Remote Sensing Neural Radiance Fields for Multi-View Satellite Photogrammetry

Neural radiance fields (NeRFs) combining machine learning with differentiable rendering have arisen as one of the most promising approaches for novel view synthesis and depth estimates. However, NeRFs only applies to close-range static imagery and it takes several hours to train the model. The satel...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing (Basel, Switzerland) Vol. 15; no. 15; p. 3808
Main Authors Xie, Songlin, Zhang, Lei, Jeon, Gwanggil, Yang, Xiaomin
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.08.2023
Subjects
Online AccessGet full text
ISSN2072-4292
2072-4292
DOI10.3390/rs15153808

Cover

Abstract Neural radiance fields (NeRFs) combining machine learning with differentiable rendering have arisen as one of the most promising approaches for novel view synthesis and depth estimates. However, NeRFs only applies to close-range static imagery and it takes several hours to train the model. The satellites are hundreds of kilometers from the earth. Satellite multi-view images are usually captured over several years, and the scene of images is dynamic in the wild. Therefore, multi-view satellite photogrammetry is far beyond the capabilities of NeRFs. In this paper, we present a new method for multi-view satellite photogrammetry of Earth observation called remote sensing neural radiance fields (RS-NeRFs). It aims to generate novel view images and accurate elevation predictions quickly. For each scene, we train an RS-NeRF using high-resolution optical images without labels or geometric priors and apply image reconstruction losses for self-supervised learning. Multi-date images exhibit significant changes in appearance, mainly due to cars and varying shadows, which brings challenges to satellite photogrammetry. Robustness to these changes is achieved by the input of solar ray direction and the vehicle removal method. NeRFs make it intolerable by requiring a very long time to train an easy scene. In order to significantly reduce the training time of RS-NeRFs, we build a tiny network with HashEncoder and adopted a new sampling technique with our custom CUDA kernels. Compared with previous work, our method performs better on novel view synthesis and elevation estimates, taking several minutes.
AbstractList Neural radiance fields (NeRFs) combining machine learning with differentiable rendering have arisen as one of the most promising approaches for novel view synthesis and depth estimates. However, NeRFs only applies to close-range static imagery and it takes several hours to train the model. The satellites are hundreds of kilometers from the earth. Satellite multi-view images are usually captured over several years, and the scene of images is dynamic in the wild. Therefore, multi-view satellite photogrammetry is far beyond the capabilities of NeRFs. In this paper, we present a new method for multi-view satellite photogrammetry of Earth observation called remote sensing neural radiance fields (RS-NeRFs). It aims to generate novel view images and accurate elevation predictions quickly. For each scene, we train an RS-NeRF using high-resolution optical images without labels or geometric priors and apply image reconstruction losses for self-supervised learning. Multi-date images exhibit significant changes in appearance, mainly due to cars and varying shadows, which brings challenges to satellite photogrammetry. Robustness to these changes is achieved by the input of solar ray direction and the vehicle removal method. NeRFs make it intolerable by requiring a very long time to train an easy scene. In order to significantly reduce the training time of RS-NeRFs, we build a tiny network with HashEncoder and adopted a new sampling technique with our custom CUDA kernels. Compared with previous work, our method performs better on novel view synthesis and elevation estimates, taking several minutes.
Audience Academic
Author Xie, Songlin
Jeon, Gwanggil
Zhang, Lei
Yang, Xiaomin
Author_xml – sequence: 1
  givenname: Songlin
  surname: Xie
  fullname: Xie, Songlin
– sequence: 2
  givenname: Lei
  orcidid: 0000-0002-2986-1045
  surname: Zhang
  fullname: Zhang, Lei
– sequence: 3
  givenname: Gwanggil
  orcidid: 0000-0002-0651-4278
  surname: Jeon
  fullname: Jeon, Gwanggil
– sequence: 4
  givenname: Xiaomin
  surname: Yang
  fullname: Yang, Xiaomin
BookMark eNptUV1rFTEQDdKC9doXf8GCLyJsO_nYr8dSrBZaLf3wNcxNJtdcdjc1yVL67029UqU4eZhhOOcMJ-cN25vDTIy943Ak5QDHMfGGN7KH_hU7ENCJWolB7P0zv2aHKW2hlJR8AHXALq9pCpmqG5qTnzfVV1oijtU1Wo-zoerM02hT5UKsLpcx-_q7p4fqBjONoy-8qx8hh03EaaIcH9-yfYdjosM_fcXuzj7dnn6pL759Pj89uaiNkjLXViJvO4Jh3aJokGTrzNoIZWXvSCi1boXt0DUD54PtuLXk0BIZ3jSCJBi5Yuc7XRtwq--jnzA-6oBe_16EuNEYszcjaUJhuQNnVaPUYAkNKC6EE61opABRtD7stO5j-LlQynryyRR7OFNYkpagQBV0-bIVe_8Cug1LnItTLXo1cICGPwke7VAbLPf97EKOaMqzNHlTInO-7E-6FlrettAXwscdwcSQUiT37IiDfkpW_022gOEF2PiM2Ye5XPHj_yi_AHBNpf4
CitedBy_id crossref_primary_10_1109_TGRS_2024_3399786
crossref_primary_10_3390_app14177777
crossref_primary_10_3390_rs16132327
crossref_primary_10_1109_LSP_2025_3540372
crossref_primary_10_3390_ijgi13070243
crossref_primary_10_3390_rs15184628
Cites_doi 10.1016/j.isprsjprs.2016.03.012
10.1109/ICCV48922.2021.00581
10.1007/978-3-031-19824-3_7
10.1109/CVPR.2016.445
10.1007/978-3-540-88682-2_33
10.1109/CVPR46437.2021.00713
10.1145/3528223.3530127
10.1126/scirobotics.aaw0863
10.1109/CVPR42600.2020.01113
10.1109/ICCV48922.2021.00570
10.1109/CVPR52688.2022.00807
10.1145/3478513.3480500
10.1109/CVPR52688.2022.01259
10.1109/CVPR.2018.00480
10.1111/cgf.14507
10.14358/PERS.85.5.379
10.1023/B:VISI.0000029664.99615.94
10.1145/3306346.3323020
10.1109/ICCV48922.2021.01390
10.1109/ICCV48922.2021.01352
10.1109/CVPR52688.2022.01254
10.14358/PERS.72.3.299
10.1080/22797254.2018.1551069
10.1109/ICCV48922.2021.01419
10.1023/B:VISI.0000027787.82851.b6
10.1016/j.pss.2016.02.014
10.1016/j.isprsjprs.2018.03.016
10.1109/CVPR.2019.00025
10.1029/2018EA000409
10.1109/TPAMI.2007.1166
10.1109/IGARSS.2012.6352565
10.1109/ICCV48922.2021.00580
10.1109/CVPR46437.2021.00288
10.1016/j.isprsjprs.2016.09.013
10.1145/2001269.2001293
10.1145/3503250
10.1109/CVPRW.2017.198
10.1007/s11263-007-0086-4
10.1007/978-3-030-01249-6_23
10.1109/CVPRW56347.2022.00137
10.3390/rs11020118
10.1109/CVPRW53098.2021.00126
10.1109/MGRS.2019.2949679
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7S9
L.6
DOA
DOI 10.3390/rs15153808
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
AGRICOLA
AGRICOLA - Academic
Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList

CrossRef
AGRICOLA
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_ea2d1f0fd45449deac04122f26253202
A760616608
10_3390_rs15153808
GeographicLocations China
United States--US
San Francisco California
GeographicLocations_xml – name: China
– name: San Francisco California
– name: United States--US
GroupedDBID 29P
2WC
2XV
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PROAC
PTHSS
TR2
TUS
PMFND
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7S9
L.6
PUEGO
ID FETCH-LOGICAL-c433t-d3a167e09b6a25ae36fcbc24d38fe244b62d7af59119d71ddefadeec1552e30c3
IEDL.DBID DOA
ISSN 2072-4292
IngestDate Wed Aug 27 01:31:45 EDT 2025
Fri Sep 05 02:43:34 EDT 2025
Fri Jul 25 12:00:33 EDT 2025
Tue May 27 03:54:44 EDT 2025
Thu Apr 24 22:55:01 EDT 2025
Tue Jul 01 03:11:14 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 15
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c433t-d3a167e09b6a25ae36fcbc24d38fe244b62d7af59119d71ddefadeec1552e30c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2986-1045
0000-0002-0651-4278
OpenAccessLink https://doaj.org/article/ea2d1f0fd45449deac04122f26253202
PQID 2849100512
PQPubID 2032338
ParticipantIDs doaj_primary_oai_doaj_org_article_ea2d1f0fd45449deac04122f26253202
proquest_miscellaneous_3040426203
proquest_journals_2849100512
gale_infotracacademiconefile_A760616608
crossref_primary_10_3390_rs15153808
crossref_citationtrail_10_3390_rs15153808
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-08-01
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Mildenhall (ref_15) 2021; 65
Michel (ref_9) 2014; 2
Gwinner (ref_3) 2016; 126
ref_14
ref_10
Zhang (ref_46) 2021; 40
ref_18
Hlatshwayo (ref_1) 2019; 74
ref_17
ref_16
Hirschmuller (ref_7) 2007; 30
Zakhor (ref_30) 2004; 60
Srivastava (ref_49) 2014; 15
Li (ref_19) 2019; 4
ref_25
ref_24
ref_23
ref_22
Qin (ref_6) 2016; 122
ref_21
ref_20
Gong (ref_11) 2019; 85
ref_28
ref_27
ref_26
Yokoya (ref_2) 2019; 7
Liu (ref_39) 2020; 33
Beyer (ref_37) 2018; 5
Rupnik (ref_12) 2018; 139
ref_35
ref_34
Shean (ref_13) 2016; 116
Agarwal (ref_29) 2011; 54
ref_33
ref_31
ref_38
Wendt (ref_48) 2019; 52
Lowe (ref_36) 2004; 60
Pollefeys (ref_32) 2008; 78
ref_47
ref_45
ref_44
ref_43
ref_41
ref_40
Tewari (ref_42) 2022; Volume 41
ref_8
ref_5
Simard (ref_4) 2006; 72
References_xml – volume: 116
  start-page: 101
  year: 2016
  ident: ref_13
  article-title: An automated, open-source pipeline for mass production of digital elevation models (DEMs) from very-high-resolution commercial stereo satellite imagery
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2016.03.012
– ident: ref_18
  doi: 10.1109/ICCV48922.2021.00581
– ident: ref_43
  doi: 10.1007/978-3-031-19824-3_7
– ident: ref_35
  doi: 10.1109/CVPR.2016.445
– ident: ref_31
  doi: 10.1007/978-3-540-88682-2_33
– ident: ref_17
  doi: 10.1109/CVPR46437.2021.00713
– ident: ref_28
  doi: 10.1145/3528223.3530127
– volume: 4
  start-page: eaaw0863
  year: 2019
  ident: ref_19
  article-title: AADS: Augmented autonomous driving simulation using data-driven algorithms
  publication-title: Sci. Robot.
  doi: 10.1126/scirobotics.aaw0863
– ident: ref_21
  doi: 10.1109/CVPR42600.2020.01113
– volume: 15
  start-page: 1929
  year: 2014
  ident: ref_49
  article-title: Dropout: A simple way to prevent neural networks from overfitting
  publication-title: J. Mach. Learn. Res.
– ident: ref_44
  doi: 10.1109/ICCV48922.2021.00570
– ident: ref_25
  doi: 10.1109/CVPR52688.2022.00807
– volume: 40
  start-page: 1
  year: 2021
  ident: ref_46
  article-title: Editable free-viewpoint video using a layered neural representation
  publication-title: ACM Trans. Graph. (TOG)
  doi: 10.1145/3478513.3480500
– ident: ref_26
  doi: 10.1109/CVPR52688.2022.01259
– volume: 33
  start-page: 15651
  year: 2020
  ident: ref_39
  article-title: Neural sparse voxel fields
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: ref_34
  doi: 10.1109/CVPR.2018.00480
– volume: Volume 41
  start-page: 703
  year: 2022
  ident: ref_42
  article-title: Advances in neural rendering
  publication-title: Computer Graphics Forum
  doi: 10.1111/cgf.14507
– volume: 85
  start-page: 379
  year: 2019
  ident: ref_11
  article-title: DSM generation from high resolution multi-view stereo satellite imagery
  publication-title: Photogramm. Eng. Remote Sens.
  doi: 10.14358/PERS.85.5.379
– volume: 60
  start-page: 91
  year: 2004
  ident: ref_36
  article-title: Distinctive image features from scale-invariant keypoints
  publication-title: Int. J. Comput. Vis.
  doi: 10.1023/B:VISI.0000029664.99615.94
– ident: ref_41
  doi: 10.1145/3306346.3323020
– ident: ref_38
– ident: ref_47
  doi: 10.1109/ICCV48922.2021.01390
– ident: ref_45
  doi: 10.1109/ICCV48922.2021.01352
– ident: ref_24
  doi: 10.1109/CVPR52688.2022.01254
– volume: 72
  start-page: 299
  year: 2006
  ident: ref_4
  article-title: Mapping height and biomass of mangrove forests in Everglades National Park with SRTM elevation data
  publication-title: Photogramm. Eng. Remote Sens.
  doi: 10.14358/PERS.72.3.299
– volume: 52
  start-page: 89
  year: 2019
  ident: ref_48
  article-title: Cross-track satellite stereo for 3D modelling of urban areas
  publication-title: Eur. J. Remote Sens.
  doi: 10.1080/22797254.2018.1551069
– ident: ref_23
  doi: 10.1109/ICCV48922.2021.01419
– volume: 60
  start-page: 5
  year: 2004
  ident: ref_30
  article-title: An automated method for large-scale, ground-based city model acquisition
  publication-title: Int. J. Comput. Vis.
  doi: 10.1023/B:VISI.0000027787.82851.b6
– volume: 126
  start-page: 93
  year: 2016
  ident: ref_3
  article-title: The High Resolution Stereo Camera (HRSC) of Mars Express and its approach to science analysis and mapping for Mars and its satellites
  publication-title: Planet. Space Sci.
  doi: 10.1016/j.pss.2016.02.014
– volume: 139
  start-page: 201
  year: 2018
  ident: ref_12
  article-title: 3D reconstruction from multi-view VHR-satellite images in MicMac
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2018.03.016
– ident: ref_40
  doi: 10.1109/CVPR.2019.00025
– volume: 5
  start-page: 537
  year: 2018
  ident: ref_37
  article-title: The Ames Stereo Pipeline: NASA’s open source software for deriving and processing terrain data
  publication-title: Earth Space Sci.
  doi: 10.1029/2018EA000409
– volume: 30
  start-page: 328
  year: 2007
  ident: ref_7
  article-title: Stereo processing by semiglobal matching and mutual information
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2007.1166
– ident: ref_8
  doi: 10.1109/IGARSS.2012.6352565
– ident: ref_16
  doi: 10.1109/ICCV48922.2021.00580
– ident: ref_20
  doi: 10.1109/CVPR46437.2021.00288
– ident: ref_33
– volume: 2
  start-page: 49
  year: 2014
  ident: ref_9
  article-title: An automatic and modular stereo pipeline for pushbroom images
  publication-title: ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci.
– volume: 122
  start-page: 41
  year: 2016
  ident: ref_6
  article-title: 3D change detection–approaches and applications
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2016.09.013
– volume: 54
  start-page: 105
  year: 2011
  ident: ref_29
  article-title: Building rome in a day
  publication-title: Commun. ACM
  doi: 10.1145/2001269.2001293
– volume: 65
  start-page: 99
  year: 2021
  ident: ref_15
  article-title: Nerf: Representing scenes as neural radiance fields for view synthesis
  publication-title: Commun. ACM
  doi: 10.1145/3503250
– ident: ref_10
  doi: 10.1109/CVPRW.2017.198
– volume: 74
  start-page: 65
  year: 2019
  ident: ref_1
  article-title: Mapping forest aboveground biomass in the reforested Buffelsdraai landfill site using texture combinations computed from SPOT-6 pan-sharpened imagery
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 78
  start-page: 143
  year: 2008
  ident: ref_32
  article-title: Detailed real-time urban 3d reconstruction from video
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-007-0086-4
– ident: ref_22
  doi: 10.1007/978-3-030-01249-6_23
– ident: ref_14
  doi: 10.1109/CVPRW56347.2022.00137
– ident: ref_5
  doi: 10.3390/rs11020118
– ident: ref_27
  doi: 10.1109/CVPRW53098.2021.00126
– volume: 7
  start-page: 33
  year: 2019
  ident: ref_2
  article-title: 2019 ieee grss data fusion contest: Large-scale semantic 3d reconstruction
  publication-title: IEEE Geosci. Remote Sens. Mag. (GRSM)
  doi: 10.1109/MGRS.2019.2949679
SSID ssj0000331904
Score 2.4259012
Snippet Neural radiance fields (NeRFs) combining machine learning with differentiable rendering have arisen as one of the most promising approaches for novel view...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 3808
SubjectTerms Aerial photogrammetry
Aerial surveying
Artificial intelligence
Cameras
Comparative analysis
digital surface models
Earth observations (from space)
Elevation
Estimates
geometry
hash table
Image processing
Image reconstruction
Image resolution
Localization
Machine learning
Methods
multi-view stereo
Neural networks
neural radiance fields
Photogrammetry
Radiance
Remote observing
Remote sensing
Satellite imagery
Satellite imaging
Satellite observation
satellite photogrammetry
Satellites
Self-supervised learning
Software
Synthesis
Technology application
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwELYKHOBSUQpiC61SUaniEJHYjpOcKlqxRZVAFS9xsxx7DAdIYBMO_HtmvN6FA3BN7MQez8MzHn_D2I-6KJwSuU9z5UQqG4UihZYwrQFqD7iFdoZCA0fH6vBc_rssLmPArY9plTOdGBS16yzFyPdQjaJlQxbiv-7uU6oaRaersYTGAlvK0dIQn1fjv_MYSyaQwTI5RSUV6N3vTXoy4KKiapIv7FCA639LKQdLM15lH-MWMdmfrukn9gHaNbYcq5VfP35mRyeABIbklJLP26uEADaww0mAGbCQjCkrrU9wO5qE-7XpBU4tOTUBfBP7_b_uhpCVdQvD5HGdnY8Pzv4cprEsQmqlEEPqhMlVCVndKMMLA0J521gunag8oLVukMCl8QWqsdqVOeovbxyAJbA1EJkVG2yx7VrYZEnFbdFUufEu97KsTQ3WAc98YTk30tkR250RSduIGU6lK240-g5EUP1M0BHbmbe9myJlvNrqN9F63oLQrcODbnKlo7BoMBwHlHknCylrh7aBUMG45-isUb33EftJK6VJBnE41sSrBDgpQrPS-yW6ZblS9Lvt2WLqKJy9fmalEfs-f41iRWclpoXuodcClVsA6xdf3v_EFluhCvTTnMBttjhMHuAr7lOG5ltgxid4lOe6
  priority: 102
  providerName: ProQuest
Title Remote Sensing Neural Radiance Fields for Multi-View Satellite Photogrammetry
URI https://www.proquest.com/docview/2849100512
https://www.proquest.com/docview/3040426203
https://doaj.org/article/ea2d1f0fd45449deac04122f26253202
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZKOcAFUR5ioaxSgVRxiJrYjhMft49tVbFVtdui3izHHlOkNot2U6H-e2acdLsHEBdOkRI7cWbsb2aS8TeMfdZF4ZXIQ5orL1JZK1xSaAlTDaADoAvtLX0amJypk0t5elVcrZX6opywjh64E9weWO7zkAUvCym1R5wghigeODruVPub0DfT2VowFTFY4NTKZMdHKjCu31ssyXSLiupIrlmgSNT_NziONmb8kr3oncNk1A1qi21A84o96-uUX9-_ZpMpoGghmVHaefM9IWoN7DCNBAMOkjHloy0TdESTuLM2_fYDfiUzG2k3sd_59byN-Vi30C7u37DL8dHFwUnaF0RInRSiTb2wuSoh07WyvLAgVHC149KLKgDa6RpFW9pQIIBpX-aIXMF6AEc0ayAyJ96yzWbewDuWVNwVdZXbgMKVpbYanAeehcJxbqV3A_blQUjG9WzhVLTixmDUQAI1jwIdsE-rtj87jow_ttonWa9aEK91PIHaNr22zb-0PWC7pClDqw-H42y_iQBfiniszKjEgCxXih63_aBM0y_LpUFbjO4R4hDeaGd1GRcU_SWxDczvlkYgrEWafvH-f4z4A3tOFeq7nMFtttku7uAj-jFtPWRPqvHxkD0dHU6-zvC4f3R2Ph3Gifwblnnz7A
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOZQLojzE0lKCACEOURPbeR1QVR7LlnYr1AfqzXXscXsoSdmkQvun-huZcZItB-DWa-I4znhedsbfx9jrIklsKmIXxqkVoSxTNCmMhGEBUDjAFNpq2hqY7qeTY_n1JDlZYtfDWRgqqxx8onfUtja0R76JbhQjG6oQ37r8GRJrFP1dHSg0OrXYhfkvXLI173c-4fy-4Xz8-ejjJOxZBUIjhWhDK3ScZhAVZap5okGkzpSGSytyBxjsShxfpl2CXqCwWYzm77QFMIRVBiIyAvu9w-5iXzlZUT7-stjTiQQqdCQ7FFQhimhz1lDCIHJir_wj7nl6gH8FAR_Zxg_Y_T4lDbY7HVplS1A9ZCs9O_r5_BGbHgBOKASHVOxenQUE6IEPHHhYAwPBmKrgmgDT38Cf5w2_oyiDQ-3BPvG5b-d166vAfkA7mz9mx7cisCdsuaoreMqCnJukzGPtbOxkVugCjAUeucRwrqU1I_ZuEJIyPUY5UWVcKFyrkEDVjUBH7NWi7WWHzPHXVh9I1osWhKbtL9SzM9UbpwLNcUCRszKRsrAYiwiFjDuOi0Pilx-xtzRTimweh2N0f3QBP4rQs9R2hsvAOE3pdevDZKreGTTqRnVH7OXiNpox_ZvRFdRXjRLoTD05gHj2_y5esJXJ0XRP7e3s766xezg60dUjrrPldnYFzzFHassNr5gBO71tS_gNm5Mmnw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkYAL4ikWCgQBQhyiTWzn4QNChbK0lFZVS6vejGOP2wMkZZMK7V_j1zHjJFsOwK3XxE6c8bzsjL-PsRcqy1wuUh-nuROxrHI0KYyEsQJQHjCFdoa2BnZ2881D-ek4O15hv8azMFRWOfrE4KhdY2mPfIpuFCMbqhCf-qEsYm9j9vbsR0wMUvSndaTT6FVkGxY_cfnWvtnawLl-yfnsw5f3m_HAMBBbKUQXO2HSvIBEVbnhmQGRe1tZLp0oPWDgq3CshfEZegTlihRdgTcOwBJuGYjECnzuFXa1EIWicsJy9nG5v5MIVO5E9oioQqhkOm8peRAlMVn-EQMDVcC_AkKIcrNb7OaQnkbrvT7dZitQ32HXB6b008VdtrMPOLkQHVDhe30SEbgHdtgPEAcWohlVxLURpsJRONsbH6FYowMTgD-x395p04WKsO_QzRf32OGlCOw-W62bGh6wqOQ2q8rUeJd6WSijwDrgic8s50Y6O2GvRyFpO-CVE23GN43rFhKovhDohD1ftj3rUTr-2uodyXrZgpC1w4VmfqIHQ9VgOA4o8U5mUiqHcYkQybjnuFAkrvkJe0Uzpcn-cTjWDMcY8KMISUuvF7gkTPOcXrc2TqYeHEOrL9R4wp4tb6NJ038aU0Nz3mqBjjUQBYiH_3_EU3YNbUB_3trdfsRu4OBEX5q4xla7-Tk8xnSpq54EvYzY18s2hN8CKirU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Remote+Sensing+Neural+Radiance+Fields+for+Multi-View+Satellite+Photogrammetry&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Songlin+Xie&rft.au=Lei+Zhang&rft.au=Gwanggil+Jeon&rft.au=Xiaomin+Yang&rft.date=2023-08-01&rft.pub=MDPI+AG&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=15&rft.issue=15&rft_id=info:doi/10.3390%2Frs15153808&rft.externalDocID=A760616608
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon