Load forecasting of district heating system based on Informer
Accurate load forecasting of district heating systems (DHSs) is an essential guide to guaranteeing effective energy production, distribution, and rational utilization. Artificial neural networks have been extensively applied to heating energy prediction in DHS. Recently, a new time series prediction...
Saved in:
| Published in | Energy (Oxford) Vol. 253; p. 124179 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Oxford
Elsevier Ltd
15.08.2022
Elsevier BV |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0360-5442 1873-6785 |
| DOI | 10.1016/j.energy.2022.124179 |
Cover
| Abstract | Accurate load forecasting of district heating systems (DHSs) is an essential guide to guaranteeing effective energy production, distribution, and rational utilization. Artificial neural networks have been extensively applied to heating energy prediction in DHS. Recently, a new time series prediction model namely Informer was proposed. This study proposes an Informer-based framework for DHS heating load forecasting. To explore the performance of Informer in heating load forecasting tasks, four forecasting models namely Autoregressive Integrated Moving Average model, Multilayer Perceptron, Recurrent Neural Network and Long Short-Term Memory network are established for comparison. The historical heating load, outdoor temperature, relative humidity, wind speed and air quality index of a DHS in Tianjin are used as the input characteristics to comprehensively assess the performance of these five forecasting strategies. The prediction results of the models are evaluated and visualized. The experimental results show that the Informer-based forecasting model can achieve the most accurate and stable predictions. Furthermore, a relative position encoding algorithm is introduced to enhance its generalization and robustness. Overall, the Informer-based framework can report satisfactory testing results. The prediction curve is fitted to the trend of temperature change which can play an excellent guiding role in heating dispatching.
•A new framework based on Informer is proposed for heating load forecasting of a DHS in Tianjin, China.•Informer is compared with other four popular prediction models namely ARIMA, MLP, RNN and LSTM.•The performance of Informer in heating load forecasting has been verified.•A relative position coding is introduced to improve the prediction ability of Informer. |
|---|---|
| AbstractList | Accurate load forecasting of district heating systems (DHSs) is an essential guide to guaranteeing effective energy production, distribution, and rational utilization. Artificial neural networks have been extensively applied to heating energy prediction in DHS. Recently, a new time series prediction model namely Informer was proposed. This study proposes an Informer-based framework for DHS heating load forecasting. To explore the performance of Informer in heating load forecasting tasks, four forecasting models namely Autoregressive Integrated Moving Average model, Multilayer Perceptron, Recurrent Neural Network and Long Short-Term Memory network are established for comparison. The historical heating load, outdoor temperature, relative humidity, wind speed and air quality index of a DHS in Tianjin are used as the input characteristics to comprehensively assess the performance of these five forecasting strategies. The prediction results of the models are evaluated and visualized. The experimental results show that the Informer-based forecasting model can achieve the most accurate and stable predictions. Furthermore, a relative position encoding algorithm is introduced to enhance its generalization and robustness. Overall, the Informer-based framework can report satisfactory testing results. The prediction curve is fitted to the trend of temperature change which can play an excellent guiding role in heating dispatching.
•A new framework based on Informer is proposed for heating load forecasting of a DHS in Tianjin, China.•Informer is compared with other four popular prediction models namely ARIMA, MLP, RNN and LSTM.•The performance of Informer in heating load forecasting has been verified.•A relative position coding is introduced to improve the prediction ability of Informer. Accurate load forecasting of district heating systems (DHSs) is an essential guide to guaranteeing effective energy production, distribution, and rational utilization. Artificial neural networks have been extensively applied to heating energy prediction in DHS. Recently, a new time series prediction model namely Informer was proposed. This study proposes an Informer-based framework for DHS heating load forecasting. To explore the performance of Informer in heating load forecasting tasks, four forecasting models namely Autoregressive Integrated Moving Average model, Multilayer Perceptron, Recurrent Neural Network and Long Short-Term Memory network are established for comparison. The historical heating load, outdoor temperature, relative humidity, wind speed and air quality index of a DHS in Tianjin are used as the input characteristics to comprehensively assess the performance of these five forecasting strategies. The prediction results of the models are evaluated and visualized. The experimental results show that the Informer-based forecasting model can achieve the most accurate and stable predictions. Furthermore, a relative position encoding algorithm is introduced to enhance its generalization and robustness. Overall, the Informer-based framework can report satisfactory testing results. The prediction curve is fitted to the trend of temperature change which can play an excellent guiding role in heating dispatching. |
| ArticleNumber | 124179 |
| Author | Sun, Guannan Sun, Jiawang Gong, Mingju Yan, Bo Han, Cuitian Zhao, Yin |
| Author_xml | – sequence: 1 givenname: Mingju surname: Gong fullname: Gong, Mingju email: gmj790@163.com organization: School of Integrated Circuit Science and Engineering, Tianjin University of Technology, Tianjin, 300380, China – sequence: 2 givenname: Yin orcidid: 0000-0002-9637-9670 surname: Zhao fullname: Zhao, Yin organization: School of Integrated Circuit Science and Engineering, Tianjin University of Technology, Tianjin, 300380, China – sequence: 3 givenname: Jiawang surname: Sun fullname: Sun, Jiawang organization: School of Integrated Circuit Science and Engineering, Tianjin University of Technology, Tianjin, 300380, China – sequence: 4 givenname: Cuitian surname: Han fullname: Han, Cuitian organization: School of Integrated Circuit Science and Engineering, Tianjin University of Technology, Tianjin, 300380, China – sequence: 5 givenname: Guannan surname: Sun fullname: Sun, Guannan organization: Tianjin Tianda Qiushi Electric Power High Technology Co., Ltd., Tianjin, 300000, China – sequence: 6 givenname: Bo surname: Yan fullname: Yan, Bo organization: Tianjin Sanyuan Electric Power Group Co., Ltd., Tianjin, 300000, China |
| BookMark | eNqFkE1LwzAch4MoOKffwEPBi5fOJE3TRlCQ4ctg4EXPIU3_mRlbMpNM2Lc3s5520FMgPM-P5DlDx847QOiS4AnBhN8sJ-AgLHYTiimdEMpII47QiLRNVfKmrY_RCFcclzVj9BSdxbjEGNetECN0N_eqL4wPoFVM1i0Kb4rexhSsTsUHqJ-7uIsJ1kWnIvSFd8XMZWMN4RydGLWKcPF7jtH70-Pb9KWcvz7Ppg_zUrOqSqVqa2oAOMeGGUK7RlSiFZgJ0RCCO9wRrpkwPRMKt4aYloBgwLjSrKOV4tUYXQ-7m-A_txCTXNuoYbVSDvw2Ssqbum7y5B69OkCXfhtcfl2mWkEJI1xk6nagdPAxBjBS25T_6l0Kyq4kwXJfVi7lUFbuy8qhbJbZgbwJdq3C7j_tftAgl_qyEGTUFpyG3ub6Sfbe_j3wDXsQlSs |
| CitedBy_id | crossref_primary_10_1016_j_jbi_2024_104715 crossref_primary_10_1016_j_energy_2025_134779 crossref_primary_10_1016_j_jobe_2023_108132 crossref_primary_10_1016_j_energy_2025_134975 crossref_primary_10_1016_j_jenvman_2023_119894 crossref_primary_10_1016_j_jenvman_2023_119613 crossref_primary_10_1016_j_measurement_2023_113575 crossref_primary_10_1007_s00477_025_02945_x crossref_primary_10_1016_j_energy_2023_127044 crossref_primary_10_1016_j_solener_2024_113121 crossref_primary_10_4018_JOEUC_364100 crossref_primary_10_1016_j_apenergy_2023_122102 crossref_primary_10_1016_j_energy_2023_127911 crossref_primary_10_32604_ee_2023_043299 crossref_primary_10_1142_S021812662450316X crossref_primary_10_3390_lubricants11080343 crossref_primary_10_1016_j_asoc_2023_110797 crossref_primary_10_1038_s41598_024_74329_0 crossref_primary_10_1080_19401493_2024_2364697 crossref_primary_10_1016_j_renene_2023_119858 crossref_primary_10_1109_TAI_2024_3375833 crossref_primary_10_1016_j_jobe_2023_107635 crossref_primary_10_1016_j_apenergy_2023_121977 crossref_primary_10_1007_s00521_023_09003_z crossref_primary_10_1016_j_apenergy_2024_124209 crossref_primary_10_1016_j_compeleceng_2025_110113 crossref_primary_10_3390_app13137696 crossref_primary_10_1098_rsta_2022_0253 crossref_primary_10_1016_j_eswa_2023_121080 crossref_primary_10_1016_j_eswa_2024_123325 crossref_primary_10_1134_S0040601524040013 crossref_primary_10_1016_j_energy_2023_129731 crossref_primary_10_1016_j_energy_2024_131134 crossref_primary_10_1016_j_energy_2023_126661 crossref_primary_10_3390_bdcc8120197 crossref_primary_10_1016_j_apenergy_2022_120120 crossref_primary_10_1016_j_energy_2024_132745 crossref_primary_10_1016_j_jhydrol_2025_132737 crossref_primary_10_1049_2023_6623718 crossref_primary_10_1016_j_enbuild_2023_113706 crossref_primary_10_3390_app13148350 crossref_primary_10_1007_s00477_024_02846_5 crossref_primary_10_3390_app13042553 crossref_primary_10_1016_j_apenergy_2023_121544 crossref_primary_10_1016_j_ins_2024_121268 crossref_primary_10_1016_j_energy_2025_135486 crossref_primary_10_3389_fenrg_2023_1301828 crossref_primary_10_1016_j_enbuild_2024_115220 crossref_primary_10_1061_JWRMD5_WRENG_6665 crossref_primary_10_1007_s12665_024_11729_5 crossref_primary_10_1016_j_est_2023_108845 crossref_primary_10_1016_j_enconman_2024_119442 crossref_primary_10_1016_j_esd_2023_04_004 crossref_primary_10_1016_j_epsr_2024_111198 crossref_primary_10_1016_j_jhydrol_2024_132047 crossref_primary_10_1016_j_oceaneng_2024_117861 crossref_primary_10_3390_jrfm17080332 crossref_primary_10_1007_s42461_024_01141_9 crossref_primary_10_1016_j_enconman_2024_118758 crossref_primary_10_1016_j_epsr_2024_110265 crossref_primary_10_1016_j_ijepes_2024_110340 crossref_primary_10_1109_ACCESS_2024_3355194 crossref_primary_10_1016_j_applthermaleng_2024_122870 crossref_primary_10_1016_j_engappai_2024_109544 crossref_primary_10_2298_TSCI2402183L crossref_primary_10_3390_atmos13101636 crossref_primary_10_1109_ACCESS_2024_3384246 crossref_primary_10_1016_j_egyr_2022_11_194 crossref_primary_10_1016_j_energy_2023_129799 crossref_primary_10_1016_j_enbuild_2024_114582 crossref_primary_10_1016_j_eswa_2025_126783 crossref_primary_10_1109_ACCESS_2023_3319395 crossref_primary_10_2355_isijinternational_ISIJINT_2023_099 crossref_primary_10_3390_su16166794 crossref_primary_10_1016_j_energy_2024_133535 crossref_primary_10_1016_j_engappai_2024_108434 crossref_primary_10_1016_j_neucom_2023_126648 crossref_primary_10_1016_j_energy_2024_130347 crossref_primary_10_1016_j_energy_2024_130468 crossref_primary_10_1029_2024EF004751 crossref_primary_10_1080_19942060_2024_2443118 crossref_primary_10_1109_TIA_2023_3344540 crossref_primary_10_1016_j_apenergy_2023_121160 crossref_primary_10_1016_j_apenergy_2024_123364 crossref_primary_10_1016_j_asoc_2025_112693 crossref_primary_10_1016_j_jobe_2025_112349 crossref_primary_10_1109_JSEN_2024_3510739 crossref_primary_10_1016_j_energy_2023_129866 crossref_primary_10_3389_feart_2023_1238286 crossref_primary_10_3390_su142013022 crossref_primary_10_3390_w15213717 crossref_primary_10_1063_5_0246927 crossref_primary_10_1142_S0218126625500203 |
| Cites_doi | 10.1016/j.energy.2015.01.028 10.1016/j.apenergy.2016.06.133 10.1109/TPWRS.2003.811010 10.1016/j.energy.2015.10.015 10.3390/en10081168 10.1016/j.apenergy.2011.04.020 10.1016/j.energy.2013.08.017 10.1016/j.energy.2014.02.089 10.1016/j.enbuild.2017.12.042 10.1016/j.energy.2013.05.055 10.1109/TPWRS.2010.2080325 10.1016/j.scs.2019.101623 10.3390/en12101948 10.1016/j.energy.2019.116085 10.1016/j.energy.2020.119347 10.1016/j.scs.2020.102283 10.1109/ACCESS.2020.2972303 10.1016/j.energy.2017.12.083 10.1016/j.energy.2017.12.108 10.1016/j.energy.2017.12.156 10.1016/j.enbuild.2014.07.036 10.1016/j.enbuild.2016.09.068 10.1016/j.enbuild.2017.06.053 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier Ltd Copyright Elsevier BV Aug 15, 2022 |
| Copyright_xml | – notice: 2022 Elsevier Ltd – notice: Copyright Elsevier BV Aug 15, 2022 |
| DBID | AAYXX CITATION 7SP 7ST 7TB 8FD C1K F28 FR3 KR7 L7M SOI 7S9 L.6 |
| DOI | 10.1016/j.energy.2022.124179 |
| DatabaseName | CrossRef Electronics & Communications Abstracts Environment Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Environment Abstracts AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | Civil Engineering Abstracts AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Economics Environmental Sciences |
| EISSN | 1873-6785 |
| ExternalDocumentID | 10_1016_j_energy_2022_124179 S0360544222010829 |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AARJD AAXUO ABJNI ABMAC ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHIDL AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SES SPC SPCBC SSR SSZ T5K TN5 XPP ZMT ~02 ~G- 29G 6TJ AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABFNM ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEIPS AEUPX AFJKZ AFPUW AGQPQ AHHHB AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC SEW WUQ ~HD 7SP 7ST 7TB 8FD AGCQF C1K F28 FR3 KR7 L7M SOI 7S9 L.6 |
| ID | FETCH-LOGICAL-c433t-a852fee660f4f12b79398904997110b0b16c49fd49a08f1f81e94e46ac4b23a63 |
| IEDL.DBID | .~1 |
| ISSN | 0360-5442 |
| IngestDate | Thu Oct 02 06:13:33 EDT 2025 Wed Aug 13 09:31:29 EDT 2025 Thu Oct 09 00:25:32 EDT 2025 Thu Apr 24 23:03:54 EDT 2025 Fri Feb 23 02:39:11 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Heating load forecasting District heating system Informer Relative position encoding algorithm |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c433t-a852fee660f4f12b79398904997110b0b16c49fd49a08f1f81e94e46ac4b23a63 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-9637-9670 |
| PQID | 2689214169 |
| PQPubID | 2045484 |
| ParticipantIDs | proquest_miscellaneous_2675578906 proquest_journals_2689214169 crossref_citationtrail_10_1016_j_energy_2022_124179 crossref_primary_10_1016_j_energy_2022_124179 elsevier_sciencedirect_doi_10_1016_j_energy_2022_124179 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-08-15 |
| PublicationDateYYYYMMDD | 2022-08-15 |
| PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationPlace | Oxford |
| PublicationPlace_xml | – name: Oxford |
| PublicationTitle | Energy (Oxford) |
| PublicationYear | 2022 |
| Publisher | Elsevier Ltd Elsevier BV |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
| References | Yan, Zhang (bib18) 2021 Zheng, Yuan, Chen (bib26) 2017; 10 Xue, Jiang, Zhou, Chen, Fang, Liu (bib21) 2019; 188 Li S, Jin X, Xuan Y, Zhou X, Chen W, Wang Y-X, et al. Enhancing the Locality and Breaking the Memory Bottleneck of Transformer on Time Series Forecasting. Advances in Neural Information Processing Systems, vol. vol. 32. Curran Associates, Inc., p. arXiv preprint arXiv:1907.00235. Guo, Goumba, Wang (bib4) 2019; 12 Zhang, Wang (bib17) 2018 Karimi, Karami, Gholami, Khatibzadehazad, Moslemi (bib9) 2018; 144 Beltagy, Peters, Cohan (bib33) 2020 Luo, Oyedele, Ajayi, Akinade (bib19) 2020; 61 Wang, Lu, Li (bib28) 2019; 49 Gong, Bai, Qin, Wang, Yang, Wang (bib6) 2020; 27 Izadyar, Ghadamian, Ong, moghadam, Tong, Shamshirband (bib11) 2015; 93 Ghofrani, Ghayekhloo, Arabali, Ghayekhloo (bib22) 2015; 81 Zhou, Zhang, Peng, Zhang, Li, Xiong (bib35) 2020 Child, Gray, Radford, Sutskever (bib31) 2019 Chou, Bui (bib23) 2014; 82 Kurek, Bielecki, Świrski, Wojdan, Guzek, Białek (bib12) 2021; 217 Rezaie, Rosen (bib5) 2012; 93 Alkan, Keçebaş, Yamankaradeniz (bib3) 2013; 60 Idowu, Saguna, Åhlund, Schelén (bib8) 2016; 133 Liao, Ertesvåg, Zhao (bib1) 2013; 57 Barman, Dev Choudhury, Sutradhar (bib29) 2018; 145 Wang, Li, Khabsa, Fang, Ma (bib34) 2020 . Lund, Werner, Wiltshire, Svendsen, Thorsen, Hvelplund (bib7) 2014; 68 Liu, Wang, Huang (bib13) 2020 Yan, Deng, Li, Qiu (bib36) 2019 Chakhchoukh, Panciatici, Mili (bib10) 2011; 26 Guo, Hendel (bib2) 2018; 145 Ma, Song, Zhang (bib27) 2017; 151 Liu, Wang, Zhao, Dong, Lu, Wang (bib20) 2020; 8 Iwafune, Yagita, Ikegami, Ogimoto (bib14) 2014 Fang, Lahdelma (bib15) 2016; 179 Shyh-Jier, Kuang-Rong (bib16) 2003; 18 Geysen, De Somer, Johansson, Brage, Vanhoudt (bib24) 2018; 162 Xudong, Shuo, Qingwu (bib25) 2020 Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, et al. Attention is all you need. Advances in neural information processing systems, vol. vol. 30. Curran Associates, Inc. Dai, Yang, Yang, Carbonell, Le, Salakhutdinov (bib37) 2019 Kurek (10.1016/j.energy.2022.124179_bib12) 2021; 217 Liu (10.1016/j.energy.2022.124179_bib20) 2020; 8 Beltagy (10.1016/j.energy.2022.124179_bib33) 2020 Guo (10.1016/j.energy.2022.124179_bib2) 2018; 145 Luo (10.1016/j.energy.2022.124179_bib19) 2020; 61 Zheng (10.1016/j.energy.2022.124179_bib26) 2017; 10 Barman (10.1016/j.energy.2022.124179_bib29) 2018; 145 Child (10.1016/j.energy.2022.124179_bib31) 2019 Yan (10.1016/j.energy.2022.124179_bib18) 2021 Ma (10.1016/j.energy.2022.124179_bib27) 2017; 151 Iwafune (10.1016/j.energy.2022.124179_bib14) 2014 Fang (10.1016/j.energy.2022.124179_bib15) 2016; 179 Yan (10.1016/j.energy.2022.124179_bib36) 2019 Idowu (10.1016/j.energy.2022.124179_bib8) 2016; 133 Liao (10.1016/j.energy.2022.124179_bib1) 2013; 57 Guo (10.1016/j.energy.2022.124179_bib4) 2019; 12 Chakhchoukh (10.1016/j.energy.2022.124179_bib10) 2011; 26 Lund (10.1016/j.energy.2022.124179_bib7) 2014; 68 Zhang (10.1016/j.energy.2022.124179_bib17) 2018 Chou (10.1016/j.energy.2022.124179_bib23) 2014; 82 Wang (10.1016/j.energy.2022.124179_bib34) 2020 Wang (10.1016/j.energy.2022.124179_bib28) 2019; 49 Ghofrani (10.1016/j.energy.2022.124179_bib22) 2015; 81 Geysen (10.1016/j.energy.2022.124179_bib24) 2018; 162 Izadyar (10.1016/j.energy.2022.124179_bib11) 2015; 93 Xudong (10.1016/j.energy.2022.124179_bib25) 2020 Dai (10.1016/j.energy.2022.124179_bib37) 2019 Gong (10.1016/j.energy.2022.124179_bib6) 2020; 27 Liu (10.1016/j.energy.2022.124179_bib13) 2020 Xue (10.1016/j.energy.2022.124179_bib21) 2019; 188 Alkan (10.1016/j.energy.2022.124179_bib3) 2013; 60 Zhou (10.1016/j.energy.2022.124179_bib35) 2020 Shyh-Jier (10.1016/j.energy.2022.124179_bib16) 2003; 18 10.1016/j.energy.2022.124179_bib32 Rezaie (10.1016/j.energy.2022.124179_bib5) 2012; 93 Karimi (10.1016/j.energy.2022.124179_bib9) 2018; 144 10.1016/j.energy.2022.124179_bib30 |
| References_xml | – volume: 10 year: 2017 ident: bib26 article-title: Short-term load forecasting using EMD-LSTM neural networks with a xgboost algorithm for feature importance evaluation publication-title: Energies – volume: 145 start-page: 710 year: 2018 end-page: 720 ident: bib29 article-title: A regional hybrid Goa-SVM model based on similar day approach for short-term load forecasting in Assam, India publication-title: Energy – reference: Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, et al. Attention is all you need. Advances in neural information processing systems, vol. vol. 30. Curran Associates, Inc. – volume: 81 start-page: 777 year: 2015 end-page: 786 ident: bib22 article-title: A hybrid short-term load forecasting with a new input selection framework publication-title: Energy – volume: 151 start-page: 157 year: 2017 end-page: 166 ident: bib27 article-title: Energy consumption prediction of air-conditioning systems in buildings by selecting similar days based on combined weights publication-title: Energy Build – volume: 18 start-page: 673 year: 2003 end-page: 679 ident: bib16 article-title: Short-term load forecasting via ARMA model identification including non-Gaussian process considerations publication-title: IEEE Trans Power Syst – volume: 60 start-page: 426 year: 2013 end-page: 434 ident: bib3 article-title: Exergoeconomic analysis of a district heating system for geothermal energy using specific exergy cost method publication-title: Energy – start-page: 2994 year: 2020 end-page: 2998 ident: bib13 article-title: Short-term Forecast of Multi-load of Electrical Heating and Cooling in Regional Integrated Energy System Based on Deep LSTM RNN publication-title: IEEE 4th Conference on Energy Internet and Energy System Integration (EI2) – start-page: 2676 year: 2018 end-page: 2680 ident: bib17 article-title: Thermal Load Forecasting Based on PSO-SVR publication-title: IEEE 4th International Conference on Computer and Communications (ICCC) – volume: 68 start-page: 1 year: 2014 end-page: 11 ident: bib7 article-title: 4th generation district heating (4GDH) publication-title: Energy – volume: 49 year: 2019 ident: bib28 article-title: Multi-criteria comprehensive study on predictive algorithm of hourly heating energy consumption for residential buildings publication-title: Sustain Cities Soc – volume: 179 start-page: 544 year: 2016 end-page: 552 ident: bib15 article-title: Evaluation of a multiple linear regression model and SARIMA model in forecasting heat demand for district heating system publication-title: Appl Energy – year: 2019 ident: bib37 article-title: Transformer-XL: attentive language models beyond a fixed-length context – year: 2020 ident: bib33 article-title: Longformer: the long-document transformer – start-page: 1197 year: 2014 end-page: 1204 ident: bib14 article-title: Short-term forecasting of residential building load for distributed energy management publication-title: IEEE international energy conference (ENERGYCON) – year: 2020 ident: bib34 article-title: Linformer: self-attention with linear complexity – volume: 162 start-page: 144 year: 2018 end-page: 153 ident: bib24 article-title: Operational thermal load forecasting in district heating networks using machine learning and expert advice publication-title: Energy Build – year: 2019 ident: bib31 article-title: Generating long sequences with sparse transformers – volume: 61 start-page: 102283 year: 2020 ident: bib19 article-title: Comparative study of machine learning-based multi-objective prediction framework for multiple building energy loads publication-title: Sustain Cities Soc – reference: Li S, Jin X, Xuan Y, Zhou X, Chen W, Wang Y-X, et al. Enhancing the Locality and Breaking the Memory Bottleneck of Transformer on Time Series Forecasting. Advances in Neural Information Processing Systems, vol. vol. 32. Curran Associates, Inc., p. arXiv preprint arXiv:1907.00235. – year: 2020 ident: bib35 article-title: Informer: beyond efficient transformer for long sequence time-series forecasting – volume: 27 start-page: 100950 year: 2020 ident: bib6 article-title: Gradient boosting machine for predicting return temperature of district heating system: a case study for residential buildings in Tianjin publication-title: J Build Eng – volume: 57 start-page: 671 year: 2013 end-page: 681 ident: bib1 article-title: Energetic and exergetic efficiencies of coal-fired CHP (combined heat and power) plants used in district heating systems of China publication-title: Energy – volume: 8 start-page: 33360 year: 2020 end-page: 33369 ident: bib20 article-title: Heating load forecasting for combined heat and power plants via strand-based LSTM publication-title: IEEE Access – volume: 217 year: 2021 ident: bib12 article-title: Heat demand forecasting algorithm for a Warsaw district heating network publication-title: Energy – reference: . – volume: 82 start-page: 437 year: 2014 end-page: 446 ident: bib23 article-title: Modeling heating and cooling loads by artificial intelligence for energy-efficient building design publication-title: Energy Build – volume: 188 start-page: 116085 year: 2019 ident: bib21 article-title: Multi-step ahead forecasting of heat load in district heating systems using machine learning algorithms publication-title: Energy – start-page: 1085 year: 2020 end-page: 1090 ident: bib25 article-title: Prediction of building heating and cooling load based on IPSO-LSTM neural network – volume: 144 start-page: 928 year: 2018 end-page: 940 ident: bib9 article-title: Priority index considering temperature and date proximity for selection of similar days in knowledge-based short term load forecasting method publication-title: Energy – volume: 26 start-page: 982 year: 2011 end-page: 991 ident: bib10 article-title: Electric load forecasting based on statistical robust methods publication-title: IEEE Trans Power Syst – year: 2019 ident: bib36 article-title: TENER: adapting transformer encoder for named entity recognition – start-page: 1753 year: 2021 end-page: 1758 ident: bib18 article-title: Cooling, heating and electrical load forecasting method for integrated energy system based on SVR model publication-title: 2021 6th Asia conference on power and electrical engineering (ACPEE) – volume: 145 start-page: 79 year: 2018 end-page: 87 ident: bib2 article-title: Urban water networks as an alternative source for district heating and emergency heat-wave cooling publication-title: Energy – volume: 93 start-page: 2 year: 2012 end-page: 10 ident: bib5 article-title: District heating and cooling: review of technology and potential enhancements publication-title: Appl Energy – volume: 93 start-page: 1558 year: 2015 end-page: 1567 ident: bib11 article-title: Appraisal of the support vector machine to forecast residential heating demand for the District Heating System based on the monthly overall natural gas consumption publication-title: Energy – volume: 12 start-page: 1948 year: 2019 ident: bib4 article-title: Comparison of direct and indirect active thermal energy storage strategies for large-scale solar heating systems publication-title: Energies – volume: 133 start-page: 478 year: 2016 end-page: 488 ident: bib8 article-title: Applied machine learning: forecasting heat load in district heating system publication-title: Energy Build – volume: 81 start-page: 777 issue: 119 year: 2015 ident: 10.1016/j.energy.2022.124179_bib22 article-title: A hybrid short-term load forecasting with a new input selection framework publication-title: Energy doi: 10.1016/j.energy.2015.01.028 – volume: 179 start-page: 544 year: 2016 ident: 10.1016/j.energy.2022.124179_bib15 article-title: Evaluation of a multiple linear regression model and SARIMA model in forecasting heat demand for district heating system publication-title: Appl Energy doi: 10.1016/j.apenergy.2016.06.133 – volume: 18 start-page: 673 issue: 2 year: 2003 ident: 10.1016/j.energy.2022.124179_bib16 article-title: Short-term load forecasting via ARMA model identification including non-Gaussian process considerations publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2003.811010 – volume: 93 start-page: 1558 year: 2015 ident: 10.1016/j.energy.2022.124179_bib11 article-title: Appraisal of the support vector machine to forecast residential heating demand for the District Heating System based on the monthly overall natural gas consumption publication-title: Energy doi: 10.1016/j.energy.2015.10.015 – volume: 10 issue: 8 year: 2017 ident: 10.1016/j.energy.2022.124179_bib26 article-title: Short-term load forecasting using EMD-LSTM neural networks with a xgboost algorithm for feature importance evaluation publication-title: Energies doi: 10.3390/en10081168 – volume: 93 start-page: 2 year: 2012 ident: 10.1016/j.energy.2022.124179_bib5 article-title: District heating and cooling: review of technology and potential enhancements publication-title: Appl Energy doi: 10.1016/j.apenergy.2011.04.020 – volume: 60 start-page: 426 year: 2013 ident: 10.1016/j.energy.2022.124179_bib3 article-title: Exergoeconomic analysis of a district heating system for geothermal energy using specific exergy cost method publication-title: Energy doi: 10.1016/j.energy.2013.08.017 – volume: 68 start-page: 1 year: 2014 ident: 10.1016/j.energy.2022.124179_bib7 article-title: 4th generation district heating (4GDH) publication-title: Energy doi: 10.1016/j.energy.2014.02.089 – volume: 162 start-page: 144 year: 2018 ident: 10.1016/j.energy.2022.124179_bib24 article-title: Operational thermal load forecasting in district heating networks using machine learning and expert advice publication-title: Energy Build doi: 10.1016/j.enbuild.2017.12.042 – volume: 57 start-page: 671 year: 2013 ident: 10.1016/j.energy.2022.124179_bib1 article-title: Energetic and exergetic efficiencies of coal-fired CHP (combined heat and power) plants used in district heating systems of China publication-title: Energy doi: 10.1016/j.energy.2013.05.055 – volume: 26 start-page: 982 issue: 3 year: 2011 ident: 10.1016/j.energy.2022.124179_bib10 article-title: Electric load forecasting based on statistical robust methods publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2010.2080325 – volume: 49 year: 2019 ident: 10.1016/j.energy.2022.124179_bib28 article-title: Multi-criteria comprehensive study on predictive algorithm of hourly heating energy consumption for residential buildings publication-title: Sustain Cities Soc doi: 10.1016/j.scs.2019.101623 – volume: 12 start-page: 1948 issue: 10 year: 2019 ident: 10.1016/j.energy.2022.124179_bib4 article-title: Comparison of direct and indirect active thermal energy storage strategies for large-scale solar heating systems publication-title: Energies doi: 10.3390/en12101948 – volume: 188 start-page: 116085 year: 2019 ident: 10.1016/j.energy.2022.124179_bib21 article-title: Multi-step ahead forecasting of heat load in district heating systems using machine learning algorithms publication-title: Energy doi: 10.1016/j.energy.2019.116085 – volume: 217 year: 2021 ident: 10.1016/j.energy.2022.124179_bib12 article-title: Heat demand forecasting algorithm for a Warsaw district heating network publication-title: Energy doi: 10.1016/j.energy.2020.119347 – start-page: 1085 year: 2020 ident: 10.1016/j.energy.2022.124179_bib25 – year: 2020 ident: 10.1016/j.energy.2022.124179_bib35 – volume: 61 start-page: 102283 year: 2020 ident: 10.1016/j.energy.2022.124179_bib19 article-title: Comparative study of machine learning-based multi-objective prediction framework for multiple building energy loads publication-title: Sustain Cities Soc doi: 10.1016/j.scs.2020.102283 – year: 2019 ident: 10.1016/j.energy.2022.124179_bib31 – volume: 8 start-page: 33360 year: 2020 ident: 10.1016/j.energy.2022.124179_bib20 article-title: Heating load forecasting for combined heat and power plants via strand-based LSTM publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2972303 – year: 2019 ident: 10.1016/j.energy.2022.124179_bib37 – year: 2019 ident: 10.1016/j.energy.2022.124179_bib36 – start-page: 1197 year: 2014 ident: 10.1016/j.energy.2022.124179_bib14 article-title: Short-term forecasting of residential building load for distributed energy management – start-page: 2676 year: 2018 ident: 10.1016/j.energy.2022.124179_bib17 article-title: Thermal Load Forecasting Based on PSO-SVR – year: 2020 ident: 10.1016/j.energy.2022.124179_bib33 – volume: 144 start-page: 928 year: 2018 ident: 10.1016/j.energy.2022.124179_bib9 article-title: Priority index considering temperature and date proximity for selection of similar days in knowledge-based short term load forecasting method publication-title: Energy doi: 10.1016/j.energy.2017.12.083 – volume: 27 start-page: 100950 year: 2020 ident: 10.1016/j.energy.2022.124179_bib6 article-title: Gradient boosting machine for predicting return temperature of district heating system: a case study for residential buildings in Tianjin publication-title: J Build Eng – volume: 145 start-page: 79 year: 2018 ident: 10.1016/j.energy.2022.124179_bib2 article-title: Urban water networks as an alternative source for district heating and emergency heat-wave cooling publication-title: Energy doi: 10.1016/j.energy.2017.12.108 – volume: 145 start-page: 710 year: 2018 ident: 10.1016/j.energy.2022.124179_bib29 article-title: A regional hybrid Goa-SVM model based on similar day approach for short-term load forecasting in Assam, India publication-title: Energy doi: 10.1016/j.energy.2017.12.156 – start-page: 1753 year: 2021 ident: 10.1016/j.energy.2022.124179_bib18 article-title: Cooling, heating and electrical load forecasting method for integrated energy system based on SVR model – year: 2020 ident: 10.1016/j.energy.2022.124179_bib34 – volume: 82 start-page: 437 year: 2014 ident: 10.1016/j.energy.2022.124179_bib23 article-title: Modeling heating and cooling loads by artificial intelligence for energy-efficient building design publication-title: Energy Build doi: 10.1016/j.enbuild.2014.07.036 – volume: 133 start-page: 478 year: 2016 ident: 10.1016/j.energy.2022.124179_bib8 article-title: Applied machine learning: forecasting heat load in district heating system publication-title: Energy Build doi: 10.1016/j.enbuild.2016.09.068 – start-page: 2994 year: 2020 ident: 10.1016/j.energy.2022.124179_bib13 article-title: Short-term Forecast of Multi-load of Electrical Heating and Cooling in Regional Integrated Energy System Based on Deep LSTM RNN – volume: 151 start-page: 157 year: 2017 ident: 10.1016/j.energy.2022.124179_bib27 article-title: Energy consumption prediction of air-conditioning systems in buildings by selecting similar days based on combined weights publication-title: Energy Build doi: 10.1016/j.enbuild.2017.06.053 – ident: 10.1016/j.energy.2022.124179_bib32 – ident: 10.1016/j.energy.2022.124179_bib30 |
| SSID | ssj0005899 |
| Score | 2.6868153 |
| Snippet | Accurate load forecasting of district heating systems (DHSs) is an essential guide to guaranteeing effective energy production, distribution, and rational... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 124179 |
| SubjectTerms | Air quality Air temperature Algorithms Artificial neural networks Autoregressive models China District heating District heating system energy Energy distribution Forecasting heat Heating Heating load Heating load forecasting Heating systems Informer Long short-term memory Multilayer perceptrons Neural networks Outdoor air quality Performance assessment prediction Prediction models Recurrent neural networks Relative humidity Relative position encoding algorithm System effectiveness temperature time series analysis Wind speed |
| Title | Load forecasting of district heating system based on Informer |
| URI | https://dx.doi.org/10.1016/j.energy.2022.124179 https://www.proquest.com/docview/2689214169 https://www.proquest.com/docview/2675578906 |
| Volume | 253 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-6785 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005899 issn: 0360-5442 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1873-6785 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005899 issn: 0360-5442 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1873-6785 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005899 issn: 0360-5442 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1873-6785 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005899 issn: 0360-5442 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-6785 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005899 issn: 0360-5442 databaseCode: AKRWK dateStart: 19760301 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iB72IT1xdlwhe624eTdODBxFlfV5U8BaSNIEVacXdvfrbnenDF4LgsemElpnMI8l8M4QcRuu4BceZWJA3XjOKxFoPApHgbqNwIatL5t_cqvGDvHxMHxfIaYeFwbTK1vY3Nr221u3IsOXm8GUyGd6B7YV4A48wYE-hOYL4pMywi8HR25c0D133kETiBKk7-Fyd4xVqfB3sEjk_AkfHMKHrd_f0w1DX3ud8jay2YSM9af5snSyEcoMsd6ji6QbZPvtErAFhq7LTTXJ8XdmCQmgavJ1ijjOtIi2wXO7EzyiaYhxrCjpT9GkFrUraoJTC6xZ5OD-7Px0nbc-ExEshZonVKY8hKDWKMjLuQP1yneO-JgNH70aOKS_zWMjcjnRkUbOQyyCV9dJxYZXYJotlVYYdQlObjYCuYM4JqXzUufUqMqHBwwebih4RHauMbwuKY1-LZ9Nljj2ZhsEGGWwaBvdI8jHrpSmo8Qd91knBfFsYBmz-HzP7ndBMq5hTw5XOOYMoFF4ffLwGlcJ7EluGao40WZoiQFjt_vvje2QFn_D0maV9sjh7nYd9CF9mblCvzwFZOrm4Gt--A6re7d4 |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxwxDLaAHuCCCi3qAoVU4jrs5jGZzKGHCoEWunApSNyiJJNIW6EZxC5Xfjv2PGiLKiFxTRzNyI792YntABwl54VD4MwcypuuGWXmXECBKITbJH0s2pb5l1d6eqMubvPbFTgZamEorbK3_Z1Nb611PzLuuTm-n8_Hv9D2or9BRxgYUxhRrsIHlYuCIrDjp7_yPEz7iCRRZ0Q-1M-1SV6xLbDDMFGIY0Q6Thld_8enV5a6hZ-zj7DZ-43sR_drW7AS621YH8qKF9uwc_qnZA0Je51dfILvs8ZVDH3TGNyCkpxZk1hF_XLnYcnIFtNY19GZEahVrKlZV6YUHz7Dzdnp9ck06x9NyIKScpk5k4sUo9aTpBIXHvWvNCUFNgUivZ94roMqU6VKNzGJJ8NjqaLSLigvpNNyB9bqpo5fgOWumCBdxb2XSodkShd04tIgxEeXyxHIgVU29B3F6WGLOzukjv22HYMtMdh2DB5B9rLqvuuo8QZ9MUjB_rMzLBr9N1buD0KzvWYurNCmFBzdUJz-9jKNOkUXJa6OzSPRFHlOFcJ6990fP4T16fXlzM7Or37uwQbN0FE0z_dhbfnwGL-iL7P0B-1efQY1T-9z |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Load+forecasting+of+district+heating+system+based+on+Informer&rft.jtitle=Energy+%28Oxford%29&rft.au=Gong%2C+Mingju&rft.au=Zhao%2C+Yin&rft.au=Sun%2C+Jiawang&rft.au=Han%2C+Cuitian&rft.date=2022-08-15&rft.issn=0360-5442&rft.volume=253&rft.spage=124179&rft_id=info:doi/10.1016%2Fj.energy.2022.124179&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_energy_2022_124179 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon |