Remote Sensing Neural Radiance Fields for Multi-View Satellite Photogrammetry
Neural radiance fields (NeRFs) combining machine learning with differentiable rendering have arisen as one of the most promising approaches for novel view synthesis and depth estimates. However, NeRFs only applies to close-range static imagery and it takes several hours to train the model. The satel...
Saved in:
Published in | Remote sensing (Basel, Switzerland) Vol. 15; no. 15; p. 3808 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.08.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 2072-4292 2072-4292 |
DOI | 10.3390/rs15153808 |
Cover
Abstract | Neural radiance fields (NeRFs) combining machine learning with differentiable rendering have arisen as one of the most promising approaches for novel view synthesis and depth estimates. However, NeRFs only applies to close-range static imagery and it takes several hours to train the model. The satellites are hundreds of kilometers from the earth. Satellite multi-view images are usually captured over several years, and the scene of images is dynamic in the wild. Therefore, multi-view satellite photogrammetry is far beyond the capabilities of NeRFs. In this paper, we present a new method for multi-view satellite photogrammetry of Earth observation called remote sensing neural radiance fields (RS-NeRFs). It aims to generate novel view images and accurate elevation predictions quickly. For each scene, we train an RS-NeRF using high-resolution optical images without labels or geometric priors and apply image reconstruction losses for self-supervised learning. Multi-date images exhibit significant changes in appearance, mainly due to cars and varying shadows, which brings challenges to satellite photogrammetry. Robustness to these changes is achieved by the input of solar ray direction and the vehicle removal method. NeRFs make it intolerable by requiring a very long time to train an easy scene. In order to significantly reduce the training time of RS-NeRFs, we build a tiny network with HashEncoder and adopted a new sampling technique with our custom CUDA kernels. Compared with previous work, our method performs better on novel view synthesis and elevation estimates, taking several minutes. |
---|---|
AbstractList | Neural radiance fields (NeRFs) combining machine learning with differentiable rendering have arisen as one of the most promising approaches for novel view synthesis and depth estimates. However, NeRFs only applies to close-range static imagery and it takes several hours to train the model. The satellites are hundreds of kilometers from the earth. Satellite multi-view images are usually captured over several years, and the scene of images is dynamic in the wild. Therefore, multi-view satellite photogrammetry is far beyond the capabilities of NeRFs. In this paper, we present a new method for multi-view satellite photogrammetry of Earth observation called remote sensing neural radiance fields (RS-NeRFs). It aims to generate novel view images and accurate elevation predictions quickly. For each scene, we train an RS-NeRF using high-resolution optical images without labels or geometric priors and apply image reconstruction losses for self-supervised learning. Multi-date images exhibit significant changes in appearance, mainly due to cars and varying shadows, which brings challenges to satellite photogrammetry. Robustness to these changes is achieved by the input of solar ray direction and the vehicle removal method. NeRFs make it intolerable by requiring a very long time to train an easy scene. In order to significantly reduce the training time of RS-NeRFs, we build a tiny network with HashEncoder and adopted a new sampling technique with our custom CUDA kernels. Compared with previous work, our method performs better on novel view synthesis and elevation estimates, taking several minutes. |
Audience | Academic |
Author | Xie, Songlin Jeon, Gwanggil Zhang, Lei Yang, Xiaomin |
Author_xml | – sequence: 1 givenname: Songlin surname: Xie fullname: Xie, Songlin – sequence: 2 givenname: Lei orcidid: 0000-0002-2986-1045 surname: Zhang fullname: Zhang, Lei – sequence: 3 givenname: Gwanggil orcidid: 0000-0002-0651-4278 surname: Jeon fullname: Jeon, Gwanggil – sequence: 4 givenname: Xiaomin surname: Yang fullname: Yang, Xiaomin |
BookMark | eNptUV1rFTEQDdKC9doXf8GCLyJsO_nYr8dSrBZaLf3wNcxNJtdcdjc1yVL67029UqU4eZhhOOcMJ-cN25vDTIy943Ak5QDHMfGGN7KH_hU7ENCJWolB7P0zv2aHKW2hlJR8AHXALq9pCpmqG5qTnzfVV1oijtU1Wo-zoerM02hT5UKsLpcx-_q7p4fqBjONoy-8qx8hh03EaaIcH9-yfYdjosM_fcXuzj7dnn6pL759Pj89uaiNkjLXViJvO4Jh3aJokGTrzNoIZWXvSCi1boXt0DUD54PtuLXk0BIZ3jSCJBi5Yuc7XRtwq--jnzA-6oBe_16EuNEYszcjaUJhuQNnVaPUYAkNKC6EE61opABRtD7stO5j-LlQynryyRR7OFNYkpagQBV0-bIVe_8Cug1LnItTLXo1cICGPwke7VAbLPf97EKOaMqzNHlTInO-7E-6FlrettAXwscdwcSQUiT37IiDfkpW_022gOEF2PiM2Ye5XPHj_yi_AHBNpf4 |
CitedBy_id | crossref_primary_10_1109_TGRS_2024_3399786 crossref_primary_10_3390_app14177777 crossref_primary_10_3390_rs16132327 crossref_primary_10_1109_LSP_2025_3540372 crossref_primary_10_3390_ijgi13070243 crossref_primary_10_3390_rs15184628 |
Cites_doi | 10.1016/j.isprsjprs.2016.03.012 10.1109/ICCV48922.2021.00581 10.1007/978-3-031-19824-3_7 10.1109/CVPR.2016.445 10.1007/978-3-540-88682-2_33 10.1109/CVPR46437.2021.00713 10.1145/3528223.3530127 10.1126/scirobotics.aaw0863 10.1109/CVPR42600.2020.01113 10.1109/ICCV48922.2021.00570 10.1109/CVPR52688.2022.00807 10.1145/3478513.3480500 10.1109/CVPR52688.2022.01259 10.1109/CVPR.2018.00480 10.1111/cgf.14507 10.14358/PERS.85.5.379 10.1023/B:VISI.0000029664.99615.94 10.1145/3306346.3323020 10.1109/ICCV48922.2021.01390 10.1109/ICCV48922.2021.01352 10.1109/CVPR52688.2022.01254 10.14358/PERS.72.3.299 10.1080/22797254.2018.1551069 10.1109/ICCV48922.2021.01419 10.1023/B:VISI.0000027787.82851.b6 10.1016/j.pss.2016.02.014 10.1016/j.isprsjprs.2018.03.016 10.1109/CVPR.2019.00025 10.1029/2018EA000409 10.1109/TPAMI.2007.1166 10.1109/IGARSS.2012.6352565 10.1109/ICCV48922.2021.00580 10.1109/CVPR46437.2021.00288 10.1016/j.isprsjprs.2016.09.013 10.1145/2001269.2001293 10.1145/3503250 10.1109/CVPRW.2017.198 10.1007/s11263-007-0086-4 10.1007/978-3-030-01249-6_23 10.1109/CVPRW56347.2022.00137 10.3390/rs11020118 10.1109/CVPRW53098.2021.00126 10.1109/MGRS.2019.2949679 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7S9 L.6 DOA |
DOI | 10.3390/rs15153808 |
DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection AGRICOLA AGRICOLA - Academic Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | CrossRef AGRICOLA Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 2072-4292 |
ExternalDocumentID | oai_doaj_org_article_ea2d1f0fd45449deac04122f26253202 A760616608 10_3390_rs15153808 |
GeographicLocations | China United States--US San Francisco California |
GeographicLocations_xml | – name: China – name: San Francisco California – name: United States--US |
GroupedDBID | 29P 2WC 2XV 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PROAC PTHSS TR2 TUS PMFND 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7S9 L.6 PUEGO |
ID | FETCH-LOGICAL-c433t-d3a167e09b6a25ae36fcbc24d38fe244b62d7af59119d71ddefadeec1552e30c3 |
IEDL.DBID | DOA |
ISSN | 2072-4292 |
IngestDate | Wed Aug 27 01:31:45 EDT 2025 Fri Sep 05 02:43:34 EDT 2025 Fri Jul 25 12:00:33 EDT 2025 Tue May 27 03:54:44 EDT 2025 Thu Apr 24 22:55:01 EDT 2025 Tue Jul 01 03:11:14 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 15 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c433t-d3a167e09b6a25ae36fcbc24d38fe244b62d7af59119d71ddefadeec1552e30c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-2986-1045 0000-0002-0651-4278 |
OpenAccessLink | https://doaj.org/article/ea2d1f0fd45449deac04122f26253202 |
PQID | 2849100512 |
PQPubID | 2032338 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_ea2d1f0fd45449deac04122f26253202 proquest_miscellaneous_3040426203 proquest_journals_2849100512 gale_infotracacademiconefile_A760616608 crossref_primary_10_3390_rs15153808 crossref_citationtrail_10_3390_rs15153808 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-08-01 |
PublicationDateYYYYMMDD | 2023-08-01 |
PublicationDate_xml | – month: 08 year: 2023 text: 2023-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Remote sensing (Basel, Switzerland) |
PublicationYear | 2023 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Mildenhall (ref_15) 2021; 65 Michel (ref_9) 2014; 2 Gwinner (ref_3) 2016; 126 ref_14 ref_10 Zhang (ref_46) 2021; 40 ref_18 Hlatshwayo (ref_1) 2019; 74 ref_17 ref_16 Hirschmuller (ref_7) 2007; 30 Zakhor (ref_30) 2004; 60 Srivastava (ref_49) 2014; 15 Li (ref_19) 2019; 4 ref_25 ref_24 ref_23 ref_22 Qin (ref_6) 2016; 122 ref_21 ref_20 Gong (ref_11) 2019; 85 ref_28 ref_27 ref_26 Yokoya (ref_2) 2019; 7 Liu (ref_39) 2020; 33 Beyer (ref_37) 2018; 5 Rupnik (ref_12) 2018; 139 ref_35 ref_34 Shean (ref_13) 2016; 116 Agarwal (ref_29) 2011; 54 ref_33 ref_31 ref_38 Wendt (ref_48) 2019; 52 Lowe (ref_36) 2004; 60 Pollefeys (ref_32) 2008; 78 ref_47 ref_45 ref_44 ref_43 ref_41 ref_40 Tewari (ref_42) 2022; Volume 41 ref_8 ref_5 Simard (ref_4) 2006; 72 |
References_xml | – volume: 116 start-page: 101 year: 2016 ident: ref_13 article-title: An automated, open-source pipeline for mass production of digital elevation models (DEMs) from very-high-resolution commercial stereo satellite imagery publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2016.03.012 – ident: ref_18 doi: 10.1109/ICCV48922.2021.00581 – ident: ref_43 doi: 10.1007/978-3-031-19824-3_7 – ident: ref_35 doi: 10.1109/CVPR.2016.445 – ident: ref_31 doi: 10.1007/978-3-540-88682-2_33 – ident: ref_17 doi: 10.1109/CVPR46437.2021.00713 – ident: ref_28 doi: 10.1145/3528223.3530127 – volume: 4 start-page: eaaw0863 year: 2019 ident: ref_19 article-title: AADS: Augmented autonomous driving simulation using data-driven algorithms publication-title: Sci. Robot. doi: 10.1126/scirobotics.aaw0863 – ident: ref_21 doi: 10.1109/CVPR42600.2020.01113 – volume: 15 start-page: 1929 year: 2014 ident: ref_49 article-title: Dropout: A simple way to prevent neural networks from overfitting publication-title: J. Mach. Learn. Res. – ident: ref_44 doi: 10.1109/ICCV48922.2021.00570 – ident: ref_25 doi: 10.1109/CVPR52688.2022.00807 – volume: 40 start-page: 1 year: 2021 ident: ref_46 article-title: Editable free-viewpoint video using a layered neural representation publication-title: ACM Trans. Graph. (TOG) doi: 10.1145/3478513.3480500 – ident: ref_26 doi: 10.1109/CVPR52688.2022.01259 – volume: 33 start-page: 15651 year: 2020 ident: ref_39 article-title: Neural sparse voxel fields publication-title: Adv. Neural Inf. Process. Syst. – ident: ref_34 doi: 10.1109/CVPR.2018.00480 – volume: Volume 41 start-page: 703 year: 2022 ident: ref_42 article-title: Advances in neural rendering publication-title: Computer Graphics Forum doi: 10.1111/cgf.14507 – volume: 85 start-page: 379 year: 2019 ident: ref_11 article-title: DSM generation from high resolution multi-view stereo satellite imagery publication-title: Photogramm. Eng. Remote Sens. doi: 10.14358/PERS.85.5.379 – volume: 60 start-page: 91 year: 2004 ident: ref_36 article-title: Distinctive image features from scale-invariant keypoints publication-title: Int. J. Comput. Vis. doi: 10.1023/B:VISI.0000029664.99615.94 – ident: ref_41 doi: 10.1145/3306346.3323020 – ident: ref_38 – ident: ref_47 doi: 10.1109/ICCV48922.2021.01390 – ident: ref_45 doi: 10.1109/ICCV48922.2021.01352 – ident: ref_24 doi: 10.1109/CVPR52688.2022.01254 – volume: 72 start-page: 299 year: 2006 ident: ref_4 article-title: Mapping height and biomass of mangrove forests in Everglades National Park with SRTM elevation data publication-title: Photogramm. Eng. Remote Sens. doi: 10.14358/PERS.72.3.299 – volume: 52 start-page: 89 year: 2019 ident: ref_48 article-title: Cross-track satellite stereo for 3D modelling of urban areas publication-title: Eur. J. Remote Sens. doi: 10.1080/22797254.2018.1551069 – ident: ref_23 doi: 10.1109/ICCV48922.2021.01419 – volume: 60 start-page: 5 year: 2004 ident: ref_30 article-title: An automated method for large-scale, ground-based city model acquisition publication-title: Int. J. Comput. Vis. doi: 10.1023/B:VISI.0000027787.82851.b6 – volume: 126 start-page: 93 year: 2016 ident: ref_3 article-title: The High Resolution Stereo Camera (HRSC) of Mars Express and its approach to science analysis and mapping for Mars and its satellites publication-title: Planet. Space Sci. doi: 10.1016/j.pss.2016.02.014 – volume: 139 start-page: 201 year: 2018 ident: ref_12 article-title: 3D reconstruction from multi-view VHR-satellite images in MicMac publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2018.03.016 – ident: ref_40 doi: 10.1109/CVPR.2019.00025 – volume: 5 start-page: 537 year: 2018 ident: ref_37 article-title: The Ames Stereo Pipeline: NASA’s open source software for deriving and processing terrain data publication-title: Earth Space Sci. doi: 10.1029/2018EA000409 – volume: 30 start-page: 328 year: 2007 ident: ref_7 article-title: Stereo processing by semiglobal matching and mutual information publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2007.1166 – ident: ref_8 doi: 10.1109/IGARSS.2012.6352565 – ident: ref_16 doi: 10.1109/ICCV48922.2021.00580 – ident: ref_20 doi: 10.1109/CVPR46437.2021.00288 – ident: ref_33 – volume: 2 start-page: 49 year: 2014 ident: ref_9 article-title: An automatic and modular stereo pipeline for pushbroom images publication-title: ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci. – volume: 122 start-page: 41 year: 2016 ident: ref_6 article-title: 3D change detection–approaches and applications publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2016.09.013 – volume: 54 start-page: 105 year: 2011 ident: ref_29 article-title: Building rome in a day publication-title: Commun. ACM doi: 10.1145/2001269.2001293 – volume: 65 start-page: 99 year: 2021 ident: ref_15 article-title: Nerf: Representing scenes as neural radiance fields for view synthesis publication-title: Commun. ACM doi: 10.1145/3503250 – ident: ref_10 doi: 10.1109/CVPRW.2017.198 – volume: 74 start-page: 65 year: 2019 ident: ref_1 article-title: Mapping forest aboveground biomass in the reforested Buffelsdraai landfill site using texture combinations computed from SPOT-6 pan-sharpened imagery publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 78 start-page: 143 year: 2008 ident: ref_32 article-title: Detailed real-time urban 3d reconstruction from video publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-007-0086-4 – ident: ref_22 doi: 10.1007/978-3-030-01249-6_23 – ident: ref_14 doi: 10.1109/CVPRW56347.2022.00137 – ident: ref_5 doi: 10.3390/rs11020118 – ident: ref_27 doi: 10.1109/CVPRW53098.2021.00126 – volume: 7 start-page: 33 year: 2019 ident: ref_2 article-title: 2019 ieee grss data fusion contest: Large-scale semantic 3d reconstruction publication-title: IEEE Geosci. Remote Sens. Mag. (GRSM) doi: 10.1109/MGRS.2019.2949679 |
SSID | ssj0000331904 |
Score | 2.4259012 |
Snippet | Neural radiance fields (NeRFs) combining machine learning with differentiable rendering have arisen as one of the most promising approaches for novel view... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 3808 |
SubjectTerms | Aerial photogrammetry Aerial surveying Artificial intelligence Cameras Comparative analysis digital surface models Earth observations (from space) Elevation Estimates geometry hash table Image processing Image reconstruction Image resolution Localization Machine learning Methods multi-view stereo Neural networks neural radiance fields Photogrammetry Radiance Remote observing Remote sensing Satellite imagery Satellite imaging Satellite observation satellite photogrammetry Satellites Self-supervised learning Software Synthesis Technology application |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwELYKHOBSUQpiC61SUaniEJHYjpOcKlqxRZVAFS9xsxx7DAdIYBMO_HtmvN6FA3BN7MQez8MzHn_D2I-6KJwSuU9z5UQqG4UihZYwrQFqD7iFdoZCA0fH6vBc_rssLmPArY9plTOdGBS16yzFyPdQjaJlQxbiv-7uU6oaRaersYTGAlvK0dIQn1fjv_MYSyaQwTI5RSUV6N3vTXoy4KKiapIv7FCA639LKQdLM15lH-MWMdmfrukn9gHaNbYcq5VfP35mRyeABIbklJLP26uEADaww0mAGbCQjCkrrU9wO5qE-7XpBU4tOTUBfBP7_b_uhpCVdQvD5HGdnY8Pzv4cprEsQmqlEEPqhMlVCVndKMMLA0J521gunag8oLVukMCl8QWqsdqVOeovbxyAJbA1EJkVG2yx7VrYZEnFbdFUufEu97KsTQ3WAc98YTk30tkR250RSduIGU6lK240-g5EUP1M0BHbmbe9myJlvNrqN9F63oLQrcODbnKlo7BoMBwHlHknCylrh7aBUMG45-isUb33EftJK6VJBnE41sSrBDgpQrPS-yW6ZblS9Lvt2WLqKJy9fmalEfs-f41iRWclpoXuodcClVsA6xdf3v_EFluhCvTTnMBttjhMHuAr7lOG5ltgxid4lOe6 priority: 102 providerName: ProQuest |
Title | Remote Sensing Neural Radiance Fields for Multi-View Satellite Photogrammetry |
URI | https://www.proquest.com/docview/2849100512 https://www.proquest.com/docview/3040426203 https://doaj.org/article/ea2d1f0fd45449deac04122f26253202 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZKOcAFUR5ioaxSgVRxiJrYjhMft49tVbFVtdui3izHHlOkNot2U6H-e2acdLsHEBdOkRI7cWbsb2aS8TeMfdZF4ZXIQ5orL1JZK1xSaAlTDaADoAvtLX0amJypk0t5elVcrZX6opywjh64E9weWO7zkAUvCym1R5wghigeODruVPub0DfT2VowFTFY4NTKZMdHKjCu31ssyXSLiupIrlmgSNT_NziONmb8kr3oncNk1A1qi21A84o96-uUX9-_ZpMpoGghmVHaefM9IWoN7DCNBAMOkjHloy0TdESTuLM2_fYDfiUzG2k3sd_59byN-Vi30C7u37DL8dHFwUnaF0RInRSiTb2wuSoh07WyvLAgVHC149KLKgDa6RpFW9pQIIBpX-aIXMF6AEc0ayAyJ96yzWbewDuWVNwVdZXbgMKVpbYanAeehcJxbqV3A_blQUjG9WzhVLTixmDUQAI1jwIdsE-rtj87jow_ttonWa9aEK91PIHaNr22zb-0PWC7pClDqw-H42y_iQBfiniszKjEgCxXih63_aBM0y_LpUFbjO4R4hDeaGd1GRcU_SWxDczvlkYgrEWafvH-f4z4A3tOFeq7nMFtttku7uAj-jFtPWRPqvHxkD0dHU6-zvC4f3R2Ph3Gifwblnnz7A |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOZQLojzE0lKCACEOURPbeR1QVR7LlnYr1AfqzXXscXsoSdmkQvun-huZcZItB-DWa-I4znhedsbfx9jrIklsKmIXxqkVoSxTNCmMhGEBUDjAFNpq2hqY7qeTY_n1JDlZYtfDWRgqqxx8onfUtja0R76JbhQjG6oQ37r8GRJrFP1dHSg0OrXYhfkvXLI173c-4fy-4Xz8-ejjJOxZBUIjhWhDK3ScZhAVZap5okGkzpSGSytyBxjsShxfpl2CXqCwWYzm77QFMIRVBiIyAvu9w-5iXzlZUT7-stjTiQQqdCQ7FFQhimhz1lDCIHJir_wj7nl6gH8FAR_Zxg_Y_T4lDbY7HVplS1A9ZCs9O_r5_BGbHgBOKASHVOxenQUE6IEPHHhYAwPBmKrgmgDT38Cf5w2_oyiDQ-3BPvG5b-d166vAfkA7mz9mx7cisCdsuaoreMqCnJukzGPtbOxkVugCjAUeucRwrqU1I_ZuEJIyPUY5UWVcKFyrkEDVjUBH7NWi7WWHzPHXVh9I1osWhKbtL9SzM9UbpwLNcUCRszKRsrAYiwiFjDuOi0Pilx-xtzRTimweh2N0f3QBP4rQs9R2hsvAOE3pdevDZKreGTTqRnVH7OXiNpox_ZvRFdRXjRLoTD05gHj2_y5esJXJ0XRP7e3s766xezg60dUjrrPldnYFzzFHassNr5gBO71tS_gNm5Mmnw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkYAL4ikWCgQBQhyiTWzn4QNChbK0lFZVS6vejGOP2wMkZZMK7V_j1zHjJFsOwK3XxE6c8bzsjL-PsRcqy1wuUh-nuROxrHI0KYyEsQJQHjCFdoa2BnZ2881D-ek4O15hv8azMFRWOfrE4KhdY2mPfIpuFCMbqhCf-qEsYm9j9vbsR0wMUvSndaTT6FVkGxY_cfnWvtnawLl-yfnsw5f3m_HAMBBbKUQXO2HSvIBEVbnhmQGRe1tZLp0oPWDgq3CshfEZegTlihRdgTcOwBJuGYjECnzuFXa1EIWicsJy9nG5v5MIVO5E9oioQqhkOm8peRAlMVn-EQMDVcC_AkKIcrNb7OaQnkbrvT7dZitQ32HXB6b008VdtrMPOLkQHVDhe30SEbgHdtgPEAcWohlVxLURpsJRONsbH6FYowMTgD-x395p04WKsO_QzRf32OGlCOw-W62bGh6wqOQ2q8rUeJd6WSijwDrgic8s50Y6O2GvRyFpO-CVE23GN43rFhKovhDohD1ftj3rUTr-2uodyXrZgpC1w4VmfqIHQ9VgOA4o8U5mUiqHcYkQybjnuFAkrvkJe0Uzpcn-cTjWDMcY8KMISUuvF7gkTPOcXrc2TqYeHEOrL9R4wp4tb6NJ038aU0Nz3mqBjjUQBYiH_3_EU3YNbUB_3trdfsRu4OBEX5q4xla7-Tk8xnSpq54EvYzY18s2hN8CKirU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Remote+Sensing+Neural+Radiance+Fields+for+Multi-View+Satellite+Photogrammetry&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Songlin+Xie&rft.au=Lei+Zhang&rft.au=Gwanggil+Jeon&rft.au=Xiaomin+Yang&rft.date=2023-08-01&rft.pub=MDPI+AG&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=15&rft.issue=15&rft_id=info:doi/10.3390%2Frs15153808&rft.externalDocID=A760616608 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |