Fire Detection in Video Using LMS Based Active Learning
In this paper, a video based algorithm for fire and flame detection is developed. In addition to ordinary motion and color clues, flame flicker is distinguished from motion of flame colored moving objects using Markov models. Irregular nature of flame boundaries is detected by performing temporal wa...
        Saved in:
      
    
          | Published in | Fire technology Vol. 46; no. 3; pp. 551 - 577 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Boston
          Boston : Springer US
    
        01.07.2010
     Springer US Springer Springer Nature B.V  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0015-2684 1572-8099  | 
| DOI | 10.1007/s10694-009-0106-8 | 
Cover
| Summary: | In this paper, a video based algorithm for fire and flame detection is developed. In addition to ordinary motion and color clues, flame flicker is distinguished from motion of flame colored moving objects using Markov models. Irregular nature of flame boundaries is detected by performing temporal wavelet analysis using Hidden Markov Models as well. Color variations in fire is detected by computing the spatial wavelet transform of moving fire-colored regions. Boundary of flames are represented in wavelet domain and irregular nature of the boundaries of fire regions is also used as an indication of the flame flicker. Decisions from sub-algorithms are linearly combined using an adaptive active fusion method. The main detection algorithm is composed of four sub-algorithms (i) detection of fire colored moving objects, (ii) temporal, and (iii) spatial wavelet analysis for flicker detection and (iv) contour analysis of fire colored region boundaries. Each algorithm yields a continuous decision value as a real number in the range [−1, 1] at every image frame of a video sequence. Decision values from sub-algorithms are fused using an adaptive algorithm in which weights are updated using the least mean square (LMS) method in the training (learning) stage. | 
|---|---|
| Bibliography: | http://dx.doi.org/10.1007/s10694-009-0106-8 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2  | 
| ISSN: | 0015-2684 1572-8099  | 
| DOI: | 10.1007/s10694-009-0106-8 |