Load forecasting of district heating system based on Informer

Accurate load forecasting of district heating systems (DHSs) is an essential guide to guaranteeing effective energy production, distribution, and rational utilization. Artificial neural networks have been extensively applied to heating energy prediction in DHS. Recently, a new time series prediction...

Full description

Saved in:
Bibliographic Details
Published inEnergy (Oxford) Vol. 253; p. 124179
Main Authors Gong, Mingju, Zhao, Yin, Sun, Jiawang, Han, Cuitian, Sun, Guannan, Yan, Bo
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 15.08.2022
Elsevier BV
Subjects
Online AccessGet full text
ISSN0360-5442
1873-6785
DOI10.1016/j.energy.2022.124179

Cover

Abstract Accurate load forecasting of district heating systems (DHSs) is an essential guide to guaranteeing effective energy production, distribution, and rational utilization. Artificial neural networks have been extensively applied to heating energy prediction in DHS. Recently, a new time series prediction model namely Informer was proposed. This study proposes an Informer-based framework for DHS heating load forecasting. To explore the performance of Informer in heating load forecasting tasks, four forecasting models namely Autoregressive Integrated Moving Average model, Multilayer Perceptron, Recurrent Neural Network and Long Short-Term Memory network are established for comparison. The historical heating load, outdoor temperature, relative humidity, wind speed and air quality index of a DHS in Tianjin are used as the input characteristics to comprehensively assess the performance of these five forecasting strategies. The prediction results of the models are evaluated and visualized. The experimental results show that the Informer-based forecasting model can achieve the most accurate and stable predictions. Furthermore, a relative position encoding algorithm is introduced to enhance its generalization and robustness. Overall, the Informer-based framework can report satisfactory testing results. The prediction curve is fitted to the trend of temperature change which can play an excellent guiding role in heating dispatching. •A new framework based on Informer is proposed for heating load forecasting of a DHS in Tianjin, China.•Informer is compared with other four popular prediction models namely ARIMA, MLP, RNN and LSTM.•The performance of Informer in heating load forecasting has been verified.•A relative position coding is introduced to improve the prediction ability of Informer.
AbstractList Accurate load forecasting of district heating systems (DHSs) is an essential guide to guaranteeing effective energy production, distribution, and rational utilization. Artificial neural networks have been extensively applied to heating energy prediction in DHS. Recently, a new time series prediction model namely Informer was proposed. This study proposes an Informer-based framework for DHS heating load forecasting. To explore the performance of Informer in heating load forecasting tasks, four forecasting models namely Autoregressive Integrated Moving Average model, Multilayer Perceptron, Recurrent Neural Network and Long Short-Term Memory network are established for comparison. The historical heating load, outdoor temperature, relative humidity, wind speed and air quality index of a DHS in Tianjin are used as the input characteristics to comprehensively assess the performance of these five forecasting strategies. The prediction results of the models are evaluated and visualized. The experimental results show that the Informer-based forecasting model can achieve the most accurate and stable predictions. Furthermore, a relative position encoding algorithm is introduced to enhance its generalization and robustness. Overall, the Informer-based framework can report satisfactory testing results. The prediction curve is fitted to the trend of temperature change which can play an excellent guiding role in heating dispatching. •A new framework based on Informer is proposed for heating load forecasting of a DHS in Tianjin, China.•Informer is compared with other four popular prediction models namely ARIMA, MLP, RNN and LSTM.•The performance of Informer in heating load forecasting has been verified.•A relative position coding is introduced to improve the prediction ability of Informer.
Accurate load forecasting of district heating systems (DHSs) is an essential guide to guaranteeing effective energy production, distribution, and rational utilization. Artificial neural networks have been extensively applied to heating energy prediction in DHS. Recently, a new time series prediction model namely Informer was proposed. This study proposes an Informer-based framework for DHS heating load forecasting. To explore the performance of Informer in heating load forecasting tasks, four forecasting models namely Autoregressive Integrated Moving Average model, Multilayer Perceptron, Recurrent Neural Network and Long Short-Term Memory network are established for comparison. The historical heating load, outdoor temperature, relative humidity, wind speed and air quality index of a DHS in Tianjin are used as the input characteristics to comprehensively assess the performance of these five forecasting strategies. The prediction results of the models are evaluated and visualized. The experimental results show that the Informer-based forecasting model can achieve the most accurate and stable predictions. Furthermore, a relative position encoding algorithm is introduced to enhance its generalization and robustness. Overall, the Informer-based framework can report satisfactory testing results. The prediction curve is fitted to the trend of temperature change which can play an excellent guiding role in heating dispatching.
ArticleNumber 124179
Author Sun, Guannan
Sun, Jiawang
Gong, Mingju
Yan, Bo
Han, Cuitian
Zhao, Yin
Author_xml – sequence: 1
  givenname: Mingju
  surname: Gong
  fullname: Gong, Mingju
  email: gmj790@163.com
  organization: School of Integrated Circuit Science and Engineering, Tianjin University of Technology, Tianjin, 300380, China
– sequence: 2
  givenname: Yin
  orcidid: 0000-0002-9637-9670
  surname: Zhao
  fullname: Zhao, Yin
  organization: School of Integrated Circuit Science and Engineering, Tianjin University of Technology, Tianjin, 300380, China
– sequence: 3
  givenname: Jiawang
  surname: Sun
  fullname: Sun, Jiawang
  organization: School of Integrated Circuit Science and Engineering, Tianjin University of Technology, Tianjin, 300380, China
– sequence: 4
  givenname: Cuitian
  surname: Han
  fullname: Han, Cuitian
  organization: School of Integrated Circuit Science and Engineering, Tianjin University of Technology, Tianjin, 300380, China
– sequence: 5
  givenname: Guannan
  surname: Sun
  fullname: Sun, Guannan
  organization: Tianjin Tianda Qiushi Electric Power High Technology Co., Ltd., Tianjin, 300000, China
– sequence: 6
  givenname: Bo
  surname: Yan
  fullname: Yan, Bo
  organization: Tianjin Sanyuan Electric Power Group Co., Ltd., Tianjin, 300000, China
BookMark eNqFkE1LwzAch4MoOKffwEPBi5fOJE3TRlCQ4ctg4EXPIU3_mRlbMpNM2Lc3s5520FMgPM-P5DlDx847QOiS4AnBhN8sJ-AgLHYTiimdEMpII47QiLRNVfKmrY_RCFcclzVj9BSdxbjEGNetECN0N_eqL4wPoFVM1i0Kb4rexhSsTsUHqJ-7uIsJ1kWnIvSFd8XMZWMN4RydGLWKcPF7jtH70-Pb9KWcvz7Ppg_zUrOqSqVqa2oAOMeGGUK7RlSiFZgJ0RCCO9wRrpkwPRMKt4aYloBgwLjSrKOV4tUYXQ-7m-A_txCTXNuoYbVSDvw2Ssqbum7y5B69OkCXfhtcfl2mWkEJI1xk6nagdPAxBjBS25T_6l0Kyq4kwXJfVi7lUFbuy8qhbJbZgbwJdq3C7j_tftAgl_qyEGTUFpyG3ub6Sfbe_j3wDXsQlSs
CitedBy_id crossref_primary_10_1016_j_jbi_2024_104715
crossref_primary_10_1016_j_energy_2025_134779
crossref_primary_10_1016_j_jobe_2023_108132
crossref_primary_10_1016_j_energy_2025_134975
crossref_primary_10_1016_j_jenvman_2023_119894
crossref_primary_10_1016_j_jenvman_2023_119613
crossref_primary_10_1016_j_measurement_2023_113575
crossref_primary_10_1007_s00477_025_02945_x
crossref_primary_10_1016_j_energy_2023_127044
crossref_primary_10_1016_j_solener_2024_113121
crossref_primary_10_4018_JOEUC_364100
crossref_primary_10_1016_j_apenergy_2023_122102
crossref_primary_10_1016_j_energy_2023_127911
crossref_primary_10_32604_ee_2023_043299
crossref_primary_10_1142_S021812662450316X
crossref_primary_10_3390_lubricants11080343
crossref_primary_10_1016_j_asoc_2023_110797
crossref_primary_10_1038_s41598_024_74329_0
crossref_primary_10_1080_19401493_2024_2364697
crossref_primary_10_1016_j_renene_2023_119858
crossref_primary_10_1109_TAI_2024_3375833
crossref_primary_10_1016_j_jobe_2023_107635
crossref_primary_10_1016_j_apenergy_2023_121977
crossref_primary_10_1007_s00521_023_09003_z
crossref_primary_10_1016_j_apenergy_2024_124209
crossref_primary_10_1016_j_compeleceng_2025_110113
crossref_primary_10_3390_app13137696
crossref_primary_10_1098_rsta_2022_0253
crossref_primary_10_1016_j_eswa_2023_121080
crossref_primary_10_1016_j_eswa_2024_123325
crossref_primary_10_1134_S0040601524040013
crossref_primary_10_1016_j_energy_2023_129731
crossref_primary_10_1016_j_energy_2024_131134
crossref_primary_10_1016_j_energy_2023_126661
crossref_primary_10_3390_bdcc8120197
crossref_primary_10_1016_j_apenergy_2022_120120
crossref_primary_10_1016_j_energy_2024_132745
crossref_primary_10_1016_j_jhydrol_2025_132737
crossref_primary_10_1049_2023_6623718
crossref_primary_10_1016_j_enbuild_2023_113706
crossref_primary_10_3390_app13148350
crossref_primary_10_1007_s00477_024_02846_5
crossref_primary_10_3390_app13042553
crossref_primary_10_1016_j_apenergy_2023_121544
crossref_primary_10_1016_j_ins_2024_121268
crossref_primary_10_1016_j_energy_2025_135486
crossref_primary_10_3389_fenrg_2023_1301828
crossref_primary_10_1016_j_enbuild_2024_115220
crossref_primary_10_1061_JWRMD5_WRENG_6665
crossref_primary_10_1007_s12665_024_11729_5
crossref_primary_10_1016_j_est_2023_108845
crossref_primary_10_1016_j_enconman_2024_119442
crossref_primary_10_1016_j_esd_2023_04_004
crossref_primary_10_1016_j_epsr_2024_111198
crossref_primary_10_1016_j_jhydrol_2024_132047
crossref_primary_10_1016_j_oceaneng_2024_117861
crossref_primary_10_3390_jrfm17080332
crossref_primary_10_1007_s42461_024_01141_9
crossref_primary_10_1016_j_enconman_2024_118758
crossref_primary_10_1016_j_epsr_2024_110265
crossref_primary_10_1016_j_ijepes_2024_110340
crossref_primary_10_1109_ACCESS_2024_3355194
crossref_primary_10_1016_j_applthermaleng_2024_122870
crossref_primary_10_1016_j_engappai_2024_109544
crossref_primary_10_2298_TSCI2402183L
crossref_primary_10_3390_atmos13101636
crossref_primary_10_1109_ACCESS_2024_3384246
crossref_primary_10_1016_j_egyr_2022_11_194
crossref_primary_10_1016_j_energy_2023_129799
crossref_primary_10_1016_j_enbuild_2024_114582
crossref_primary_10_1016_j_eswa_2025_126783
crossref_primary_10_1109_ACCESS_2023_3319395
crossref_primary_10_2355_isijinternational_ISIJINT_2023_099
crossref_primary_10_3390_su16166794
crossref_primary_10_1016_j_energy_2024_133535
crossref_primary_10_1016_j_engappai_2024_108434
crossref_primary_10_1016_j_neucom_2023_126648
crossref_primary_10_1016_j_energy_2024_130347
crossref_primary_10_1016_j_energy_2024_130468
crossref_primary_10_1029_2024EF004751
crossref_primary_10_1080_19942060_2024_2443118
crossref_primary_10_1109_TIA_2023_3344540
crossref_primary_10_1016_j_apenergy_2023_121160
crossref_primary_10_1016_j_apenergy_2024_123364
crossref_primary_10_1016_j_asoc_2025_112693
crossref_primary_10_1016_j_jobe_2025_112349
crossref_primary_10_1109_JSEN_2024_3510739
crossref_primary_10_1016_j_energy_2023_129866
crossref_primary_10_3389_feart_2023_1238286
crossref_primary_10_3390_su142013022
crossref_primary_10_3390_w15213717
crossref_primary_10_1063_5_0246927
crossref_primary_10_1142_S0218126625500203
Cites_doi 10.1016/j.energy.2015.01.028
10.1016/j.apenergy.2016.06.133
10.1109/TPWRS.2003.811010
10.1016/j.energy.2015.10.015
10.3390/en10081168
10.1016/j.apenergy.2011.04.020
10.1016/j.energy.2013.08.017
10.1016/j.energy.2014.02.089
10.1016/j.enbuild.2017.12.042
10.1016/j.energy.2013.05.055
10.1109/TPWRS.2010.2080325
10.1016/j.scs.2019.101623
10.3390/en12101948
10.1016/j.energy.2019.116085
10.1016/j.energy.2020.119347
10.1016/j.scs.2020.102283
10.1109/ACCESS.2020.2972303
10.1016/j.energy.2017.12.083
10.1016/j.energy.2017.12.108
10.1016/j.energy.2017.12.156
10.1016/j.enbuild.2014.07.036
10.1016/j.enbuild.2016.09.068
10.1016/j.enbuild.2017.06.053
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright Elsevier BV Aug 15, 2022
Copyright_xml – notice: 2022 Elsevier Ltd
– notice: Copyright Elsevier BV Aug 15, 2022
DBID AAYXX
CITATION
7SP
7ST
7TB
8FD
C1K
F28
FR3
KR7
L7M
SOI
7S9
L.6
DOI 10.1016/j.energy.2022.124179
DatabaseName CrossRef
Electronics & Communications Abstracts
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
Civil Engineering Abstracts
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Environmental Sciences
EISSN 1873-6785
ExternalDocumentID 10_1016_j_energy_2022_124179
S0360544222010829
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSR
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29G
6TJ
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABFNM
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AHHHB
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
SEW
WUQ
~HD
7SP
7ST
7TB
8FD
AGCQF
C1K
F28
FR3
KR7
L7M
SOI
7S9
L.6
ID FETCH-LOGICAL-c433t-a852fee660f4f12b79398904997110b0b16c49fd49a08f1f81e94e46ac4b23a63
IEDL.DBID .~1
ISSN 0360-5442
IngestDate Thu Oct 02 06:13:33 EDT 2025
Wed Aug 13 09:31:29 EDT 2025
Thu Oct 09 00:25:32 EDT 2025
Thu Apr 24 23:03:54 EDT 2025
Fri Feb 23 02:39:11 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Heating load forecasting
District heating system
Informer
Relative position encoding algorithm
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c433t-a852fee660f4f12b79398904997110b0b16c49fd49a08f1f81e94e46ac4b23a63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9637-9670
PQID 2689214169
PQPubID 2045484
ParticipantIDs proquest_miscellaneous_2675578906
proquest_journals_2689214169
crossref_citationtrail_10_1016_j_energy_2022_124179
crossref_primary_10_1016_j_energy_2022_124179
elsevier_sciencedirect_doi_10_1016_j_energy_2022_124179
PublicationCentury 2000
PublicationDate 2022-08-15
PublicationDateYYYYMMDD 2022-08-15
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-15
  day: 15
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Energy (Oxford)
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Yan, Zhang (bib18) 2021
Zheng, Yuan, Chen (bib26) 2017; 10
Xue, Jiang, Zhou, Chen, Fang, Liu (bib21) 2019; 188
Li S, Jin X, Xuan Y, Zhou X, Chen W, Wang Y-X, et al. Enhancing the Locality and Breaking the Memory Bottleneck of Transformer on Time Series Forecasting. Advances in Neural Information Processing Systems, vol. vol. 32. Curran Associates, Inc., p. arXiv preprint arXiv:1907.00235.
Guo, Goumba, Wang (bib4) 2019; 12
Zhang, Wang (bib17) 2018
Karimi, Karami, Gholami, Khatibzadehazad, Moslemi (bib9) 2018; 144
Beltagy, Peters, Cohan (bib33) 2020
Luo, Oyedele, Ajayi, Akinade (bib19) 2020; 61
Wang, Lu, Li (bib28) 2019; 49
Gong, Bai, Qin, Wang, Yang, Wang (bib6) 2020; 27
Izadyar, Ghadamian, Ong, moghadam, Tong, Shamshirband (bib11) 2015; 93
Ghofrani, Ghayekhloo, Arabali, Ghayekhloo (bib22) 2015; 81
Zhou, Zhang, Peng, Zhang, Li, Xiong (bib35) 2020
Child, Gray, Radford, Sutskever (bib31) 2019
Chou, Bui (bib23) 2014; 82
Kurek, Bielecki, Świrski, Wojdan, Guzek, Białek (bib12) 2021; 217
Rezaie, Rosen (bib5) 2012; 93
Alkan, Keçebaş, Yamankaradeniz (bib3) 2013; 60
Idowu, Saguna, Åhlund, Schelén (bib8) 2016; 133
Liao, Ertesvåg, Zhao (bib1) 2013; 57
Barman, Dev Choudhury, Sutradhar (bib29) 2018; 145
Wang, Li, Khabsa, Fang, Ma (bib34) 2020
.
Lund, Werner, Wiltshire, Svendsen, Thorsen, Hvelplund (bib7) 2014; 68
Liu, Wang, Huang (bib13) 2020
Yan, Deng, Li, Qiu (bib36) 2019
Chakhchoukh, Panciatici, Mili (bib10) 2011; 26
Guo, Hendel (bib2) 2018; 145
Ma, Song, Zhang (bib27) 2017; 151
Liu, Wang, Zhao, Dong, Lu, Wang (bib20) 2020; 8
Iwafune, Yagita, Ikegami, Ogimoto (bib14) 2014
Fang, Lahdelma (bib15) 2016; 179
Shyh-Jier, Kuang-Rong (bib16) 2003; 18
Geysen, De Somer, Johansson, Brage, Vanhoudt (bib24) 2018; 162
Xudong, Shuo, Qingwu (bib25) 2020
Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, et al. Attention is all you need. Advances in neural information processing systems, vol. vol. 30. Curran Associates, Inc.
Dai, Yang, Yang, Carbonell, Le, Salakhutdinov (bib37) 2019
Kurek (10.1016/j.energy.2022.124179_bib12) 2021; 217
Liu (10.1016/j.energy.2022.124179_bib20) 2020; 8
Beltagy (10.1016/j.energy.2022.124179_bib33) 2020
Guo (10.1016/j.energy.2022.124179_bib2) 2018; 145
Luo (10.1016/j.energy.2022.124179_bib19) 2020; 61
Zheng (10.1016/j.energy.2022.124179_bib26) 2017; 10
Barman (10.1016/j.energy.2022.124179_bib29) 2018; 145
Child (10.1016/j.energy.2022.124179_bib31) 2019
Yan (10.1016/j.energy.2022.124179_bib18) 2021
Ma (10.1016/j.energy.2022.124179_bib27) 2017; 151
Iwafune (10.1016/j.energy.2022.124179_bib14) 2014
Fang (10.1016/j.energy.2022.124179_bib15) 2016; 179
Yan (10.1016/j.energy.2022.124179_bib36) 2019
Idowu (10.1016/j.energy.2022.124179_bib8) 2016; 133
Liao (10.1016/j.energy.2022.124179_bib1) 2013; 57
Guo (10.1016/j.energy.2022.124179_bib4) 2019; 12
Chakhchoukh (10.1016/j.energy.2022.124179_bib10) 2011; 26
Lund (10.1016/j.energy.2022.124179_bib7) 2014; 68
Zhang (10.1016/j.energy.2022.124179_bib17) 2018
Chou (10.1016/j.energy.2022.124179_bib23) 2014; 82
Wang (10.1016/j.energy.2022.124179_bib34) 2020
Wang (10.1016/j.energy.2022.124179_bib28) 2019; 49
Ghofrani (10.1016/j.energy.2022.124179_bib22) 2015; 81
Geysen (10.1016/j.energy.2022.124179_bib24) 2018; 162
Izadyar (10.1016/j.energy.2022.124179_bib11) 2015; 93
Xudong (10.1016/j.energy.2022.124179_bib25) 2020
Dai (10.1016/j.energy.2022.124179_bib37) 2019
Gong (10.1016/j.energy.2022.124179_bib6) 2020; 27
Liu (10.1016/j.energy.2022.124179_bib13) 2020
Xue (10.1016/j.energy.2022.124179_bib21) 2019; 188
Alkan (10.1016/j.energy.2022.124179_bib3) 2013; 60
Zhou (10.1016/j.energy.2022.124179_bib35) 2020
Shyh-Jier (10.1016/j.energy.2022.124179_bib16) 2003; 18
10.1016/j.energy.2022.124179_bib32
Rezaie (10.1016/j.energy.2022.124179_bib5) 2012; 93
Karimi (10.1016/j.energy.2022.124179_bib9) 2018; 144
10.1016/j.energy.2022.124179_bib30
References_xml – volume: 10
  year: 2017
  ident: bib26
  article-title: Short-term load forecasting using EMD-LSTM neural networks with a xgboost algorithm for feature importance evaluation
  publication-title: Energies
– volume: 145
  start-page: 710
  year: 2018
  end-page: 720
  ident: bib29
  article-title: A regional hybrid Goa-SVM model based on similar day approach for short-term load forecasting in Assam, India
  publication-title: Energy
– reference: Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, et al. Attention is all you need. Advances in neural information processing systems, vol. vol. 30. Curran Associates, Inc.
– volume: 81
  start-page: 777
  year: 2015
  end-page: 786
  ident: bib22
  article-title: A hybrid short-term load forecasting with a new input selection framework
  publication-title: Energy
– volume: 151
  start-page: 157
  year: 2017
  end-page: 166
  ident: bib27
  article-title: Energy consumption prediction of air-conditioning systems in buildings by selecting similar days based on combined weights
  publication-title: Energy Build
– volume: 18
  start-page: 673
  year: 2003
  end-page: 679
  ident: bib16
  article-title: Short-term load forecasting via ARMA model identification including non-Gaussian process considerations
  publication-title: IEEE Trans Power Syst
– volume: 60
  start-page: 426
  year: 2013
  end-page: 434
  ident: bib3
  article-title: Exergoeconomic analysis of a district heating system for geothermal energy using specific exergy cost method
  publication-title: Energy
– start-page: 2994
  year: 2020
  end-page: 2998
  ident: bib13
  article-title: Short-term Forecast of Multi-load of Electrical Heating and Cooling in Regional Integrated Energy System Based on Deep LSTM RNN
  publication-title: IEEE 4th Conference on Energy Internet and Energy System Integration (EI2)
– start-page: 2676
  year: 2018
  end-page: 2680
  ident: bib17
  article-title: Thermal Load Forecasting Based on PSO-SVR
  publication-title: IEEE 4th International Conference on Computer and Communications (ICCC)
– volume: 68
  start-page: 1
  year: 2014
  end-page: 11
  ident: bib7
  article-title: 4th generation district heating (4GDH)
  publication-title: Energy
– volume: 49
  year: 2019
  ident: bib28
  article-title: Multi-criteria comprehensive study on predictive algorithm of hourly heating energy consumption for residential buildings
  publication-title: Sustain Cities Soc
– volume: 179
  start-page: 544
  year: 2016
  end-page: 552
  ident: bib15
  article-title: Evaluation of a multiple linear regression model and SARIMA model in forecasting heat demand for district heating system
  publication-title: Appl Energy
– year: 2019
  ident: bib37
  article-title: Transformer-XL: attentive language models beyond a fixed-length context
– year: 2020
  ident: bib33
  article-title: Longformer: the long-document transformer
– start-page: 1197
  year: 2014
  end-page: 1204
  ident: bib14
  article-title: Short-term forecasting of residential building load for distributed energy management
  publication-title: IEEE international energy conference (ENERGYCON)
– year: 2020
  ident: bib34
  article-title: Linformer: self-attention with linear complexity
– volume: 162
  start-page: 144
  year: 2018
  end-page: 153
  ident: bib24
  article-title: Operational thermal load forecasting in district heating networks using machine learning and expert advice
  publication-title: Energy Build
– year: 2019
  ident: bib31
  article-title: Generating long sequences with sparse transformers
– volume: 61
  start-page: 102283
  year: 2020
  ident: bib19
  article-title: Comparative study of machine learning-based multi-objective prediction framework for multiple building energy loads
  publication-title: Sustain Cities Soc
– reference: Li S, Jin X, Xuan Y, Zhou X, Chen W, Wang Y-X, et al. Enhancing the Locality and Breaking the Memory Bottleneck of Transformer on Time Series Forecasting. Advances in Neural Information Processing Systems, vol. vol. 32. Curran Associates, Inc., p. arXiv preprint arXiv:1907.00235.
– year: 2020
  ident: bib35
  article-title: Informer: beyond efficient transformer for long sequence time-series forecasting
– volume: 27
  start-page: 100950
  year: 2020
  ident: bib6
  article-title: Gradient boosting machine for predicting return temperature of district heating system: a case study for residential buildings in Tianjin
  publication-title: J Build Eng
– volume: 57
  start-page: 671
  year: 2013
  end-page: 681
  ident: bib1
  article-title: Energetic and exergetic efficiencies of coal-fired CHP (combined heat and power) plants used in district heating systems of China
  publication-title: Energy
– volume: 8
  start-page: 33360
  year: 2020
  end-page: 33369
  ident: bib20
  article-title: Heating load forecasting for combined heat and power plants via strand-based LSTM
  publication-title: IEEE Access
– volume: 217
  year: 2021
  ident: bib12
  article-title: Heat demand forecasting algorithm for a Warsaw district heating network
  publication-title: Energy
– reference: .
– volume: 82
  start-page: 437
  year: 2014
  end-page: 446
  ident: bib23
  article-title: Modeling heating and cooling loads by artificial intelligence for energy-efficient building design
  publication-title: Energy Build
– volume: 188
  start-page: 116085
  year: 2019
  ident: bib21
  article-title: Multi-step ahead forecasting of heat load in district heating systems using machine learning algorithms
  publication-title: Energy
– start-page: 1085
  year: 2020
  end-page: 1090
  ident: bib25
  article-title: Prediction of building heating and cooling load based on IPSO-LSTM neural network
– volume: 144
  start-page: 928
  year: 2018
  end-page: 940
  ident: bib9
  article-title: Priority index considering temperature and date proximity for selection of similar days in knowledge-based short term load forecasting method
  publication-title: Energy
– volume: 26
  start-page: 982
  year: 2011
  end-page: 991
  ident: bib10
  article-title: Electric load forecasting based on statistical robust methods
  publication-title: IEEE Trans Power Syst
– year: 2019
  ident: bib36
  article-title: TENER: adapting transformer encoder for named entity recognition
– start-page: 1753
  year: 2021
  end-page: 1758
  ident: bib18
  article-title: Cooling, heating and electrical load forecasting method for integrated energy system based on SVR model
  publication-title: 2021 6th Asia conference on power and electrical engineering (ACPEE)
– volume: 145
  start-page: 79
  year: 2018
  end-page: 87
  ident: bib2
  article-title: Urban water networks as an alternative source for district heating and emergency heat-wave cooling
  publication-title: Energy
– volume: 93
  start-page: 2
  year: 2012
  end-page: 10
  ident: bib5
  article-title: District heating and cooling: review of technology and potential enhancements
  publication-title: Appl Energy
– volume: 93
  start-page: 1558
  year: 2015
  end-page: 1567
  ident: bib11
  article-title: Appraisal of the support vector machine to forecast residential heating demand for the District Heating System based on the monthly overall natural gas consumption
  publication-title: Energy
– volume: 12
  start-page: 1948
  year: 2019
  ident: bib4
  article-title: Comparison of direct and indirect active thermal energy storage strategies for large-scale solar heating systems
  publication-title: Energies
– volume: 133
  start-page: 478
  year: 2016
  end-page: 488
  ident: bib8
  article-title: Applied machine learning: forecasting heat load in district heating system
  publication-title: Energy Build
– volume: 81
  start-page: 777
  issue: 119
  year: 2015
  ident: 10.1016/j.energy.2022.124179_bib22
  article-title: A hybrid short-term load forecasting with a new input selection framework
  publication-title: Energy
  doi: 10.1016/j.energy.2015.01.028
– volume: 179
  start-page: 544
  year: 2016
  ident: 10.1016/j.energy.2022.124179_bib15
  article-title: Evaluation of a multiple linear regression model and SARIMA model in forecasting heat demand for district heating system
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.06.133
– volume: 18
  start-page: 673
  issue: 2
  year: 2003
  ident: 10.1016/j.energy.2022.124179_bib16
  article-title: Short-term load forecasting via ARMA model identification including non-Gaussian process considerations
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2003.811010
– volume: 93
  start-page: 1558
  year: 2015
  ident: 10.1016/j.energy.2022.124179_bib11
  article-title: Appraisal of the support vector machine to forecast residential heating demand for the District Heating System based on the monthly overall natural gas consumption
  publication-title: Energy
  doi: 10.1016/j.energy.2015.10.015
– volume: 10
  issue: 8
  year: 2017
  ident: 10.1016/j.energy.2022.124179_bib26
  article-title: Short-term load forecasting using EMD-LSTM neural networks with a xgboost algorithm for feature importance evaluation
  publication-title: Energies
  doi: 10.3390/en10081168
– volume: 93
  start-page: 2
  year: 2012
  ident: 10.1016/j.energy.2022.124179_bib5
  article-title: District heating and cooling: review of technology and potential enhancements
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2011.04.020
– volume: 60
  start-page: 426
  year: 2013
  ident: 10.1016/j.energy.2022.124179_bib3
  article-title: Exergoeconomic analysis of a district heating system for geothermal energy using specific exergy cost method
  publication-title: Energy
  doi: 10.1016/j.energy.2013.08.017
– volume: 68
  start-page: 1
  year: 2014
  ident: 10.1016/j.energy.2022.124179_bib7
  article-title: 4th generation district heating (4GDH)
  publication-title: Energy
  doi: 10.1016/j.energy.2014.02.089
– volume: 162
  start-page: 144
  year: 2018
  ident: 10.1016/j.energy.2022.124179_bib24
  article-title: Operational thermal load forecasting in district heating networks using machine learning and expert advice
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2017.12.042
– volume: 57
  start-page: 671
  year: 2013
  ident: 10.1016/j.energy.2022.124179_bib1
  article-title: Energetic and exergetic efficiencies of coal-fired CHP (combined heat and power) plants used in district heating systems of China
  publication-title: Energy
  doi: 10.1016/j.energy.2013.05.055
– volume: 26
  start-page: 982
  issue: 3
  year: 2011
  ident: 10.1016/j.energy.2022.124179_bib10
  article-title: Electric load forecasting based on statistical robust methods
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2010.2080325
– volume: 49
  year: 2019
  ident: 10.1016/j.energy.2022.124179_bib28
  article-title: Multi-criteria comprehensive study on predictive algorithm of hourly heating energy consumption for residential buildings
  publication-title: Sustain Cities Soc
  doi: 10.1016/j.scs.2019.101623
– volume: 12
  start-page: 1948
  issue: 10
  year: 2019
  ident: 10.1016/j.energy.2022.124179_bib4
  article-title: Comparison of direct and indirect active thermal energy storage strategies for large-scale solar heating systems
  publication-title: Energies
  doi: 10.3390/en12101948
– volume: 188
  start-page: 116085
  year: 2019
  ident: 10.1016/j.energy.2022.124179_bib21
  article-title: Multi-step ahead forecasting of heat load in district heating systems using machine learning algorithms
  publication-title: Energy
  doi: 10.1016/j.energy.2019.116085
– volume: 217
  year: 2021
  ident: 10.1016/j.energy.2022.124179_bib12
  article-title: Heat demand forecasting algorithm for a Warsaw district heating network
  publication-title: Energy
  doi: 10.1016/j.energy.2020.119347
– start-page: 1085
  year: 2020
  ident: 10.1016/j.energy.2022.124179_bib25
– year: 2020
  ident: 10.1016/j.energy.2022.124179_bib35
– volume: 61
  start-page: 102283
  year: 2020
  ident: 10.1016/j.energy.2022.124179_bib19
  article-title: Comparative study of machine learning-based multi-objective prediction framework for multiple building energy loads
  publication-title: Sustain Cities Soc
  doi: 10.1016/j.scs.2020.102283
– year: 2019
  ident: 10.1016/j.energy.2022.124179_bib31
– volume: 8
  start-page: 33360
  year: 2020
  ident: 10.1016/j.energy.2022.124179_bib20
  article-title: Heating load forecasting for combined heat and power plants via strand-based LSTM
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2972303
– year: 2019
  ident: 10.1016/j.energy.2022.124179_bib37
– year: 2019
  ident: 10.1016/j.energy.2022.124179_bib36
– start-page: 1197
  year: 2014
  ident: 10.1016/j.energy.2022.124179_bib14
  article-title: Short-term forecasting of residential building load for distributed energy management
– start-page: 2676
  year: 2018
  ident: 10.1016/j.energy.2022.124179_bib17
  article-title: Thermal Load Forecasting Based on PSO-SVR
– year: 2020
  ident: 10.1016/j.energy.2022.124179_bib33
– volume: 144
  start-page: 928
  year: 2018
  ident: 10.1016/j.energy.2022.124179_bib9
  article-title: Priority index considering temperature and date proximity for selection of similar days in knowledge-based short term load forecasting method
  publication-title: Energy
  doi: 10.1016/j.energy.2017.12.083
– volume: 27
  start-page: 100950
  year: 2020
  ident: 10.1016/j.energy.2022.124179_bib6
  article-title: Gradient boosting machine for predicting return temperature of district heating system: a case study for residential buildings in Tianjin
  publication-title: J Build Eng
– volume: 145
  start-page: 79
  year: 2018
  ident: 10.1016/j.energy.2022.124179_bib2
  article-title: Urban water networks as an alternative source for district heating and emergency heat-wave cooling
  publication-title: Energy
  doi: 10.1016/j.energy.2017.12.108
– volume: 145
  start-page: 710
  year: 2018
  ident: 10.1016/j.energy.2022.124179_bib29
  article-title: A regional hybrid Goa-SVM model based on similar day approach for short-term load forecasting in Assam, India
  publication-title: Energy
  doi: 10.1016/j.energy.2017.12.156
– start-page: 1753
  year: 2021
  ident: 10.1016/j.energy.2022.124179_bib18
  article-title: Cooling, heating and electrical load forecasting method for integrated energy system based on SVR model
– year: 2020
  ident: 10.1016/j.energy.2022.124179_bib34
– volume: 82
  start-page: 437
  year: 2014
  ident: 10.1016/j.energy.2022.124179_bib23
  article-title: Modeling heating and cooling loads by artificial intelligence for energy-efficient building design
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2014.07.036
– volume: 133
  start-page: 478
  year: 2016
  ident: 10.1016/j.energy.2022.124179_bib8
  article-title: Applied machine learning: forecasting heat load in district heating system
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2016.09.068
– start-page: 2994
  year: 2020
  ident: 10.1016/j.energy.2022.124179_bib13
  article-title: Short-term Forecast of Multi-load of Electrical Heating and Cooling in Regional Integrated Energy System Based on Deep LSTM RNN
– volume: 151
  start-page: 157
  year: 2017
  ident: 10.1016/j.energy.2022.124179_bib27
  article-title: Energy consumption prediction of air-conditioning systems in buildings by selecting similar days based on combined weights
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2017.06.053
– ident: 10.1016/j.energy.2022.124179_bib32
– ident: 10.1016/j.energy.2022.124179_bib30
SSID ssj0005899
Score 2.6868153
Snippet Accurate load forecasting of district heating systems (DHSs) is an essential guide to guaranteeing effective energy production, distribution, and rational...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 124179
SubjectTerms Air quality
Air temperature
Algorithms
Artificial neural networks
Autoregressive models
China
District heating
District heating system
energy
Energy distribution
Forecasting
heat
Heating
Heating load
Heating load forecasting
Heating systems
Informer
Long short-term memory
Multilayer perceptrons
Neural networks
Outdoor air quality
Performance assessment
prediction
Prediction models
Recurrent neural networks
Relative humidity
Relative position encoding algorithm
System effectiveness
temperature
time series analysis
Wind speed
Title Load forecasting of district heating system based on Informer
URI https://dx.doi.org/10.1016/j.energy.2022.124179
https://www.proquest.com/docview/2689214169
https://www.proquest.com/docview/2675578906
Volume 253
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-6785
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005899
  issn: 0360-5442
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1873-6785
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005899
  issn: 0360-5442
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1873-6785
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005899
  issn: 0360-5442
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1873-6785
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005899
  issn: 0360-5442
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-6785
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005899
  issn: 0360-5442
  databaseCode: AKRWK
  dateStart: 19760301
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iB72IT1xdlwhe624eTdODBxFlfV5U8BaSNIEVacXdvfrbnenDF4LgsemElpnMI8l8M4QcRuu4BceZWJA3XjOKxFoPApHgbqNwIatL5t_cqvGDvHxMHxfIaYeFwbTK1vY3Nr221u3IsOXm8GUyGd6B7YV4A48wYE-hOYL4pMywi8HR25c0D133kETiBKk7-Fyd4xVqfB3sEjk_AkfHMKHrd_f0w1DX3ud8jay2YSM9af5snSyEcoMsd6ji6QbZPvtErAFhq7LTTXJ8XdmCQmgavJ1ijjOtIi2wXO7EzyiaYhxrCjpT9GkFrUraoJTC6xZ5OD-7Px0nbc-ExEshZonVKY8hKDWKMjLuQP1yneO-JgNH70aOKS_zWMjcjnRkUbOQyyCV9dJxYZXYJotlVYYdQlObjYCuYM4JqXzUufUqMqHBwwebih4RHauMbwuKY1-LZ9Nljj2ZhsEGGWwaBvdI8jHrpSmo8Qd91knBfFsYBmz-HzP7ndBMq5hTw5XOOYMoFF4ffLwGlcJ7EluGao40WZoiQFjt_vvje2QFn_D0maV9sjh7nYd9CF9mblCvzwFZOrm4Gt--A6re7d4
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxwxDLaAHuCCCi3qAoVU4jrs5jGZzKGHCoEWunApSNyiJJNIW6EZxC5Xfjv2PGiLKiFxTRzNyI792YntABwl54VD4MwcypuuGWXmXECBKITbJH0s2pb5l1d6eqMubvPbFTgZamEorbK3_Z1Nb611PzLuuTm-n8_Hv9D2or9BRxgYUxhRrsIHlYuCIrDjp7_yPEz7iCRRZ0Q-1M-1SV6xLbDDMFGIY0Q6Thld_8enV5a6hZ-zj7DZ-43sR_drW7AS621YH8qKF9uwc_qnZA0Je51dfILvs8ZVDH3TGNyCkpxZk1hF_XLnYcnIFtNY19GZEahVrKlZV6YUHz7Dzdnp9ck06x9NyIKScpk5k4sUo9aTpBIXHvWvNCUFNgUivZ94roMqU6VKNzGJJ8NjqaLSLigvpNNyB9bqpo5fgOWumCBdxb2XSodkShd04tIgxEeXyxHIgVU29B3F6WGLOzukjv22HYMtMdh2DB5B9rLqvuuo8QZ9MUjB_rMzLBr9N1buD0KzvWYurNCmFBzdUJz-9jKNOkUXJa6OzSPRFHlOFcJ6990fP4T16fXlzM7Or37uwQbN0FE0z_dhbfnwGL-iL7P0B-1efQY1T-9z
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Load+forecasting+of+district+heating+system+based+on+Informer&rft.jtitle=Energy+%28Oxford%29&rft.au=Gong%2C+Mingju&rft.au=Zhao%2C+Yin&rft.au=Sun%2C+Jiawang&rft.au=Han%2C+Cuitian&rft.date=2022-08-15&rft.issn=0360-5442&rft.volume=253&rft.spage=124179&rft_id=info:doi/10.1016%2Fj.energy.2022.124179&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_energy_2022_124179
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon