A Downscaling Methodology for Extracting Photovoltaic Plants with Remote Sensing Data: From Feature Optimized Random Forest to Improved HRNet
Present approaches in PV (Photovoltaic) detection are known to be scalable to a larger area using machine learning classification and have improved accuracy on a regional scale with deep learning diagnostics. However, it may cause false detection, time, and cost-consuming when regional deep learning...
Saved in:
| Published in | Remote sensing (Basel, Switzerland) Vol. 15; no. 20; p. 4931 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Basel
MDPI AG
01.10.2023
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2072-4292 2072-4292 |
| DOI | 10.3390/rs15204931 |
Cover
| Abstract | Present approaches in PV (Photovoltaic) detection are known to be scalable to a larger area using machine learning classification and have improved accuracy on a regional scale with deep learning diagnostics. However, it may cause false detection, time, and cost-consuming when regional deep learning models are directly scaled to a larger area, particularly in large-scale, highly urbanized areas. Thus, a novel two-step downscaling methodology integrating machine learning broad spatial partitioning (step-1) and detailed deep learning diagnostics (step-2) is designed and applied in highly urbanized Jiangsu Province, China. In the first step, this methodology selects suitable feature combinations using the recursive feature elimination with distance correlation coefficient (RFEDCC) strategy for the random forest (RF), considering not only feature importance but also feature independence. The results from RF (overall accuracy = 95.52%, Kappa = 0.91) indicate clear boundaries and little noise. Furthermore, the post-processing of noise removal with a morphological opening operation for the extraction result of RF is necessary for the purpose that less high-resolution remote sensing tiles should be applied in the second step. In the second step, tiles intersecting with the results of the first step are selected from a vast collection of Google Earth tiles, reducing the computational complexity of the next step in deep learning. Then, the improved HRNet with high performance on the test data set (Intersection over Union around 94.08%) is used to extract PV plants from the selected tiles, and the results are mapped. In general, for Jiangsu province, the detection rate of the previous PV database is higher than 92%, and this methodology reduces false detection noise and time consumption (around 95%) compared with a direct deep learning methodology. |
|---|---|
| AbstractList | Present approaches in PV (Photovoltaic) detection are known to be scalable to a larger area using machine learning classification and have improved accuracy on a regional scale with deep learning diagnostics. However, it may cause false detection, time, and cost-consuming when regional deep learning models are directly scaled to a larger area, particularly in large-scale, highly urbanized areas. Thus, a novel two-step downscaling methodology integrating machine learning broad spatial partitioning (step-1) and detailed deep learning diagnostics (step-2) is designed and applied in highly urbanized Jiangsu Province, China. In the first step, this methodology selects suitable feature combinations using the recursive feature elimination with distance correlation coefficient (RFEDCC) strategy for the random forest (RF), considering not only feature importance but also feature independence. The results from RF (overall accuracy = 95.52%, Kappa = 0.91) indicate clear boundaries and little noise. Furthermore, the post-processing of noise removal with a morphological opening operation for the extraction result of RF is necessary for the purpose that less high-resolution remote sensing tiles should be applied in the second step. In the second step, tiles intersecting with the results of the first step are selected from a vast collection of Google Earth tiles, reducing the computational complexity of the next step in deep learning. Then, the improved HRNet with high performance on the test data set (Intersection over Union around 94.08%) is used to extract PV plants from the selected tiles, and the results are mapped. In general, for Jiangsu province, the detection rate of the previous PV database is higher than 92%, and this methodology reduces false detection noise and time consumption (around 95%) compared with a direct deep learning methodology. |
| Audience | Academic |
| Author | Cai, Danlu Yang, Lina Ge, Xingtong Peng, Ling Chen, Luanjie Wang, Yinda |
| Author_xml | – sequence: 1 givenname: Yinda orcidid: 0000-0002-0191-4707 surname: Wang fullname: Wang, Yinda – sequence: 2 givenname: Danlu orcidid: 0000-0002-8986-1354 surname: Cai fullname: Cai, Danlu – sequence: 3 givenname: Luanjie orcidid: 0000-0001-9728-9602 surname: Chen fullname: Chen, Luanjie – sequence: 4 givenname: Lina surname: Yang fullname: Yang, Lina – sequence: 5 givenname: Xingtong orcidid: 0000-0001-7603-2832 surname: Ge fullname: Ge, Xingtong – sequence: 6 givenname: Ling orcidid: 0000-0002-6535-477X surname: Peng fullname: Peng, Ling |
| BookMark | eNp9Uk1vEzEQXaFWopRe-AWWuCBQir921-YWtQ2N1NIqwHk167UTR7t2sJ2G8B_4z3gJAlQh7IOtmfeeZ-b5WXHkvNNF8YLgc8YkfhsiKSnmkpEnxQnFNZ1wKunRX_enxVmMa5wXY0RiflJ8n6JLv3NRQW_dEt3qtPKd7_1yj4wP6OprCqDSmLpf-eQffJ_AKnTfg0sR7WxaoYUefNLoo3ZxxF1CgndoFvyAZhrSNmh0t0l2sN90hxbgujHhg44JJY_mwyb4h5y5XnzQ6XlxbKCP-uzXeVp8nl19urie3Ny9n19MbyaKM5YmnS5NCaWpSkE1tC0XQnU1kVRVsmopiE5hw6tKSyx022moJcFQsbLCGnOF2WkxP-h2HtbNJtgBwr7xYJufAR-WDYRkVa8bZjgTbWsMMSWvQIhOSq6kNLginGCZtd4ctLZuA_sd9P1vQYKb0ZjmjzEZ_eqAzm1_2eYhNIONSvd5ntpvY8Mwx1xkq6oMffkIuvbb4PJcGioEFRiTemzl_IBaQq7WOuNHx_Lu9GBV_iDG5vi0rinNrmORCa8PBBV8jEGb_5eLH4GVTZCsd_kV2_-L8gNBCsqw |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2024_3415592 crossref_primary_10_3390_rs15245687 |
| Cites_doi | 10.1016/j.rser.2011.08.009 10.1214/aos/1013203451 10.1109/CVPR.2016.308 10.1016/j.eswa.2022.118240 10.1016/j.energy.2013.02.057 10.1038/s41586-021-03957-7 10.1109/MGRS.2022.3169947 10.3390/rs14112697 10.1080/01431160304987 10.1109/TSMC.1973.4309314 10.1016/j.patcog.2020.107404 10.1016/j.egyr.2022.03.039 10.1016/j.rse.2021.112851 10.1007/978-3-030-01234-2_49 10.1109/CVPR.2015.7298965 10.5194/essd-13-5389-2021 10.1080/01431160600589179 10.1016/j.rser.2013.06.023 10.1016/j.apenergy.2022.120579 10.1016/S0165-1684(01)00060-3 10.1007/s00376-012-2057-0 10.3390/rs13214237 10.1016/j.joule.2018.11.021 10.1029/2005RG000183 10.3390/rs14174211 10.1109/CVPR.2017.106 10.1016/j.energy.2017.03.032 10.1016/j.isprsjprs.2016.01.011 10.1023/A:1010933404324 10.3390/rs11091044 10.3390/rs14246296 10.1109/ICRERA.2016.7884415 10.1007/BF00994018 10.1109/JSTARS.2014.2329330 10.3390/en13246742 10.1109/CISP-BMEI56279.2022.9980307 10.1038/s41597-021-01079-3 10.3390/plants11233257 10.1080/15481603.2022.2036056 10.1117/1.JRS.14.016506 10.3390/app11146524 10.3390/rs15092469 10.1029/98WR02577 10.1016/0034-4257(79)90013-0 10.1109/TGRS.2020.2994150 10.1109/LGRS.2018.2802944 10.1016/j.rse.2021.112692 10.3390/rs15153712 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS 7S9 L.6 ADTOC UNPAY DOA |
| DOI | 10.3390/rs15204931 |
| DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection AGRICOLA AGRICOLA - Academic Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection Materials Business File Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography |
| EISSN | 2072-4292 |
| ExternalDocumentID | oai_doaj_org_article_3f438bbff1f546a88d994c99f0614109 10.3390/rs15204931 A772200308 10_3390_rs15204931 |
| GeographicLocations | China United States--US |
| GeographicLocations_xml | – name: China – name: United States--US |
| GroupedDBID | 29P 2WC 2XV 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PQGLB PROAC PTHSS TR2 TUS 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQQKQ PQUKI PUEGO 7S9 L.6 ADTOC C1A IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c433t-de5f5a5f6582eabb488cd7192c696b2a8dc0f466e908ebdea7910a63560e04c03 |
| IEDL.DBID | DOA |
| ISSN | 2072-4292 |
| IngestDate | Fri Oct 03 12:39:38 EDT 2025 Tue Aug 19 19:41:28 EDT 2025 Fri Sep 05 06:18:01 EDT 2025 Wed Sep 03 15:11:00 EDT 2025 Mon Oct 20 16:55:04 EDT 2025 Thu Apr 24 22:55:53 EDT 2025 Thu Oct 16 04:31:23 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 20 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c433t-de5f5a5f6582eabb488cd7192c696b2a8dc0f466e908ebdea7910a63560e04c03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-9728-9602 0000-0002-8986-1354 0000-0002-6535-477X 0000-0002-0191-4707 0000-0001-7603-2832 |
| OpenAccessLink | https://doaj.org/article/3f438bbff1f546a88d994c99f0614109 |
| PQID | 2882800170 |
| PQPubID | 2032338 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_3f438bbff1f546a88d994c99f0614109 unpaywall_primary_10_3390_rs15204931 proquest_miscellaneous_3040482926 proquest_journals_2882800170 gale_infotracacademiconefile_A772200308 crossref_primary_10_3390_rs15204931 crossref_citationtrail_10_3390_rs15204931 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-10-01 |
| PublicationDateYYYYMMDD | 2023-10-01 |
| PublicationDate_xml | – month: 10 year: 2023 text: 2023-10-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Remote sensing (Basel, Switzerland) |
| PublicationYear | 2023 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | ref_50 Abdin (ref_4) 2013; 26 Rangarajan (ref_9) 2022; 208 Shamshiri (ref_51) 2022; 270 ref_14 ref_57 ref_56 ref_11 ref_10 Zhang (ref_43) 2023; 59 ref_54 Venkatesh (ref_18) 2019; 19 ref_52 ref_17 ref_15 ref_59 (ref_47) 2001; 81 Thoreau (ref_8) 2022; 10 Qin (ref_60) 2020; 106 Jianxun (ref_19) 2023; 119 Jiang (ref_53) 2021; 13 Xia (ref_12) 2022; 8 Jie (ref_20) 2020; 14 Zhang (ref_58) 2018; 15 Kruitwagen (ref_27) 2021; 598 Chen (ref_7) 2014; 7 Yu (ref_29) 2018; 2 ref_23 ref_22 ref_21 Zha (ref_35) 2003; 24 ref_62 Belgiu (ref_13) 2016; 114 Wilby (ref_33) 1998; 34 Wang (ref_40) 2018; 11 Farr (ref_55) 2007; 45 ref_28 ref_26 Timilsina (ref_3) 2012; 16 ref_31 ref_30 ref_39 Chen (ref_25) 2023; 333 ref_38 Haralick (ref_41) 1973; 6 Zhu (ref_24) 2023; 116 Xu (ref_37) 2006; 27 Xu (ref_34) 2021; 8 Friedman (ref_45) 2001; 29 Ding (ref_61) 2020; 59 Singh (ref_2) 2013; 53 Plakman (ref_16) 2022; 59 Breiman (ref_44) 2001; 45 Okoye (ref_6) 2017; 126 Fan (ref_32) 2013; 30 Cortes (ref_46) 1995; 20 ref_1 ref_49 ref_48 Tucker (ref_36) 1979; 8 Ji (ref_42) 2021; 266 ref_5 |
| References_xml | – volume: 16 start-page: 449 year: 2012 ident: ref_3 article-title: Solar energy: Markets, economics and policies publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2011.08.009 – volume: 29 start-page: 1189 year: 2001 ident: ref_45 article-title: Greedy function approximation: A gradient boosting machine publication-title: Ann. Stat. doi: 10.1214/aos/1013203451 – ident: ref_30 doi: 10.1109/CVPR.2016.308 – ident: ref_49 – ident: ref_5 – volume: 208 start-page: 118240 year: 2022 ident: ref_9 article-title: Detection of fusarium head blight in wheat using hyperspectral data and deep learning publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2022.118240 – volume: 53 start-page: 1 year: 2013 ident: ref_2 article-title: Solar power generation by PV (photovoltaic) technology: A review publication-title: Energy doi: 10.1016/j.energy.2013.02.057 – volume: 116 start-page: 103134 year: 2023 ident: ref_24 article-title: Deep solar PV refiner: A detail-oriented deep learning network for refined segmentation of photovoltaic areas from satellite imagery publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 598 start-page: 604 year: 2021 ident: ref_27 article-title: A global inventory of photovoltaic solar energy generating units publication-title: Nature doi: 10.1038/s41586-021-03957-7 – ident: ref_39 – volume: 10 start-page: 256 year: 2022 ident: ref_8 article-title: Active learning for hyperspectral image classification: A comparative review publication-title: IEEE Geosci. Remote Sens. Mag. doi: 10.1109/MGRS.2022.3169947 – ident: ref_1 – ident: ref_10 doi: 10.3390/rs14112697 – volume: 11 start-page: 46 year: 2018 ident: ref_40 article-title: Multi-invariant Feature Combined Photovoltaic Power Plants Extraction Using Multi-temporal Landsat 8 OLI Imagery publication-title: Bull. Surv. Mapp. – volume: 24 start-page: 583 year: 2003 ident: ref_35 article-title: Use of normalized difference built-up index in automatically mapping urban areas from TM imagery publication-title: Int. J. Remote Sens. doi: 10.1080/01431160304987 – volume: 6 start-page: 610 year: 1973 ident: ref_41 article-title: Textural features for image classification publication-title: IEEE Trans. Syst. Man Cybern. doi: 10.1109/TSMC.1973.4309314 – volume: 106 start-page: 107404 year: 2020 ident: ref_60 article-title: U2-Net: Going deeper with nested U-structure for salient object detection publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2020.107404 – volume: 8 start-page: 4117 year: 2022 ident: ref_12 article-title: Mapping the rapid development of photovoltaic power stations in northwestern China using remote sensing publication-title: Energy Rep. doi: 10.1016/j.egyr.2022.03.039 – volume: 270 start-page: 112851 year: 2022 ident: ref_51 article-title: Spatio-temporal distribution of sea-ice thickness using a machine learning approach with Google Earth Engine and Sentinel-1 GRD data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2021.112851 – ident: ref_59 doi: 10.1007/978-3-030-01234-2_49 – ident: ref_57 doi: 10.1109/CVPR.2015.7298965 – ident: ref_52 – volume: 13 start-page: 5389 year: 2021 ident: ref_53 article-title: Multi-resolution dataset for photovoltaic panel segmentation from satellite and aerial imagery publication-title: Earth Syst. Sci. Data doi: 10.5194/essd-13-5389-2021 – ident: ref_48 – volume: 27 start-page: 3025 year: 2006 ident: ref_37 article-title: Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery publication-title: Int. J. Remote Sens. doi: 10.1080/01431160600589179 – volume: 26 start-page: 837 year: 2013 ident: ref_4 article-title: Solar energy harvesting with the application of nanotechnology publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2013.06.023 – volume: 333 start-page: 120579 year: 2023 ident: ref_25 article-title: Remote sensing of photovoltaic scenarios: Techniques, applications and future directions publication-title: Appl. Energy doi: 10.1016/j.apenergy.2022.120579 – volume: 81 start-page: 1991 year: 2001 ident: ref_47 article-title: The approximation of a morphological opening and closing in the presence of noise publication-title: Signal Process. doi: 10.1016/S0165-1684(01)00060-3 – volume: 30 start-page: 1085 year: 2013 ident: ref_32 article-title: Statistical downscaling of summer temperature extremes in northern China publication-title: Adv. Atmos. Sci. doi: 10.1007/s00376-012-2057-0 – ident: ref_38 – ident: ref_56 doi: 10.3390/rs13214237 – volume: 2 start-page: 2605 year: 2018 ident: ref_29 article-title: DeepSolar: A machine learning framework to efficiently construct a solar deployment database in the United States publication-title: Joule doi: 10.1016/j.joule.2018.11.021 – ident: ref_28 – volume: 45 start-page: RG2004 year: 2007 ident: ref_55 article-title: The shuttle radar topography mission publication-title: Rev. Geophys. doi: 10.1029/2005RG000183 – ident: ref_31 doi: 10.3390/rs14174211 – ident: ref_50 doi: 10.1109/CVPR.2017.106 – volume: 126 start-page: 573 year: 2017 ident: ref_6 article-title: Optimal sizing of stand-alone photovoltaic systems in residential buildings publication-title: Energy doi: 10.1016/j.energy.2017.03.032 – volume: 114 start-page: 24 year: 2016 ident: ref_13 article-title: Random forest in remote sensing: A review of applications and future directions publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2016.01.011 – volume: 45 start-page: 5 year: 2001 ident: ref_44 article-title: Random forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – ident: ref_17 doi: 10.3390/rs11091044 – ident: ref_14 doi: 10.3390/rs14246296 – volume: 119 start-page: 103309 year: 2023 ident: ref_19 article-title: PVNet: A novel semantic segmentation model for extracting high-quality photovoltaic panels in large-scale systems from high-resolution remote sensing imagery publication-title: Int. J. Appl. Earth Obs. Geoinf. – ident: ref_26 doi: 10.1109/ICRERA.2016.7884415 – volume: 20 start-page: 273 year: 1995 ident: ref_46 article-title: Support-vector networks publication-title: Mach. Learn. doi: 10.1007/BF00994018 – volume: 7 start-page: 2094 year: 2014 ident: ref_7 article-title: Deep learning-based classification of hyperspectral data publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2014.2329330 – ident: ref_22 doi: 10.3390/en13246742 – ident: ref_15 doi: 10.1109/CISP-BMEI56279.2022.9980307 – ident: ref_54 – volume: 59 start-page: 23 year: 2023 ident: ref_43 article-title: Research on Feature Selection of Multi-Objective Optimization publication-title: Comput. Eng. Appl. – volume: 8 start-page: 293 year: 2021 ident: ref_34 article-title: Bias-corrected CMIP6 global dataset for dynamical downscaling of the historical and future climate (1979–2100) publication-title: Sci. Data doi: 10.1038/s41597-021-01079-3 – ident: ref_62 doi: 10.3390/plants11233257 – volume: 59 start-page: 462 year: 2022 ident: ref_16 article-title: Solar park detection from publicly available satellite imagery publication-title: GISci. Remote Sens. doi: 10.1080/15481603.2022.2036056 – volume: 14 start-page: 016506 year: 2020 ident: ref_20 article-title: Photovoltaic power station identification using refined encoder–decoder network with channel attention and chained residual dilated convolutions publication-title: J. Appl. Remote Sens. doi: 10.1117/1.JRS.14.016506 – ident: ref_21 doi: 10.3390/app11146524 – ident: ref_23 doi: 10.3390/rs15092469 – volume: 34 start-page: 2995 year: 1998 ident: ref_33 article-title: Statistical downscaling of general circulation model output: A comparison of methods publication-title: Water Resour. Res. doi: 10.1029/98WR02577 – volume: 8 start-page: 127 year: 1979 ident: ref_36 article-title: Red and photographic infrared linear combinations for monitoring vegetation publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(79)90013-0 – volume: 59 start-page: 426 year: 2020 ident: ref_61 article-title: LANet: Local attention embedding to improve the semantic segmentation of remote sensing images publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2020.2994150 – volume: 15 start-page: 749 year: 2018 ident: ref_58 article-title: Road extraction by deep residual u-net publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2018.2802944 – volume: 266 start-page: 112692 year: 2021 ident: ref_42 article-title: Solar photovoltaic module detection using laboratory and airborne imaging spectroscopy data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2021.112692 – volume: 19 start-page: 3 year: 2019 ident: ref_18 article-title: A review of feature selection and its methods publication-title: Cybern. Inf. Technol. – ident: ref_11 doi: 10.3390/rs15153712 |
| SSID | ssj0000331904 |
| Score | 2.3903315 |
| Snippet | Present approaches in PV (Photovoltaic) detection are known to be scalable to a larger area using machine learning classification and have improved accuracy on... |
| SourceID | doaj unpaywall proquest gale crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 4931 |
| SubjectTerms | Accuracy Artificial intelligence China Climate change Correlation coefficient Correlation coefficients data collection Deep learning diagnostic techniques Emissions Image processing Internet Learning algorithms Machine learning Methodology Methods morphological opening operation Photovoltaic cells Photovoltaics PV detection random forest recursive feature elimination with distance correlation coefficient Regions Remote sensing Semantics Silicon wafers Solar power plants Tiles urbanization |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwELZG9zB4QPwUgYGMmIR4iObYTpYgIdSxVhXSylSYtLfo_ItN6pLSpoLxP_A_c5emHQi019hSZJ_v7vPZ_j7G9lyiIU2ciZ1VJtZJMDFIDbHDVOIE5NJ6euB8PM5Gp_rjWXq2xcbrtzB0rXIdE9tA7WpLNfJ9iVAwb9le3s--xaQaRaerawkN6KQV3LuWYuwW25bEjNVj24eD8clkU3URCpec0CueUoX7_f35AjMYwmSV_JWZWgL_f8P0HbazrGZw9R2m0z_y0PAeu9sBSN5fWfw-2_LVA7bTaZmfXz1kv_r8iErGOPmYlvhxKxHdFs85AlQ--NG0D6Ow6eS8bmoMTw1cWE7qRc2CU12WTzwa0PPPdLkd-x1BA2_5cF5fckKMy7nnnzDSXF789I5PoHLUUJPIB29qvipTYMtoMvbNI3Y6HHz5MIo70YXYaqWa2Pk0pJAGRCbSgzHo4NYdIA60WZEZCbmzIugs84XIvXEeDhBwALHcCS-0Feox61V15Z8w7gqnlC2CCanSOjWQeGF1ITJQ0oLwEXuznvDSdozkJIwxLXFnQsYpr40TsVebvrMVD8d_ex2S3TY9iDu7_VDPv5adK5YqaJUbE0ISUp1Bnrui0LYoAm2OE1FE7DVZvSQPJ4tA91ABB0VcWWUfNySy5fmJ2O56YZSd6y_K64UasZebZnRaOomBytfLRakwdOpcFjKL2N5mQd0wsKc3_-kZuy0RfK0uGe6yXjNf-ucIlhrzovOA3yHQFeU priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF5BeigceFcYClpEJcTBzdq7drxcUKCNIqSGKhCpnKx90ojUjhIHaP8D_5kZ2wnlIYTE0dlJ5NV-O_PNZPcbQvZsJFQSWR1aw3UoIq9DFQsVWggllqksNg4vOB-N0uFEvDlJTi7d4sdjlZCKT2snHbNeHGI_pW6UwENXSB5159a__NzWkqJUNhGyd5VspQmw8Q7ZmoyO-x-wp9z6240qKYfsvrtYQrxi-Ds_xaFarv93p3ydbK-KuTr_omazS1FncJOo9fs2h00-7a8qvW8ufpFy_J8J3SI3WkpK-w2GbpMrrrhDttvu6Kfnd8m3Pj3AIjQsJwQ6elQ3na7L8RQoLz38WtVXrWDo-LSsSnB4lZoaiv2QqiXFSi8dO4CEo-_wuDzYHahKvaCDRXlGkYOuFo6-Bd91Nr1wlo5VYXGgxLYhtCppU_iAkeF45Kp7ZDI4fP96GLZtHEIjOK9C6xKfqMQD14md0hpchrE9YJYmlamOVWYN8yJNnWSZ09apHlAYhbp5zDFhGN8hnaIs3H1CrbScG-m1T7gQiVaRY0ZIlioeG8VcQJ6vFzU3rcY5ttqY5ZDrIADyHwAIyNON7bxR9vij1SvExsYC1bjrD8rFx7zd3Dn3gmdaex_5RKQqy6yUwkjpMd2OmAzIM0RWjj4DV0S1Vx9gUqi-lfchxYlr5aCA7K7Bl7fOZJnHkAVltdBRQJ5shsEN4H87qnDlaplzcMYiA2SlAdnbgPYvE3vwb2YPybUYaF1zfHGXdKrFyj0CGlbpx-1O-w7xPS1u priority: 102 providerName: Unpaywall |
| Title | A Downscaling Methodology for Extracting Photovoltaic Plants with Remote Sensing Data: From Feature Optimized Random Forest to Improved HRNet |
| URI | https://www.proquest.com/docview/2882800170 https://www.proquest.com/docview/3040482926 https://www.mdpi.com/2072-4292/15/20/4931/pdf?version=1697102837 https://doaj.org/article/3f438bbff1f546a88d994c99f0614109 |
| UnpaywallVersion | publishedVersion |
| Volume | 15 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Colorado Digital library customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: KQ8 dateStart: 20090101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: DOA dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2072-4292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: ABDBF dateStart: 20091201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: ADMLS dateStart: 20091201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: M~E dateStart: 20090101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2072-4292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: BENPR dateStart: 20090301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: 8FG dateStart: 20090301 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Nb9MwFLdgHAaHiU8RGJURkxCHaE7sZDG3jLZUiJaqo9I4Rc9f2qQumdpUY_wP_M88J1kpAsGFU5U-H2K_r99z7N8j5MBEApLIqNBorkIRORVCLCA0mEoMgyzW1l9wHk_S0Vx8OE1Ot1p9-TNhLT1wu3CH3AmeKeVc5BKRQpYZKYWW0vlSJmqv7rFMbhVTTQzmaFpMtHykHOv6w-UKMxXCYR79koEaov7fw_E9srsuL-H6ChaLrXwzvE_2OqBI8_YFH5BbtnxIdrue5WfXj8j3nPb91jAuMqYfOm5aQTeb5BSBKB18rZsLUCianlV1hWGohnNNfZeiekX9_iudWVSUpSf-EDuO60MNb-lwWV1QjwzXS0s_YUS5OP9mDZ1Babyg8s08aF3RdjsCJaPZxNaPyXw4-PxuFHbNFUItOK9DYxOXQOIQgcQWlEJH1uYI8Z5OZapiyIxmTqSplSyzylg4QmABns2OWSY040_ITlmV9imhRhrOtXTKJVyIREFkmRaSpcBjDcwG5M3Nghe6Yx73DTAWBVYgXjnFT-UE5NVm7GXLt_HHUcdeb5sRniO7-QMtp-gsp_iX5QTktdd64T3ZawS6Cwk4Kc-JVeRYeMQNn09A9m8Mo-hcfFXEWJtkDf1QQF5uxOic_osLlLZarwqOIVJksYzTgBxsDOovE3v2Pyb2nNyNEYq1Rw73yU69XNsXCJ1q1SO3s-H7HrmT98cfT_D3eDCZznqN7-DTfDLNv_wAfBodOg |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbG9lB4QFxFYYARQ4iHaI7tZDHShDraqmNbmcom7S3zLWxSl5Q21Sj_gb_Eb-OcNO1AoL3tNbYSOef43OzzfYRsuFDqKHQmcFaYQIaZCTSXOnDgShzTCbceG5wP-nHvWH46iU5WyK9FLwxeq1zYxMpQu8JijXyTQyiYVGgvH0bfAmSNwtPVBYWGrqkV3HYFMVY3duz52SWkcJPt3TbI-w3n3c7Rx15QswwEVgpRBs5HWaSjDFwx99oY0GjrtiDwsbGKDdeJsyyTcewVS7xxXm-Bh9UI68Y8k5YJeO8tsiaFVJD8re10-oeDZZWHCVBxJue4qEIotjmegMeEsFyEf3nCijDgX7dwhzSm-UjPLvVw-Iff694jd-uAlbbmGnafrPj8AWnU3Olns4fkZ4u2sUQNwgY3SA8qSuqqWE8hIKad72XViAVDh2dFWYA5LPW5pciWVE4o1oHpwIPCePoFL9PDvLYu9XvaHRcXFCPU6djTz2DZLs5_eEcHOnc4UCCpCC0LOi-LwEhv0PflI3J8I7__MVnNi9w_IdQpJ4RVmckiIWVkdOiZlYrFWnCrmW-Sd4sfntoaAR2JOIYpZEIonPRKOE3yejl3NMf9-O-sHZTbcgZidVcPivHXtN76qcikSIzJsjCLZKyTxCklrVIZJuMhU03yFqWeokVBiei6MQIWhdhcaQsSIF7hCjXJ-kIx0trUTNKrjdEkr5bDYCTw5EfnvphOUgGmWiZc8bhJNpYKdc3Cnl7_pZek0Ts62E_3d_t7z8htDoHf_ILjOlktx1P_HAK10ryodwMlpze9AX8DNS9Tbw |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGkBg8IK4iMMCIIcRDVMd20gQJoUJXOsbKVJi0t-Arm9Q1pU01yn_gD_HrOCdJOxBob3uNrUTOufrY5_sI2bKRVHFkdWiN0KGMvA4Vlyq0EEosUyk3Dhuc9wZJ_0C-P4wP18ivZS8MXqtc-sTKUdvCYI28xSEVTCu0l5ZvrkXsd3uvJ99CZJDCk9YlnUatIrtucQrbt9mrnS7I-hnnve3Pb_thwzAQGilEGVoX-1jFHsIwd0pr0GZj25D0mCRLNFepNczLJHEZS522TrUhuiqEdGOOScMEvPcSudxGFHfsUu-9W9V3mADlZrJGRBUiY63pDGIlJOQi-isGVlQB_waEa2RjPp6oxakajf6IeL0b5HqTqtJOrVs3yZob3yIbDWv60eI2-dmhXSxOg5ghANK9ioy6KtNTSIXp9veyasGCof2joizAEZbq2FDkSSpnFCvAdOhAVRz9hNfoYV5Xleol7U2LE4q56Xzq6EfwaSfHP5ylQzW2OFAgnQgtC1oXRGCkPxy48g45uJCff5esj4uxu0eozawQJvPax0LKWKvIMSMzlijBjWIuIC-WPzw3DfY5UnCMctgDoXDyM-EE5Olq7qRG_PjvrDcot9UMROmuHhTTr3lj9LnwUqRaex_5WCYqTW2WSZNlHrfhEcsC8hylnqMvQYmopiUCFoWoXHkHtj68QhQKyOZSMfLGyczyM5MIyJPVMLgHPPNRY1fMZ7kAJy1TnvEkIFsrhTpnYffP_9JjcgXMLv-wM9h9QK5yyPjqm42bZL2czt1DyNBK_agyBUq-XLTt_Qb1HVEJ |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF5BeigceFcYClpEJcTBzdq7drxcUKCNIqSGKhCpnKx90ojUjhIHaP8D_5kZ2wnlIYTE0dlJ5NV-O_PNZPcbQvZsJFQSWR1aw3UoIq9DFQsVWggllqksNg4vOB-N0uFEvDlJTi7d4sdjlZCKT2snHbNeHGI_pW6UwENXSB5159a__NzWkqJUNhGyd5VspQmw8Q7ZmoyO-x-wp9z6240qKYfsvrtYQrxi-Ds_xaFarv93p3ydbK-KuTr_omazS1FncJOo9fs2h00-7a8qvW8ufpFy_J8J3SI3WkpK-w2GbpMrrrhDttvu6Kfnd8m3Pj3AIjQsJwQ6elQ3na7L8RQoLz38WtVXrWDo-LSsSnB4lZoaiv2QqiXFSi8dO4CEo-_wuDzYHahKvaCDRXlGkYOuFo6-Bd91Nr1wlo5VYXGgxLYhtCppU_iAkeF45Kp7ZDI4fP96GLZtHEIjOK9C6xKfqMQD14md0hpchrE9YJYmlamOVWYN8yJNnWSZ09apHlAYhbp5zDFhGN8hnaIs3H1CrbScG-m1T7gQiVaRY0ZIlioeG8VcQJ6vFzU3rcY5ttqY5ZDrIADyHwAIyNON7bxR9vij1SvExsYC1bjrD8rFx7zd3Dn3gmdaex_5RKQqy6yUwkjpMd2OmAzIM0RWjj4DV0S1Vx9gUqi-lfchxYlr5aCA7K7Bl7fOZJnHkAVltdBRQJ5shsEN4H87qnDlaplzcMYiA2SlAdnbgPYvE3vwb2YPybUYaF1zfHGXdKrFyj0CGlbpx-1O-w7xPS1u |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Downscaling+Methodology+for+Extracting+Photovoltaic+Plants+with+Remote+Sensing+Data%3A+From+Feature+Optimized+Random+Forest+to+Improved+HRNet&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Wang%2C+Yinda&rft.au=Cai%2C+Danlu&rft.au=Chen%2C+Luanjie&rft.au=Yang%2C+Lina&rft.date=2023-10-01&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=15&rft.issue=20&rft.spage=4931&rft_id=info:doi/10.3390%2Frs15204931&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_rs15204931 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |