Toward Practical Smile Detection
Machine learning approaches have produced some of the highest reported performances for facial expression recognition. However, to date, nearly all automatic facial expression recognition research has focused on optimizing performance on a few databases that were collected under controlled lighting...
        Saved in:
      
    
          | Published in | IEEE transactions on pattern analysis and machine intelligence Vol. 31; no. 11; pp. 2106 - 2111 | 
|---|---|
| Main Authors | , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Los Alamitos, CA
          IEEE
    
        01.11.2009
     IEEE Computer Society The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0162-8828 1939-3539 1939-3539  | 
| DOI | 10.1109/TPAMI.2009.42 | 
Cover
| Abstract | Machine learning approaches have produced some of the highest reported performances for facial expression recognition. However, to date, nearly all automatic facial expression recognition research has focused on optimizing performance on a few databases that were collected under controlled lighting conditions on a relatively small number of subjects. This paper explores whether current machine learning methods can be used to develop an expression recognition system that operates reliably in more realistic conditions. We explore the necessary characteristics of the training data set, image registration, feature representation, and machine learning algorithms. A new database, GENKI, is presented which contains pictures, photographed by the subjects themselves, from thousands of different people in many different real-world imaging conditions. Results suggest that human-level expression recognition accuracy in real-life illumination conditions is achievable with machine learning technology. However, the data sets currently used in the automatic expression recognition literature to evaluate progress may be overly constrained and could potentially lead research into locally optimal algorithmic solutions. | 
    
|---|---|
| AbstractList | Machine learning approaches have produced some of the highest reported performances for facial expression recognition. However, to date, nearly all automatic facial expression recognition research has focused on optimizing performance on a few databases that were collected under controlled lighting conditions on a relatively small number of subjects. This paper explores whether current machine learning methods can be used to develop an expression recognition system that operates reliably in more realistic conditions. We explore the necessary characteristics of the training data set, image registration, feature representation, and machine learning algorithms. A new database, GENKI, is presented which contains pictures, photographed by the subjects themselves, from thousands of different people in many different real-world imaging conditions. Results suggest that human-level expression recognition accuracy in real-life illumination conditions is achievable with machine learning technology. However, the data sets currently used in the automatic expression recognition literature to evaluate progress may be overly constrained and could potentially lead research into locally optimal algorithmic solutions. Machine learning approaches have produced some of the highest reported performances for facial expression recognition. However, to date, nearly all automatic facial expression recognition research has focused on optimizing performance on a few databases that were collected under controlled lighting conditions on a relatively small number of subjects. This paper explores whether current machine learning methods can be used to develop an expression recognition system that operates reliably in more realistic conditions. We explore the necessary characteristics of the training data set, image registration, feature representation, and machine learning algorithms. A new database, GENKI, is presented which contains pictures, photographed by the subjects themselves, from thousands of different people in many different real-world imaging conditions. Results suggest that human-level expression recognition accuracy in real-life illumination conditions is achievable with machine learning technology. However, the data sets currently used in the automatic expression recognition literature to evaluate progress may be overly constrained and could potentially lead research into locally optimal algorithmic solutions.Machine learning approaches have produced some of the highest reported performances for facial expression recognition. However, to date, nearly all automatic facial expression recognition research has focused on optimizing performance on a few databases that were collected under controlled lighting conditions on a relatively small number of subjects. This paper explores whether current machine learning methods can be used to develop an expression recognition system that operates reliably in more realistic conditions. We explore the necessary characteristics of the training data set, image registration, feature representation, and machine learning algorithms. A new database, GENKI, is presented which contains pictures, photographed by the subjects themselves, from thousands of different people in many different real-world imaging conditions. Results suggest that human-level expression recognition accuracy in real-life illumination conditions is achievable with machine learning technology. However, the data sets currently used in the automatic expression recognition literature to evaluate progress may be overly constrained and could potentially lead research into locally optimal algorithmic solutions. [...] to date, nearly all automatic facial expression recognition research has focused on optimizing performance on a few databases that were collected under controlled lighting conditions on a relatively small number of subjects.  | 
    
| Author | Whitehill, J. Littlewort, G. Fasel, I. Movellan, J. Bartlett, M.  | 
    
| Author_xml | – sequence: 1 givenname: J. surname: Whitehill fullname: Whitehill, J. organization: Machine Perception Lab., Univ. of California, San Diego, La Jolla, CA, USA – sequence: 2 givenname: G. surname: Littlewort fullname: Littlewort, G. organization: Machine Perception Lab., Univ. of California, San Diego, La Jolla, CA, USA – sequence: 3 givenname: I. surname: Fasel fullname: Fasel, I. organization: Dept. of Comput. Sci., Univ. of Arizona, Tucson, AZ, USA – sequence: 4 givenname: M. surname: Bartlett fullname: Bartlett, M. organization: Machine Perception Lab., Univ. of California, San Diego, La Jolla, CA, USA – sequence: 5 givenname: J. surname: Movellan fullname: Movellan, J. organization: Machine Perception Lab., Univ. of California, San Diego, La Jolla, CA, USA  | 
    
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21989880$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/19762937$$D View this record in MEDLINE/PubMed  | 
    
| BookMark | eNp90c9LwzAUB_AgE53ToydBhuCPS2eSlzTJUeavwcSB8xyyNIVK186kQ_zvTd2cILhTIPm8l-T7DlCnqiuH0DHBA0Kwup5Obp5GA4qxGjC6g7pEgUqAg-qgLiYpTaSkch8dhPCGMWEcwx7aJ0qkVIHoov60_jA-60-8sU1hTdl_mRel69-6xsWNujpEu7kpgztarz30en83HT4m4-eH0fBmnFgG0CQzwi22QKyURJnMcEYphTy3REmbpZwJk1rDGIsPpTweSCMy7qTBLhOSA_TQ5arvwtfvSxcaPS-CdWVpKlcvgxbAcHy8aOXFVgkcpwxSGuHVVkhSQSgDCjLSsz_0rV76Kn5YSy5YygGTiE7XaDmbu0wvfDE3_lP_pBnB-RqYEKPMvalsETaOxiyUlDi6ZOWsr0PwLv9thXU7Vf09Vd1OVbP2I_DH26Ix7XQab4ry36qTVVXhnNvcwGLaLKb4BWglqRk | 
    
| CODEN | ITPIDJ | 
    
| CitedBy_id | crossref_primary_10_1016_j_imavis_2014_01_004 crossref_primary_10_1016_j_imavis_2023_104739 crossref_primary_10_1109_T_AFFC_2013_4 crossref_primary_10_1109_LRA_2022_3170214 crossref_primary_10_3390_app7020112 crossref_primary_10_1016_j_patcog_2013_01_032 crossref_primary_10_1016_j_jecp_2016_05_007 crossref_primary_10_1109_TAFFC_2021_3065726 crossref_primary_10_3390_agriculture13071365 crossref_primary_10_1007_s12193_015_0209_0 crossref_primary_10_1002_cpe_7059 crossref_primary_10_1109_ACCESS_2021_3061744 crossref_primary_10_3390_electronics9122056 crossref_primary_10_1016_j_patcog_2018_02_019 crossref_primary_10_1109_TSMCB_2012_2195170 crossref_primary_10_1007_s00371_016_1323_z crossref_primary_10_1007_s00138_016_0817_z crossref_primary_10_1109_TSMCB_2012_2194485 crossref_primary_10_1109_TMM_2014_2321113 crossref_primary_10_1007_s11042_018_6890_8 crossref_primary_10_1117_1_JEI_25_6_063002 crossref_primary_10_1007_s42979_022_01049_5 crossref_primary_10_1109_TPAMI_2013_194 crossref_primary_10_1117_1_JEI_27_5_053048 crossref_primary_10_1016_j_imavis_2011_11_008 crossref_primary_10_1597_14_142 crossref_primary_10_3390_app8060850 crossref_primary_10_1093_jcr_ucae049 crossref_primary_10_1109_T_AFFC_2012_19 crossref_primary_10_1007_s00779_011_0479_9 crossref_primary_10_1016_j_neucom_2013_09_025 crossref_primary_10_1016_j_neucom_2014_03_073 crossref_primary_10_1109_TMM_2016_2598092 crossref_primary_10_1007_s10803_013_1898_4 crossref_primary_10_1109_TAFFC_2017_2749299 crossref_primary_10_3390_info5020305 crossref_primary_10_15248_proc_1_78 crossref_primary_10_1016_j_imavis_2014_06_001 crossref_primary_10_1109_TIP_2016_2570550 crossref_primary_10_1080_01691864_2012_686349 crossref_primary_10_1016_j_image_2017_08_012 crossref_primary_10_1109_TAFFC_2017_2654440 crossref_primary_10_1007_s12652_015_0333_4 crossref_primary_10_1109_TMM_2021_3072786 crossref_primary_10_1109_TAFFC_2014_2316163 crossref_primary_10_1109_TAFFC_2015_2397456 crossref_primary_10_1109_TAFFC_2017_2723011 crossref_primary_10_1109_TAFFC_2018_2801311 crossref_primary_10_1007_s00521_019_04089_w crossref_primary_10_1016_j_procs_2020_03_397 crossref_primary_10_1109_TSMCB_2010_2082525 crossref_primary_10_1049_iet_cvi_2018_5281 crossref_primary_10_1088_1742_6596_1746_1_012044 crossref_primary_10_1515_icom_2015_0032 crossref_primary_10_1016_j_ijleo_2016_04_015 crossref_primary_10_1007_s12369_013_0199_6 crossref_primary_10_1109_TAFFC_2017_2774278 crossref_primary_10_1016_j_patrec_2014_10_004 crossref_primary_10_1016_j_patcog_2016_03_006 crossref_primary_10_3758_BRM_42_4_1079 crossref_primary_10_1016_j_patcog_2011_07_022 crossref_primary_10_1080_1206212X_2017_1395134 crossref_primary_10_1109_TAFFC_2014_2364581 crossref_primary_10_1109_TAFFC_2014_2384198 crossref_primary_10_1109_TAFFC_2014_2313557 crossref_primary_10_1134_S1054661814010106 crossref_primary_10_1016_j_ijleo_2019_01_020 crossref_primary_10_7763_IJCTE_2013_V5_640 crossref_primary_10_1016_j_imavis_2013_12_008 crossref_primary_10_1007_s13319_013_0004_1 crossref_primary_10_1016_j_cviu_2019_01_006 crossref_primary_10_1016_j_imavis_2013_12_007 crossref_primary_10_2139_ssrn_3692623 crossref_primary_10_1016_j_evolhumbehav_2016_10_011 crossref_primary_10_1093_comjnl_bxy016 crossref_primary_10_1016_j_neucom_2017_01_020 crossref_primary_10_1016_j_cviu_2016_11_003 crossref_primary_10_1016_j_neucom_2019_05_045 crossref_primary_10_1016_j_imavis_2011_12_003 crossref_primary_10_1109_TAMD_2015_2463113 crossref_primary_10_1007_s11042_015_2497_5 crossref_primary_10_1109_TIP_2011_2161587 crossref_primary_10_1016_j_imavis_2012_08_014 crossref_primary_10_1016_j_jvcir_2015_03_008 crossref_primary_10_1016_j_neucom_2014_04_072 crossref_primary_10_1016_j_neunet_2011_05_015 crossref_primary_10_1109_TCYB_2018_2840090 crossref_primary_10_1109_MIS_2016_25 crossref_primary_10_1111_tgis_12552 crossref_primary_10_1109_ACCESS_2024_3515838 crossref_primary_10_1109_ACCESS_2021_3088748 crossref_primary_10_1007_s11042_020_10332_7 crossref_primary_10_1142_S0218001415500068 crossref_primary_10_1075_gest_22012_rau crossref_primary_10_1111_pere_12192 crossref_primary_10_1016_j_neucom_2017_06_050 crossref_primary_10_1109_TAFFC_2019_2922341 crossref_primary_10_1371_journal_pone_0090876 crossref_primary_10_1371_journal_pone_0231266 crossref_primary_10_1109_TNNLS_2017_2776248 crossref_primary_10_1177_0301006620901671 crossref_primary_10_1016_j_neucom_2015_10_022 crossref_primary_10_1016_j_patrec_2013_02_002 crossref_primary_10_1007_s11042_018_6945_x crossref_primary_10_1109_TAFFC_2016_2592918 crossref_primary_10_3390_sym11101189 crossref_primary_10_1007_s11042_023_15982_x crossref_primary_10_1007_s11042_014_1954_x  | 
    
| Cites_doi | 10.1109/CVPR.2007.383059 10.1109/TSMCB.2004.825931 10.1142/S021969130400041X 10.1109/CVPR.2004.1315144 10.1109/ICCV.2003.1238646 10.1016/S1077-3142(03)00081-X 10.1109/CVPR.2006.259 10.1109/TPAMI.2003.1251154 10.1016/j.cviu.2004.07.014 10.1023/B:VISI.0000013087.49260.fb 10.1007/3-540-59119-2_166 10.1109/ICME.2005.1521424 10.1016/0031-3203(95)00067-4 10.1109/34.908962 10.1109/TPAMI.2007.1110 10.1109/ICPR.2004.1334680 10.1109/TPAMI.2005.93 10.1109/AFGR.2000.840611 10.1016/j.imavis.2005.09.011 10.1109/ICCV.1999.790410 10.1109/FGR.2006.72 10.1007/978-0-387-21606-5 10.4304/jmm.1.6.22-35 10.1016/S0031-3203(02)00052-3 10.1109/FGR.2006.55 10.1007/0-387-27257-7_12 10.1109/AMFG.2003.1240843 10.1214/aos/1016218223 10.1109/TPAMI.2008.52 10.1109/ICSMC.2004.1398369 10.1109/TPAMI.2005.90 10.1109/TPAMI.2007.1094 10.1109/34.799905 10.1109/34.895976 10.1109/TIP.2006.884954  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2015 INIST-CNRS Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009  | 
    
| Copyright_xml | – notice: 2015 INIST-CNRS – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009  | 
    
| DBID | 97E RIA RIE AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7SC 7SP 8FD JQ2 L7M L~C L~D F28 FR3 7X8  | 
    
| DOI | 10.1109/TPAMI.2009.42 | 
    
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional ANTE: Abstracts in New Technology & Engineering Engineering Research Database MEDLINE - Academic  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional Engineering Research Database ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE MEDLINE - Academic Technology Research Database Technology Research Database Technology Research Database  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: Consulter via IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering Computer Science Applied Sciences  | 
    
| EISSN | 1939-3539 | 
    
| EndPage | 2111 | 
    
| ExternalDocumentID | 2295182771 19762937 21989880 10_1109_TPAMI_2009_42 4785473  | 
    
| Genre | orig-research Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article  | 
    
| GroupedDBID | --- -DZ -~X .DC 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E 9M8 AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT ADRHT AENEX AETEA AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P FA8 HZ~ H~9 IBMZZ ICLAB IEDLZ IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNI RNS RXW RZB TAE TN5 UHB VH1 XJT ~02 AAYXX CITATION IQODW RIG CGR CUY CVF ECM EIF NPM 7SC 7SP 8FD JQ2 L7M L~C L~D F28 FR3 7X8  | 
    
| ID | FETCH-LOGICAL-c433t-b15c0c31c8819ada542223ffc198cd6547a6ca444009253ff8a7d5e8a0ed78533 | 
    
| IEDL.DBID | RIE | 
    
| ISSN | 0162-8828 1939-3539  | 
    
| IngestDate | Thu Oct 02 07:00:13 EDT 2025 Sun Sep 28 09:08:40 EDT 2025 Sun Sep 28 00:43:47 EDT 2025 Mon Jun 30 05:26:56 EDT 2025 Mon Jul 21 06:02:08 EDT 2025 Mon Jul 21 09:17:36 EDT 2025 Thu Apr 24 22:57:05 EDT 2025 Wed Oct 08 05:29:32 EDT 2025 Tue Aug 26 16:47:39 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 11 | 
    
| Keywords | Computer vision Image databank Gesture recognition Algorithmics machine learning Date Optimization Face and gesture recognition Luminance Lighting Imaging Optimal solution Facies Database Illumination Automatic recognition Learning algorithm Artificial intelligence Facial expression  | 
    
| Language | English | 
    
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html CC BY 4.0  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c433t-b15c0c31c8819ada542223ffc198cd6547a6ca444009253ff8a7d5e8a0ed78533 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Article-2 ObjectType-Feature-1  | 
    
| PMID | 19762937 | 
    
| PQID | 857465301 | 
    
| PQPubID | 23500 | 
    
| PageCount | 6 | 
    
| ParticipantIDs | pascalfrancis_primary_21989880 ieee_primary_4785473 pubmed_primary_19762937 crossref_citationtrail_10_1109_TPAMI_2009_42 proquest_miscellaneous_35064362 proquest_miscellaneous_734050373 proquest_journals_857465301 proquest_miscellaneous_1671243238 crossref_primary_10_1109_TPAMI_2009_42  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2009-11-01 | 
    
| PublicationDateYYYYMMDD | 2009-11-01 | 
    
| PublicationDate_xml | – month: 11 year: 2009 text: 2009-11-01 day: 01  | 
    
| PublicationDecade | 2000 | 
    
| PublicationPlace | Los Alamitos, CA | 
    
| PublicationPlace_xml | – name: Los Alamitos, CA – name: United States – name: New York  | 
    
| PublicationTitle | IEEE transactions on pattern analysis and machine intelligence | 
    
| PublicationTitleAbbrev | TPAMI | 
    
| PublicationTitleAlternate | IEEE Trans Pattern Anal Mach Intell | 
    
| PublicationYear | 2009 | 
    
| Publisher | IEEE IEEE Computer Society The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| Publisher_xml | – name: IEEE – name: IEEE Computer Society – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref11 ref33 ref10 ref32 Fenwick (ref40) 1991; 13 Pnevmatikakis (ref29) ref2 ref1 ref17 ref39 ref16 ref38 ref19 ref18 Movellan (ref30) 2005 ref24 Cortes (ref27) ref23 ref25 ref20 ref22 ref21 Ekman (ref26) 1976 ref28 ref8 ref7 ref9 ref4 ref3 ref6 ref5  | 
    
| References_xml | – ident: ref16 doi: 10.1109/CVPR.2007.383059 – ident: ref7 doi: 10.1109/TSMCB.2004.825931 – ident: ref13 doi: 10.1142/S021969130400041X – ident: ref33 doi: 10.1109/CVPR.2004.1315144 – ident: ref11 doi: 10.1109/ICCV.2003.1238646 – ident: ref14 doi: 10.1016/S1077-3142(03)00081-X – ident: ref19 doi: 10.1109/CVPR.2006.259 – ident: ref21 doi: 10.1109/TPAMI.2003.1251154 – ident: ref28 doi: 10.1016/j.cviu.2004.07.014 – ident: ref31 doi: 10.1023/B:VISI.0000013087.49260.fb – volume-title: Proc. Third Int’l Federation for Information Processing Conf. Artificial Intelligence Applications & Innovations ident: ref29 article-title: Impact of Face Registration Errors on Recognition – ident: ref36 doi: 10.1007/3-540-59119-2_166 – ident: ref22 doi: 10.1109/ICME.2005.1521424 – ident: ref34 doi: 10.1016/0031-3203(95)00067-4 – ident: ref8 doi: 10.1109/34.908962 – ident: ref18 doi: 10.1109/TPAMI.2007.1110 – ident: ref6 doi: 10.1109/ICPR.2004.1334680 – ident: ref15 doi: 10.1109/TPAMI.2005.93 – ident: ref20 doi: 10.1109/AFGR.2000.840611 – volume: 13 start-page: 23 year: 1991 ident: ref40 article-title: Reliability of Continuous Measurement Copy-Testing Methods publication-title: J. Advertising Research – ident: ref25 doi: 10.1016/j.imavis.2005.09.011 – ident: ref32 doi: 10.1109/ICCV.1999.790410 – ident: ref38 doi: 10.1109/FGR.2006.72 – ident: ref37 doi: 10.1007/978-0-387-21606-5 – ident: ref39 doi: 10.4304/jmm.1.6.22-35 – ident: ref2 doi: 10.1016/S0031-3203(02)00052-3 – ident: ref5 doi: 10.1109/FGR.2006.55 – ident: ref1 doi: 10.1007/0-387-27257-7_12 – ident: ref9 doi: 10.1109/AMFG.2003.1240843 – ident: ref35 doi: 10.1214/aos/1016218223 – volume-title: Proc. Advances in Neural Information Processing Systems ident: ref27 article-title: Confidence Intervals for the Area under the ROC Curve – ident: ref4 doi: 10.1109/TPAMI.2008.52 – ident: ref12 doi: 10.1109/ICSMC.2004.1398369 – ident: ref23 doi: 10.1109/TPAMI.2005.90 – volume-title: technical report, MPLab Tutorials, Univ. of California, San Diego year: 2005 ident: ref30 article-title: Tutorial on Gabor Filters – ident: ref17 doi: 10.1109/TPAMI.2007.1094 – ident: ref24 doi: 10.1109/34.799905 – ident: ref3 doi: 10.1109/34.895976 – ident: ref10 doi: 10.1109/TIP.2006.884954 – year: 1976 ident: ref26 article-title: Pictures of Facial Affect  | 
    
| SSID | ssj0014503 | 
    
| Score | 2.462335 | 
    
| Snippet | Machine learning approaches have produced some of the highest reported performances for facial expression recognition. However, to date, nearly all automatic... [...] to date, nearly all automatic facial expression recognition research has focused on optimizing performance on a few databases that were collected under...  | 
    
| SourceID | proquest pubmed pascalfrancis crossref ieee  | 
    
| SourceType | Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 2106 | 
    
| SubjectTerms | Algorithms Applied sciences Artificial Intelligence Automatic control Biometry - methods Computer science; control theory; systems Computer Simulation computer vision Exact sciences and technology Face - anatomy & histology Face and gesture recognition Face recognition Facial Humans Illumination Image databases Image Enhancement - methods Image Interpretation, Computer-Assisted - methods Image registration Learning systems Lighting control Machine learning Machine learning algorithms Models, Biological Optimization Pattern Recognition, Automated - methods Pattern recognition. Digital image processing. Computational geometry Recognition Representations Reproducibility of Results Sensitivity and Specificity Smiling Spatial databases Studies Subtraction Technique Training data  | 
    
| Title | Toward Practical Smile Detection | 
    
| URI | https://ieeexplore.ieee.org/document/4785473 https://www.ncbi.nlm.nih.gov/pubmed/19762937 https://www.proquest.com/docview/857465301 https://www.proquest.com/docview/1671243238 https://www.proquest.com/docview/35064362 https://www.proquest.com/docview/734050373  | 
    
| Volume | 31 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: Consulter via IEEE Xplore customDbUrl: eissn: 1939-3539 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014503 issn: 0162-8828 databaseCode: RIE dateStart: 19790101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB7Ukx58P-r6qCCe7No2SZM9ig9UWBFcwVtJ0-lF7YrbvfjrnaTdrooL3goZaF6T-ZJMvg_gOEdFgTvGgMB-HFAIMEGmcgwo9uksi3XRc3JA_fvk5onfPYvnOTht38Igoks-w679dHf5-dCM7VHZGZfKSuXOw7xUSf1Wq70x4MKpIBOCIQ-nbcSUT_Ns8HDev62pKblTr6H_U5STP0KR01axmZF6RJ1T1KoWs2GnCz_XK9CfVLzOOnnpjqusaz5_cTr-t2WrsNzgUP-8njhrMIflOqxMNB78xuXXYekbYeEG-AOXZevXLEfUAv_xjZYV_xIrl9JVbsLT9dXg4iZoNBYCwxmrgiwSJjQsMoqggc61sEdCrChM1FMmt8rEOjGac27JmQQVKC1zgUqHmFOdGduChXJY4g74SqiYMS3yQma8kFwRUoxYxlEjS0JED04n3Z2ahoDc6mC8pm4jEvZSN1BWGLOX8tiDk9b8vWbemGW4YTu0NWr60oODH2PZlsc2TYyWLQ86k8FNG8cdpUpIyzgXRh4ctaXkcfYaRZc4HI_SKJEEihhhHQ8OZ9gwywNI2MADf4aFZNxS8dh6btcTa9rKZn7u_t2wDiy6Ky33IHIPFqqPMe4TMqqyA-cSX2fDBlw | 
    
| linkProvider | IEEE | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB2xHIAD-xLKEiTEibRJbDfuEbGoLEVIFIlb5DiTC5Aiml74esZOmgKiErdInoM99nie4_F7AMcpSkrcIXoE9kOPUoD2EpmiR7lPJUmoso6VA-rdt7tP_OZZPM_Aaf0WBhFt8Rk2zae9y08HemR-lbV4JI1U7izMC865KF9r1XcGXFgdZMIwFON0kJgwarb6D2e965Kcklv9GuoB5bnoRzKy6iqmNlINyT1ZqWsxHXjaBHS1Ar1x18u6k5fmqEia-vMXq-N_x7YKyxUSdc_KpbMGM5ivw8pY5cGtgn4dlr5RFm6A27d1tm7Jc0QjcB_faGNxL7CwRV35JjxdXfbPu16lsuBpzljhJYHQvmaBlgQOVKqE-SnEskwHHalTo02s2lqRvw09k6AGqaJUoFQ-ptRnxrZgLh_kuAOuFDJkTIk0ixKeRVwSVgxYwlEha_uIDpyO3R3rioLcKGG8xvYo4ndiO1FGGrMT89CBk9r8veTemGa4YRxaG1W-dODgx1zW7aEpFKONy4HGeHLjKnSHsRSR4ZzzAweO6laKOXORonIcjIZx0I4IFjFCOw4cTrFhhgmQ0IED7hSLiHFDxmP6uV0urMkoq_W5-_fADmGh2-_dxXfX97cNWLQXXPZ55B7MFR8j3CecVCQHNjy-AEZBCak | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Toward+Practical+Smile+Detection&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=WHITEHILL%2C+Jacob&rft.au=LITTLEWORT%2C+Gwen&rft.au=FASEL%2C+Ian&rft.au=BARTLETT%2C+Marian&rft.date=2009-11-01&rft.pub=IEEE+Computer+Society&rft.issn=0162-8828&rft.volume=31&rft.issue=11&rft.spage=2106&rft.epage=2111&rft_id=info:doi/10.1109%2FTPAMI.2009.42&rft.externalDBID=n%2Fa&rft.externalDocID=21989880 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon |