DS-Trans: A 3D Object Detection Method Based on a Deformable Spatiotemporal Transformer for Autonomous Vehicles

Facing the significant challenge of 3D object detection in complex weather conditions and road environments, existing algorithms based on single-frame point cloud data struggle to achieve desirable results. These methods typically focus on spatial relationships within a single frame, overlooking the...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing (Basel, Switzerland) Vol. 16; no. 9; p. 1621
Main Authors Zhu, Yuan, Xu, Ruidong, Tao, Chongben, An, Hao, Wang, Huaide, Sun, Zhipeng, Lu, Ke
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.05.2024
Subjects
Online AccessGet full text
ISSN2072-4292
2072-4292
DOI10.3390/rs16091621

Cover

Abstract Facing the significant challenge of 3D object detection in complex weather conditions and road environments, existing algorithms based on single-frame point cloud data struggle to achieve desirable results. These methods typically focus on spatial relationships within a single frame, overlooking the semantic correlations and spatiotemporal continuity between consecutive frames. This leads to discontinuities and abrupt changes in the detection outcomes. To address this issue, this paper proposes a multi-frame 3D object detection algorithm based on a deformable spatiotemporal Transformer. Specifically, a deformable cross-scale Transformer module is devised, incorporating a multi-scale offset mechanism that non-uniformly samples features at different scales, enhancing the spatial information aggregation capability of the output features. Simultaneously, to address the issue of feature misalignment during multi-frame feature fusion, a deformable cross-frame Transformer module is proposed. This module incorporates independently learnable offset parameters for different frame features, enabling the model to adaptively correlate dynamic features across multiple frames and improve the temporal information utilization of the model. A proposal-aware sampling algorithm is introduced to significantly increase the foreground point recall, further optimizing the efficiency of feature extraction. The obtained multi-scale and multi-frame voxel features are subjected to an adaptive fusion weight extraction module, referred to as the proposed mixed voxel set extraction module. This module allows the model to adaptively obtain mixed features containing both spatial and temporal information. The effectiveness of the proposed algorithm is validated on the KITTI, nuScenes, and self-collected urban datasets. The proposed algorithm achieves an average precision improvement of 2.1% over the latest multi-frame-based algorithms.
AbstractList Facing the significant challenge of 3D object detection in complex weather conditions and road environments, existing algorithms based on single-frame point cloud data struggle to achieve desirable results. These methods typically focus on spatial relationships within a single frame, overlooking the semantic correlations and spatiotemporal continuity between consecutive frames. This leads to discontinuities and abrupt changes in the detection outcomes. To address this issue, this paper proposes a multi-frame 3D object detection algorithm based on a deformable spatiotemporal Transformer. Specifically, a deformable cross-scale Transformer module is devised, incorporating a multi-scale offset mechanism that non-uniformly samples features at different scales, enhancing the spatial information aggregation capability of the output features. Simultaneously, to address the issue of feature misalignment during multi-frame feature fusion, a deformable cross-frame Transformer module is proposed. This module incorporates independently learnable offset parameters for different frame features, enabling the model to adaptively correlate dynamic features across multiple frames and improve the temporal information utilization of the model. A proposal-aware sampling algorithm is introduced to significantly increase the foreground point recall, further optimizing the efficiency of feature extraction. The obtained multi-scale and multi-frame voxel features are subjected to an adaptive fusion weight extraction module, referred to as the proposed mixed voxel set extraction module. This module allows the model to adaptively obtain mixed features containing both spatial and temporal information. The effectiveness of the proposed algorithm is validated on the KITTI, nuScenes, and self-collected urban datasets. The proposed algorithm achieves an average precision improvement of 2.1% over the latest multi-frame-based algorithms.
Audience Academic
Author Zhu, Yuan
An, Hao
Lu, Ke
Sun, Zhipeng
Wang, Huaide
Xu, Ruidong
Tao, Chongben
Author_xml – sequence: 1
  givenname: Yuan
  surname: Zhu
  fullname: Zhu, Yuan
– sequence: 2
  givenname: Ruidong
  orcidid: 0000-0002-2991-1874
  surname: Xu
  fullname: Xu, Ruidong
– sequence: 3
  givenname: Chongben
  surname: Tao
  fullname: Tao, Chongben
– sequence: 4
  givenname: Hao
  surname: An
  fullname: An, Hao
– sequence: 5
  givenname: Huaide
  surname: Wang
  fullname: Wang, Huaide
– sequence: 6
  givenname: Zhipeng
  surname: Sun
  fullname: Sun, Zhipeng
– sequence: 7
  givenname: Ke
  orcidid: 0000-0001-9166-4790
  surname: Lu
  fullname: Lu, Ke
BookMark eNp9kstO3TAQhqOKSqWUDU9gqZuqVahvceLuDpzSIlGxgHZrTRwHfJTYqe2o4u3rEFQqhLAXY898889o7LfFnvPOFMURwceMSfw5RCKwJIKSV8U-xTUtOZV077_zm-Iwxh3OizEiMd8v_PaqvA7g4he0QWyLLtud0QltTcrGeod-mHTrO3QC0XQo3yHHeh9GaAeDribIUDLj5AMM6F5oCZqAskGbOXnnRz9H9MvcWj2Y-K543cMQzeGDPSh-nn29Pv1eXlx-Oz_dXJSaM5bKVrCGYwk1rzBpucAaSEMoryTpJJXAMGG07Umju7YXlehAG6wpYMJlR7BkB8X5qtt52Kkp2BHCnfJg1b3DhxsFIS0tqaVSy03VGQm8zQKQi2jeN7XguheL1qdVa3YT3P2BYfgnSLBaRq8eR5_pDys9Bf97NjGp0UZthgGcyZNQjFRMEMIbnNH3T9Cdn4PLc1EMV4wIzgjN1PFK3UDu1rrepwA6786MVucv0Nvs39SSVXXF2ZLwcU3QwccYTP9yu_gJrG1aXtXlKnZ4LuUvoIy9zQ
CitedBy_id crossref_primary_10_1016_j_aej_2025_02_063
crossref_primary_10_1016_j_jiixd_2025_02_003
Cites_doi 10.1109/TCSVT.2021.3082763
10.1109/LGRS.2023.3330957
10.1109/CVPR46437.2021.00845
10.3390/s23010233
10.1109/CVPR46437.2021.00190
10.1109/CVPR.2018.00472
10.1016/j.neucom.2019.09.086
10.1109/TCSVT.2021.3102025
10.1109/CVPR42600.2020.00466
10.1109/CVPR.2018.00961
10.1007/s11263-022-01710-9
10.1109/CVPR42600.2020.01105
10.1109/CVPR46437.2021.00738
10.1007/978-3-030-58565-5
10.1109/IROS45743.2020.9341791
10.1109/TII.2020.3048719
10.1109/CVPR42600.2020.01101
10.1109/TITS.2022.3176390
10.1109/CVPR.2017.106
10.1109/ICCV48922.2021.00274
10.3390/rs14184471
10.1109/CVPR42600.2020.01164
10.1007/978-3-030-58583-9
10.1109/CVPR.2016.236
10.1109/ICCV48922.2021.00290
10.1109/ICRA.2019.8794195
10.1109/CVPR.2019.00086
10.1109/CVPR.2018.00798
10.1109/CVPR46437.2021.01162
10.1109/CVPR.2016.350
10.1109/CVPR42600.2020.01054
10.1109/CVPR.2019.01298
10.1016/j.knosys.2021.107346
10.1109/CVPR42600.2020.01151
10.1109/ICCVW54120.2021.00107
10.1609/aaai.v35i2.16207
10.1007/978-3-031-20050-2
10.1109/ICCV.2017.89
10.1007/978-3-030-58452-8_13
10.1109/CVPR42600.2020.01056
10.1109/CVPR.2012.6248074
10.3390/s18103337
10.1007/978-3-031-19839-7_29
10.1109/CVPR.2018.00376
10.1109/CVPR46437.2021.00607
10.1109/WACV56688.2023.00421
10.1109/ICCV48922.2021.00294
10.1109/CVPR.2018.00102
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7S9
L.6
ADTOC
UNPAY
DOA
DOI 10.3390/rs16091621
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
AGRICOLA
AGRICOLA - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Publicly Available Content Database

CrossRef
AGRICOLA

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_3840b4e5de9a4b149a91dc4f8764cf69
10.3390/rs16091621
A793575432
10_3390_rs16091621
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID 29P
2WC
2XV
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
TR2
TUS
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7S9
L.6
PUEGO
ADTOC
C1A
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c433t-b638409a74501b460ca18124591d929a30132bf18cdbf656dace0c2a0149d1093
IEDL.DBID UNPAY
ISSN 2072-4292
IngestDate Fri Oct 03 12:51:02 EDT 2025
Sun Sep 07 10:49:29 EDT 2025
Thu Sep 04 20:15:35 EDT 2025
Fri Jul 25 09:39:19 EDT 2025
Mon Oct 20 16:59:50 EDT 2025
Thu Oct 16 04:41:13 EDT 2025
Thu Apr 24 22:57:57 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c433t-b638409a74501b460ca18124591d929a30132bf18cdbf656dace0c2a0149d1093
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9166-4790
0000-0002-2991-1874
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.3390/rs16091621
PQID 3053164312
PQPubID 2032338
ParticipantIDs doaj_primary_oai_doaj_org_article_3840b4e5de9a4b149a91dc4f8764cf69
unpaywall_primary_10_3390_rs16091621
proquest_miscellaneous_3153611480
proquest_journals_3053164312
gale_infotracacademiconefile_A793575432
crossref_primary_10_3390_rs16091621
crossref_citationtrail_10_3390_rs16091621
PublicationCentury 2000
PublicationDate 2024-05-01
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_50
Shi (ref_53) 2021; 131
Gao (ref_24) 2023; 61
ref_14
ref_58
ref_13
ref_57
ref_12
ref_56
ref_11
ref_55
ref_10
Ye (ref_54) 2020; 379
ref_51
Tao (ref_1) 2021; 229
ref_19
ref_17
ref_16
ref_15
ref_59
Zhao (ref_47) 2021; 31
Li (ref_25) 2023; 20
ref_61
ref_60
Luo (ref_45) 2022; 23
ref_23
ref_22
ref_21
Li (ref_27) 2023; 61
Shi (ref_52) 2021; 43
ref_29
ref_28
ref_26
Yuan (ref_34) 2022; 32
ref_36
ref_35
ref_33
ref_32
ref_31
ref_30
ref_39
ref_38
ref_37
ref_46
ref_44
ref_43
ref_42
Wen (ref_18) 2021; 17
ref_41
ref_40
ref_3
ref_2
ref_49
ref_48
ref_9
ref_8
Li (ref_20) 2022; 112
ref_5
ref_4
ref_7
ref_6
References_xml – volume: 32
  start-page: 2068
  year: 2022
  ident: ref_34
  article-title: Temporal-Channel Transformer for 3D Lidar-Based Video Object Detection for Autonomous Driving
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2021.3082763
– volume: 20
  start-page: 1
  year: 2023
  ident: ref_25
  article-title: Model-Guided Coarse-to-Fine Fusion Network for Unsupervised Hyperspectral Image Super-Resolution
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2023.3330957
– ident: ref_60
  doi: 10.1109/CVPR46437.2021.00845
– ident: ref_5
– ident: ref_19
  doi: 10.3390/s23010233
– ident: ref_33
  doi: 10.1109/CVPR46437.2021.00190
– ident: ref_28
  doi: 10.1109/CVPR.2018.00472
– ident: ref_51
– volume: 43
  start-page: 2647
  year: 2021
  ident: ref_52
  article-title: From Points to Parts: 3D Object Detection from Point Cloud with Part-Aware and Part-Aggregation Network
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 112
  start-page: 102926
  year: 2022
  ident: ref_20
  article-title: Deep Learning in Multimodal Remote Sensing Data Fusion: A Comprehensive Review
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 379
  start-page: 53
  year: 2020
  ident: ref_54
  article-title: SARPNET: Shape Attention Regional Proposal Network for liDAR-Based 3D Object Detection
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.09.086
– ident: ref_39
– volume: 31
  start-page: 4735
  year: 2021
  ident: ref_47
  article-title: Transformer3D-Det: Improving 3D Object Detection by Vote Refinement
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2021.3102025
– ident: ref_57
  doi: 10.1109/CVPR42600.2020.00466
– ident: ref_44
  doi: 10.1109/CVPR.2018.00961
– volume: 131
  start-page: 531
  year: 2021
  ident: ref_53
  article-title: PV-RCNN++: Point-Voxel Feature Set Abstraction with Local Vector Representation for 3D Object Detection
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-022-01710-9
– ident: ref_11
  doi: 10.1109/CVPR42600.2020.01105
– ident: ref_10
  doi: 10.1109/CVPR46437.2021.00738
– ident: ref_35
  doi: 10.1007/978-3-030-58565-5
– ident: ref_15
  doi: 10.1109/IROS45743.2020.9341791
– volume: 17
  start-page: 6655
  year: 2021
  ident: ref_18
  article-title: Three-Attention Mechanisms for One-Stage 3-D Object Detection Based on LiDAR and Camera
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2020.3048719
– ident: ref_58
  doi: 10.1109/CVPR42600.2020.01101
– volume: 23
  start-page: 20707
  year: 2022
  ident: ref_45
  article-title: Dynamic Multitarget Detection Algorithm of Voxel Point Cloud Fusion Based on PointRCNN
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2022.3176390
– ident: ref_4
– ident: ref_56
– ident: ref_26
  doi: 10.1109/CVPR.2017.106
– ident: ref_50
  doi: 10.1109/ICCV48922.2021.00274
– ident: ref_29
  doi: 10.3390/rs14184471
– ident: ref_22
  doi: 10.1109/CVPR42600.2020.01164
– ident: ref_14
  doi: 10.1007/978-3-030-58583-9
– volume: 61
  start-page: 5518317
  year: 2023
  ident: ref_27
  article-title: X-Shaped Interactive Autoencoders with Cross-Modality Mutual Learning for Unsupervised Hyperspectral Image Super-Resolution
  publication-title: IEEE Trans. Geosci. Remote Sens.
– ident: ref_6
  doi: 10.1109/CVPR.2016.236
– ident: ref_49
  doi: 10.1109/ICCV48922.2021.00290
– volume: 61
  start-page: 5509417
  year: 2023
  ident: ref_24
  article-title: Enhanced Autoencoders with Attention-Embedded Degradation Learning for Unsupervised Hyperspectral Image Super-Resolution
  publication-title: IEEE Trans. Geosci. Remote Sens.
– ident: ref_16
  doi: 10.1109/ICRA.2019.8794195
– ident: ref_30
– ident: ref_61
  doi: 10.1109/CVPR.2019.00086
– ident: ref_55
  doi: 10.1007/978-3-030-58565-5
– ident: ref_31
  doi: 10.1109/CVPR.2018.00798
– ident: ref_17
  doi: 10.1109/CVPR46437.2021.01162
– ident: ref_23
  doi: 10.1109/CVPR.2016.350
– ident: ref_40
– ident: ref_7
  doi: 10.1109/CVPR42600.2020.01054
– ident: ref_9
  doi: 10.1109/CVPR.2019.01298
– volume: 229
  start-page: 107346
  year: 2021
  ident: ref_1
  article-title: Stereo Priori RCNN Based Car Detection on Point Level for Autonomous Driving
  publication-title: Knowl. -Based Syst.
  doi: 10.1016/j.knosys.2021.107346
– ident: ref_37
  doi: 10.1109/CVPR42600.2020.01151
– ident: ref_2
  doi: 10.1109/ICCVW54120.2021.00107
– ident: ref_12
  doi: 10.1609/aaai.v35i2.16207
– ident: ref_38
  doi: 10.1007/978-3-031-20050-2
– ident: ref_41
  doi: 10.1109/ICCV.2017.89
– ident: ref_42
  doi: 10.1007/978-3-030-58452-8_13
– ident: ref_3
  doi: 10.1109/CVPR42600.2020.01056
– ident: ref_21
  doi: 10.1109/CVPR.2012.6248074
– ident: ref_43
– ident: ref_8
  doi: 10.3390/s18103337
– ident: ref_36
  doi: 10.1007/978-3-031-19839-7_29
– ident: ref_32
  doi: 10.1109/CVPR.2018.00376
– ident: ref_46
  doi: 10.1109/CVPR46437.2021.00607
– ident: ref_59
  doi: 10.1109/WACV56688.2023.00421
– ident: ref_48
  doi: 10.1109/ICCV48922.2021.00294
– ident: ref_13
  doi: 10.1109/CVPR.2018.00102
SSID ssj0000331904
Score 2.373521
Snippet Facing the significant challenge of 3D object detection in complex weather conditions and road environments, existing algorithms based on single-frame point...
SourceID doaj
unpaywall
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 1621
SubjectTerms 3D object detection
Algorithms
Artificial intelligence
autonomous vehicle
Comparative analysis
data collection
Deformation
Feature extraction
Formability
Information processing
Machine learning
Methods
Misalignment
Modules
Neural networks
Object recognition
Object recognition (Computers)
Pattern recognition
point clouds
Sensors
Spatial data
Transformer
Transformers
Vehicles
Weather
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYQl4UDogXU5VG5AqnqISKJHWfDbel2hSrRHoCKm-XHRByi7Go3K8S_Z8bJbrcC0QunKLEVxeMZzzfx-BvGzmLpvFTGRdalGKD4QkY2iyHyTnoDeQrCU6B4_Utd3cmf99n9Wqkvyglr6YFbwZ0LjECshMxDYaRFPG-KBF9UohVLV6pwdC8eFGvBVFiDBapWLFs-UoFx_flsnij0jSpN_vFAgaj_5XK8zXqLemqeHk1Vrfmb8S7b6YAiH7Yf-IFtQP2R9bqa5Q9Pe2wyuomCp7ngQy5G_LelXyp8BE3Irqr5dSgOzS_RT3mO9wbbAkS1FfCbkEndEVNV_HaJX2HG8cKHi4ZOO0wWc_4HHkLq3D67G_-4_X4VdeUTIieFaCKrSHaFyWUWJ1aq2JngzjMUIIIiI2ibxZbJwHlbIqzzxkHsUkNBkyeWqQO2WU9q-MS4yspBYkrI81xIm6tCxpBDpgYGNQCDxj77thSpdh23OJW4qDTGGCR-_Vf8fXa66jttGTVe7XVJM7PqQSzY4QHqhu50Q_9PN_rsK82rJlvFz3GmO3KAgyLWKz3ExQnhqhRpnx0vp153RjzXghYoRGwJNn9ZNaP50Z6KqQHnQAv0GIpiSpTB2Upl3hjY4XsM7IhtpQiu2sTLY7bZzBZwguCosZ-DHTwDTVsKtA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9RAEB_q9aH6IH5itMqKBfEhNMluNhdB5M5rKUJPsa30bdmv2IcjOe9ySP97Z_aSVFH6FJIsJDvfszv7G4CDRFgnpLaxsRkmKK4UsckTHzsrnPZF5rmjRPF0Lk8uxOfL_HIH5v1ZGCqr7G1iMNSusbRGfshJWtB9ptnH5c-YukbR7mrfQkN3rRXchwAxdgd2M0LGGsHu9Gj-9duw6pJwFLlEbHFKOeb7h6t1KtFnyiz9yzMFAP9_zfQ92NvUS339Sy8Wf_ih4wdwvwsg2WTL8Yew4-tHsNf1Mr-6fgzN7CwOHug9mzA-Y18MLbWwmW9D1VXNTkPTaDZF_-UY3mt8F0JXs_DsLFRYd4BVC3bex7V-xfDCJpuWTkE0mzX77q9CSd0TuDg-Ov90EndtFWIrOG9jgyqHWZ0uRJ6kRsjE6uDm8zJ1GCxpTtsvpkrH1pkKwz2nrU9spimZcoQ-9RRGdVP7Z8BkXo1TXfmiKLgwhSxF4gufy7FGyUD6R_CuJ6myHeY4tb5YKMw9iPzqhvwRvBnGLrdIG_8dNSXODCMIHTs8aFY_VKdsiuZnhM-dL7Uw-Nsap2ZFhZZf2EqWEbwlvirSYfwdq7ujCDgpQsNSEzRaGMYKnkWw37Nedcq9VjeiGMHr4TWqJe216NojDxRHTyIp10QaHAwic8vEnt_-pRdwN8NwaltquQ-jdrXxLzEcas2rTsZ_A3TNCF8
  priority: 102
  providerName: ProQuest
Title DS-Trans: A 3D Object Detection Method Based on a Deformable Spatiotemporal Transformer for Autonomous Vehicles
URI https://www.proquest.com/docview/3053164312
https://www.proquest.com/docview/3153611480
https://doi.org/10.3390/rs16091621
https://doaj.org/article/3840b4e5de9a4b149a91dc4f8764cf69
UnpaywallVersion publishedVersion
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: KQ8
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: DOA
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: ABDBF
  dateStart: 20091201
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: ADMLS
  dateStart: 20091201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: BENPR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: 8FG
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-N9mHwwDeiMCoDkxAPGUnsOA1v6boyIVomuqLxFPkrmkSUTm0iNP56zk5SxkATT1FiR_LHne939vl3APs-U5pxoTypQnRQdMI8GfnG04ppYeLQUG0dxdmcHy_Zx7PobAdedXdhrpzfU3TH3603AUeTxu1d8T6PEG_3oL-cn6TfbNY4Pw49m2-p4R299sMflsYR8v-97N6B3bq8EJc_RFFcsSvTe3DYtagJJ_l-UFfyQP28RtZ4c5Pvw90WVpK0kYMHsGPKh7DbZjg_v3wEq8nCc3bpPUkJnZDP0m7AkImpXCxWSWYulTQZo1XTBN8FljlAKwtDFi7uuqWxKshph3bNmuCDpHVl70as6g35as5doN1jWE6PTg-PvTbZgqcYpZUnURHR1xMxi_xAMu4r4Yx_lAQaIZSg9lBG5sFIaZkjCNRCGV-FwrpY2nJSPYFeuSrNUyA8ykeByE0cx5TJmCfMN7GJ-EigvKCLOYC33cRkqmUitwkxigw9EjuE2e8hHMDrbd2Lhn_jn7XGdn63NSxntvuA85K1KpjZ_klmIm0SwSQ2W2DXFMvRHjCV82QAb6x0ZFazsTlKtBcUsFOWIytLcSlDcMtoOIC9ToCyVuU3GbXLGeK7AItfbotRWe0JjCgNzkFG0b5w64HiGOxvBe-Gjj37v2rP4XaIYKsJxNyDXrWuzQsES5Ucwq3R9MMQ-ulk9mmBz_HR_OTL0G09DFtN-gVWYRMi
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELem7aHwgMaXCBtgxBDiIVoSO0mDNKGWburYWhDrpr0Zf4U9RElpU0395_jbODtOBgLtbU9VGkuJ7y73u599vkNoL6BS0YRLX8gICIrKqC_iQPtKUsV1GmmiDFGcTJPxOf18GV9uoF_tWRiTVtn6ROuoVSXNGvk-MdYC8BlGH-c_fdM1yuyuti00uGutoA5siTF3sONEr6-Bwi0Pjkeg77dRdHQ4-zT2XZcBX1JCal-ABQLJ4SmNg1DQJJDcol6chQpiB07MboTIw75UIofoR3GpAxlxwy1UU4wJIGCLEpoB-dsaHk6_futWeQICJh7Qpi4qIVmwv1iGCWB0EoV_IaFtGPAvLNxHvVU55-trXhR_4N7RNnrgAlY8aCzsIdrQ5SPUc73Tr9aPUTU68y3ifcADTEb4izBLO3ika5vlVeKJbVKNh4CXCsM1h3s2VBaFxmc2o9sVyCrwrI2j9QLDDx6sanPqolot8YW-sil8T9D5nQj4Kdosq1I_QziJ837Ic52mKaEiTTIa6FTHSZ-DJQJ59dD7VqRMuhrnptVGwYDrGPGzG_F76E03dt5U9vjvqKHRTDfCVOO2f1SLH8x93MzMT1AdK51xKuC1OUxN0hyQhso8yTz0zuiVGZ8BryO5O_oAkzLVt9gAnCSEzZREHtptVc-cM1myG9P30OvuNrgBs7fDSw06YASQKzHcFmSw15nMLRN7fvuTXqHeeDY5ZafH05MddC-CUK5J89xFm_VipV9AKFaLl87eMfp-15_Yb8pJQ1U
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIlE4IJ4ipYARRYhDtEnsJBskhLaEpaW0ILVFvRm_0h6iZNnNqtq_xq9jxnkUBOqtp9VuLG0883m-GXs8Q8h2wLXhidS-0hEEKCbjvooD6xvNjbRpZJnBQPHgMNk94Z9P49M18qu_C4Nplb1NdIba1Br3yEcM0QL0GUajokuL-JZP389--thBCk9a-3YaLUT27eoCwrfFu70cdP0qiqYfjz_s-l2HAV9zxhpfAfogwJEpj4NQ8STQ0jFenIUG_AbJ8CRCFeFYG1WA52OktoGOJMYVpi3EBOb_RopV3PGW-vTTsL8TMAB3wNuKqIxlwWi-CBNg5yQK_-JA1yrgX0K4TTaW1UyuLmRZ_sF407vkTueq0kmLrXtkzVb3yUbXNf189YDU-ZHvuO4tnVCW068KN3VobhuX31XRA9eemu4AUxoK3yU8c06yKi09crncXWmskh73HrSdU_igk2WD9y3q5YJ-t-cuee8hObkW8T4i61Vd2ceEJnExDmVh0zRlXKVJxgOb2jgZS8AghK0eedOLVOiuujk22SgFRDkofnEpfo-8HMbO2poe_x21g5oZRmAdbvdDPT8T3bIWOD_FbWxsJrmC15YwNc0L4BiuiyTzyGvUq0BrAa-jZXfpASaFdbfEBMwjOMycRR7Z6lUvOjOyEJeg98iL4TEYADzVkZUFHQgGnJVgVAsy2B4gc8XENq_-p-fkJiws8WXvcP8JuRWBD9fmd26R9Wa-tE_BB2vUMwd2Sn5c9-r6DeJxQO8
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9RAEB_K9aH6YOsXnrayakF8SJtkN5uLb2nPUoRWoT2pT8t-hYIhV-4SpP3rncnHWasUn47cbmBnd2bnN9nZ3wDshsI6IbUNjI0xQHGZCEwS-sBZ4bRPY88dBYonp_J4Jj5fJBdr8Ha4C3Pr_J5jOL6_WEYSXZqku-LrMkG8PYL12enX_DtVjQvTOKB6Sx3v6J0X_vA0LSH_39vuQ9hoqit9_VOX5S2_crQJh8OIunSSH3tNbfbszR2yxvuHvAWPeljJ8k4PHsOar57ARl_h_PL6KcynZ0Hrlz6ynPEp-2LoAwyb-rrNxarYSVtKmh2gV3MMnzW2tYDWlJ6dtXnXPY1Vyc4HtOsXDH9Y3tR0N2LeLNk3f9km2j2D2dGn88PjoC-2EFjBeR0YNESM9XQqkjAyQoZWt84_ySKHEEpzOpQxRTSxzhQIAp22PrSxphDLESfVcxhV88q_ACaTYhLpwqdpyoVJZSZCn_pETjTqC4aYY_gwLIyyPRM5FcQoFUYkNIXq9xSO4d2q71XHv_HPXge0vqsexJnd_oHronoTVCSfET5xPtPC4LA1imZFgf5A2EJmY3hP2qHIsnE4VvcXFFAo4shSOW5lCG4Fj8ewPSiQ6k1-qThtZ4jvImx-s2pGY6UTGF15XAPF0b9IikBxDnZXinePYC__r9sreBAj2OoSMbdhVC8av4NgqTave2v5BY_kDhk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DS-Trans%3A+A+3D+Object+Detection+Method+Based+on+a+Deformable+Spatiotemporal+Transformer+for+Autonomous+Vehicles&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Zhu%2C+Yuan&rft.au=Xu%2C+Ruidong&rft.au=Tao%2C+Chongben&rft.au=An%2C+Hao&rft.date=2024-05-01&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=16&rft.issue=9&rft.spage=1621&rft_id=info:doi/10.3390%2Frs16091621&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_rs16091621
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon