A Downscaling Methodology for Extracting Photovoltaic Plants with Remote Sensing Data: From Feature Optimized Random Forest to Improved HRNet

Present approaches in PV (Photovoltaic) detection are known to be scalable to a larger area using machine learning classification and have improved accuracy on a regional scale with deep learning diagnostics. However, it may cause false detection, time, and cost-consuming when regional deep learning...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing (Basel, Switzerland) Vol. 15; no. 20; p. 4931
Main Authors Wang, Yinda, Cai, Danlu, Chen, Luanjie, Yang, Lina, Ge, Xingtong, Peng, Ling
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.10.2023
Subjects
Online AccessGet full text
ISSN2072-4292
2072-4292
DOI10.3390/rs15204931

Cover

Abstract Present approaches in PV (Photovoltaic) detection are known to be scalable to a larger area using machine learning classification and have improved accuracy on a regional scale with deep learning diagnostics. However, it may cause false detection, time, and cost-consuming when regional deep learning models are directly scaled to a larger area, particularly in large-scale, highly urbanized areas. Thus, a novel two-step downscaling methodology integrating machine learning broad spatial partitioning (step-1) and detailed deep learning diagnostics (step-2) is designed and applied in highly urbanized Jiangsu Province, China. In the first step, this methodology selects suitable feature combinations using the recursive feature elimination with distance correlation coefficient (RFEDCC) strategy for the random forest (RF), considering not only feature importance but also feature independence. The results from RF (overall accuracy = 95.52%, Kappa = 0.91) indicate clear boundaries and little noise. Furthermore, the post-processing of noise removal with a morphological opening operation for the extraction result of RF is necessary for the purpose that less high-resolution remote sensing tiles should be applied in the second step. In the second step, tiles intersecting with the results of the first step are selected from a vast collection of Google Earth tiles, reducing the computational complexity of the next step in deep learning. Then, the improved HRNet with high performance on the test data set (Intersection over Union around 94.08%) is used to extract PV plants from the selected tiles, and the results are mapped. In general, for Jiangsu province, the detection rate of the previous PV database is higher than 92%, and this methodology reduces false detection noise and time consumption (around 95%) compared with a direct deep learning methodology.
AbstractList Present approaches in PV (Photovoltaic) detection are known to be scalable to a larger area using machine learning classification and have improved accuracy on a regional scale with deep learning diagnostics. However, it may cause false detection, time, and cost-consuming when regional deep learning models are directly scaled to a larger area, particularly in large-scale, highly urbanized areas. Thus, a novel two-step downscaling methodology integrating machine learning broad spatial partitioning (step-1) and detailed deep learning diagnostics (step-2) is designed and applied in highly urbanized Jiangsu Province, China. In the first step, this methodology selects suitable feature combinations using the recursive feature elimination with distance correlation coefficient (RFEDCC) strategy for the random forest (RF), considering not only feature importance but also feature independence. The results from RF (overall accuracy = 95.52%, Kappa = 0.91) indicate clear boundaries and little noise. Furthermore, the post-processing of noise removal with a morphological opening operation for the extraction result of RF is necessary for the purpose that less high-resolution remote sensing tiles should be applied in the second step. In the second step, tiles intersecting with the results of the first step are selected from a vast collection of Google Earth tiles, reducing the computational complexity of the next step in deep learning. Then, the improved HRNet with high performance on the test data set (Intersection over Union around 94.08%) is used to extract PV plants from the selected tiles, and the results are mapped. In general, for Jiangsu province, the detection rate of the previous PV database is higher than 92%, and this methodology reduces false detection noise and time consumption (around 95%) compared with a direct deep learning methodology.
Audience Academic
Author Cai, Danlu
Yang, Lina
Ge, Xingtong
Peng, Ling
Chen, Luanjie
Wang, Yinda
Author_xml – sequence: 1
  givenname: Yinda
  orcidid: 0000-0002-0191-4707
  surname: Wang
  fullname: Wang, Yinda
– sequence: 2
  givenname: Danlu
  orcidid: 0000-0002-8986-1354
  surname: Cai
  fullname: Cai, Danlu
– sequence: 3
  givenname: Luanjie
  orcidid: 0000-0001-9728-9602
  surname: Chen
  fullname: Chen, Luanjie
– sequence: 4
  givenname: Lina
  surname: Yang
  fullname: Yang, Lina
– sequence: 5
  givenname: Xingtong
  orcidid: 0000-0001-7603-2832
  surname: Ge
  fullname: Ge, Xingtong
– sequence: 6
  givenname: Ling
  orcidid: 0000-0002-6535-477X
  surname: Peng
  fullname: Peng, Ling
BookMark eNp9Uk1vEzEQXaFWopRe-AWWuCBQir921-YWtQ2N1NIqwHk167UTR7t2sJ2G8B_4z3gJAlQh7IOtmfeeZ-b5WXHkvNNF8YLgc8YkfhsiKSnmkpEnxQnFNZ1wKunRX_enxVmMa5wXY0RiflJ8n6JLv3NRQW_dEt3qtPKd7_1yj4wP6OprCqDSmLpf-eQffJ_AKnTfg0sR7WxaoYUefNLoo3ZxxF1CgndoFvyAZhrSNmh0t0l2sN90hxbgujHhg44JJY_mwyb4h5y5XnzQ6XlxbKCP-uzXeVp8nl19urie3Ny9n19MbyaKM5YmnS5NCaWpSkE1tC0XQnU1kVRVsmopiE5hw6tKSyx022moJcFQsbLCGnOF2WkxP-h2HtbNJtgBwr7xYJufAR-WDYRkVa8bZjgTbWsMMSWvQIhOSq6kNLginGCZtd4ctLZuA_sd9P1vQYKb0ZjmjzEZ_eqAzm1_2eYhNIONSvd5ntpvY8Mwx1xkq6oMffkIuvbb4PJcGioEFRiTemzl_IBaQq7WOuNHx_Lu9GBV_iDG5vi0rinNrmORCa8PBBV8jEGb_5eLH4GVTZCsd_kV2_-L8gNBCsqw
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3415592
crossref_primary_10_3390_rs15245687
Cites_doi 10.1016/j.rser.2011.08.009
10.1214/aos/1013203451
10.1109/CVPR.2016.308
10.1016/j.eswa.2022.118240
10.1016/j.energy.2013.02.057
10.1038/s41586-021-03957-7
10.1109/MGRS.2022.3169947
10.3390/rs14112697
10.1080/01431160304987
10.1109/TSMC.1973.4309314
10.1016/j.patcog.2020.107404
10.1016/j.egyr.2022.03.039
10.1016/j.rse.2021.112851
10.1007/978-3-030-01234-2_49
10.1109/CVPR.2015.7298965
10.5194/essd-13-5389-2021
10.1080/01431160600589179
10.1016/j.rser.2013.06.023
10.1016/j.apenergy.2022.120579
10.1016/S0165-1684(01)00060-3
10.1007/s00376-012-2057-0
10.3390/rs13214237
10.1016/j.joule.2018.11.021
10.1029/2005RG000183
10.3390/rs14174211
10.1109/CVPR.2017.106
10.1016/j.energy.2017.03.032
10.1016/j.isprsjprs.2016.01.011
10.1023/A:1010933404324
10.3390/rs11091044
10.3390/rs14246296
10.1109/ICRERA.2016.7884415
10.1007/BF00994018
10.1109/JSTARS.2014.2329330
10.3390/en13246742
10.1109/CISP-BMEI56279.2022.9980307
10.1038/s41597-021-01079-3
10.3390/plants11233257
10.1080/15481603.2022.2036056
10.1117/1.JRS.14.016506
10.3390/app11146524
10.3390/rs15092469
10.1029/98WR02577
10.1016/0034-4257(79)90013-0
10.1109/TGRS.2020.2994150
10.1109/LGRS.2018.2802944
10.1016/j.rse.2021.112692
10.3390/rs15153712
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
7S9
L.6
ADTOC
UNPAY
DOA
DOI 10.3390/rs15204931
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
AGRICOLA
AGRICOLA - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
Materials Business File
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA

CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_3f438bbff1f546a88d994c99f0614109
10.3390/rs15204931
A772200308
10_3390_rs15204931
GeographicLocations China
United States--US
GeographicLocations_xml – name: China
– name: United States--US
GroupedDBID 29P
2WC
2XV
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
TR2
TUS
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQQKQ
PQUKI
PUEGO
7S9
L.6
ADTOC
C1A
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c433t-de5f5a5f6582eabb488cd7192c696b2a8dc0f466e908ebdea7910a63560e04c03
IEDL.DBID DOA
ISSN 2072-4292
IngestDate Fri Oct 03 12:39:38 EDT 2025
Tue Aug 19 19:41:28 EDT 2025
Fri Sep 05 06:18:01 EDT 2025
Wed Sep 03 15:11:00 EDT 2025
Mon Oct 20 16:55:04 EDT 2025
Thu Apr 24 22:55:53 EDT 2025
Thu Oct 16 04:31:23 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 20
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c433t-de5f5a5f6582eabb488cd7192c696b2a8dc0f466e908ebdea7910a63560e04c03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9728-9602
0000-0002-8986-1354
0000-0002-6535-477X
0000-0002-0191-4707
0000-0001-7603-2832
OpenAccessLink https://doaj.org/article/3f438bbff1f546a88d994c99f0614109
PQID 2882800170
PQPubID 2032338
ParticipantIDs doaj_primary_oai_doaj_org_article_3f438bbff1f546a88d994c99f0614109
unpaywall_primary_10_3390_rs15204931
proquest_miscellaneous_3040482926
proquest_journals_2882800170
gale_infotracacademiconefile_A772200308
crossref_primary_10_3390_rs15204931
crossref_citationtrail_10_3390_rs15204931
PublicationCentury 2000
PublicationDate 2023-10-01
PublicationDateYYYYMMDD 2023-10-01
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_50
Abdin (ref_4) 2013; 26
Rangarajan (ref_9) 2022; 208
Shamshiri (ref_51) 2022; 270
ref_14
ref_57
ref_56
ref_11
ref_10
Zhang (ref_43) 2023; 59
ref_54
Venkatesh (ref_18) 2019; 19
ref_52
ref_17
ref_15
ref_59
(ref_47) 2001; 81
Thoreau (ref_8) 2022; 10
Qin (ref_60) 2020; 106
Jianxun (ref_19) 2023; 119
Jiang (ref_53) 2021; 13
Xia (ref_12) 2022; 8
Jie (ref_20) 2020; 14
Zhang (ref_58) 2018; 15
Kruitwagen (ref_27) 2021; 598
Chen (ref_7) 2014; 7
Yu (ref_29) 2018; 2
ref_23
ref_22
ref_21
Zha (ref_35) 2003; 24
ref_62
Belgiu (ref_13) 2016; 114
Wilby (ref_33) 1998; 34
Wang (ref_40) 2018; 11
Farr (ref_55) 2007; 45
ref_28
ref_26
Timilsina (ref_3) 2012; 16
ref_31
ref_30
ref_39
Chen (ref_25) 2023; 333
ref_38
Haralick (ref_41) 1973; 6
Zhu (ref_24) 2023; 116
Xu (ref_37) 2006; 27
Xu (ref_34) 2021; 8
Friedman (ref_45) 2001; 29
Ding (ref_61) 2020; 59
Singh (ref_2) 2013; 53
Plakman (ref_16) 2022; 59
Breiman (ref_44) 2001; 45
Okoye (ref_6) 2017; 126
Fan (ref_32) 2013; 30
Cortes (ref_46) 1995; 20
ref_1
ref_49
ref_48
Tucker (ref_36) 1979; 8
Ji (ref_42) 2021; 266
ref_5
References_xml – volume: 16
  start-page: 449
  year: 2012
  ident: ref_3
  article-title: Solar energy: Markets, economics and policies
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2011.08.009
– volume: 29
  start-page: 1189
  year: 2001
  ident: ref_45
  article-title: Greedy function approximation: A gradient boosting machine
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1013203451
– ident: ref_30
  doi: 10.1109/CVPR.2016.308
– ident: ref_49
– ident: ref_5
– volume: 208
  start-page: 118240
  year: 2022
  ident: ref_9
  article-title: Detection of fusarium head blight in wheat using hyperspectral data and deep learning
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.118240
– volume: 53
  start-page: 1
  year: 2013
  ident: ref_2
  article-title: Solar power generation by PV (photovoltaic) technology: A review
  publication-title: Energy
  doi: 10.1016/j.energy.2013.02.057
– volume: 116
  start-page: 103134
  year: 2023
  ident: ref_24
  article-title: Deep solar PV refiner: A detail-oriented deep learning network for refined segmentation of photovoltaic areas from satellite imagery
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 598
  start-page: 604
  year: 2021
  ident: ref_27
  article-title: A global inventory of photovoltaic solar energy generating units
  publication-title: Nature
  doi: 10.1038/s41586-021-03957-7
– ident: ref_39
– volume: 10
  start-page: 256
  year: 2022
  ident: ref_8
  article-title: Active learning for hyperspectral image classification: A comparative review
  publication-title: IEEE Geosci. Remote Sens. Mag.
  doi: 10.1109/MGRS.2022.3169947
– ident: ref_1
– ident: ref_10
  doi: 10.3390/rs14112697
– volume: 11
  start-page: 46
  year: 2018
  ident: ref_40
  article-title: Multi-invariant Feature Combined Photovoltaic Power Plants Extraction Using Multi-temporal Landsat 8 OLI Imagery
  publication-title: Bull. Surv. Mapp.
– volume: 24
  start-page: 583
  year: 2003
  ident: ref_35
  article-title: Use of normalized difference built-up index in automatically mapping urban areas from TM imagery
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160304987
– volume: 6
  start-page: 610
  year: 1973
  ident: ref_41
  article-title: Textural features for image classification
  publication-title: IEEE Trans. Syst. Man Cybern.
  doi: 10.1109/TSMC.1973.4309314
– volume: 106
  start-page: 107404
  year: 2020
  ident: ref_60
  article-title: U2-Net: Going deeper with nested U-structure for salient object detection
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2020.107404
– volume: 8
  start-page: 4117
  year: 2022
  ident: ref_12
  article-title: Mapping the rapid development of photovoltaic power stations in northwestern China using remote sensing
  publication-title: Energy Rep.
  doi: 10.1016/j.egyr.2022.03.039
– volume: 270
  start-page: 112851
  year: 2022
  ident: ref_51
  article-title: Spatio-temporal distribution of sea-ice thickness using a machine learning approach with Google Earth Engine and Sentinel-1 GRD data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2021.112851
– ident: ref_59
  doi: 10.1007/978-3-030-01234-2_49
– ident: ref_57
  doi: 10.1109/CVPR.2015.7298965
– ident: ref_52
– volume: 13
  start-page: 5389
  year: 2021
  ident: ref_53
  article-title: Multi-resolution dataset for photovoltaic panel segmentation from satellite and aerial imagery
  publication-title: Earth Syst. Sci. Data
  doi: 10.5194/essd-13-5389-2021
– ident: ref_48
– volume: 27
  start-page: 3025
  year: 2006
  ident: ref_37
  article-title: Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160600589179
– volume: 26
  start-page: 837
  year: 2013
  ident: ref_4
  article-title: Solar energy harvesting with the application of nanotechnology
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2013.06.023
– volume: 333
  start-page: 120579
  year: 2023
  ident: ref_25
  article-title: Remote sensing of photovoltaic scenarios: Techniques, applications and future directions
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2022.120579
– volume: 81
  start-page: 1991
  year: 2001
  ident: ref_47
  article-title: The approximation of a morphological opening and closing in the presence of noise
  publication-title: Signal Process.
  doi: 10.1016/S0165-1684(01)00060-3
– volume: 30
  start-page: 1085
  year: 2013
  ident: ref_32
  article-title: Statistical downscaling of summer temperature extremes in northern China
  publication-title: Adv. Atmos. Sci.
  doi: 10.1007/s00376-012-2057-0
– ident: ref_38
– ident: ref_56
  doi: 10.3390/rs13214237
– volume: 2
  start-page: 2605
  year: 2018
  ident: ref_29
  article-title: DeepSolar: A machine learning framework to efficiently construct a solar deployment database in the United States
  publication-title: Joule
  doi: 10.1016/j.joule.2018.11.021
– ident: ref_28
– volume: 45
  start-page: RG2004
  year: 2007
  ident: ref_55
  article-title: The shuttle radar topography mission
  publication-title: Rev. Geophys.
  doi: 10.1029/2005RG000183
– ident: ref_31
  doi: 10.3390/rs14174211
– ident: ref_50
  doi: 10.1109/CVPR.2017.106
– volume: 126
  start-page: 573
  year: 2017
  ident: ref_6
  article-title: Optimal sizing of stand-alone photovoltaic systems in residential buildings
  publication-title: Energy
  doi: 10.1016/j.energy.2017.03.032
– volume: 114
  start-page: 24
  year: 2016
  ident: ref_13
  article-title: Random forest in remote sensing: A review of applications and future directions
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2016.01.011
– volume: 45
  start-page: 5
  year: 2001
  ident: ref_44
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– ident: ref_17
  doi: 10.3390/rs11091044
– ident: ref_14
  doi: 10.3390/rs14246296
– volume: 119
  start-page: 103309
  year: 2023
  ident: ref_19
  article-title: PVNet: A novel semantic segmentation model for extracting high-quality photovoltaic panels in large-scale systems from high-resolution remote sensing imagery
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– ident: ref_26
  doi: 10.1109/ICRERA.2016.7884415
– volume: 20
  start-page: 273
  year: 1995
  ident: ref_46
  article-title: Support-vector networks
  publication-title: Mach. Learn.
  doi: 10.1007/BF00994018
– volume: 7
  start-page: 2094
  year: 2014
  ident: ref_7
  article-title: Deep learning-based classification of hyperspectral data
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2014.2329330
– ident: ref_22
  doi: 10.3390/en13246742
– ident: ref_15
  doi: 10.1109/CISP-BMEI56279.2022.9980307
– ident: ref_54
– volume: 59
  start-page: 23
  year: 2023
  ident: ref_43
  article-title: Research on Feature Selection of Multi-Objective Optimization
  publication-title: Comput. Eng. Appl.
– volume: 8
  start-page: 293
  year: 2021
  ident: ref_34
  article-title: Bias-corrected CMIP6 global dataset for dynamical downscaling of the historical and future climate (1979–2100)
  publication-title: Sci. Data
  doi: 10.1038/s41597-021-01079-3
– ident: ref_62
  doi: 10.3390/plants11233257
– volume: 59
  start-page: 462
  year: 2022
  ident: ref_16
  article-title: Solar park detection from publicly available satellite imagery
  publication-title: GISci. Remote Sens.
  doi: 10.1080/15481603.2022.2036056
– volume: 14
  start-page: 016506
  year: 2020
  ident: ref_20
  article-title: Photovoltaic power station identification using refined encoder–decoder network with channel attention and chained residual dilated convolutions
  publication-title: J. Appl. Remote Sens.
  doi: 10.1117/1.JRS.14.016506
– ident: ref_21
  doi: 10.3390/app11146524
– ident: ref_23
  doi: 10.3390/rs15092469
– volume: 34
  start-page: 2995
  year: 1998
  ident: ref_33
  article-title: Statistical downscaling of general circulation model output: A comparison of methods
  publication-title: Water Resour. Res.
  doi: 10.1029/98WR02577
– volume: 8
  start-page: 127
  year: 1979
  ident: ref_36
  article-title: Red and photographic infrared linear combinations for monitoring vegetation
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(79)90013-0
– volume: 59
  start-page: 426
  year: 2020
  ident: ref_61
  article-title: LANet: Local attention embedding to improve the semantic segmentation of remote sensing images
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2020.2994150
– volume: 15
  start-page: 749
  year: 2018
  ident: ref_58
  article-title: Road extraction by deep residual u-net
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2018.2802944
– volume: 266
  start-page: 112692
  year: 2021
  ident: ref_42
  article-title: Solar photovoltaic module detection using laboratory and airborne imaging spectroscopy data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2021.112692
– volume: 19
  start-page: 3
  year: 2019
  ident: ref_18
  article-title: A review of feature selection and its methods
  publication-title: Cybern. Inf. Technol.
– ident: ref_11
  doi: 10.3390/rs15153712
SSID ssj0000331904
Score 2.3903315
Snippet Present approaches in PV (Photovoltaic) detection are known to be scalable to a larger area using machine learning classification and have improved accuracy on...
SourceID doaj
unpaywall
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 4931
SubjectTerms Accuracy
Artificial intelligence
China
Climate change
Correlation coefficient
Correlation coefficients
data collection
Deep learning
diagnostic techniques
Emissions
Image processing
Internet
Learning algorithms
Machine learning
Methodology
Methods
morphological opening operation
Photovoltaic cells
Photovoltaics
PV detection
random forest
recursive feature elimination with distance correlation coefficient
Regions
Remote sensing
Semantics
Silicon wafers
Solar power plants
Tiles
urbanization
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwELZG9zB4QPwUgYGMmIR4iObYTpYgIdSxVhXSylSYtLfo_ItN6pLSpoLxP_A_c5emHQi019hSZJ_v7vPZ_j7G9lyiIU2ciZ1VJtZJMDFIDbHDVOIE5NJ6euB8PM5Gp_rjWXq2xcbrtzB0rXIdE9tA7WpLNfJ9iVAwb9le3s--xaQaRaerawkN6KQV3LuWYuwW25bEjNVj24eD8clkU3URCpec0CueUoX7_f35AjMYwmSV_JWZWgL_f8P0HbazrGZw9R2m0z_y0PAeu9sBSN5fWfw-2_LVA7bTaZmfXz1kv_r8iErGOPmYlvhxKxHdFs85AlQ--NG0D6Ow6eS8bmoMTw1cWE7qRc2CU12WTzwa0PPPdLkd-x1BA2_5cF5fckKMy7nnnzDSXF789I5PoHLUUJPIB29qvipTYMtoMvbNI3Y6HHz5MIo70YXYaqWa2Pk0pJAGRCbSgzHo4NYdIA60WZEZCbmzIugs84XIvXEeDhBwALHcCS-0Feox61V15Z8w7gqnlC2CCanSOjWQeGF1ITJQ0oLwEXuznvDSdozkJIwxLXFnQsYpr40TsVebvrMVD8d_ex2S3TY9iDu7_VDPv5adK5YqaJUbE0ISUp1Bnrui0LYoAm2OE1FE7DVZvSQPJ4tA91ABB0VcWWUfNySy5fmJ2O56YZSd6y_K64UasZebZnRaOomBytfLRakwdOpcFjKL2N5mQd0wsKc3_-kZuy0RfK0uGe6yXjNf-ucIlhrzovOA3yHQFeU
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF5BeigceFcYClpEJcTBzdq7drxcUKCNIqSGKhCpnKx90ojUjhIHaP8D_5kZ2wnlIYTE0dlJ5NV-O_PNZPcbQvZsJFQSWR1aw3UoIq9DFQsVWggllqksNg4vOB-N0uFEvDlJTi7d4sdjlZCKT2snHbNeHGI_pW6UwENXSB5159a__NzWkqJUNhGyd5VspQmw8Q7ZmoyO-x-wp9z6240qKYfsvrtYQrxi-Ds_xaFarv93p3ydbK-KuTr_omazS1FncJOo9fs2h00-7a8qvW8ufpFy_J8J3SI3WkpK-w2GbpMrrrhDttvu6Kfnd8m3Pj3AIjQsJwQ6elQ3na7L8RQoLz38WtVXrWDo-LSsSnB4lZoaiv2QqiXFSi8dO4CEo-_wuDzYHahKvaCDRXlGkYOuFo6-Bd91Nr1wlo5VYXGgxLYhtCppU_iAkeF45Kp7ZDI4fP96GLZtHEIjOK9C6xKfqMQD14md0hpchrE9YJYmlamOVWYN8yJNnWSZ09apHlAYhbp5zDFhGN8hnaIs3H1CrbScG-m1T7gQiVaRY0ZIlioeG8VcQJ6vFzU3rcY5ttqY5ZDrIADyHwAIyNON7bxR9vij1SvExsYC1bjrD8rFx7zd3Dn3gmdaex_5RKQqy6yUwkjpMd2OmAzIM0RWjj4DV0S1Vx9gUqi-lfchxYlr5aCA7K7Bl7fOZJnHkAVltdBRQJ5shsEN4H87qnDlaplzcMYiA2SlAdnbgPYvE3vwb2YPybUYaF1zfHGXdKrFyj0CGlbpx-1O-w7xPS1u
  priority: 102
  providerName: Unpaywall
Title A Downscaling Methodology for Extracting Photovoltaic Plants with Remote Sensing Data: From Feature Optimized Random Forest to Improved HRNet
URI https://www.proquest.com/docview/2882800170
https://www.proquest.com/docview/3040482926
https://www.mdpi.com/2072-4292/15/20/4931/pdf?version=1697102837
https://doaj.org/article/3f438bbff1f546a88d994c99f0614109
UnpaywallVersion publishedVersion
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Colorado Digital library
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: KQ8
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: DOA
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: ABDBF
  dateStart: 20091201
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: ADMLS
  dateStart: 20091201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: BENPR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: 8FG
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Nb9MwFLdgHAaHiU8RGJURkxCHaE7sZDG3jLZUiJaqo9I4Rc9f2qQumdpUY_wP_M88J1kpAsGFU5U-H2K_r99z7N8j5MBEApLIqNBorkIRORVCLCA0mEoMgyzW1l9wHk_S0Vx8OE1Ot1p9-TNhLT1wu3CH3AmeKeVc5BKRQpYZKYWW0vlSJmqv7rFMbhVTTQzmaFpMtHykHOv6w-UKMxXCYR79koEaov7fw_E9srsuL-H6ChaLrXwzvE_2OqBI8_YFH5BbtnxIdrue5WfXj8j3nPb91jAuMqYfOm5aQTeb5BSBKB18rZsLUCianlV1hWGohnNNfZeiekX9_iudWVSUpSf-EDuO60MNb-lwWV1QjwzXS0s_YUS5OP9mDZ1Babyg8s08aF3RdjsCJaPZxNaPyXw4-PxuFHbNFUItOK9DYxOXQOIQgcQWlEJH1uYI8Z5OZapiyIxmTqSplSyzylg4QmABns2OWSY040_ITlmV9imhRhrOtXTKJVyIREFkmRaSpcBjDcwG5M3Nghe6Yx73DTAWBVYgXjnFT-UE5NVm7GXLt_HHUcdeb5sRniO7-QMtp-gsp_iX5QTktdd64T3ZawS6Cwk4Kc-JVeRYeMQNn09A9m8Mo-hcfFXEWJtkDf1QQF5uxOic_osLlLZarwqOIVJksYzTgBxsDOovE3v2Pyb2nNyNEYq1Rw73yU69XNsXCJ1q1SO3s-H7HrmT98cfT_D3eDCZznqN7-DTfDLNv_wAfBodOg
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbG9lB4QFxFYYARQ4iHaI7tZDHShDraqmNbmcom7S3zLWxSl5Q21Sj_gb_Eb-OcNO1AoL3tNbYSOef43OzzfYRsuFDqKHQmcFaYQIaZCTSXOnDgShzTCbceG5wP-nHvWH46iU5WyK9FLwxeq1zYxMpQu8JijXyTQyiYVGgvH0bfAmSNwtPVBYWGrqkV3HYFMVY3duz52SWkcJPt3TbI-w3n3c7Rx15QswwEVgpRBs5HWaSjDFwx99oY0GjrtiDwsbGKDdeJsyyTcewVS7xxXm-Bh9UI68Y8k5YJeO8tsiaFVJD8re10-oeDZZWHCVBxJue4qEIotjmegMeEsFyEf3nCijDgX7dwhzSm-UjPLvVw-Iff694jd-uAlbbmGnafrPj8AWnU3Olns4fkZ4u2sUQNwgY3SA8qSuqqWE8hIKad72XViAVDh2dFWYA5LPW5pciWVE4o1oHpwIPCePoFL9PDvLYu9XvaHRcXFCPU6djTz2DZLs5_eEcHOnc4UCCpCC0LOi-LwEhv0PflI3J8I7__MVnNi9w_IdQpJ4RVmckiIWVkdOiZlYrFWnCrmW-Sd4sfntoaAR2JOIYpZEIonPRKOE3yejl3NMf9-O-sHZTbcgZidVcPivHXtN76qcikSIzJsjCLZKyTxCklrVIZJuMhU03yFqWeokVBiei6MQIWhdhcaQsSIF7hCjXJ-kIx0trUTNKrjdEkr5bDYCTw5EfnvphOUgGmWiZc8bhJNpYKdc3Cnl7_pZek0Ts62E_3d_t7z8htDoHf_ILjOlktx1P_HAK10ryodwMlpze9AX8DNS9Tbw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGkBg8IK4iMMCIIcRDVMd20gQJoUJXOsbKVJi0t-Arm9Q1pU01yn_gD_HrOCdJOxBob3uNrUTOufrY5_sI2bKRVHFkdWiN0KGMvA4Vlyq0EEosUyk3Dhuc9wZJ_0C-P4wP18ivZS8MXqtc-sTKUdvCYI28xSEVTCu0l5ZvrkXsd3uvJ99CZJDCk9YlnUatIrtucQrbt9mrnS7I-hnnve3Pb_thwzAQGilEGVoX-1jFHsIwd0pr0GZj25D0mCRLNFepNczLJHEZS522TrUhuiqEdGOOScMEvPcSudxGFHfsUu-9W9V3mADlZrJGRBUiY63pDGIlJOQi-isGVlQB_waEa2RjPp6oxakajf6IeL0b5HqTqtJOrVs3yZob3yIbDWv60eI2-dmhXSxOg5ghANK9ioy6KtNTSIXp9veyasGCof2joizAEZbq2FDkSSpnFCvAdOhAVRz9hNfoYV5Xleol7U2LE4q56Xzq6EfwaSfHP5ylQzW2OFAgnQgtC1oXRGCkPxy48g45uJCff5esj4uxu0eozawQJvPax0LKWKvIMSMzlijBjWIuIC-WPzw3DfY5UnCMctgDoXDyM-EE5Olq7qRG_PjvrDcot9UMROmuHhTTr3lj9LnwUqRaex_5WCYqTW2WSZNlHrfhEcsC8hylnqMvQYmopiUCFoWoXHkHtj68QhQKyOZSMfLGyczyM5MIyJPVMLgHPPNRY1fMZ7kAJy1TnvEkIFsrhTpnYffP_9JjcgXMLv-wM9h9QK5yyPjqm42bZL2czt1DyNBK_agyBUq-XLTt_Qb1HVEJ
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF5BeigceFcYClpEJcTBzdq7drxcUKCNIqSGKhCpnKx90ojUjhIHaP8D_5kZ2wnlIYTE0dlJ5NV-O_PNZPcbQvZsJFQSWR1aw3UoIq9DFQsVWggllqksNg4vOB-N0uFEvDlJTi7d4sdjlZCKT2snHbNeHGI_pW6UwENXSB5159a__NzWkqJUNhGyd5VspQmw8Q7ZmoyO-x-wp9z6240qKYfsvrtYQrxi-Ds_xaFarv93p3ydbK-KuTr_omazS1FncJOo9fs2h00-7a8qvW8ufpFy_J8J3SI3WkpK-w2GbpMrrrhDttvu6Kfnd8m3Pj3AIjQsJwQ6elQ3na7L8RQoLz38WtVXrWDo-LSsSnB4lZoaiv2QqiXFSi8dO4CEo-_wuDzYHahKvaCDRXlGkYOuFo6-Bd91Nr1wlo5VYXGgxLYhtCppU_iAkeF45Kp7ZDI4fP96GLZtHEIjOK9C6xKfqMQD14md0hpchrE9YJYmlamOVWYN8yJNnWSZ09apHlAYhbp5zDFhGN8hnaIs3H1CrbScG-m1T7gQiVaRY0ZIlioeG8VcQJ6vFzU3rcY5ttqY5ZDrIADyHwAIyNON7bxR9vij1SvExsYC1bjrD8rFx7zd3Dn3gmdaex_5RKQqy6yUwkjpMd2OmAzIM0RWjj4DV0S1Vx9gUqi-lfchxYlr5aCA7K7Bl7fOZJnHkAVltdBRQJ5shsEN4H87qnDlaplzcMYiA2SlAdnbgPYvE3vwb2YPybUYaF1zfHGXdKrFyj0CGlbpx-1O-w7xPS1u
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Downscaling+Methodology+for+Extracting+Photovoltaic+Plants+with+Remote+Sensing+Data%3A+From+Feature+Optimized+Random+Forest+to+Improved+HRNet&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Wang%2C+Yinda&rft.au=Cai%2C+Danlu&rft.au=Chen%2C+Luanjie&rft.au=Yang%2C+Lina&rft.date=2023-10-01&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=15&rft.issue=20&rft.spage=4931&rft_id=info:doi/10.3390%2Frs15204931&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_rs15204931
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon