DS-Trans: A 3D Object Detection Method Based on a Deformable Spatiotemporal Transformer for Autonomous Vehicles
Facing the significant challenge of 3D object detection in complex weather conditions and road environments, existing algorithms based on single-frame point cloud data struggle to achieve desirable results. These methods typically focus on spatial relationships within a single frame, overlooking the...
        Saved in:
      
    
          | Published in | Remote sensing (Basel, Switzerland) Vol. 16; no. 9; p. 1621 | 
|---|---|
| Main Authors | , , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Basel
          MDPI AG
    
        01.05.2024
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2072-4292 2072-4292  | 
| DOI | 10.3390/rs16091621 | 
Cover
| Abstract | Facing the significant challenge of 3D object detection in complex weather conditions and road environments, existing algorithms based on single-frame point cloud data struggle to achieve desirable results. These methods typically focus on spatial relationships within a single frame, overlooking the semantic correlations and spatiotemporal continuity between consecutive frames. This leads to discontinuities and abrupt changes in the detection outcomes. To address this issue, this paper proposes a multi-frame 3D object detection algorithm based on a deformable spatiotemporal Transformer. Specifically, a deformable cross-scale Transformer module is devised, incorporating a multi-scale offset mechanism that non-uniformly samples features at different scales, enhancing the spatial information aggregation capability of the output features. Simultaneously, to address the issue of feature misalignment during multi-frame feature fusion, a deformable cross-frame Transformer module is proposed. This module incorporates independently learnable offset parameters for different frame features, enabling the model to adaptively correlate dynamic features across multiple frames and improve the temporal information utilization of the model. A proposal-aware sampling algorithm is introduced to significantly increase the foreground point recall, further optimizing the efficiency of feature extraction. The obtained multi-scale and multi-frame voxel features are subjected to an adaptive fusion weight extraction module, referred to as the proposed mixed voxel set extraction module. This module allows the model to adaptively obtain mixed features containing both spatial and temporal information. The effectiveness of the proposed algorithm is validated on the KITTI, nuScenes, and self-collected urban datasets. The proposed algorithm achieves an average precision improvement of 2.1% over the latest multi-frame-based algorithms. | 
    
|---|---|
| AbstractList | Facing the significant challenge of 3D object detection in complex weather conditions and road environments, existing algorithms based on single-frame point cloud data struggle to achieve desirable results. These methods typically focus on spatial relationships within a single frame, overlooking the semantic correlations and spatiotemporal continuity between consecutive frames. This leads to discontinuities and abrupt changes in the detection outcomes. To address this issue, this paper proposes a multi-frame 3D object detection algorithm based on a deformable spatiotemporal Transformer. Specifically, a deformable cross-scale Transformer module is devised, incorporating a multi-scale offset mechanism that non-uniformly samples features at different scales, enhancing the spatial information aggregation capability of the output features. Simultaneously, to address the issue of feature misalignment during multi-frame feature fusion, a deformable cross-frame Transformer module is proposed. This module incorporates independently learnable offset parameters for different frame features, enabling the model to adaptively correlate dynamic features across multiple frames and improve the temporal information utilization of the model. A proposal-aware sampling algorithm is introduced to significantly increase the foreground point recall, further optimizing the efficiency of feature extraction. The obtained multi-scale and multi-frame voxel features are subjected to an adaptive fusion weight extraction module, referred to as the proposed mixed voxel set extraction module. This module allows the model to adaptively obtain mixed features containing both spatial and temporal information. The effectiveness of the proposed algorithm is validated on the KITTI, nuScenes, and self-collected urban datasets. The proposed algorithm achieves an average precision improvement of 2.1% over the latest multi-frame-based algorithms. | 
    
| Audience | Academic | 
    
| Author | Zhu, Yuan An, Hao Lu, Ke Sun, Zhipeng Wang, Huaide Xu, Ruidong Tao, Chongben  | 
    
| Author_xml | – sequence: 1 givenname: Yuan surname: Zhu fullname: Zhu, Yuan – sequence: 2 givenname: Ruidong orcidid: 0000-0002-2991-1874 surname: Xu fullname: Xu, Ruidong – sequence: 3 givenname: Chongben surname: Tao fullname: Tao, Chongben – sequence: 4 givenname: Hao surname: An fullname: An, Hao – sequence: 5 givenname: Huaide surname: Wang fullname: Wang, Huaide – sequence: 6 givenname: Zhipeng surname: Sun fullname: Sun, Zhipeng – sequence: 7 givenname: Ke orcidid: 0000-0001-9166-4790 surname: Lu fullname: Lu, Ke  | 
    
| BookMark | eNp9kstO3TAQhqOKSqWUDU9gqZuqVahvceLuDpzSIlGxgHZrTRwHfJTYqe2o4u3rEFQqhLAXY898889o7LfFnvPOFMURwceMSfw5RCKwJIKSV8U-xTUtOZV077_zm-Iwxh3OizEiMd8v_PaqvA7g4he0QWyLLtud0QltTcrGeod-mHTrO3QC0XQo3yHHeh9GaAeDribIUDLj5AMM6F5oCZqAskGbOXnnRz9H9MvcWj2Y-K543cMQzeGDPSh-nn29Pv1eXlx-Oz_dXJSaM5bKVrCGYwk1rzBpucAaSEMoryTpJJXAMGG07Umju7YXlehAG6wpYMJlR7BkB8X5qtt52Kkp2BHCnfJg1b3DhxsFIS0tqaVSy03VGQm8zQKQi2jeN7XguheL1qdVa3YT3P2BYfgnSLBaRq8eR5_pDys9Bf97NjGp0UZthgGcyZNQjFRMEMIbnNH3T9Cdn4PLc1EMV4wIzgjN1PFK3UDu1rrepwA6786MVucv0Nvs39SSVXXF2ZLwcU3QwccYTP9yu_gJrG1aXtXlKnZ4LuUvoIy9zQ | 
    
| CitedBy_id | crossref_primary_10_1016_j_aej_2025_02_063 crossref_primary_10_1016_j_jiixd_2025_02_003  | 
    
| Cites_doi | 10.1109/TCSVT.2021.3082763 10.1109/LGRS.2023.3330957 10.1109/CVPR46437.2021.00845 10.3390/s23010233 10.1109/CVPR46437.2021.00190 10.1109/CVPR.2018.00472 10.1016/j.neucom.2019.09.086 10.1109/TCSVT.2021.3102025 10.1109/CVPR42600.2020.00466 10.1109/CVPR.2018.00961 10.1007/s11263-022-01710-9 10.1109/CVPR42600.2020.01105 10.1109/CVPR46437.2021.00738 10.1007/978-3-030-58565-5 10.1109/IROS45743.2020.9341791 10.1109/TII.2020.3048719 10.1109/CVPR42600.2020.01101 10.1109/TITS.2022.3176390 10.1109/CVPR.2017.106 10.1109/ICCV48922.2021.00274 10.3390/rs14184471 10.1109/CVPR42600.2020.01164 10.1007/978-3-030-58583-9 10.1109/CVPR.2016.236 10.1109/ICCV48922.2021.00290 10.1109/ICRA.2019.8794195 10.1109/CVPR.2019.00086 10.1109/CVPR.2018.00798 10.1109/CVPR46437.2021.01162 10.1109/CVPR.2016.350 10.1109/CVPR42600.2020.01054 10.1109/CVPR.2019.01298 10.1016/j.knosys.2021.107346 10.1109/CVPR42600.2020.01151 10.1109/ICCVW54120.2021.00107 10.1609/aaai.v35i2.16207 10.1007/978-3-031-20050-2 10.1109/ICCV.2017.89 10.1007/978-3-030-58452-8_13 10.1109/CVPR42600.2020.01056 10.1109/CVPR.2012.6248074 10.3390/s18103337 10.1007/978-3-031-19839-7_29 10.1109/CVPR.2018.00376 10.1109/CVPR46437.2021.00607 10.1109/WACV56688.2023.00421 10.1109/ICCV48922.2021.00294 10.1109/CVPR.2018.00102  | 
    
| ContentType | Journal Article | 
    
| Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7S9 L.6 ADTOC UNPAY DOA  | 
    
| DOI | 10.3390/rs16091621 | 
    
| DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection AGRICOLA AGRICOLA - Academic Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals  | 
    
| DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts AGRICOLA AGRICOLA - Academic  | 
    
| DatabaseTitleList | Publicly Available Content Database CrossRef AGRICOLA  | 
    
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Geography | 
    
| EISSN | 2072-4292 | 
    
| ExternalDocumentID | oai_doaj_org_article_3840b4e5de9a4b149a91dc4f8764cf69 10.3390/rs16091621 A793575432 10_3390_rs16091621  | 
    
| GeographicLocations | China | 
    
| GeographicLocations_xml | – name: China | 
    
| GroupedDBID | 29P 2WC 2XV 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PQGLB PROAC PTHSS TR2 TUS 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQQKQ PQUKI PRINS 7S9 L.6 PUEGO ADTOC C1A IPNFZ RIG UNPAY  | 
    
| ID | FETCH-LOGICAL-c433t-b638409a74501b460ca18124591d929a30132bf18cdbf656dace0c2a0149d1093 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 2072-4292 | 
    
| IngestDate | Fri Oct 03 12:51:02 EDT 2025 Sun Sep 07 10:49:29 EDT 2025 Thu Sep 04 20:15:35 EDT 2025 Fri Jul 25 09:39:19 EDT 2025 Mon Oct 20 16:59:50 EDT 2025 Thu Oct 16 04:41:13 EDT 2025 Thu Apr 24 22:57:57 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 9 | 
    
| Language | English | 
    
| License | cc-by | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c433t-b638409a74501b460ca18124591d929a30132bf18cdbf656dace0c2a0149d1093 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| ORCID | 0000-0001-9166-4790 0000-0002-2991-1874  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.3390/rs16091621 | 
    
| PQID | 3053164312 | 
    
| PQPubID | 2032338 | 
    
| ParticipantIDs | doaj_primary_oai_doaj_org_article_3840b4e5de9a4b149a91dc4f8764cf69 unpaywall_primary_10_3390_rs16091621 proquest_miscellaneous_3153611480 proquest_journals_3053164312 gale_infotracacademiconefile_A793575432 crossref_primary_10_3390_rs16091621 crossref_citationtrail_10_3390_rs16091621  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2024-05-01 | 
    
| PublicationDateYYYYMMDD | 2024-05-01 | 
    
| PublicationDate_xml | – month: 05 year: 2024 text: 2024-05-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Basel | 
    
| PublicationPlace_xml | – name: Basel | 
    
| PublicationTitle | Remote sensing (Basel, Switzerland) | 
    
| PublicationYear | 2024 | 
    
| Publisher | MDPI AG | 
    
| Publisher_xml | – name: MDPI AG | 
    
| References | ref_50 Shi (ref_53) 2021; 131 Gao (ref_24) 2023; 61 ref_14 ref_58 ref_13 ref_57 ref_12 ref_56 ref_11 ref_55 ref_10 Ye (ref_54) 2020; 379 ref_51 Tao (ref_1) 2021; 229 ref_19 ref_17 ref_16 ref_15 ref_59 Zhao (ref_47) 2021; 31 Li (ref_25) 2023; 20 ref_61 ref_60 Luo (ref_45) 2022; 23 ref_23 ref_22 ref_21 Li (ref_27) 2023; 61 Shi (ref_52) 2021; 43 ref_29 ref_28 ref_26 Yuan (ref_34) 2022; 32 ref_36 ref_35 ref_33 ref_32 ref_31 ref_30 ref_39 ref_38 ref_37 ref_46 ref_44 ref_43 ref_42 Wen (ref_18) 2021; 17 ref_41 ref_40 ref_3 ref_2 ref_49 ref_48 ref_9 ref_8 Li (ref_20) 2022; 112 ref_5 ref_4 ref_7 ref_6  | 
    
| References_xml | – volume: 32 start-page: 2068 year: 2022 ident: ref_34 article-title: Temporal-Channel Transformer for 3D Lidar-Based Video Object Detection for Autonomous Driving publication-title: IEEE Trans. Circuits Syst. Video Technol. doi: 10.1109/TCSVT.2021.3082763 – volume: 20 start-page: 1 year: 2023 ident: ref_25 article-title: Model-Guided Coarse-to-Fine Fusion Network for Unsupervised Hyperspectral Image Super-Resolution publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2023.3330957 – ident: ref_60 doi: 10.1109/CVPR46437.2021.00845 – ident: ref_5 – ident: ref_19 doi: 10.3390/s23010233 – ident: ref_33 doi: 10.1109/CVPR46437.2021.00190 – ident: ref_28 doi: 10.1109/CVPR.2018.00472 – ident: ref_51 – volume: 43 start-page: 2647 year: 2021 ident: ref_52 article-title: From Points to Parts: 3D Object Detection from Point Cloud with Part-Aware and Part-Aggregation Network publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 112 start-page: 102926 year: 2022 ident: ref_20 article-title: Deep Learning in Multimodal Remote Sensing Data Fusion: A Comprehensive Review publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 379 start-page: 53 year: 2020 ident: ref_54 article-title: SARPNET: Shape Attention Regional Proposal Network for liDAR-Based 3D Object Detection publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.09.086 – ident: ref_39 – volume: 31 start-page: 4735 year: 2021 ident: ref_47 article-title: Transformer3D-Det: Improving 3D Object Detection by Vote Refinement publication-title: IEEE Trans. Circuits Syst. Video Technol. doi: 10.1109/TCSVT.2021.3102025 – ident: ref_57 doi: 10.1109/CVPR42600.2020.00466 – ident: ref_44 doi: 10.1109/CVPR.2018.00961 – volume: 131 start-page: 531 year: 2021 ident: ref_53 article-title: PV-RCNN++: Point-Voxel Feature Set Abstraction with Local Vector Representation for 3D Object Detection publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-022-01710-9 – ident: ref_11 doi: 10.1109/CVPR42600.2020.01105 – ident: ref_10 doi: 10.1109/CVPR46437.2021.00738 – ident: ref_35 doi: 10.1007/978-3-030-58565-5 – ident: ref_15 doi: 10.1109/IROS45743.2020.9341791 – volume: 17 start-page: 6655 year: 2021 ident: ref_18 article-title: Three-Attention Mechanisms for One-Stage 3-D Object Detection Based on LiDAR and Camera publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2020.3048719 – ident: ref_58 doi: 10.1109/CVPR42600.2020.01101 – volume: 23 start-page: 20707 year: 2022 ident: ref_45 article-title: Dynamic Multitarget Detection Algorithm of Voxel Point Cloud Fusion Based on PointRCNN publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2022.3176390 – ident: ref_4 – ident: ref_56 – ident: ref_26 doi: 10.1109/CVPR.2017.106 – ident: ref_50 doi: 10.1109/ICCV48922.2021.00274 – ident: ref_29 doi: 10.3390/rs14184471 – ident: ref_22 doi: 10.1109/CVPR42600.2020.01164 – ident: ref_14 doi: 10.1007/978-3-030-58583-9 – volume: 61 start-page: 5518317 year: 2023 ident: ref_27 article-title: X-Shaped Interactive Autoencoders with Cross-Modality Mutual Learning for Unsupervised Hyperspectral Image Super-Resolution publication-title: IEEE Trans. Geosci. Remote Sens. – ident: ref_6 doi: 10.1109/CVPR.2016.236 – ident: ref_49 doi: 10.1109/ICCV48922.2021.00290 – volume: 61 start-page: 5509417 year: 2023 ident: ref_24 article-title: Enhanced Autoencoders with Attention-Embedded Degradation Learning for Unsupervised Hyperspectral Image Super-Resolution publication-title: IEEE Trans. Geosci. Remote Sens. – ident: ref_16 doi: 10.1109/ICRA.2019.8794195 – ident: ref_30 – ident: ref_61 doi: 10.1109/CVPR.2019.00086 – ident: ref_55 doi: 10.1007/978-3-030-58565-5 – ident: ref_31 doi: 10.1109/CVPR.2018.00798 – ident: ref_17 doi: 10.1109/CVPR46437.2021.01162 – ident: ref_23 doi: 10.1109/CVPR.2016.350 – ident: ref_40 – ident: ref_7 doi: 10.1109/CVPR42600.2020.01054 – ident: ref_9 doi: 10.1109/CVPR.2019.01298 – volume: 229 start-page: 107346 year: 2021 ident: ref_1 article-title: Stereo Priori RCNN Based Car Detection on Point Level for Autonomous Driving publication-title: Knowl. -Based Syst. doi: 10.1016/j.knosys.2021.107346 – ident: ref_37 doi: 10.1109/CVPR42600.2020.01151 – ident: ref_2 doi: 10.1109/ICCVW54120.2021.00107 – ident: ref_12 doi: 10.1609/aaai.v35i2.16207 – ident: ref_38 doi: 10.1007/978-3-031-20050-2 – ident: ref_41 doi: 10.1109/ICCV.2017.89 – ident: ref_42 doi: 10.1007/978-3-030-58452-8_13 – ident: ref_3 doi: 10.1109/CVPR42600.2020.01056 – ident: ref_21 doi: 10.1109/CVPR.2012.6248074 – ident: ref_43 – ident: ref_8 doi: 10.3390/s18103337 – ident: ref_36 doi: 10.1007/978-3-031-19839-7_29 – ident: ref_32 doi: 10.1109/CVPR.2018.00376 – ident: ref_46 doi: 10.1109/CVPR46437.2021.00607 – ident: ref_59 doi: 10.1109/WACV56688.2023.00421 – ident: ref_48 doi: 10.1109/ICCV48922.2021.00294 – ident: ref_13 doi: 10.1109/CVPR.2018.00102  | 
    
| SSID | ssj0000331904 | 
    
| Score | 2.373521 | 
    
| Snippet | Facing the significant challenge of 3D object detection in complex weather conditions and road environments, existing algorithms based on single-frame point... | 
    
| SourceID | doaj unpaywall proquest gale crossref  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database  | 
    
| StartPage | 1621 | 
    
| SubjectTerms | 3D object detection Algorithms Artificial intelligence autonomous vehicle Comparative analysis data collection Deformation Feature extraction Formability Information processing Machine learning Methods Misalignment Modules Neural networks Object recognition Object recognition (Computers) Pattern recognition point clouds Sensors Spatial data Transformer Transformers Vehicles Weather  | 
    
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYQl4UDogXU5VG5AqnqISKJHWfDbel2hSrRHoCKm-XHRByi7Go3K8S_Z8bJbrcC0QunKLEVxeMZzzfx-BvGzmLpvFTGRdalGKD4QkY2iyHyTnoDeQrCU6B4_Utd3cmf99n9Wqkvyglr6YFbwZ0LjECshMxDYaRFPG-KBF9UohVLV6pwdC8eFGvBVFiDBapWLFs-UoFx_flsnij0jSpN_vFAgaj_5XK8zXqLemqeHk1Vrfmb8S7b6YAiH7Yf-IFtQP2R9bqa5Q9Pe2wyuomCp7ngQy5G_LelXyp8BE3Irqr5dSgOzS_RT3mO9wbbAkS1FfCbkEndEVNV_HaJX2HG8cKHi4ZOO0wWc_4HHkLq3D67G_-4_X4VdeUTIieFaCKrSHaFyWUWJ1aq2JngzjMUIIIiI2ibxZbJwHlbIqzzxkHsUkNBkyeWqQO2WU9q-MS4yspBYkrI81xIm6tCxpBDpgYGNQCDxj77thSpdh23OJW4qDTGGCR-_Vf8fXa66jttGTVe7XVJM7PqQSzY4QHqhu50Q_9PN_rsK82rJlvFz3GmO3KAgyLWKz3ExQnhqhRpnx0vp153RjzXghYoRGwJNn9ZNaP50Z6KqQHnQAv0GIpiSpTB2Upl3hjY4XsM7IhtpQiu2sTLY7bZzBZwguCosZ-DHTwDTVsKtA priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9RAEB_q9aH6IH5itMqKBfEhNMluNhdB5M5rKUJPsa30bdmv2IcjOe9ySP97Z_aSVFH6FJIsJDvfszv7G4CDRFgnpLaxsRkmKK4UsckTHzsrnPZF5rmjRPF0Lk8uxOfL_HIH5v1ZGCqr7G1iMNSusbRGfshJWtB9ptnH5c-YukbR7mrfQkN3rRXchwAxdgd2M0LGGsHu9Gj-9duw6pJwFLlEbHFKOeb7h6t1KtFnyiz9yzMFAP9_zfQ92NvUS339Sy8Wf_ih4wdwvwsg2WTL8Yew4-tHsNf1Mr-6fgzN7CwOHug9mzA-Y18MLbWwmW9D1VXNTkPTaDZF_-UY3mt8F0JXs_DsLFRYd4BVC3bex7V-xfDCJpuWTkE0mzX77q9CSd0TuDg-Ov90EndtFWIrOG9jgyqHWZ0uRJ6kRsjE6uDm8zJ1GCxpTtsvpkrH1pkKwz2nrU9spimZcoQ-9RRGdVP7Z8BkXo1TXfmiKLgwhSxF4gufy7FGyUD6R_CuJ6myHeY4tb5YKMw9iPzqhvwRvBnGLrdIG_8dNSXODCMIHTs8aFY_VKdsiuZnhM-dL7Uw-Nsap2ZFhZZf2EqWEbwlvirSYfwdq7ujCDgpQsNSEzRaGMYKnkWw37Nedcq9VjeiGMHr4TWqJe216NojDxRHTyIp10QaHAwic8vEnt_-pRdwN8NwaltquQ-jdrXxLzEcas2rTsZ_A3TNCF8 priority: 102 providerName: ProQuest  | 
    
| Title | DS-Trans: A 3D Object Detection Method Based on a Deformable Spatiotemporal Transformer for Autonomous Vehicles | 
    
| URI | https://www.proquest.com/docview/3053164312 https://www.proquest.com/docview/3153611480 https://doi.org/10.3390/rs16091621 https://doaj.org/article/3840b4e5de9a4b149a91dc4f8764cf69  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 16 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: KQ8 dateStart: 20090101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: DOA dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2072-4292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: ABDBF dateStart: 20091201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: ADMLS dateStart: 20091201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: M~E dateStart: 20090101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2072-4292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: BENPR dateStart: 20090301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: 8FG dateStart: 20090301 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-N9mHwwDeiMCoDkxAPGUnsOA1v6boyIVomuqLxFPkrmkSUTm0iNP56zk5SxkATT1FiR_LHne939vl3APs-U5pxoTypQnRQdMI8GfnG04ppYeLQUG0dxdmcHy_Zx7PobAdedXdhrpzfU3TH3603AUeTxu1d8T6PEG_3oL-cn6TfbNY4Pw49m2-p4R299sMflsYR8v-97N6B3bq8EJc_RFFcsSvTe3DYtagJJ_l-UFfyQP28RtZ4c5Pvw90WVpK0kYMHsGPKh7DbZjg_v3wEq8nCc3bpPUkJnZDP0m7AkImpXCxWSWYulTQZo1XTBN8FljlAKwtDFi7uuqWxKshph3bNmuCDpHVl70as6g35as5doN1jWE6PTg-PvTbZgqcYpZUnURHR1xMxi_xAMu4r4Yx_lAQaIZSg9lBG5sFIaZkjCNRCGV-FwrpY2nJSPYFeuSrNUyA8ykeByE0cx5TJmCfMN7GJ-EigvKCLOYC33cRkqmUitwkxigw9EjuE2e8hHMDrbd2Lhn_jn7XGdn63NSxntvuA85K1KpjZ_klmIm0SwSQ2W2DXFMvRHjCV82QAb6x0ZFazsTlKtBcUsFOWIytLcSlDcMtoOIC9ToCyVuU3GbXLGeK7AItfbotRWe0JjCgNzkFG0b5w64HiGOxvBe-Gjj37v2rP4XaIYKsJxNyDXrWuzQsES5Ucwq3R9MMQ-ulk9mmBz_HR_OTL0G09DFtN-gVWYRMi | 
    
| linkProvider | Unpaywall | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELem7aHwgMaXCBtgxBDiIVoSO0mDNKGWburYWhDrpr0Zf4U9RElpU0395_jbODtOBgLtbU9VGkuJ7y73u599vkNoL6BS0YRLX8gICIrKqC_iQPtKUsV1GmmiDFGcTJPxOf18GV9uoF_tWRiTVtn6ROuoVSXNGvk-MdYC8BlGH-c_fdM1yuyuti00uGutoA5siTF3sONEr6-Bwi0Pjkeg77dRdHQ4-zT2XZcBX1JCal-ABQLJ4SmNg1DQJJDcol6chQpiB07MboTIw75UIofoR3GpAxlxwy1UU4wJIGCLEpoB-dsaHk6_futWeQICJh7Qpi4qIVmwv1iGCWB0EoV_IaFtGPAvLNxHvVU55-trXhR_4N7RNnrgAlY8aCzsIdrQ5SPUc73Tr9aPUTU68y3ifcADTEb4izBLO3ika5vlVeKJbVKNh4CXCsM1h3s2VBaFxmc2o9sVyCrwrI2j9QLDDx6sanPqolot8YW-sil8T9D5nQj4Kdosq1I_QziJ837Ic52mKaEiTTIa6FTHSZ-DJQJ59dD7VqRMuhrnptVGwYDrGPGzG_F76E03dt5U9vjvqKHRTDfCVOO2f1SLH8x93MzMT1AdK51xKuC1OUxN0hyQhso8yTz0zuiVGZ8BryO5O_oAkzLVt9gAnCSEzZREHtptVc-cM1myG9P30OvuNrgBs7fDSw06YASQKzHcFmSw15nMLRN7fvuTXqHeeDY5ZafH05MddC-CUK5J89xFm_VipV9AKFaLl87eMfp-15_Yb8pJQ1U | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIlE4IJ4ipYARRYhDtEnsJBskhLaEpaW0ILVFvRm_0h6iZNnNqtq_xq9jxnkUBOqtp9VuLG0883m-GXs8Q8h2wLXhidS-0hEEKCbjvooD6xvNjbRpZJnBQPHgMNk94Z9P49M18qu_C4Nplb1NdIba1Br3yEcM0QL0GUajokuL-JZP389--thBCk9a-3YaLUT27eoCwrfFu70cdP0qiqYfjz_s-l2HAV9zxhpfAfogwJEpj4NQ8STQ0jFenIUG_AbJ8CRCFeFYG1WA52OktoGOJMYVpi3EBOb_RopV3PGW-vTTsL8TMAB3wNuKqIxlwWi-CBNg5yQK_-JA1yrgX0K4TTaW1UyuLmRZ_sF407vkTueq0kmLrXtkzVb3yUbXNf189YDU-ZHvuO4tnVCW068KN3VobhuX31XRA9eemu4AUxoK3yU8c06yKi09crncXWmskh73HrSdU_igk2WD9y3q5YJ-t-cuee8hObkW8T4i61Vd2ceEJnExDmVh0zRlXKVJxgOb2jgZS8AghK0eedOLVOiuujk22SgFRDkofnEpfo-8HMbO2poe_x21g5oZRmAdbvdDPT8T3bIWOD_FbWxsJrmC15YwNc0L4BiuiyTzyGvUq0BrAa-jZXfpASaFdbfEBMwjOMycRR7Z6lUvOjOyEJeg98iL4TEYADzVkZUFHQgGnJVgVAsy2B4gc8XENq_-p-fkJiws8WXvcP8JuRWBD9fmd26R9Wa-tE_BB2vUMwd2Sn5c9-r6DeJxQO8 | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9RAEB_K9aH6YOsXnrayakF8SJtkN5uLb2nPUoRWoT2pT8t-hYIhV-4SpP3rncnHWasUn47cbmBnd2bnN9nZ3wDshsI6IbUNjI0xQHGZCEwS-sBZ4bRPY88dBYonp_J4Jj5fJBdr8Ha4C3Pr_J5jOL6_WEYSXZqku-LrMkG8PYL12enX_DtVjQvTOKB6Sx3v6J0X_vA0LSH_39vuQ9hoqit9_VOX5S2_crQJh8OIunSSH3tNbfbszR2yxvuHvAWPeljJ8k4PHsOar57ARl_h_PL6KcynZ0Hrlz6ynPEp-2LoAwyb-rrNxarYSVtKmh2gV3MMnzW2tYDWlJ6dtXnXPY1Vyc4HtOsXDH9Y3tR0N2LeLNk3f9km2j2D2dGn88PjoC-2EFjBeR0YNESM9XQqkjAyQoZWt84_ySKHEEpzOpQxRTSxzhQIAp22PrSxphDLESfVcxhV88q_ACaTYhLpwqdpyoVJZSZCn_pETjTqC4aYY_gwLIyyPRM5FcQoFUYkNIXq9xSO4d2q71XHv_HPXge0vqsexJnd_oHronoTVCSfET5xPtPC4LA1imZFgf5A2EJmY3hP2qHIsnE4VvcXFFAo4shSOW5lCG4Fj8ewPSiQ6k1-qThtZ4jvImx-s2pGY6UTGF15XAPF0b9IikBxDnZXinePYC__r9sreBAj2OoSMbdhVC8av4NgqTave2v5BY_kDhk | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DS-Trans%3A+A+3D+Object+Detection+Method+Based+on+a+Deformable+Spatiotemporal+Transformer+for+Autonomous+Vehicles&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Zhu%2C+Yuan&rft.au=Xu%2C+Ruidong&rft.au=Tao%2C+Chongben&rft.au=An%2C+Hao&rft.date=2024-05-01&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=16&rft.issue=9&rft.spage=1621&rft_id=info:doi/10.3390%2Frs16091621&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_rs16091621 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |