Implementation of the near-field signal redundancy phase-aberration correction algorithm on two-dimensional arrays

Near-field signal-redundancy (NFSR) algorithms for phase-aberration correction have been proposed and experimentally tested for linear and phased one-dimensional arrays. In this paper the performance of an all-row-plus-two-column, two-dimensional algorithm has been analyzed and tested with simulated...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on ultrasonics, ferroelectrics, and frequency control Vol. 54; no. 1; pp. 42 - 51
Main Authors Yue Li, Robinson, B.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.01.2007
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0885-3010
1525-8955
DOI10.1109/TUFFC.2007.210

Cover

More Information
Summary:Near-field signal-redundancy (NFSR) algorithms for phase-aberration correction have been proposed and experimentally tested for linear and phased one-dimensional arrays. In this paper the performance of an all-row-plus-two-column, two-dimensional algorithm has been analyzed and tested with simulated data sets. This algorithm applies the NFSR algorithm for one-dimensional arrays to all the rows as well as the first and last columns of the array. The results from the two column measurements are used to derive a linear term for each row measurement result. These linear terms then are incorporated into the row results to obtain a two-dimensional phase aberration profile. The ambiguity phase aberration profile, which is the difference between the true and the derived phase aberration profiles, of this algorithm is not linear. Two methods, a trial-and-error method and a diagonal-measurement method, are proposed to linearize the ambiguity profile. The performance of these algorithms is analyzed and tested with simulated data sets.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ObjectType-Undefined-1
ObjectType-Feature-3
ISSN:0885-3010
1525-8955
DOI:10.1109/TUFFC.2007.210