Optimisation of Using Low-Grade Kaolinitic Clays in Limestone Calcined Clay Cement Production (LC3)
LC3 (limestone calcined clay cement) is poised to become the construction industry’s future as a so-called low-carbon-footprint cement. Research into this subject has determined the minimum kaolinite content in calcined clays to guarantee good mechanical performance. This study examines the use of c...
Saved in:
Published in | Materials Vol. 18; no. 2; p. 285 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
01.01.2025
MDPI |
Subjects | |
Online Access | Get full text |
ISSN | 1996-1944 1996-1944 |
DOI | 10.3390/ma18020285 |
Cover
Abstract | LC3 (limestone calcined clay cement) is poised to become the construction industry’s future as a so-called low-carbon-footprint cement. Research into this subject has determined the minimum kaolinite content in calcined clays to guarantee good mechanical performance. This study examines the use of clay from the Valencian Community (Spain), which has a lower kaolinite content than the recommended amount (around 30%) for use in LC3 and how its performance can be enhanced by replacing part of that clay with metakaolin. This study begins with a physico-chemical characterisation of the starting materials. This is followed by a microstructural analysis of cement pastes, which includes isothermal calorimetry, thermogravimetry, and X-ray diffraction tests at different curing ages. Finally, this study analyses the mechanical performance of standard mortars under compression to observe the evolution of the control mortars and the mortars with calcined clay and metakaolin over time. The results show that the LC3 mortars exhibited higher compressive strength in the mixtures with higher calcined kaolinite contents, achieved by adding metakaolin. Adding 6% metakaolin increased the compressive strength after 90 days, while 10% additions surpassed the control mortar’s compressive strength after 28 days. Mortars with 15% metakaolin exceeded the control mortar’s compressive strength after just 7 curing days. The hydration kinetics showed an acceleration of LC3 hydration with metakaolin additions due to the nucleation effect and the formation of monocarboaluminate and hemicarboaluminate (both AFm phases). The results suggest the potential for combining less reactive materials blended with highly reactive materials. |
---|---|
AbstractList | LC3 (limestone calcined clay cement) is poised to become the construction industry’s future as a so-called low-carbon-footprint cement. Research into this subject has determined the minimum kaolinite content in calcined clays to guarantee good mechanical performance. This study examines the use of clay from the Valencian Community (Spain), which has a lower kaolinite content than the recommended amount (around 30%) for use in LC3 and how its performance can be enhanced by replacing part of that clay with metakaolin. This study begins with a physico-chemical characterisation of the starting materials. This is followed by a microstructural analysis of cement pastes, which includes isothermal calorimetry, thermogravimetry, and X-ray diffraction tests at different curing ages. Finally, this study analyses the mechanical performance of standard mortars under compression to observe the evolution of the control mortars and the mortars with calcined clay and metakaolin over time. The results show that the LC3 mortars exhibited higher compressive strength in the mixtures with higher calcined kaolinite contents, achieved by adding metakaolin. Adding 6% metakaolin increased the compressive strength after 90 days, while 10% additions surpassed the control mortar’s compressive strength after 28 days. Mortars with 15% metakaolin exceeded the control mortar’s compressive strength after just 7 curing days. The hydration kinetics showed an acceleration of LC3 hydration with metakaolin additions due to the nucleation effect and the formation of monocarboaluminate and hemicarboaluminate (both AFm phases). The results suggest the potential for combining less reactive materials blended with highly reactive materials. LC3 (limestone calcined clay cement) is poised to become the construction industry's future as a so-called low-carbon-footprint cement. Research into this subject has determined the minimum kaolinite content in calcined clays to guarantee good mechanical performance. This study examines the use of clay from the Valencian Community (Spain), which has a lower kaolinite content than the recommended amount (around 30%) for use in LC3 and how its performance can be enhanced by replacing part of that clay with metakaolin. This study begins with a physico-chemical characterisation of the starting materials. This is followed by a microstructural analysis of cement pastes, which includes isothermal calorimetry, thermogravimetry, and X-ray diffraction tests at different curing ages. Finally, this study analyses the mechanical performance of standard mortars under compression to observe the evolution of the control mortars and the mortars with calcined clay and metakaolin over time. The results show that the LC3 mortars exhibited higher compressive strength in the mixtures with higher calcined kaolinite contents, achieved by adding metakaolin. Adding 6% metakaolin increased the compressive strength after 90 days, while 10% additions surpassed the control mortar's compressive strength after 28 days. Mortars with 15% metakaolin exceeded the control mortar's compressive strength after just 7 curing days. The hydration kinetics showed an acceleration of LC3 hydration with metakaolin additions due to the nucleation effect and the formation of monocarboaluminate and hemicarboaluminate (both AFm phases). The results suggest the potential for combining less reactive materials blended with highly reactive materials.LC3 (limestone calcined clay cement) is poised to become the construction industry's future as a so-called low-carbon-footprint cement. Research into this subject has determined the minimum kaolinite content in calcined clays to guarantee good mechanical performance. This study examines the use of clay from the Valencian Community (Spain), which has a lower kaolinite content than the recommended amount (around 30%) for use in LC3 and how its performance can be enhanced by replacing part of that clay with metakaolin. This study begins with a physico-chemical characterisation of the starting materials. This is followed by a microstructural analysis of cement pastes, which includes isothermal calorimetry, thermogravimetry, and X-ray diffraction tests at different curing ages. Finally, this study analyses the mechanical performance of standard mortars under compression to observe the evolution of the control mortars and the mortars with calcined clay and metakaolin over time. The results show that the LC3 mortars exhibited higher compressive strength in the mixtures with higher calcined kaolinite contents, achieved by adding metakaolin. Adding 6% metakaolin increased the compressive strength after 90 days, while 10% additions surpassed the control mortar's compressive strength after 28 days. Mortars with 15% metakaolin exceeded the control mortar's compressive strength after just 7 curing days. The hydration kinetics showed an acceleration of LC3 hydration with metakaolin additions due to the nucleation effect and the formation of monocarboaluminate and hemicarboaluminate (both AFm phases). The results suggest the potential for combining less reactive materials blended with highly reactive materials. |
Audience | Academic |
Author | Soriano, Lourdes Vargas, Paola Macián, Ana Payá, Jordi Martirena, Fernando Borrachero, María Victoria Tobón, Jorge Iván |
AuthorAffiliation | 1 Instituto Universitario de Investigación de Ciencia y Tecnología del Hormigón (ICITECH), Universitat Politècnica de València, 46022 Valencia, Spain; pvarsam@doctor.upv.es (P.V.); vborrachero@cst.upv.es (M.V.B.); jjpaya@cst.upv.es (J.P.); anmabe5@upvnet.upv.es (A.M.) 2 Grupo del Cemento y Materiales de Construcción CEMATCO, Departamento de Materiales y Minerales, Universidad Nacional de Colombia, Medellín 50034, Colombia; jitobon@unal.edu.co 3 Centro de Investigación y Desarrollo de las Estructuras y los Materiales (CIDEM), Universidad Central Marta Abreu, Villa Clara 50100, Cuba; fmartirena@ecosur.org |
AuthorAffiliation_xml | – name: 3 Centro de Investigación y Desarrollo de las Estructuras y los Materiales (CIDEM), Universidad Central Marta Abreu, Villa Clara 50100, Cuba; fmartirena@ecosur.org – name: 2 Grupo del Cemento y Materiales de Construcción CEMATCO, Departamento de Materiales y Minerales, Universidad Nacional de Colombia, Medellín 50034, Colombia; jitobon@unal.edu.co – name: 1 Instituto Universitario de Investigación de Ciencia y Tecnología del Hormigón (ICITECH), Universitat Politècnica de València, 46022 Valencia, Spain; pvarsam@doctor.upv.es (P.V.); vborrachero@cst.upv.es (M.V.B.); jjpaya@cst.upv.es (J.P.); anmabe5@upvnet.upv.es (A.M.) |
Author_xml | – sequence: 1 givenname: Paola orcidid: 0000-0001-6221-503X surname: Vargas fullname: Vargas, Paola – sequence: 2 givenname: María Victoria orcidid: 0000-0002-7873-0658 surname: Borrachero fullname: Borrachero, María Victoria – sequence: 3 givenname: Jordi orcidid: 0000-0001-7425-5311 surname: Payá fullname: Payá, Jordi – sequence: 4 givenname: Ana surname: Macián fullname: Macián, Ana – sequence: 5 givenname: Jorge Iván orcidid: 0000-0002-1451-1309 surname: Tobón fullname: Tobón, Jorge Iván – sequence: 6 givenname: Fernando surname: Martirena fullname: Martirena, Fernando – sequence: 7 givenname: Lourdes orcidid: 0000-0002-5749-4609 surname: Soriano fullname: Soriano, Lourdes |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39859756$$D View this record in MEDLINE/PubMed |
BookMark | eNptkk1vFSEUhompsbXtxh9gSNxUk6l8DAysmmai1XSSumjXhAtnrjQzcB1mNP330tvaD1NYQDgPL-c9nLdoJ6YICL2j5JhzTT6PlirCCFPiFdqjWsuK6rreebLfRYc5X5MyOKeK6Tdol2sldCPkHnIXmzmMIds5pIhTj69yiGvcpT_V2WQ94HObhhDDHBxuB3uTcYi4CyPkueSBWzu4EMFvY7iFEeKMf0zJL24reNS1_OMBet3bIcPh_bqPrr5-uWy_Vd3F2ff2tKtczflcgbMrVgtHiFjR3kpOlBO6xHzvpQWn6hUB1hPWSO80V6rh3IJmtWdAiNV8H53c6W6W1QjelVwmO5jNFEY73Zhkg3keieGnWaffhtJGSs1IUTi6V5jSr6V4NKU0DobBRkhLNpwKrQiVDSvoh__Q67RMsfjbUoJrLfQjtbYDmBD7VB52t6LmVHEmJG2aplDHL1BlehiDK3XuQzl_duH9U6cPFv_9awE-3QFuSjlP0D8glJjbvjGPfcP_AgYBsh4 |
Cites_doi | 10.1016/j.conbuildmat.2019.06.123 10.1016/j.jobe.2023.107794 10.1016/j.cemconcomp.2013.01.002 10.1617/s11527-019-1321-5 10.1007/s10973-015-4526-z 10.1016/j.conbuildmat.2019.03.300 10.1201/b19074 10.3390/buildings13081968 10.1016/j.cemconres.2016.02.015 10.1016/j.conbuildmat.2021.122271 10.1016/j.cemconres.2021.106564 10.3390/materproc2021005018 10.1007/s10973-014-3816-1 10.1016/j.conbuildmat.2021.122428 10.1016/j.cemconcomp.2013.05.007 10.1016/j.cemconres.2021.106396 10.1016/j.conbuildmat.2021.124541 10.3390/app11020773 10.1007/978-94-024-1207-9_82 10.1016/j.cemconres.2012.09.006 10.1016/j.conbuildmat.2020.118335 10.1016/j.cement.2023.100063 10.1680/jgrma.18.00029 10.1016/j.cemconres.2023.107375 10.1007/978-981-15-2806-4_1 10.3390/min10020142 10.1016/j.cemconres.2018.02.016 10.1617/s11527-023-02288-5 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2025 by the authors. 2025 |
Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2025 by the authors. 2025 |
DBID | AAYXX CITATION NPM 7SR 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO HCIFZ JG9 KB. PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM |
DOI | 10.3390/ma18020285 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Database Suite (ProQuest) Technology Collection ProQuest One ProQuest Materials Science Collection ProQuest Central SciTech Premium Collection Materials Research Database Materials Science Database Materials Science Collection Proquest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database Materials Research Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Engineered Materials Abstracts ProQuest Central Korea Materials Science Database ProQuest Central (New) ProQuest Materials Science Collection ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database CrossRef PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1996-1944 |
ExternalDocumentID | PMC11766920 A832561777 39859756 10_3390_ma18020285 |
Genre | Journal Article |
GeographicLocations | Cuba Spain India |
GeographicLocations_xml | – name: Spain – name: Cuba – name: India |
GrantInformation_xml | – fundername: Spanish Ministry of Science and Innovation, 'Proyectos de Generación de Conocimiento' of the Plan Estatal de Ciencia, Tecnología e Innovación 2021- 2023 grantid: PID2021-125890OB-100 – fundername: Funding grant PRE2022-101340 grantid: PRE2022-101340 – fundername: Spanish Ministry of Science and Innovation, ‘Proyectos de Generación de Conocimiento’ of the Plan Estatal de Ciencia, Tecnología e Innovación grantid: PID2021-125890OB-100; PRE2022-101340 |
GroupedDBID | 29M 2WC 2XV 53G 5GY 5VS 8FE 8FG AADQD AAFWJ AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV BENPR BGLVJ CCPQU CITATION CZ9 D1I E3Z EBS ESX FRP GX1 HCIFZ HH5 HYE I-F IAO ITC KB. KC. KQ8 MK~ MODMG M~E OK1 OVT P2P PDBOC PGMZT PHGZM PHGZT PIMPY PROAC RPM TR2 TUS NPM PQGLB PMFND 7SR 8FD ABUWG AZQEC DWQXO JG9 PKEHL PQEST PQQKQ PQUKI PRINS 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c433t-ecab245c005b1fa6308c59c43dfd6aec84b0e2f0276dc9388733ae924d2e00a93 |
IEDL.DBID | BENPR |
ISSN | 1996-1944 |
IngestDate | Thu Aug 21 18:40:38 EDT 2025 Thu Sep 04 19:09:14 EDT 2025 Fri Jul 25 11:40:33 EDT 2025 Tue Jun 17 21:58:36 EDT 2025 Tue Jun 10 20:56:17 EDT 2025 Mon Jul 21 05:52:27 EDT 2025 Tue Jul 01 00:07:51 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | low-grade kaolinite clay carboaluminates kinetics limestone calcined clay cement (LC3) mechanical properties |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c433t-ecab245c005b1fa6308c59c43dfd6aec84b0e2f0276dc9388733ae924d2e00a93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-5749-4609 0000-0001-6221-503X 0000-0002-1451-1309 0000-0001-7425-5311 0000-0002-7873-0658 |
OpenAccessLink | https://www.proquest.com/docview/3159539959?pq-origsite=%requestingapplication%&accountid=15518 |
PMID | 39859756 |
PQID | 3159539959 |
PQPubID | 2032366 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_11766920 proquest_miscellaneous_3159801672 proquest_journals_3159539959 gale_infotracmisc_A832561777 gale_infotracacademiconefile_A832561777 pubmed_primary_39859756 crossref_primary_10_3390_ma18020285 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-01-01 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Materials |
PublicationTitleAlternate | Materials (Basel) |
PublicationYear | 2025 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Scrivener (ref_43) 2018; 7 Silva (ref_38) 2024; 175 Sharma (ref_3) 2021; 149 Almenares (ref_18) 2021; 11 Monfil (ref_20) 2020; 16 Malacarne (ref_13) 2021; 15 Zunino (ref_2) 2016; Volume 16 ref_12 ref_34 Barbhuiyaa (ref_1) 2023; 79 ref_11 ref_32 ref_31 ref_30 Emmanuel (ref_9) 2016; 90 Yanguatin (ref_15) 2019; 211 Zunino (ref_27) 2020; 244 Yanguatin (ref_6) 2017; 32 ref_17 Avet (ref_22) 2018; 107 Avet (ref_28) 2016; 85 ref_16 Soriano (ref_33) 2015; 120 ref_37 Tironi (ref_14) 2013; 37 Tironi (ref_29) 2014; 117 Dhandapani (ref_5) 2021; 143 Krishnan (ref_35) 2019; 222 Cardinaud (ref_42) 2021; 277 Kirchheim (ref_40) 2021; 279 ref_24 ref_21 Zolfagharnasab (ref_23) 2021; 303 Bishnoi (ref_10) 2014; 88 Antoni (ref_8) 2012; 42 Soriano (ref_41) 2013; 42 Py (ref_36) 2024; 57 Reyes (ref_19) 2020; Volume 25 ref_26 Canbek (ref_39) 2023; 12 Gettu (ref_7) 2019; 52 Meseguer (ref_25) 2011; 3 ref_4 |
References_xml | – volume: 222 start-page: 64 year: 2019 ident: ref_35 article-title: Hydration and phase assemblage of ternary cements with calcined clay and limestone publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2019.06.123 – volume: 79 start-page: 107794 year: 2023 ident: ref_1 article-title: Properties, compatibility, environmental benefits and future directions of limestone calcined clay cement (LC3) concrete: A review publication-title: J. Build. Eng. doi: 10.1016/j.jobe.2023.107794 – volume: 37 start-page: 319 year: 2013 ident: ref_14 article-title: Assessment of pozzolanic activity of different calcined clays publication-title: Cem. Concr. Compos. doi: 10.1016/j.cemconcomp.2013.01.002 – ident: ref_32 – volume: 52 start-page: 10 year: 2019 ident: ref_7 article-title: Influence of supplementary cementitious materials on the sustainability parameters of cements and concretes in the Indian context publication-title: Mater. Struct. doi: 10.1617/s11527-019-1321-5 – ident: ref_34 – volume: 120 start-page: 1511 year: 2015 ident: ref_33 article-title: Use of high-resolution thermogravimetric analysis (HRTG) technique in spent FCC catalyst/Portland cement pastes publication-title: J. Therm. Anal. Calorim. doi: 10.1007/s10973-015-4526-z – ident: ref_11 – volume: 211 start-page: 814 year: 2019 ident: ref_15 article-title: Effect of thermal treatment on pozzolanic activity of excavated waste clays publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2019.03.300 – ident: ref_16 – ident: ref_37 doi: 10.1201/b19074 – ident: ref_21 – ident: ref_24 doi: 10.3390/buildings13081968 – volume: 11 start-page: 1 year: 2021 ident: ref_18 article-title: Identificación y evaluación de arcillas caoliníticas para la producción de cemento ternario LC3 y adiciones minerales activas LC2 publication-title: An. Acad. Cienc. Cuba – volume: 3 start-page: 132 year: 2011 ident: ref_25 article-title: Geology and Application of Clays Used in Castellon Ceramic Cluster (NE, Spain) publication-title: J. Geogr. Geol. – volume: 85 start-page: 1 year: 2016 ident: ref_28 article-title: Development of a new rapid, relevant and reliable (R3) test method to evaluate the pozzolanic reactivity of calcined kaolinitic clays publication-title: Cem. Concr. Res. doi: 10.1016/j.cemconres.2016.02.015 – volume: 277 start-page: 122271 year: 2021 ident: ref_42 article-title: Calcined clay—Limestone cements: Hydration processes with high and low-grade kaolinite clays publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2021.122271 – volume: 149 start-page: 106564 year: 2021 ident: ref_3 article-title: Limestone calcined clay cement and concrete: A state-of-the-art review publication-title: Cem. Concr. Res. doi: 10.1016/j.cemconres.2021.106564 – ident: ref_4 doi: 10.3390/materproc2021005018 – volume: 117 start-page: 547 year: 2014 ident: ref_29 article-title: Thermal analysis to assess pozzolanic activity of calcined kaolinitic clays publication-title: J. Therm. Anal. Calorim. doi: 10.1007/s10973-014-3816-1 – volume: 279 start-page: 122428 year: 2021 ident: ref_40 article-title: Effects of sulfates on the hydration of Portland cement—A review publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2021.122428 – volume: 42 start-page: 1 year: 2013 ident: ref_41 article-title: Effect of pozzolans on the hydration process of Portland cement cured at low temperatures publication-title: Cem. Concr. Compos. doi: 10.1016/j.cemconcomp.2013.05.007 – ident: ref_31 – volume: 143 start-page: 106396 year: 2021 ident: ref_5 article-title: Towards ternary binders involving limestone additions—A review publication-title: Cem. Concr. Res. doi: 10.1016/j.cemconres.2021.106396 – volume: 15 start-page: e00776 year: 2021 ident: ref_13 article-title: Influence of low-grade materials as clinker substitute on the rheological behavior, hydration and mechanical performance of ternary cements publication-title: Case Stud. Constr. Mater. – volume: 303 start-page: 124541 year: 2021 ident: ref_23 article-title: Investigating the potential of low-grade calcined clays to produce durable LC3 binders against chloride ions attack publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2021.124541 – ident: ref_12 – ident: ref_30 doi: 10.3390/app11020773 – volume: 88 start-page: 22 year: 2014 ident: ref_10 article-title: Pilot scale manufacture of limestone calcined clay cement: The Indian experience publication-title: Indian Concr. J. – volume: Volume 16 start-page: 514 year: 2016 ident: ref_2 article-title: Reactivity and performance of limestone calcined-clay cement (LC3) Cured at Low Temperature publication-title: Calcined Clays for Sustainable Concrete doi: 10.1007/978-94-024-1207-9_82 – volume: 42 start-page: 1579 year: 2012 ident: ref_8 article-title: Cement substitution by a combination of metakaolin and limestone publication-title: Cem. Concr. Res. doi: 10.1016/j.cemconres.2012.09.006 – volume: 244 start-page: 118335 year: 2020 ident: ref_27 article-title: Increasing the kaolinite content of raw clays using particle classification techniques for use as supplementary cementitious materials publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2020.118335 – volume: 12 start-page: 100063 year: 2023 ident: ref_39 article-title: A quantitative approach to determining sulfate balance for LC3 publication-title: Cement doi: 10.1016/j.cement.2023.100063 – volume: 90 start-page: 57 year: 2016 ident: ref_9 article-title: Second pilot production of limestone calcined clay cement in India: The experience publication-title: Indian Concr. J. – ident: ref_17 – volume: 7 start-page: 3 year: 2018 ident: ref_43 article-title: Impacting factors and properties of limestone calcined clay cements (LC3) publication-title: Green. Mater. doi: 10.1680/jgrma.18.00029 – volume: 175 start-page: 107375 year: 2024 ident: ref_38 article-title: Exploring sulfate optimization techniques in Limestone Calcined Clay Cements (LC3): Limitations and insights publication-title: Cem. Concr. Res. doi: 10.1016/j.cemconres.2023.107375 – volume: 32 start-page: 3 year: 2017 ident: ref_6 article-title: Pozzolanic reactivity of kaolin clays, a review publication-title: Rev. Ing. Constr. – volume: Volume 25 start-page: 1 year: 2020 ident: ref_19 article-title: The Experience of Cuba TRC on the Survey of Kaolinitic Clay Deposits as Source of SCMs—Main Outcomes and Learned Lessons publication-title: Calcined Clays for Sustainable Concrete doi: 10.1007/978-981-15-2806-4_1 – volume: 16 start-page: 6 year: 2020 ident: ref_20 article-title: La arcilla: Un recurso mineral estratégico publication-title: Energía Minas – ident: ref_26 doi: 10.3390/min10020142 – volume: 107 start-page: 124 year: 2018 ident: ref_22 article-title: Investigation of the calcined kaolinite content on the hydration of Limestone Calcined Clay Cement (LC3) publication-title: Cem. Concr. Res. doi: 10.1016/j.cemconres.2018.02.016 – volume: 57 start-page: 13 year: 2024 ident: ref_36 article-title: Evaluation of ultrafine calcined clays on LC3 cements on the sulfate requirement, water demand and strength development publication-title: Mater. Struct. doi: 10.1617/s11527-023-02288-5 |
SSID | ssj0000331829 |
Score | 2.4186301 |
Snippet | LC3 (limestone calcined clay cement) is poised to become the construction industry’s future as a so-called low-carbon-footprint cement. Research into this... LC3 (limestone calcined clay cement) is poised to become the construction industry's future as a so-called low-carbon-footprint cement. Research into this... |
SourceID | pubmedcentral proquest gale pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database |
StartPage | 285 |
SubjectTerms | Analysis Building Cement Cement paste Clay Clay minerals Compressive strength Cost control Curing Hydration Kaolinite Limestone Mechanical properties Medical research Medicine, Experimental Metakaolin Microstructural analysis Minerals Mortars (material) Nucleation Raw materials Roasting Sedimentation & deposition Soil-cement construction Thermogravimetry |
Title | Optimisation of Using Low-Grade Kaolinitic Clays in Limestone Calcined Clay Cement Production (LC3) |
URI | https://www.ncbi.nlm.nih.gov/pubmed/39859756 https://www.proquest.com/docview/3159539959 https://www.proquest.com/docview/3159801672 https://pubmed.ncbi.nlm.nih.gov/PMC11766920 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9xADBbJ5tIeStJX3DyY0kLbwxDvjO2dOZSQmOyGdtmG0sDezLxMA4k3TTaU_vtKfmzWPRSfjMb2IM1II1n6BPBelCUZjpKbxAmeDGPLFdo57kKmE2tDZhu0z1l2fpl8mafzDZh1tTCUVtnpxFpR-4WjGPmRRLtLKKqpPr79xalrFP1d7VpomLa1gv9cQ4xtwpagrsoD2Do9m118X0VdYolrWOgGp1Siv390YwgDDa1s2rNM_-rnNQPVT55cs0bjbXjWHiPZSSP3HdgI1XN4ugYu-ALcN9QGN222DluUrM4OYNPFbz65Mz6wr4Ya9lD2G8uvzZ97dlWxKVWEED43y801_XP3NY3ldRSRXTT4sPTCj9NcfnoJl-OzH_k5b1sqcJdIueTBGSuS1OHes8PSZDJWLtVI86XPTHAqsXEQJfqqmXdaogaS0gT00bwIcWy0fAWDCiexC4yQu4wuJUpUJCNpLNq1OPgUL1sqpyJ417GzuG2QMwr0OIjpxSPTI_hAnC5oOyE7nWmrAvAbBExVnKDGwSPeaDSKYL83Ehno-uROVkW7De-Lx0UTwdsVmZ6k1LIqLB6aMYqKMUQErxvRruYrtUKHK80iUD2hrwYQOHefUl39rEG6h4S8qUX85v_z2oMngjoK10GdfRgs7x7CAR5zlvYQNtV4ctiuYLybzId_ATKO_7c |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5V7QE4IN4EChgBAg5WvXaSTQ4VKqFly4alQq3UW-pXRKU2W7pbVf1z_DZm8thuOHCrchzvxhrP-PM4M98AvJVlScBRch1aycOBMDxBnOPWx2lojI9Nw_Y5iUcH4bfD6HAF_nS1MJRW2e2J9UbtppbuyDcU4i6xqEbpp7PfnLpG0dfVroWGblsruM2aYqwt7Bj7q0sM4Wabu19wvd9JubO9n41422WA21CpOfdWGxlGFs3RDEodK5HYKEWZK12svU1CI7wsMXyLnU0VOqVS2mPY4qQXQhMZE0LAGh47FHrV2uftyd7PxS2PUOgzMm14UZVKxcapJs41RPWoh4T_4sESIPaTNZfQb-ce3G2PrWyrsbP7sOKrB3BniczwIdgfuPucttlBbFqyOhuB5dNL_vVcO8_GmhoEUbYdy0701YwdVyynChTiA2eZPqFv_K6Wsay-tWR7DR8t_eGHPFMfH8HBjSj3MaxWOImnwIgpTKelQguS4VBpgzgqvIvwMWVikwDedOoszhqmjgIjHFJ6ca30AN6TpgtyX1Sn1W0VAr6DiLCKLdzh8Eg5HA4DWO-NRAXavrhbq6J1-1lxbaQBvF6I6ZeUylb56UUzJqHiDxnAk2ZpF_NVaYIBXhQHkPQWfTGAyMD7kur4V00KPiCmz1SKZ_-f1yu4Ndr_nhf57mT8HG5L6mZcXyitw-r8_MK_wCPW3Lxs7ZjB0U27zl82jTs6 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VRUJwQLxJKWAECDhY67WTrHNAqErZtuyq9ECl3oLt2KJSm227W1X9a_w6ZvLYbjhwq3Ic78Yaz8znccbfALyXIRBwBG5iJ3k8FJZrxDnufJrF1vrUNmyf--nuYfz9KDlagz_dXRgqq-xiYh2oy5mjM_KBQtwlFtUkG4S2LOJge_z17JxTByn60tq102hMZOKvrzB9m3_Z28a1_iDl-NvPfJe3HQa4i5VacO-MlXHi0BTtMJhUCe2SDGVlKFPjnY6t8DJg6paWLlPokEoZjylLKb0QhoiYMPzfoVYv5FF6vLM83xEKvUVmDSOqUpkYnBpiW0M8T3oY-C8SrEBhv0xzBffGD-FBu2FlW42FPYI1Xz2G-ys0hk_A_cC4c9rWBbFZYHUdApvOrvjOhSk9mxhqDUR1diw_MddzdlyxKd09ISZwlpsT-rpf1jKW1-eV7KBhoqU__DTN1eencHgrqn0G6xVO4gUw4ggzWVBoOzIeKWMRQYUvE3xs0E5H8K5TZ3HWcHQUmNuQ0osbpUfwkTRdkOOiOp1p7x_gO4gCq9jC2IabydFoFMFmbyQq0PXF3VoVrcPPixvzjODtUky_pCK2ys8umzGarn3ICJ43S7ucr8o0pnZJGoHuLfpyANGA9yXV8e-aDnxIHJ-ZFBv_n9cbuIsOU0z39icv4Z6kNsb1SdImrC8uLv0r3Fst7OvaiBn8um2v-QunbzjW |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimisation+of+Using+Low-Grade+Kaolinitic+Clays+in+Limestone+Calcined+Clay+Cement+Production+%28LC3%29&rft.jtitle=Materials&rft.au=Vargas%2C+Paola&rft.au=Borrachero%2C+Mar%C3%ADa+Victoria&rft.au=Pay%C3%A1%2C+Jordi&rft.au=Maci%C3%A1n%2C+Ana&rft.date=2025-01-01&rft.pub=MDPI&rft.eissn=1996-1944&rft.volume=18&rft.issue=2&rft_id=info:doi/10.3390%2Fma18020285&rft_id=info%3Apmid%2F39859756&rft.externalDocID=PMC11766920 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1944&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1944&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1944&client=summon |