Toward Practical Smile Detection

Machine learning approaches have produced some of the highest reported performances for facial expression recognition. However, to date, nearly all automatic facial expression recognition research has focused on optimizing performance on a few databases that were collected under controlled lighting...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on pattern analysis and machine intelligence Vol. 31; no. 11; pp. 2106 - 2111
Main Authors Whitehill, J., Littlewort, G., Fasel, I., Bartlett, M., Movellan, J.
Format Journal Article
LanguageEnglish
Published Los Alamitos, CA IEEE 01.11.2009
IEEE Computer Society
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0162-8828
1939-3539
1939-3539
DOI10.1109/TPAMI.2009.42

Cover

Abstract Machine learning approaches have produced some of the highest reported performances for facial expression recognition. However, to date, nearly all automatic facial expression recognition research has focused on optimizing performance on a few databases that were collected under controlled lighting conditions on a relatively small number of subjects. This paper explores whether current machine learning methods can be used to develop an expression recognition system that operates reliably in more realistic conditions. We explore the necessary characteristics of the training data set, image registration, feature representation, and machine learning algorithms. A new database, GENKI, is presented which contains pictures, photographed by the subjects themselves, from thousands of different people in many different real-world imaging conditions. Results suggest that human-level expression recognition accuracy in real-life illumination conditions is achievable with machine learning technology. However, the data sets currently used in the automatic expression recognition literature to evaluate progress may be overly constrained and could potentially lead research into locally optimal algorithmic solutions.
AbstractList Machine learning approaches have produced some of the highest reported performances for facial expression recognition. However, to date, nearly all automatic facial expression recognition research has focused on optimizing performance on a few databases that were collected under controlled lighting conditions on a relatively small number of subjects. This paper explores whether current machine learning methods can be used to develop an expression recognition system that operates reliably in more realistic conditions. We explore the necessary characteristics of the training data set, image registration, feature representation, and machine learning algorithms. A new database, GENKI, is presented which contains pictures, photographed by the subjects themselves, from thousands of different people in many different real-world imaging conditions. Results suggest that human-level expression recognition accuracy in real-life illumination conditions is achievable with machine learning technology. However, the data sets currently used in the automatic expression recognition literature to evaluate progress may be overly constrained and could potentially lead research into locally optimal algorithmic solutions.
Machine learning approaches have produced some of the highest reported performances for facial expression recognition. However, to date, nearly all automatic facial expression recognition research has focused on optimizing performance on a few databases that were collected under controlled lighting conditions on a relatively small number of subjects. This paper explores whether current machine learning methods can be used to develop an expression recognition system that operates reliably in more realistic conditions. We explore the necessary characteristics of the training data set, image registration, feature representation, and machine learning algorithms. A new database, GENKI, is presented which contains pictures, photographed by the subjects themselves, from thousands of different people in many different real-world imaging conditions. Results suggest that human-level expression recognition accuracy in real-life illumination conditions is achievable with machine learning technology. However, the data sets currently used in the automatic expression recognition literature to evaluate progress may be overly constrained and could potentially lead research into locally optimal algorithmic solutions.Machine learning approaches have produced some of the highest reported performances for facial expression recognition. However, to date, nearly all automatic facial expression recognition research has focused on optimizing performance on a few databases that were collected under controlled lighting conditions on a relatively small number of subjects. This paper explores whether current machine learning methods can be used to develop an expression recognition system that operates reliably in more realistic conditions. We explore the necessary characteristics of the training data set, image registration, feature representation, and machine learning algorithms. A new database, GENKI, is presented which contains pictures, photographed by the subjects themselves, from thousands of different people in many different real-world imaging conditions. Results suggest that human-level expression recognition accuracy in real-life illumination conditions is achievable with machine learning technology. However, the data sets currently used in the automatic expression recognition literature to evaluate progress may be overly constrained and could potentially lead research into locally optimal algorithmic solutions.
[...] to date, nearly all automatic facial expression recognition research has focused on optimizing performance on a few databases that were collected under controlled lighting conditions on a relatively small number of subjects.
Author Whitehill, J.
Littlewort, G.
Fasel, I.
Movellan, J.
Bartlett, M.
Author_xml – sequence: 1
  givenname: J.
  surname: Whitehill
  fullname: Whitehill, J.
  organization: Machine Perception Lab., Univ. of California, San Diego, La Jolla, CA, USA
– sequence: 2
  givenname: G.
  surname: Littlewort
  fullname: Littlewort, G.
  organization: Machine Perception Lab., Univ. of California, San Diego, La Jolla, CA, USA
– sequence: 3
  givenname: I.
  surname: Fasel
  fullname: Fasel, I.
  organization: Dept. of Comput. Sci., Univ. of Arizona, Tucson, AZ, USA
– sequence: 4
  givenname: M.
  surname: Bartlett
  fullname: Bartlett, M.
  organization: Machine Perception Lab., Univ. of California, San Diego, La Jolla, CA, USA
– sequence: 5
  givenname: J.
  surname: Movellan
  fullname: Movellan, J.
  organization: Machine Perception Lab., Univ. of California, San Diego, La Jolla, CA, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21989880$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/19762937$$D View this record in MEDLINE/PubMed
BookMark eNp90c9LwzAUB_AgE53ToydBhuCPS2eSlzTJUeavwcSB8xyyNIVK186kQ_zvTd2cILhTIPm8l-T7DlCnqiuH0DHBA0Kwup5Obp5GA4qxGjC6g7pEgUqAg-qgLiYpTaSkch8dhPCGMWEcwx7aJ0qkVIHoov60_jA-60-8sU1hTdl_mRel69-6xsWNujpEu7kpgztarz30en83HT4m4-eH0fBmnFgG0CQzwi22QKyURJnMcEYphTy3REmbpZwJk1rDGIsPpTweSCMy7qTBLhOSA_TQ5arvwtfvSxcaPS-CdWVpKlcvgxbAcHy8aOXFVgkcpwxSGuHVVkhSQSgDCjLSsz_0rV76Kn5YSy5YygGTiE7XaDmbu0wvfDE3_lP_pBnB-RqYEKPMvalsETaOxiyUlDi6ZOWsr0PwLv9thXU7Vf09Vd1OVbP2I_DH26Ix7XQab4ry36qTVVXhnNvcwGLaLKb4BWglqRk
CODEN ITPIDJ
CitedBy_id crossref_primary_10_1016_j_imavis_2014_01_004
crossref_primary_10_1016_j_imavis_2023_104739
crossref_primary_10_1109_T_AFFC_2013_4
crossref_primary_10_1109_LRA_2022_3170214
crossref_primary_10_3390_app7020112
crossref_primary_10_1016_j_patcog_2013_01_032
crossref_primary_10_1016_j_jecp_2016_05_007
crossref_primary_10_1109_TAFFC_2021_3065726
crossref_primary_10_3390_agriculture13071365
crossref_primary_10_1007_s12193_015_0209_0
crossref_primary_10_1002_cpe_7059
crossref_primary_10_1109_ACCESS_2021_3061744
crossref_primary_10_3390_electronics9122056
crossref_primary_10_1016_j_patcog_2018_02_019
crossref_primary_10_1109_TSMCB_2012_2195170
crossref_primary_10_1007_s00371_016_1323_z
crossref_primary_10_1007_s00138_016_0817_z
crossref_primary_10_1109_TSMCB_2012_2194485
crossref_primary_10_1109_TMM_2014_2321113
crossref_primary_10_1007_s11042_018_6890_8
crossref_primary_10_1117_1_JEI_25_6_063002
crossref_primary_10_1007_s42979_022_01049_5
crossref_primary_10_1109_TPAMI_2013_194
crossref_primary_10_1117_1_JEI_27_5_053048
crossref_primary_10_1016_j_imavis_2011_11_008
crossref_primary_10_1597_14_142
crossref_primary_10_3390_app8060850
crossref_primary_10_1093_jcr_ucae049
crossref_primary_10_1109_T_AFFC_2012_19
crossref_primary_10_1007_s00779_011_0479_9
crossref_primary_10_1016_j_neucom_2013_09_025
crossref_primary_10_1016_j_neucom_2014_03_073
crossref_primary_10_1109_TMM_2016_2598092
crossref_primary_10_1007_s10803_013_1898_4
crossref_primary_10_1109_TAFFC_2017_2749299
crossref_primary_10_3390_info5020305
crossref_primary_10_15248_proc_1_78
crossref_primary_10_1016_j_imavis_2014_06_001
crossref_primary_10_1109_TIP_2016_2570550
crossref_primary_10_1080_01691864_2012_686349
crossref_primary_10_1016_j_image_2017_08_012
crossref_primary_10_1109_TAFFC_2017_2654440
crossref_primary_10_1007_s12652_015_0333_4
crossref_primary_10_1109_TMM_2021_3072786
crossref_primary_10_1109_TAFFC_2014_2316163
crossref_primary_10_1109_TAFFC_2015_2397456
crossref_primary_10_1109_TAFFC_2017_2723011
crossref_primary_10_1109_TAFFC_2018_2801311
crossref_primary_10_1007_s00521_019_04089_w
crossref_primary_10_1016_j_procs_2020_03_397
crossref_primary_10_1109_TSMCB_2010_2082525
crossref_primary_10_1049_iet_cvi_2018_5281
crossref_primary_10_1088_1742_6596_1746_1_012044
crossref_primary_10_1515_icom_2015_0032
crossref_primary_10_1016_j_ijleo_2016_04_015
crossref_primary_10_1007_s12369_013_0199_6
crossref_primary_10_1109_TAFFC_2017_2774278
crossref_primary_10_1016_j_patrec_2014_10_004
crossref_primary_10_1016_j_patcog_2016_03_006
crossref_primary_10_3758_BRM_42_4_1079
crossref_primary_10_1016_j_patcog_2011_07_022
crossref_primary_10_1080_1206212X_2017_1395134
crossref_primary_10_1109_TAFFC_2014_2364581
crossref_primary_10_1109_TAFFC_2014_2384198
crossref_primary_10_1109_TAFFC_2014_2313557
crossref_primary_10_1134_S1054661814010106
crossref_primary_10_1016_j_ijleo_2019_01_020
crossref_primary_10_7763_IJCTE_2013_V5_640
crossref_primary_10_1016_j_imavis_2013_12_008
crossref_primary_10_1007_s13319_013_0004_1
crossref_primary_10_1016_j_cviu_2019_01_006
crossref_primary_10_1016_j_imavis_2013_12_007
crossref_primary_10_2139_ssrn_3692623
crossref_primary_10_1016_j_evolhumbehav_2016_10_011
crossref_primary_10_1093_comjnl_bxy016
crossref_primary_10_1016_j_neucom_2017_01_020
crossref_primary_10_1016_j_cviu_2016_11_003
crossref_primary_10_1016_j_neucom_2019_05_045
crossref_primary_10_1016_j_imavis_2011_12_003
crossref_primary_10_1109_TAMD_2015_2463113
crossref_primary_10_1007_s11042_015_2497_5
crossref_primary_10_1109_TIP_2011_2161587
crossref_primary_10_1016_j_imavis_2012_08_014
crossref_primary_10_1016_j_jvcir_2015_03_008
crossref_primary_10_1016_j_neucom_2014_04_072
crossref_primary_10_1016_j_neunet_2011_05_015
crossref_primary_10_1109_TCYB_2018_2840090
crossref_primary_10_1109_MIS_2016_25
crossref_primary_10_1111_tgis_12552
crossref_primary_10_1109_ACCESS_2024_3515838
crossref_primary_10_1109_ACCESS_2021_3088748
crossref_primary_10_1007_s11042_020_10332_7
crossref_primary_10_1142_S0218001415500068
crossref_primary_10_1075_gest_22012_rau
crossref_primary_10_1111_pere_12192
crossref_primary_10_1016_j_neucom_2017_06_050
crossref_primary_10_1109_TAFFC_2019_2922341
crossref_primary_10_1371_journal_pone_0090876
crossref_primary_10_1371_journal_pone_0231266
crossref_primary_10_1109_TNNLS_2017_2776248
crossref_primary_10_1177_0301006620901671
crossref_primary_10_1016_j_neucom_2015_10_022
crossref_primary_10_1016_j_patrec_2013_02_002
crossref_primary_10_1007_s11042_018_6945_x
crossref_primary_10_1109_TAFFC_2016_2592918
crossref_primary_10_3390_sym11101189
crossref_primary_10_1007_s11042_023_15982_x
crossref_primary_10_1007_s11042_014_1954_x
Cites_doi 10.1109/CVPR.2007.383059
10.1109/TSMCB.2004.825931
10.1142/S021969130400041X
10.1109/CVPR.2004.1315144
10.1109/ICCV.2003.1238646
10.1016/S1077-3142(03)00081-X
10.1109/CVPR.2006.259
10.1109/TPAMI.2003.1251154
10.1016/j.cviu.2004.07.014
10.1023/B:VISI.0000013087.49260.fb
10.1007/3-540-59119-2_166
10.1109/ICME.2005.1521424
10.1016/0031-3203(95)00067-4
10.1109/34.908962
10.1109/TPAMI.2007.1110
10.1109/ICPR.2004.1334680
10.1109/TPAMI.2005.93
10.1109/AFGR.2000.840611
10.1016/j.imavis.2005.09.011
10.1109/ICCV.1999.790410
10.1109/FGR.2006.72
10.1007/978-0-387-21606-5
10.4304/jmm.1.6.22-35
10.1016/S0031-3203(02)00052-3
10.1109/FGR.2006.55
10.1007/0-387-27257-7_12
10.1109/AMFG.2003.1240843
10.1214/aos/1016218223
10.1109/TPAMI.2008.52
10.1109/ICSMC.2004.1398369
10.1109/TPAMI.2005.90
10.1109/TPAMI.2007.1094
10.1109/34.799905
10.1109/34.895976
10.1109/TIP.2006.884954
ContentType Journal Article
Copyright 2015 INIST-CNRS
Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009
Copyright_xml – notice: 2015 INIST-CNRS
– notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009
DBID 97E
RIA
RIE
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
7X8
DOI 10.1109/TPAMI.2009.42
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Technology Research Database

Technology Research Database
Technology Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: Consulter via IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Applied Sciences
EISSN 1939-3539
EndPage 2111
ExternalDocumentID 2295182771
19762937
21989880
10_1109_TPAMI_2009_42
4785473
Genre orig-research
Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
9M8
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ADRHT
AENEX
AETEA
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
FA8
HZ~
H~9
IBMZZ
ICLAB
IEDLZ
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNI
RNS
RXW
RZB
TAE
TN5
UHB
VH1
XJT
~02
AAYXX
CITATION
IQODW
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
7X8
ID FETCH-LOGICAL-c433t-b15c0c31c8819ada542223ffc198cd6547a6ca444009253ff8a7d5e8a0ed78533
IEDL.DBID RIE
ISSN 0162-8828
1939-3539
IngestDate Thu Oct 02 07:00:13 EDT 2025
Sun Sep 28 09:08:40 EDT 2025
Sun Sep 28 00:43:47 EDT 2025
Mon Jun 30 05:26:56 EDT 2025
Mon Jul 21 06:02:08 EDT 2025
Mon Jul 21 09:17:36 EDT 2025
Thu Apr 24 22:57:05 EDT 2025
Wed Oct 08 05:29:32 EDT 2025
Tue Aug 26 16:47:39 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Computer vision
Image databank
Gesture recognition
Algorithmics
machine learning
Date
Optimization
Face and gesture recognition
Luminance
Lighting
Imaging
Optimal solution
Facies
Database
Illumination
Automatic recognition
Learning algorithm
Artificial intelligence
Facial expression
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c433t-b15c0c31c8819ada542223ffc198cd6547a6ca444009253ff8a7d5e8a0ed78533
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PMID 19762937
PQID 857465301
PQPubID 23500
PageCount 6
ParticipantIDs pascalfrancis_primary_21989880
ieee_primary_4785473
pubmed_primary_19762937
crossref_citationtrail_10_1109_TPAMI_2009_42
proquest_miscellaneous_35064362
proquest_miscellaneous_734050373
proquest_journals_857465301
proquest_miscellaneous_1671243238
crossref_primary_10_1109_TPAMI_2009_42
PublicationCentury 2000
PublicationDate 2009-11-01
PublicationDateYYYYMMDD 2009-11-01
PublicationDate_xml – month: 11
  year: 2009
  text: 2009-11-01
  day: 01
PublicationDecade 2000
PublicationPlace Los Alamitos, CA
PublicationPlace_xml – name: Los Alamitos, CA
– name: United States
– name: New York
PublicationTitle IEEE transactions on pattern analysis and machine intelligence
PublicationTitleAbbrev TPAMI
PublicationTitleAlternate IEEE Trans Pattern Anal Mach Intell
PublicationYear 2009
Publisher IEEE
IEEE Computer Society
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: IEEE Computer Society
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref11
ref33
ref10
ref32
Fenwick (ref40) 1991; 13
Pnevmatikakis (ref29)
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
Movellan (ref30) 2005
ref24
Cortes (ref27)
ref23
ref25
ref20
ref22
ref21
Ekman (ref26) 1976
ref28
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref16
  doi: 10.1109/CVPR.2007.383059
– ident: ref7
  doi: 10.1109/TSMCB.2004.825931
– ident: ref13
  doi: 10.1142/S021969130400041X
– ident: ref33
  doi: 10.1109/CVPR.2004.1315144
– ident: ref11
  doi: 10.1109/ICCV.2003.1238646
– ident: ref14
  doi: 10.1016/S1077-3142(03)00081-X
– ident: ref19
  doi: 10.1109/CVPR.2006.259
– ident: ref21
  doi: 10.1109/TPAMI.2003.1251154
– ident: ref28
  doi: 10.1016/j.cviu.2004.07.014
– ident: ref31
  doi: 10.1023/B:VISI.0000013087.49260.fb
– volume-title: Proc. Third Int’l Federation for Information Processing Conf. Artificial Intelligence Applications & Innovations
  ident: ref29
  article-title: Impact of Face Registration Errors on Recognition
– ident: ref36
  doi: 10.1007/3-540-59119-2_166
– ident: ref22
  doi: 10.1109/ICME.2005.1521424
– ident: ref34
  doi: 10.1016/0031-3203(95)00067-4
– ident: ref8
  doi: 10.1109/34.908962
– ident: ref18
  doi: 10.1109/TPAMI.2007.1110
– ident: ref6
  doi: 10.1109/ICPR.2004.1334680
– ident: ref15
  doi: 10.1109/TPAMI.2005.93
– ident: ref20
  doi: 10.1109/AFGR.2000.840611
– volume: 13
  start-page: 23
  year: 1991
  ident: ref40
  article-title: Reliability of Continuous Measurement Copy-Testing Methods
  publication-title: J. Advertising Research
– ident: ref25
  doi: 10.1016/j.imavis.2005.09.011
– ident: ref32
  doi: 10.1109/ICCV.1999.790410
– ident: ref38
  doi: 10.1109/FGR.2006.72
– ident: ref37
  doi: 10.1007/978-0-387-21606-5
– ident: ref39
  doi: 10.4304/jmm.1.6.22-35
– ident: ref2
  doi: 10.1016/S0031-3203(02)00052-3
– ident: ref5
  doi: 10.1109/FGR.2006.55
– ident: ref1
  doi: 10.1007/0-387-27257-7_12
– ident: ref9
  doi: 10.1109/AMFG.2003.1240843
– ident: ref35
  doi: 10.1214/aos/1016218223
– volume-title: Proc. Advances in Neural Information Processing Systems
  ident: ref27
  article-title: Confidence Intervals for the Area under the ROC Curve
– ident: ref4
  doi: 10.1109/TPAMI.2008.52
– ident: ref12
  doi: 10.1109/ICSMC.2004.1398369
– ident: ref23
  doi: 10.1109/TPAMI.2005.90
– volume-title: technical report, MPLab Tutorials, Univ. of California, San Diego
  year: 2005
  ident: ref30
  article-title: Tutorial on Gabor Filters
– ident: ref17
  doi: 10.1109/TPAMI.2007.1094
– ident: ref24
  doi: 10.1109/34.799905
– ident: ref3
  doi: 10.1109/34.895976
– ident: ref10
  doi: 10.1109/TIP.2006.884954
– year: 1976
  ident: ref26
  article-title: Pictures of Facial Affect
SSID ssj0014503
Score 2.462335
Snippet Machine learning approaches have produced some of the highest reported performances for facial expression recognition. However, to date, nearly all automatic...
[...] to date, nearly all automatic facial expression recognition research has focused on optimizing performance on a few databases that were collected under...
SourceID proquest
pubmed
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2106
SubjectTerms Algorithms
Applied sciences
Artificial Intelligence
Automatic control
Biometry - methods
Computer science; control theory; systems
Computer Simulation
computer vision
Exact sciences and technology
Face - anatomy & histology
Face and gesture recognition
Face recognition
Facial
Humans
Illumination
Image databases
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
Image registration
Learning systems
Lighting control
Machine learning
Machine learning algorithms
Models, Biological
Optimization
Pattern Recognition, Automated - methods
Pattern recognition. Digital image processing. Computational geometry
Recognition
Representations
Reproducibility of Results
Sensitivity and Specificity
Smiling
Spatial databases
Studies
Subtraction Technique
Training data
Title Toward Practical Smile Detection
URI https://ieeexplore.ieee.org/document/4785473
https://www.ncbi.nlm.nih.gov/pubmed/19762937
https://www.proquest.com/docview/857465301
https://www.proquest.com/docview/1671243238
https://www.proquest.com/docview/35064362
https://www.proquest.com/docview/734050373
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: Consulter via IEEE Xplore
  customDbUrl:
  eissn: 1939-3539
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014503
  issn: 0162-8828
  databaseCode: RIE
  dateStart: 19790101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB7Ukx58P-r6qCCe7No2SZM9ig9UWBFcwVtJ0-lF7YrbvfjrnaTdrooL3goZaF6T-ZJMvg_gOEdFgTvGgMB-HFAIMEGmcgwo9uksi3XRc3JA_fvk5onfPYvnOTht38Igoks-w679dHf5-dCM7VHZGZfKSuXOw7xUSf1Wq70x4MKpIBOCIQ-nbcSUT_Ns8HDev62pKblTr6H_U5STP0KR01axmZF6RJ1T1KoWs2GnCz_XK9CfVLzOOnnpjqusaz5_cTr-t2WrsNzgUP-8njhrMIflOqxMNB78xuXXYekbYeEG-AOXZevXLEfUAv_xjZYV_xIrl9JVbsLT9dXg4iZoNBYCwxmrgiwSJjQsMoqggc61sEdCrChM1FMmt8rEOjGac27JmQQVKC1zgUqHmFOdGduChXJY4g74SqiYMS3yQma8kFwRUoxYxlEjS0JED04n3Z2ahoDc6mC8pm4jEvZSN1BWGLOX8tiDk9b8vWbemGW4YTu0NWr60oODH2PZlsc2TYyWLQ86k8FNG8cdpUpIyzgXRh4ctaXkcfYaRZc4HI_SKJEEihhhHQ8OZ9gwywNI2MADf4aFZNxS8dh6btcTa9rKZn7u_t2wDiy6Ky33IHIPFqqPMe4TMqqyA-cSX2fDBlw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB2xHIAD-xLKEiTEibRJbDfuEbGoLEVIFIlb5DiTC5Aiml74esZOmgKiErdInoM99nie4_F7AMcpSkrcIXoE9kOPUoD2EpmiR7lPJUmoso6VA-rdt7tP_OZZPM_Aaf0WBhFt8Rk2zae9y08HemR-lbV4JI1U7izMC865KF9r1XcGXFgdZMIwFON0kJgwarb6D2e965Kcklv9GuoB5bnoRzKy6iqmNlINyT1ZqWsxHXjaBHS1Ar1x18u6k5fmqEia-vMXq-N_x7YKyxUSdc_KpbMGM5ivw8pY5cGtgn4dlr5RFm6A27d1tm7Jc0QjcB_faGNxL7CwRV35JjxdXfbPu16lsuBpzljhJYHQvmaBlgQOVKqE-SnEskwHHalTo02s2lqRvw09k6AGqaJUoFQ-ptRnxrZgLh_kuAOuFDJkTIk0ixKeRVwSVgxYwlEha_uIDpyO3R3rioLcKGG8xvYo4ndiO1FGGrMT89CBk9r8veTemGa4YRxaG1W-dODgx1zW7aEpFKONy4HGeHLjKnSHsRSR4ZzzAweO6laKOXORonIcjIZx0I4IFjFCOw4cTrFhhgmQ0IED7hSLiHFDxmP6uV0urMkoq_W5-_fADmGh2-_dxXfX97cNWLQXXPZ55B7MFR8j3CecVCQHNjy-AEZBCak
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Toward+Practical+Smile+Detection&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=WHITEHILL%2C+Jacob&rft.au=LITTLEWORT%2C+Gwen&rft.au=FASEL%2C+Ian&rft.au=BARTLETT%2C+Marian&rft.date=2009-11-01&rft.pub=IEEE+Computer+Society&rft.issn=0162-8828&rft.volume=31&rft.issue=11&rft.spage=2106&rft.epage=2111&rft_id=info:doi/10.1109%2FTPAMI.2009.42&rft.externalDBID=n%2Fa&rft.externalDocID=21989880
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon