM0pZByzhmbSapiTKOUzVXG50RDhGtFA1AGLOYZo5grBm10uc9dO_u2qU8VhfFK57kstd14QRKIWVS_BTV6cYCu7MbVX-woQuKYpGQXeLWnlLPeO52JtTOFdFtBsNg1KOoGxVeDNds9YJWpZFVXUzlp8v-Md5Pr7d_R4nnc-zHCvWF8pT9-DeleBePAYzEdDcQ1TEeP_Zu-GMMneTSQcg
CitedBy_id crossref_primary_10_1103_PhysRevE_106_054303
crossref_primary_10_1016_j_ins_2024_121649
crossref_primary_10_1137_23M1545203
crossref_primary_10_1016_j_spa_2023_06_002
crossref_primary_10_1080_01621459_2024_2393471
crossref_primary_10_1016_j_jfa_2022_109639
crossref_primary_10_1214_21_EJP708
crossref_primary_10_1103_PhysRevE_102_012306
crossref_primary_10_1103_PhysRevE_106_054308
crossref_primary_10_1017_S0963548322000098
crossref_primary_10_1145_3632903
crossref_primary_10_1109_TIT_2024_3521305
crossref_primary_10_1214_24_EJS2331
crossref_primary_10_1214_17_EJP128
crossref_primary_10_1214_19_AOS1884
crossref_primary_10_1016_j_ejc_2023_103842
crossref_primary_10_1016_j_spl_2021_109269
crossref_primary_10_3150_22_BEJ1519
crossref_primary_10_1093_imrn_rnaa336
crossref_primary_10_1142_S2010326324500205
crossref_primary_10_1007_s00440_020_00998_3
crossref_primary_10_1214_23_BJPS574
crossref_primary_10_1214_24_AOS2400
crossref_primary_10_1007_s00440_017_0771_3
crossref_primary_10_1007_s10959_018_0808_2
crossref_primary_10_1109_TIT_2022_3145197
crossref_primary_10_1109_TIT_2022_3200577
crossref_primary_10_1142_S201032632250006X
crossref_primary_10_1214_23_AOS2261
crossref_primary_10_1093_jrsssa_qnad066
crossref_primary_10_1002_rsa_21178
crossref_primary_10_1137_23M1559270
crossref_primary_10_3389_frai_2021_589632
crossref_primary_10_1016_j_spl_2019_108674
crossref_primary_10_1007_s10959_021_01133_1
crossref_primary_10_1080_01621459_2019_1700128
crossref_primary_10_1214_17_SS117
crossref_primary_10_1109_TIT_2023_3283172
crossref_primary_10_1214_18_AOS1760
crossref_primary_10_1007_s41468_023_00131_y
crossref_primary_10_1002_rsa_20922
crossref_primary_10_1214_21_EJS1969
crossref_primary_10_1007_s10959_024_01328_2
crossref_primary_10_30757_ALEA_v18_59
crossref_primary_10_1007_s41109_020_00335_6
crossref_primary_10_1214_23_EJS2162
crossref_primary_10_1111_sjos_12750
crossref_primary_10_1090_bull_1857
crossref_primary_10_1145_3673651
crossref_primary_10_1214_21_AAP1690
crossref_primary_10_3150_22_BEJ1547
crossref_primary_10_1093_imrn_rnw243
crossref_primary_10_3150_20_BEJ1266
crossref_primary_10_1214_21_AOS2089
Cites_doi 10.1016/S0925-7721(97)00014-X
10.1137/1.9781611973105.132
10.3150/13-BEJ565
10.1145/2554797.2554840
10.1214/EJP.v16-967
10.1093/biomet/20A.1-2.32
10.1214/aos/1009210544
10.1093/acprof:oso/9780198506263.001.0001
10.1109/TNSE.2015.2397592
10.1007/s11856-015-1169-5
10.1007/s00440-014-0576-6
10.1038/30918
10.1214/009117906000000917
10.1214/11-AOS904
10.1007/s10959-013-0519-7
10.1214/14-AOS1208
10.1198/016214502388618906
ContentType Journal Article
Copyright 2016 Wiley Periodicals, Inc.
Copyright_xml – notice: 2016 Wiley Periodicals, Inc.
DBID BSCLL
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1002/rsa.20633
DatabaseName Istex
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts
CrossRef

Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1098-2418
EndPage 532
ExternalDocumentID 4148150101
10_1002_rsa_20633
RSA20633
ark_67375_WNG_B3WNKCDC_S
Genre article
GrantInformation_xml – fundername: NSF DMS 1106999
– fundername: NSF DMS 1313596
GroupedDBID -~X
.3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFO
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIAGR
AIDQK
AIDYY
AIQQE
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMVHM
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
FEDTE
FSPIC
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
H~9
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6L
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TN5
TUS
UB1
V2E
V8K
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WOHZO
WQJ
WXSBR
WYISQ
XBAML
XG1
XPP
XSW
XV2
ZZTAW
~IA
~WT
AAHHS
ACCFJ
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
RWI
WRC
WWM
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c4343-a849c1769ac0bb72923977766ba2c502496dcf7d1e340c43e33263657f6207c63
IEDL.DBID DR2
ISSN 1042-9832
IngestDate Fri Jul 11 01:20:17 EDT 2025
Fri Jul 25 10:08:56 EDT 2025
Thu Apr 24 22:57:43 EDT 2025
Tue Jul 01 01:30:53 EDT 2025
Wed Jan 22 17:11:13 EST 2025
Sun Sep 21 06:18:36 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4343-a849c1769ac0bb72923977766ba2c502496dcf7d1e340c43e33263657f6207c63
Notes ark:/67375/WNG-B3WNKCDC-S
NSF DMS 1313596
istex:D33BB8AA7D7292B21ECD2C0232F76C85298AE6D0
Supported by NSF (to J.D.) (DMS 1313596); NSF (to M.Z.R.) (DMS 1106999).
ArticleID:RSA20633
NSF DMS 1106999
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 1811551916
PQPubID 1016429
PageCount 30
ParticipantIDs proquest_miscellaneous_1835648323
proquest_journals_1811551916
crossref_primary_10_1002_rsa_20633
crossref_citationtrail_10_1002_rsa_20633
wiley_primary_10_1002_rsa_20633_RSA20633
istex_primary_ark_67375_WNG_B3WNKCDC_S
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2016
PublicationDateYYYYMMDD 2016-10-01
PublicationDate_xml – month: 10
  year: 2016
  text: October 2016
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Random structures & algorithms
PublicationTitleAlternate Random Struct. Alg
PublicationYear 2016
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References I. M. Johnstone, On the distribution of the largest eigenvalue in principal components analysis, Ann Stat 29 (2001), 295-327.
G. W. Anderson, A. Guionnet, and O. Zeitouni, An introduction to random matrices, Number 118, Cambridge University Press, Cambridge, UK, 2010.
E. Arias-Castro and N. Verzelen, Community detection in dense random networks, Ann Stat 42 (2014), 940-969.
D. J. Watts and S. H. Strogatz, Collective dynamics of 'small-world' networks, Nature 393 (1998), 440-442.
E. Mossel, J. Neeman, and A. Sly, Reconstruction and estimation in the planted partition model, Probab Theory Relat Fields 162 (2015), 431-461.
L. Devroye, A. György, G. Lugosi, and F. Udina, High-dimensional random geometric graphs and their clique number, Electron J Probab 16 (2011), 2481-2508.
P. Erdős and A. Rényi, On the evolution of random graphs, Publ Math Inst Hungar Acad Sci 5 (1960), 17-61.
M. Penrose, Random geometric graphs, Volume 5 of Oxford studies in probability, Oxford University Press, Oxford, UK, 2003.
Z. Bai and J. W. Silverstein, Spectral analysis of large dimensional random matrices, 2nd edition, Springer, New York, 2009.
R. Eldan, An efficiency upper bound for inverse covariance estimation, Israel J Math 207 (2015), 1-9.
N. El Karoui, Tracy-Widom limit for the largest eigenvalue of a large class of complex sample covariance matrices, Ann Probab 35 (2007), 663-714.
E. Arias-Castro, Ś. Bubeck, and ǵ. Lugosi, Detecting positive correlations in a multivariate sample, Bernoulli 21 (2015), 209-241.
M. Abramowitz and I. A. Stegun, Handbook of mathematical functions, Dover, New York, NY, USA, 1964.
J. Wishart, The generalised product moment distribution in samples from a normal multivariate population, Biometrika 20A (1928), 32-52.
T. Jiang and D. Li, Approximation of rectangular beta-laguerre ensembles and large deviations, J Theory Probab 28 (2015), 804-847.
P. D. Hoff, A. E. Raftery, and M. S. Handcock, Latent space approaches to social network analysis, J Am Stat Assoc 97 (2002), 1090-1098.
H. Breu and D. G. Kirkpatrick, Unit disk graph recognition is NP-hard, Computat Geomet 9 (1998), 3-24.
S. Bubeck, E. Mossel, and M. Z. Rácz, On the influence of the seed graph in the preferential attachment model, IEEE Trans Network Sci Eng 2 (2015), 30-39.
P. J. Bickel, A. Chen, and E. Levina, The method of moments and degree distributions for network models, Ann Stat 39 (2011), 2280-2301.
2015; 2
2015; 162
1928; 20A
2015; 28
2002; 97
2010
1960; 5
2015; 21
1998
2009
1964
2008
2007
2015; 207
2014
2003
2013
2001; 29
2011; 39
2011; 16
2007; 35
1998; 393
1998; 9
2014; 42
e_1_2_10_23_1
e_1_2_10_24_1
e_1_2_10_21_1
e_1_2_10_22_1
e_1_2_10_20_1
e_1_2_10_2_1
e_1_2_10_3_1
Abramowitz M. (e_1_2_10_4_1) 1964
e_1_2_10_19_1
e_1_2_10_16_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_12_1
e_1_2_10_13_1
e_1_2_10_10_1
e_1_2_10_11_1
e_1_2_10_30_1
Bai Z. (e_1_2_10_9_1) 2009
Erdős P. (e_1_2_10_18_1) 1960; 5
e_1_2_10_29_1
Anderson G. W. (e_1_2_10_6_1) 2010
e_1_2_10_28_1
e_1_2_10_25_1
Sodin S. (e_1_2_10_27_1) 2007
e_1_2_10_26_1
References_xml – reference: M. Abramowitz and I. A. Stegun, Handbook of mathematical functions, Dover, New York, NY, USA, 1964.
– reference: R. Eldan, An efficiency upper bound for inverse covariance estimation, Israel J Math 207 (2015), 1-9.
– reference: S. Bubeck, E. Mossel, and M. Z. Rácz, On the influence of the seed graph in the preferential attachment model, IEEE Trans Network Sci Eng 2 (2015), 30-39.
– reference: P. J. Bickel, A. Chen, and E. Levina, The method of moments and degree distributions for network models, Ann Stat 39 (2011), 2280-2301.
– reference: P. D. Hoff, A. E. Raftery, and M. S. Handcock, Latent space approaches to social network analysis, J Am Stat Assoc 97 (2002), 1090-1098.
– reference: D. J. Watts and S. H. Strogatz, Collective dynamics of 'small-world' networks, Nature 393 (1998), 440-442.
– reference: M. Penrose, Random geometric graphs, Volume 5 of Oxford studies in probability, Oxford University Press, Oxford, UK, 2003.
– reference: T. Jiang and D. Li, Approximation of rectangular beta-laguerre ensembles and large deviations, J Theory Probab 28 (2015), 804-847.
– reference: E. Arias-Castro and N. Verzelen, Community detection in dense random networks, Ann Stat 42 (2014), 940-969.
– reference: E. Mossel, J. Neeman, and A. Sly, Reconstruction and estimation in the planted partition model, Probab Theory Relat Fields 162 (2015), 431-461.
– reference: I. M. Johnstone, On the distribution of the largest eigenvalue in principal components analysis, Ann Stat 29 (2001), 295-327.
– reference: G. W. Anderson, A. Guionnet, and O. Zeitouni, An introduction to random matrices, Number 118, Cambridge University Press, Cambridge, UK, 2010.
– reference: E. Arias-Castro, Ś. Bubeck, and ǵ. Lugosi, Detecting positive correlations in a multivariate sample, Bernoulli 21 (2015), 209-241.
– reference: H. Breu and D. G. Kirkpatrick, Unit disk graph recognition is NP-hard, Computat Geomet 9 (1998), 3-24.
– reference: P. Erdős and A. Rényi, On the evolution of random graphs, Publ Math Inst Hungar Acad Sci 5 (1960), 17-61.
– reference: L. Devroye, A. György, G. Lugosi, and F. Udina, High-dimensional random geometric graphs and their clique number, Electron J Probab 16 (2011), 2481-2508.
– reference: Z. Bai and J. W. Silverstein, Spectral analysis of large dimensional random matrices, 2nd edition, Springer, New York, 2009.
– reference: N. El Karoui, Tracy-Widom limit for the largest eigenvalue of a large class of complex sample covariance matrices, Ann Probab 35 (2007), 663-714.
– reference: J. Wishart, The generalised product moment distribution in samples from a normal multivariate population, Biometrika 20A (1928), 32-52.
– volume: 16
  start-page: 2481
  year: 2011
  end-page: 2508
  article-title: High‐dimensional random geometric graphs and their clique number
  publication-title: Electron J Probab
– year: 2009
– start-page: 295
  year: 2010
  end-page: 307
– year: 1964
– volume: 20A
  start-page: 32
  year: 1928
  end-page: 52
  article-title: The generalised product moment distribution in samples from a normal multivariate population
  publication-title: Biometrika
– volume: 28
  start-page: 804
  year: 2015
  end-page: 847
  article-title: Approximation of rectangular beta‐laguerre ensembles and large deviations
  publication-title: J Theory Probab
– year: 2003
– start-page: 271
  year: 2007
  end-page: 295
– start-page: 1046
  year: 2013
  end-page: 1066
– volume: 207
  start-page: 1
  year: 2015
  end-page: 9
  article-title: An efficiency upper bound for inverse covariance estimation
  publication-title: Israel J Math
– volume: 29
  start-page: 295
  year: 2001
  end-page: 327
  article-title: On the distribution of the largest eigenvalue in principal components analysis
  publication-title: Ann Stat
– year: 2014
– start-page: 594
  year: 1998
  end-page: 598
– year: 2010
– start-page: 471
  year: 2014
  end-page: 482
– volume: 97
  start-page: 1090
  year: 2002
  end-page: 1098
  article-title: Latent space approaches to social network analysis
  publication-title: J Am Stat Assoc
– volume: 2
  start-page: 30
  year: 2015
  end-page: 39
  article-title: On the influence of the seed graph in the preferential attachment model
  publication-title: IEEE Trans Network Sci Eng
– volume: 21
  start-page: 209
  year: 2015
  end-page: 241
  article-title: Detecting positive correlations in a multivariate sample
  publication-title: Bernoulli
– volume: 42
  start-page: 940
  year: 2014
  end-page: 969
  article-title: Community detection in dense random networks
  publication-title: Ann Stat
– volume: 9
  start-page: 3
  year: 1998
  end-page: 24
  article-title: Unit disk graph recognition is NP‐hard
  publication-title: Computat Geomet
– volume: 35
  start-page: 663
  year: 2007
  end-page: 714
  article-title: Tracy‐Widom limit for the largest eigenvalue of a large class of complex sample covariance matrices
  publication-title: Ann Probab
– volume: 393
  start-page: 440
  year: 1998
  end-page: 442
  article-title: Collective dynamics of ‘small‐world’ networks
  publication-title: Nature
– volume: 162
  start-page: 431
  year: 2015
  end-page: 461
  article-title: Reconstruction and estimation in the planted partition model
  publication-title: Probab Theory Relat Fields
– volume: 39
  start-page: 2280
  year: 2011
  end-page: 2301
  article-title: The method of moments and degree distributions for network models
  publication-title: Ann Stat
– volume: 5
  start-page: 17
  year: 1960
  end-page: 61
  article-title: On the evolution of random graphs
  publication-title: Publ Math Inst Hungar Acad Sci
– start-page: 1853
  year: 2013
  end-page: 1883
– start-page: 187
  year: 2008
  end-page: 198
– year: 2013
– ident: e_1_2_10_5_1
– ident: e_1_2_10_2_1
– ident: e_1_2_10_12_1
  doi: 10.1016/S0925-7721(97)00014-X
– ident: e_1_2_10_3_1
  doi: 10.1137/1.9781611973105.132
– volume: 5
  start-page: 17
  year: 1960
  ident: e_1_2_10_18_1
  article-title: On the evolution of random graphs
  publication-title: Publ Math Inst Hungar Acad Sci
– ident: e_1_2_10_10_1
– ident: e_1_2_10_28_1
– ident: e_1_2_10_7_1
  doi: 10.3150/13-BEJ565
– ident: e_1_2_10_20_1
  doi: 10.1145/2554797.2554840
– ident: e_1_2_10_14_1
  doi: 10.1214/EJP.v16-967
– ident: e_1_2_10_30_1
  doi: 10.1093/biomet/20A.1-2.32
– ident: e_1_2_10_19_1
– ident: e_1_2_10_23_1
  doi: 10.1214/aos/1009210544
– ident: e_1_2_10_25_1
  doi: 10.1093/acprof:oso/9780198506263.001.0001
– ident: e_1_2_10_26_1
– ident: e_1_2_10_13_1
  doi: 10.1109/TNSE.2015.2397592
– ident: e_1_2_10_17_1
  doi: 10.1007/s11856-015-1169-5
– ident: e_1_2_10_24_1
  doi: 10.1007/s00440-014-0576-6
– ident: e_1_2_10_29_1
  doi: 10.1038/30918
– ident: e_1_2_10_16_1
  doi: 10.1214/009117906000000917
– ident: e_1_2_10_11_1
  doi: 10.1214/11-AOS904
– ident: e_1_2_10_15_1
– ident: e_1_2_10_22_1
  doi: 10.1007/s10959-013-0519-7
– volume-title: Handbook of mathematical functions
  year: 1964
  ident: e_1_2_10_4_1
– ident: e_1_2_10_8_1
  doi: 10.1214/14-AOS1208
– start-page: 271
  volume-title: Geometric aspects of functional analysis, Volume 1910 of lecture notes in mathematics
  year: 2007
  ident: e_1_2_10_27_1
– volume-title: An introduction to random matrices, Number 118
  year: 2010
  ident: e_1_2_10_6_1
– ident: e_1_2_10_21_1
  doi: 10.1198/016214502388618906
– volume-title: Spectral analysis of large dimensional random matrices
  year: 2009
  ident: e_1_2_10_9_1
SSID ssj0007323
Score 2.511996
Snippet We study the problem of detecting the presence of an underlying high‐dimensional geometric structure in a random graph. Under the null hypothesis, the observed...
We study the problem of detecting the presence of an underlying high-dimensional geometric structure in a random graph. Under the null hypothesis, the observed...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 503
SubjectTerms Boundaries
Computational efficiency
Constants
Graphs
high-dimensional geometric structure
hypothesis testing
Mathematical analysis
Null hypothesis
Optimization
random geometric graphs
random graphs
signed triangles
Vectors (mathematics)
Title Testing for high-dimensional geometry in random graphs
URI https://api.istex.fr/ark:/67375/WNG-B3WNKCDC-S/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Frsa.20633
https://www.proquest.com/docview/1811551916
https://www.proquest.com/docview/1835648323
Volume 49
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1042-9832
  databaseCode: DR2
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  eissn: 1098-2418
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007323
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3NbtQwEMdHVXspB_oBiC1tlSKEekmb2LG9UU9l21KBuod-qD0gWbbjVKg0iza7EnDiEXhGnoQZZ5O2CCTELVLGsmPPxP_E458BXgln-mWfpXEhlYwzZkVsvChiFMclOlCpTNgLczKUxxfZuytxNQd77V6Yhg_R_XCjyAjvawpwY-vdO2jouCZskORE-ky5CEu0p3foKMVZk1yfsTjHWluqUMJ2u5IP5qIF6tYvD4Tmfbka5pujJfjQtrRJM7nZmU7sjvv2G8TxPx9lGR7PdGi03zjOCsz5ahUenXQQ1_oJ9M-JwFFdR6hrI8Ia__z-o6DDABqQR3TtR7d-Mv4afawinPGK0W0U8Nf1U7g4OjwfHMezgxZiRxtLY9PPcpcqmRuXWItym5EsVFJaw5wgqKAsXKmK1PMswSKeo-jjUqhSskQ5yZ_BfDWq_HOIEo8fNC7NbY46xUh0EQLO2NIbLgxTZQ-22y7XbkYhp8MwPumGn8w0doYOndGDl53p5wa98Sej12HcOgszvqFcNSX05fCtfsMvh-8HBwN91oP1dmD1LExrjfKGJCNK5B5sdbcxwGjVxFR-NCUbdK4MPQjr2g6j-PfW6NOz_XCx9u-mL2ARRZhsEgTXYX4ynvoNFDoTuxk8-hfGAPd3
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1LT9wwEMdHFA4tB-gLsUDbtKoqLoGsHdsbqRe6lG4LuwdYBBdkOY6DEJBF-5BoT3yEfkY-CTPOJpSqlareImUsJ-OZ-B8_fgZ4L6xp5S3WDDOpZBizVITGiSxEcZxjAOXK-L0w3Z7sHMbfjsXxDHys9sKUfIh6wI0yw3-vKcFpQHrznho6HBE3SHL-COZofo7Scnv_Hh6lOCuX18csTLDeiisUsc266IPeaI4ce_1Aav4qWH2Ps7MIJ9WzlgtNzjcm43TD_vgN4_i_L_MUFqZSNNgqY-cZzLjiOcx3a47r6AW0-gThKE4DlLYBkY1vb35mdB5AyfIITt3g0o2H34OzIsBOLxtcBp6APXoJhzuf--1OOD1rIbS0tzQ0rTixTSUTY6M0RcXNSBkqKVPDrCCuoMxsrrKm43GERRxH3celULlkkbKSL8FsMSjcMgSRw38a20zSBKWKkRglxJxJc2e4MEzlDVivfK7tFERO52Fc6BKhzDQ6Q3tnNOBdbXpV0jf-ZPTBN1xtYYbntFxNCX3U-6I_8aPebnu7rQ8asFa1rJ5m6kijwiHViCq5AW_r25hjNHFiCjeYkA0XMsYQwrrWfTP-_Wn0_sGWv1j5d9M38LjT7-7pva-93VV4gppMlusF12B2PJy4V6h7xulrH953P2L7kw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1LT9wwEMdHdJEqOLT0gdiW0rSqKi6BrB3bG3GiS7e0lFXFQ3BAshzHQQg2i_YhtZz4CHzGfpLOOJtQqlZCvUXKWHbGM_Hfif0zwDthTTtvs1aYSSXDmKUiNE5kIYrjHAMoV8bvhdntye3D-MuxOJ6BjWovTMmHqD-4UWb49zUl-GWWr99CQ4cjwgZJzh_AbCxxdkWKaO-WHaU4K1fXxyxMsNoKKxSx9broncFolvz6_Y7S_F2v-gGn-xhOqqaW60zO1ybjdM1e_UFx_M9nWYBHUyEabJaR8wRmXPEU5ndriuvoGbQPCMFRnAYobAPiGv-8vsnoNICS5BGcukHfjYc_grMiwCEvG_QDz78ePYfD7seDznY4PWkhtLSzNDTtOLEtJRNjozRFvc1IFyopU8OsIKqgzGyuspbjcYRFHEfVx6VQuWSRspIvQqMYFG4JgsjhjMa2kjRBoWIkxggRZ9LcGS4MU3kTViuXazvFkNNpGBe6BCgzjc7Q3hlNeFubXpbsjb8Zvff9VluY4TktVlNCH_U-6Q_8qLfT2ero_SYsVx2rp3k60qhvSDOiRm7Cm_o2Zhj9NjGFG0zIhgsZYwRhXau-F__dGr23v-kvXtzf9DU8_LbV1V8_93ZewhwKMlkuFlyGxng4ca9Q9IzTFR_cvwBRdPpC
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Testing+for+high-dimensional+geometry+in+random+graphs&rft.jtitle=Random+structures+%26+algorithms&rft.au=Bubeck%2C+S%C3%A9bastien&rft.au=Ding%2C+Jian&rft.au=Eldan%2C+Ronen&rft.au=R%C3%A1cz%2C+Mikl%C3%B3s+Z.&rft.date=2016-10-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=1042-9832&rft.eissn=1098-2418&rft.volume=49&rft.issue=3&rft.spage=503&rft.epage=532&rft_id=info:doi/10.1002%2Frsa.20633&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_B3WNKCDC_S
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1042-9832&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1042-9832&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1042-9832&client=summon