Localization of the epileptogenic network from scalp EEG using a patient-specific whole-brain model

Computational modeling is a key tool for elucidating the neuronal mechanisms underlying epileptic activity. Despite considerable progress, existing models often lack realistic accuracy in representing electrophysiological epileptic activity. In this study, we used a comprehensive human brain model b...

Full description

Saved in:
Bibliographic Details
Published inHarvard data science review Vol. 9; no. 1; pp. 18 - 37
Main Authors Maliia, Mihai Dragos, Köksal-Ersöz, Elif, Benard, Adrien, Calas, Tristan, Nica, Anca, Denoyer, Yves, Yochum, Maxime, Wendling, Fabrice, Benquet, Pascal
Format Journal Article
LanguageEnglish
Published 255 Main Street, 9th Floor, Cambridge, Massachusetts 02142, USA MIT Press 03.03.2025
MIT Press Journals, The
The MIT Press
Subjects
Online AccessGet full text
ISSN2472-1751
2472-1751
2644-2353
DOI10.1162/netn_a_00418

Cover

Abstract Computational modeling is a key tool for elucidating the neuronal mechanisms underlying epileptic activity. Despite considerable progress, existing models often lack realistic accuracy in representing electrophysiological epileptic activity. In this study, we used a comprehensive human brain model based on a neural mass model, which is tailored to the layered structure of the neocortex and incorporates patient-specific imaging data. This approach allowed the simulation of scalp EEGs in an epileptic patient suffering from type 2 focal cortical dysplasia (FCD). The simulation specifically addressed epileptic activity induced by FCD, faithfully reproducing intracranial interictal epileptiform discharges (IEDs) recorded with electrocorticography. For constructing the patient-specific scalp EEG, we carefully defined a clear delineation of the epileptogenic zone by numerical simulations to ensure fidelity to the topography, polarity, and diffusion characteristics of IEDs. This nuanced approach improves the accuracy of the simulated EEG signal, provides a more accurate representation of epileptic activity, and enhances our understanding of the mechanism behind the epileptogenic networks. The accuracy of the model was confirmed by a postoperative reevaluation with a secondary EEG simulation that was consistent with the lesion’s removal. Ultimately, this personalized approach may prove instrumental in optimizing and tailoring epilepsy treatment strategies. This study aimed to create a neurophysiologically grounded computer model of focal epilepsy. This is a feature frequently lacking to simulations in this domain, making the translation from in silico to in vivo results questionable and difficult to understand for clinical electrophysiologists. We adapted a whole-brain neuronal mass model for EEG generation in various conscious states to replicate the EEG patterns of a type 2 focal cortical dysplasia (FCD), a condition associated with epilepsy. Our model successfully simulated both intracranial and scalp EEGs of a complex patient with type 2 FCD, who was later cured through surgery. Importantly, the simulated lesion location matched the patient’s epileptogenic zone, and removing this area in the model eliminated epileptic activity in the EEG, demonstrating the model’s accuracy.
AbstractList Computational modeling is a key tool for elucidating the neuronal mechanisms underlying epileptic activity. Despite considerable progress, existing models often lack realistic accuracy in representing electrophysiological epileptic activity. In this study, we used a comprehensive human brain model based on a neural mass model, which is tailored to the layered structure of the neocortex and incorporates patient-specific imaging data. This approach allowed the simulation of scalp EEGs in an epileptic patient suffering from type 2 focal cortical dysplasia (FCD). The simulation specifically addressed epileptic activity induced by FCD, faithfully reproducing intracranial interictal epileptiform discharges (IEDs) recorded with electrocorticography. For constructing the patient-specific scalp EEG, we carefully defined a clear delineation of the epileptogenic zone by numerical simulations to ensure fidelity to the topography, polarity, and diffusion characteristics of IEDs. This nuanced approach improves the accuracy of the simulated EEG signal, provides a more accurate representation of epileptic activity, and enhances our understanding of the mechanism behind the epileptogenic networks. The accuracy of the model was confirmed by a postoperative reevaluation with a secondary EEG simulation that was consistent with the lesion's removal. Ultimately, this personalized approach may prove instrumental in optimizing and tailoring epilepsy treatment strategies.Computational modeling is a key tool for elucidating the neuronal mechanisms underlying epileptic activity. Despite considerable progress, existing models often lack realistic accuracy in representing electrophysiological epileptic activity. In this study, we used a comprehensive human brain model based on a neural mass model, which is tailored to the layered structure of the neocortex and incorporates patient-specific imaging data. This approach allowed the simulation of scalp EEGs in an epileptic patient suffering from type 2 focal cortical dysplasia (FCD). The simulation specifically addressed epileptic activity induced by FCD, faithfully reproducing intracranial interictal epileptiform discharges (IEDs) recorded with electrocorticography. For constructing the patient-specific scalp EEG, we carefully defined a clear delineation of the epileptogenic zone by numerical simulations to ensure fidelity to the topography, polarity, and diffusion characteristics of IEDs. This nuanced approach improves the accuracy of the simulated EEG signal, provides a more accurate representation of epileptic activity, and enhances our understanding of the mechanism behind the epileptogenic networks. The accuracy of the model was confirmed by a postoperative reevaluation with a secondary EEG simulation that was consistent with the lesion's removal. Ultimately, this personalized approach may prove instrumental in optimizing and tailoring epilepsy treatment strategies.
Computational modeling is a key tool for elucidating the neuronal mechanisms underlying epileptic activity. Despite considerable progress, existing models often lack realistic accuracy in representing electrophysiological epileptic activity. In this study, we used a comprehensive human brain model based on a neural mass model, which is tailored to the layered structure of the neocortex and incorporates patient-specific imaging data. This approach allowed the simulation of scalp EEGs in an epileptic patient suffering from type 2 focal cortical dysplasia (FCD). The simulation specifically addressed epileptic activity induced by FCD, faithfully reproducing intracranial interictal epileptiform discharges (IEDs) recorded with electrocorticography. For constructing the patient-specific scalp EEG, we carefully defined a clear delineation of the epileptogenic zone by numerical simulations to ensure fidelity to the topography, polarity, and diffusion characteristics of IEDs. This nuanced approach improves the accuracy of the simulated EEG signal, provides a more accurate representation of epileptic activity, and enhances our understanding of the mechanism behind the epileptogenic networks. The accuracy of the model was confirmed by a postoperative reevaluation with a secondary EEG simulation that was consistent with the lesion’s removal. Ultimately, this personalized approach may prove instrumental in optimizing and tailoring epilepsy treatment strategies. This study aimed to create a neurophysiologically grounded computer model of focal epilepsy. This is a feature frequently lacking to simulations in this domain, making the translation from in silico to in vivo results questionable and difficult to understand for clinical electrophysiologists. We adapted a whole-brain neuronal mass model for EEG generation in various conscious states to replicate the EEG patterns of a type 2 focal cortical dysplasia (FCD), a condition associated with epilepsy. Our model successfully simulated both intracranial and scalp EEGs of a complex patient with type 2 FCD, who was later cured through surgery. Importantly, the simulated lesion location matched the patient’s epileptogenic zone, and removing this area in the model eliminated epileptic activity in the EEG, demonstrating the model’s accuracy.
Computational modeling is a key tool for elucidating the neuronal mechanisms underlying epileptic activity. Despite considerable progress, existing models often lack realistic accuracy in representing electrophysiological epileptic activity. In this study, we used a comprehensive human brain model based on a neural mass model, which is tailored to the layered structure of the neocortex and incorporates patient-specific imaging data. This approach allowed the simulation of scalp EEGs in an epileptic patient suffering from type 2 focal cortical dysplasia (FCD). The simulation specifically addressed epileptic activity induced by FCD, faithfully reproducing intracranial interictal epileptiform discharges (IEDs) recorded with electrocorticography. For constructing the patient-specific scalp EEG, we carefully defined a clear delineation of the epileptogenic zone by numerical simulations to ensure fidelity to the topography, polarity, and diffusion characteristics of IEDs. This nuanced approach improves the accuracy of the simulated EEG signal, provides a more accurate representation of epileptic activity, and enhances our understanding of the mechanism behind the epileptogenic networks. The accuracy of the model was confirmed by a postoperative reevaluation with a secondary EEG simulation that was consistent with the lesion’s removal. Ultimately, this personalized approach may prove instrumental in optimizing and tailoring epilepsy treatment strategies. This study aimed to create a neurophysiologically grounded computer model of focal epilepsy. This is a feature frequently lacking to simulations in this domain, making the translation from in silico to in vivo results questionable and difficult to understand for clinical electrophysiologists. We adapted a whole-brain neuronal mass model for EEG generation in various conscious states to replicate the EEG patterns of a type 2 focal cortical dysplasia (FCD), a condition associated with epilepsy. Our model successfully simulated both intracranial and scalp EEGs of a complex patient with type 2 FCD, who was later cured through surgery. Importantly, the simulated lesion location matched the patient’s epileptogenic zone, and removing this area in the model eliminated epileptic activity in the EEG, demonstrating the model’s accuracy.
Computational modeling is a key tool for elucidating the neuronal mechanisms underlying epileptic activity. Despite considerable progress, existing models often lack realistic accuracy in representing electrophysiological epileptic activity. In this study, we used a comprehensive human brain model based on a neural mass model, which is tailored to the layered structure of the neocortex and incorporates patient-specific imaging data. This approach allowed the simulation of scalp EEGs in an epileptic patient suffering from type 2 focal cortical dysplasia (FCD). The simulation specifically addressed epileptic activity induced by FCD, faithfully reproducing intracranial interictal epileptiform discharges (IEDs) recorded with electrocorticography. For constructing the patient-specific scalp EEG, we carefully defined a clear delineation of the epileptogenic zone by numerical simulations to ensure fidelity to the topography, polarity, and diffusion characteristics of IEDs. This nuanced approach improves the accuracy of the simulated EEG signal, provides a more accurate representation of epileptic activity, and enhances our understanding of the mechanism behind the epileptogenic networks. The accuracy of the model was confirmed by a postoperative reevaluation with a secondary EEG simulation that was consistent with the lesion’s removal. Ultimately, this personalized approach may prove instrumental in optimizing and tailoring epilepsy treatment strategies.
Computational modeling is a key tool for elucidating the neuronal mechanisms underlying epileptic activity. Despite considerable progress, existing models often lack realistic accuracy in representing electrophysiological epileptic activity. In this study, we used a comprehensive human brain model based on a neural mass model, which is tailored to the layered structure of the neocortex and incorporates patient-specific imaging data. This approach allowed the simulation of scalp EEGs in an epileptic patient suffering from type 2 focal cortical dysplasia (FCD). The simulation specifically addressed epileptic activity induced by FCD, faithfully reproducing intracranial interictal epileptiform discharges (IEDs) recorded with electrocorticography. For constructing the patient-specific scalp EEG, we carefully defined a clear delineation of the epileptogenic zone by numerical simulations to ensure fidelity to the topography, polarity, and diffusion characteristics of IEDs. This nuanced approach improves the accuracy of the simulated EEG signal, provides a more accurate representation of epileptic activity, and enhances our understanding of the mechanism behind the epileptogenic networks. The accuracy of the model was confirmed by a postoperative reevaluation with a secondary EEG simulation that was consistent with the lesion’s removal. Ultimately, this personalized approach may prove instrumental in optimizing and tailoring epilepsy treatment strategies.Author Summary: This study aimed to create a neurophysiologically grounded computer model of focal epilepsy. This is a feature frequently lacking to simulations in this domain, making the translation from in silico to in vivo results questionable and difficult to understand for clinical electrophysiologists. We adapted a whole-brain neuronal mass model for EEG generation in various conscious states to replicate the EEG patterns of a type 2 focal cortical dysplasia (FCD), a condition associated with epilepsy. Our model successfully simulated both intracranial and scalp EEGs of a complex patient with type 2 FCD, who was later cured through surgery. Importantly, the simulated lesion location matched the patient’s epileptogenic zone, and removing this area in the model eliminated epileptic activity in the EEG, demonstrating the model’s accuracy.
Author Wendling, Fabrice
Nica, Anca
Köksal-Ersöz, Elif
Benard, Adrien
Calas, Tristan
Maliia, Mihai Dragos
Denoyer, Yves
Benquet, Pascal
Yochum, Maxime
AuthorAffiliation “Van Gogh” Epilepsy Surgery Unit, Neurology Department, CIC 1414, University Hospital, Rennes, France
Neurology Department, Lorient Hospital, Lorient, France
University of Rennes, INSERM, LTSI-U1099, Rennes, France
AuthorAffiliation_xml – name: “Van Gogh” Epilepsy Surgery Unit, Neurology Department, CIC 1414, University Hospital, Rennes, France
– name: University of Rennes, INSERM, LTSI-U1099, Rennes, France
– name: Neurology Department, Lorient Hospital, Lorient, France
Author_xml – sequence: 1
  givenname: Mihai Dragos
  orcidid: 0000-0002-5436-0314
  surname: Maliia
  fullname: Maliia, Mihai Dragos
  email: Dragos-mihai.maliia@univ-rennes.fr
  organization: “Van Gogh” Epilepsy Surgery Unit, Neurology Department, CIC 1414, University Hospital, Rennes, France
– sequence: 2
  givenname: Elif
  surname: Köksal-Ersöz
  fullname: Köksal-Ersöz, Elif
  organization: University of Rennes, INSERM, LTSI-U1099, Rennes, France
– sequence: 3
  givenname: Adrien
  orcidid: 0009-0002-2745-0119
  surname: Benard
  fullname: Benard, Adrien
  organization: “Van Gogh” Epilepsy Surgery Unit, Neurology Department, CIC 1414, University Hospital, Rennes, France
– sequence: 4
  givenname: Tristan
  surname: Calas
  fullname: Calas, Tristan
  organization: University of Rennes, INSERM, LTSI-U1099, Rennes, France
– sequence: 5
  givenname: Anca
  orcidid: 0009-0000-0624-942X
  surname: Nica
  fullname: Nica, Anca
  organization: “Van Gogh” Epilepsy Surgery Unit, Neurology Department, CIC 1414, University Hospital, Rennes, France
– sequence: 6
  givenname: Yves
  orcidid: 0000-0002-1395-7341
  surname: Denoyer
  fullname: Denoyer, Yves
  organization: Neurology Department, Lorient Hospital, Lorient, France
– sequence: 7
  givenname: Maxime
  orcidid: 0000-0001-8632-6041
  surname: Yochum
  fullname: Yochum, Maxime
  organization: University of Rennes, INSERM, LTSI-U1099, Rennes, France
– sequence: 8
  givenname: Fabrice
  orcidid: 0000-0003-2428-9665
  surname: Wendling
  fullname: Wendling, Fabrice
  organization: University of Rennes, INSERM, LTSI-U1099, Rennes, France
– sequence: 9
  givenname: Pascal
  orcidid: 0000-0003-0217-5886
  surname: Benquet
  fullname: Benquet, Pascal
  organization: University of Rennes, INSERM, LTSI-U1099, Rennes, France
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40161993$$D View this record in MEDLINE/PubMed
https://hal.science/hal-04780128$$DView record in HAL
BookMark eNptktFrFDEQxhep2Fr75rMEfFFwNZNNsrtPpZSzLRz4os8hm53c5dxN1mSvRf96c16t1yIEEia_-b6ZZF4WRz54LIrXQD8CSPbJ4-yVVpRyaJ4VJ4zXrIRawNHB-bg4S2lDKWXAgPLmRXHMKUho2-qkMMtg9OB-6dkFT4Il8xoJTm7AaQ4r9M6Q7HEX4ndiYxhJyvREFosrsk3Or4gmU05FP5dpQuNs5u_WYcCyi9p5MoYeh1fFc6uHhGf3-2nx7fPi6-V1ufxydXN5sSwNr6q5bLDlVIquEZSiyIv3LVZS647aVtdWUuxNrytsBZcNN1VLwbbApJCyE7WsToubvW4f9EZN0Y06_lRBO_UnEOJK6Tg7M6AS2axnskMrJReCda01FuresEZSoDut873WtO3G7Js7jHp4JPr4xru1WoVbBdDyXCDPCu_3CusnedcXS7WLUV43FFhzW2X23b1bDD-2mGY1umRwGLTHsE2qgoYLWdeSZfTtE3QTttHnd91RgmVzgEy9OSz_wf_vx2fgwx4wMaQU0T4gQNVutNThaP0rcHQHhv9FfwN8AM1y
Cites_doi 10.1097/01.jnen.0000235117.67558.6d
10.1016/j.clinph.2006.06.754
10.1016/j.clinph.2018.01.062
10.1088/1741-2552/ac8fb4
10.1523/JNEUROSCI.0686-20.2020
10.1523/JNEUROSCI.2687-05.2005
10.1371/journal.pbio.3000419
10.1016/j.cell.2015.09.029
10.3389/fncom.2013.00094
10.1016/j.neuroimage.2006.01.021
10.1186/1475-925X-9-45
10.1093/brain/123.8.1733
10.1038/s41598-021-98046-0
10.1523/JNEUROSCI.23-29-09664.2003
10.1371/journal.pone.0213904
10.1007/BF00317988
10.1093/brain/awab362
10.14581/jer.20003
10.1111/epi.17301
10.1016/j.neuroimage.2013.05.041
10.1016/j.neuron.2013.10.017
10.3389/fncom.2013.00057
10.1523/JNEUROSCI.1584-13.2013
10.1007/s10827-010-0245-4
10.1126/scitranslmed.abp8982
10.1006/nimg.1998.0395
10.3171/2023.5.JNS23250
10.1038/nrn.2017.30
10.1002/ana.22610
10.1162/netn_a_00305
10.3389/fncel.2018.00181
10.1152/jn.00859.2011
10.1016/j.neuroimage.2023.119938
10.1111/j.0013-9580.2004.37703.x
10.1046/j.1460-9568.2002.01985.x
10.1016/j.neuroimage.2020.117467
10.1038/s41598-023-39867-z
10.1093/cercor/13.1.5
10.1016/j.clinph.2015.10.029
10.1088/1741-2552/ac8ba8
10.1016/j.seizure.2019.10.001
10.1016/j.neucli.2024.103005
10.1162/netn_a_00304
10.1016/j.neuroscience.2004.03.014
10.1093/brain/awu133
10.1016/j.expneurol.2016.05.037
10.1152/jn.00794.2006
10.1016/j.jneumeth.2015.03.027
10.1006/nimg.1998.0396
10.1073/pnas.2201128119
10.1162/netn_a_00043
10.1016/j.clinph.2024.03.006
10.1038/s41598-022-07730-2
10.1093/cercor/bhv099
10.1093/brain/awaa387
10.1155/2011/879716
10.3389/fnsys.2019.00059
10.1007/BF00199471
10.1111/epi.17310
10.1016/j.neuroimage.2009.12.049
10.1088/1741-2552/ac954f
10.1016/j.neuron.2016.02.037
10.1093/cercor/bht236
10.1016/S0079-6123(05)49011-1
10.1212/WNL.56.7.906
10.3389/fncom.2020.581040
10.1093/brain/awz303
10.1093/cercor/bhq257
10.1038/nn1861
10.1111/j.0013-9580.2003.12005.x
10.1093/brain/awx004
10.7554/eLife.55632
10.1007/s12264-022-00828-7
10.1016/j.neuron.2018.10.049
10.1016/B978-0-444-53497-2.00005-X
10.3389/neuro.04.004.2007
10.1063/5.0022171
10.1111/epi.16834
10.1111/epi.14598
10.1016/j.neuroimage.2016.02.054
10.1523/JNEUROSCI.0259-08.2008
10.1038/nn.3764
10.1111/epi.17690
10.1038/s41598-017-00699-3
10.1016/j.cortex.2011.12.001
10.3389/fphys.2022.1015838
10.1016/S1474-4422(09)70201-7
10.1126/science.7079735
10.1016/j.neuron.2016.06.033
ContentType Journal Article
Copyright 2024 Massachusetts Institute of Technology.
Copyright MIT Press Journals, The 2025
Attribution
2024 Massachusetts Institute of Technology 2024 Massachusetts Institute of Technology
Copyright_xml – notice: 2024 Massachusetts Institute of Technology.
– notice: Copyright MIT Press Journals, The 2025
– notice: Attribution
– notice: 2024 Massachusetts Institute of Technology 2024 Massachusetts Institute of Technology
DBID AAYXX
CITATION
NPM
8FE
8FG
8FH
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
LK8
M7P
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
1XC
VOOES
5PM
DOA
DOI 10.1162/netn_a_00418
DatabaseName CrossRef
PubMed
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Biological Sciences
Biological Science Database (ProQuest)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


CrossRef

PubMed
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2472-1751
2644-2353
EndPage 37
ExternalDocumentID oai_doaj_org_article_58e9d26bef664552b9fcf17dc2860106
PMC11949544
oai_HAL_hal_04780128v3
40161993
10_1162_netn_a_00418
netn_a_00418.pdf
Genre Journal Article
GrantInformation_xml – fundername: HORIZON EUROPE European Research Council
  grantid: 855109
– fundername: ;
  grantid: 855109
GroupedDBID 53G
AAFWJ
ADBBV
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARAPS
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
CCPQU
EBS
GROUPED_DOAJ
HCIFZ
HYE
JMNJE
K7-
M7P
MCG
MINIK
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
RMI
RPM
AAYXX
CITATION
PQGLB
PUEGO
EJD
NPM
8FE
8FG
8FH
ABUWG
AZQEC
DWQXO
GNUQQ
JQ2
LK8
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
1XC
VOOES
5PM
FRP
ID FETCH-LOGICAL-c433t-8e94065b8500e50e54d9e36aab0f9a7f60edcda3e954684c3901f9126566b5763
IEDL.DBID 8FG
ISSN 2472-1751
IngestDate Wed Aug 27 01:32:28 EDT 2025
Tue Sep 30 17:04:45 EDT 2025
Fri Sep 12 12:50:18 EDT 2025
Fri Sep 05 17:46:39 EDT 2025
Sat Aug 23 13:05:33 EDT 2025
Mon Jul 21 05:54:20 EDT 2025
Wed Oct 01 06:40:37 EDT 2025
Tue May 06 12:10:31 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Focal cortical dysplasia (FCD)
Interictal epileptiform discharges (IED)
Epilepsy surgery
Digital brain
ECoG
EEG modeling
Language English
License 2024 Massachusetts Institute of Technology.
Attribution: http://creativecommons.org/licenses/by
This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. For a full description of the license, please visit https://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c433t-8e94065b8500e50e54d9e36aab0f9a7f60edcda3e954684c3901f9126566b5763
Notes 2025
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Handling Editor: Gustavo Deco
Competing Interests: The authors have declared that no competing interests exist.
ORCID 0000-0002-5436-0314
0000-0002-1395-7341
0000-0003-2428-9665
0009-0002-2745-0119
0009-0000-0624-942X
0000-0003-0217-5886
0000-0001-8632-6041
0000-0003-3696-7953
OpenAccessLink https://www.proquest.com/docview/3185249511?pq-origsite=%requestingapplication%
PMID 40161993
PQID 3185249511
PQPubID 6535871
PageCount 20
ParticipantIDs doaj_primary_oai_doaj_org_article_58e9d26bef664552b9fcf17dc2860106
pubmed_primary_40161993
crossref_primary_10_1162_netn_a_00418
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11949544
proquest_miscellaneous_3184567762
proquest_journals_3185249511
mit_journals_10_1162_netn_a_00418
hal_primary_oai_HAL_hal_04780128v3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-03-03
PublicationDateYYYYMMDD 2025-03-03
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-03
  day: 03
PublicationDecade 2020
PublicationPlace 255 Main Street, 9th Floor, Cambridge, Massachusetts 02142, USA
PublicationPlace_xml – name: 255 Main Street, 9th Floor, Cambridge, Massachusetts 02142, USA
– name: United States
– name: Cambridge
– name: 255 Main Street, 9th Floor, Cambridge, Massachusetts 02142, USA journals-info@mit.edu
PublicationTitle Harvard data science review
PublicationTitleAlternate Netw Neurosci
PublicationYear 2025
Publisher MIT Press
MIT Press Journals, The
The MIT Press
Publisher_xml – name: MIT Press
– name: MIT Press Journals, The
– name: The MIT Press
References Rossini (2025031814212334400_bib62) 2021; 144
Bartolomei (2025031814212334400_bib4) 2016; 127
Karnani (2025031814212334400_bib31) 2016; 90
Nissen (2025031814212334400_bib56) 2021; 11
Chizhov (2025031814212334400_bib10) 2019; 14
Williams (2025031814212334400_bib84) 2019; 101
Proix (2025031814212334400_bib61) 2017; 140
Li (2025031814212334400_bib40) 2018; 2
Dale (2025031814212334400_bib13) 1999; 9
Jirsa (2025031814212334400_bib29) 2014; 137
Millán (2025031814212334400_bib49) 2022; 12
Makhalova (2025031814212334400_bib46) 2022; 63
Najm (2025031814212334400_bib55) 2022; 63
Wamsley (2025031814212334400_bib79) 2017; 18
Junges (2025031814212334400_bib30) 2020; 30
Lopes da Silva (2025031814212334400_bib43) 2013; 80
An (2025031814212334400_bib2) 2020; 10
Shamir (2025031814212334400_bib67) 2023; 7
Fischl (2025031814212334400_bib23) 1999; 9
Povysheva (2025031814212334400_bib60) 2007; 97
Bensaid (2025031814212334400_bib5) 2019; 13
Di Giacomo (2025031814212334400_bib20) 2019; 72
Wendling (2025031814212334400_bib81) 2002; 15
Zaitsev (2025031814212334400_bib89) 2012; 108
Deschle (2025031814212334400_bib18) 2020; 14
Mina (2025031814212334400_bib51) 2013; 7
Desikan (2025031814212334400_bib19) 2006; 31
Kini (2025031814212334400_bib32) 2019; 142
Moran (2025031814212334400_bib53) 2013; 7
Crino (2025031814212334400_bib11) 2001; 56
Wozny (2025031814212334400_bib86) 2011; 21
Suffczynski (2025031814212334400_bib70) 2004; 126
Tan (2025031814212334400_bib74) 2008; 28
Markram (2025031814212334400_bib47) 2015; 163
Oláh (2025031814212334400_bib58) 2007; 1
Bullock (2025031814212334400_bib6) 1977
Molaee-Ardekani (2025031814212334400_bib52) 2010; 52
Freeman (2025031814212334400_bib24) 1987; 56
Yang (2025031814212334400_bib88) 2013; 33
Shao (2025031814212334400_bib68) 2022; 38
Lopez-Sola (2025031814212334400_bib45) 2022; 19
Seay (2025031814212334400_bib65) 2020; 40
Traub (2025031814212334400_bib76) 1982; 216
Liu (2025031814212334400_bib42) 2022; 13
Tabbal (2025031814212334400_bib72) 2022; 19
Donos (2025031814212334400_bib21) 2016; 132
McIntyre (2025031814212334400_bib48) 2013; 116
Yang (2025031814212334400_bib87) 2017; 7
Köksal-Ersöz (2025031814212334400_bib35) 2024; 54
Tadel (2025031814212334400_bib73) 2011; 2011
Finardi (2025031814212334400_bib59) 2006; 65
Næss (2025031814212334400_bib54) 2021; 225
Demont-Guignard (2025031814212334400_bib17) 2012; 71
Millán (2025031814212334400_bib50) 2023; 7
Thomson (2025031814212334400_bib75) 2003; 13
Nunez (2025031814212334400_bib57) 2006; 117
Wendling (2025031814212334400_bib82) 2016; 260
Kuchenbuch (2025031814212334400_bib36) 2021; 62
Sun (2025031814212334400_bib71) 2022; 119
Calcagnotto (2025031814212334400_bib7) 2005; 25
Dallmer-Zerbe (2025031814212334400_bib15) 2023; 64
Lang (2025031814212334400_bib38) 2024; 140
Saggio (2025031814212334400_bib63) 2020; 9
Van Essen (2025031814212334400_bib78) 2013; 80
Jiang (2025031814212334400_bib28) 2015; 25
Wang (2025031814212334400_bib80) 2023; 15
Lemaréchal (2025031814212334400_bib39) 2022; 145
Dallmer-Zerbe (2025031814212334400_bib14) 2023; 13
Ying (2025031814212334400_bib90) 2004; 45
Womelsdorf (2025031814212334400_bib85) 2014; 17
Deleuze (2025031814212334400_bib16) 2019; 17
Lindén (2025031814212334400_bib41) 2010; 29
Chassoux (2025031814212334400_bib9) 2000; 123
Bacci (2025031814212334400_bib3) 2003; 23
Kurbatova (2025031814212334400_bib37) 2016; 283
Shamas (2025031814212334400_bib66) 2018; 129
Sisodiya (2025031814212334400_bib69) 2009; 8
Catani (2025031814212334400_bib8) 2012; 48
Cruikshank (2025031814212334400_bib12) 2007; 10
Gramfort (2025031814212334400_bib25) 2010; 9
Sanchez-Todo (2025031814212334400_bib64) 2023; 270
Abbott (2025031814212334400_bib1) 2005; 149
Jansen (2025031814212334400_bib26) 1995; 73
Kobulashvili (2025031814212334400_bib33) 2018; 59
Eyal (2025031814212334400_bib22) 2018; 12
Ji (2025031814212334400_bib27) 2016; 26
Köksal-Ersöz (2025031814212334400_bib34) 2022; 19
Lopes da Silva (2025031814212334400_bib44) 2003; 44
Tremblay (2025031814212334400_bib77) 2016; 91
Wendling (2025031814212334400_bib83) 2024; 161
References_xml – volume: 65
  start-page: 883
  issue: 9
  year: 2006
  ident: 2025031814212334400_bib59
  article-title: NMDA receptor composition differs among anatomically diverse malformations of cortical development
  publication-title: Journal of Neuropathology and Experimental Neurology
  doi: 10.1097/01.jnen.0000235117.67558.6d
– volume: 117
  start-page: 2424
  issue: 11
  year: 2006
  ident: 2025031814212334400_bib57
  article-title: A theoretical basis for standing and traveling brain waves measured with human EEG with implications for an integrated consciousness
  publication-title: Clinical Neurophysiology
  doi: 10.1016/j.clinph.2006.06.754
– volume: 129
  start-page: 829
  issue: 4
  year: 2018
  ident: 2025031814212334400_bib66
  article-title: On the origin of epileptic high frequency oscillations observed on clinical electrodes
  publication-title: Clinical Neurophysiology
  doi: 10.1016/j.clinph.2018.01.062
– volume: 19
  start-page: 055005
  issue: 5
  year: 2022
  ident: 2025031814212334400_bib34
  article-title: Signal processing and computational modeling for interpretation of SEEG-recorded interictal epileptiform discharges in epileptogenic and non-epileptogenic zones
  publication-title: Journal of Neural Engineering
  doi: 10.1088/1741-2552/ac8fb4
– volume: 40
  start-page: 9224
  issue: 48
  year: 2020
  ident: 2025031814212334400_bib65
  article-title: Differential short-term plasticity of PV and SST neurons accounts for adaptation and facilitation of cortical neurons to auditory tones
  publication-title: Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.0686-20.2020
– volume: 25
  start-page: 9649
  issue: 42
  year: 2005
  ident: 2025031814212334400_bib7
  article-title: Dysfunction of synaptic inhibition in epilepsy associated with focal cortical dysplasia
  publication-title: Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.2687-05.2005
– volume: 17
  start-page: e3000419
  issue: 9
  year: 2019
  ident: 2025031814212334400_bib16
  article-title: Strong preference for autaptic self-connectivity of neocortical PV interneurons facilitates their tuning to γ-oscillations
  publication-title: PLoS Biology
  doi: 10.1371/journal.pbio.3000419
– volume: 163
  start-page: 456
  issue: 2
  year: 2015
  ident: 2025031814212334400_bib47
  article-title: Reconstruction and simulation of neocortical microcircuitry
  publication-title: Cell
  doi: 10.1016/j.cell.2015.09.029
– volume: 7
  start-page: 94
  year: 2013
  ident: 2025031814212334400_bib51
  article-title: Modulation of epileptic activity by deep brain stimulation: A model-based study of frequency-dependent effects
  publication-title: Frontiers in Computational Neuroscience
  doi: 10.3389/fncom.2013.00094
– volume: 31
  start-page: 968
  issue: 3
  year: 2006
  ident: 2025031814212334400_bib19
  article-title: An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2006.01.021
– volume: 9
  start-page: 45
  year: 2010
  ident: 2025031814212334400_bib25
  article-title: OpenMEEG: Opensource software for quasistatic bioelectromagnetics
  publication-title: Biomedical Engineering Online
  doi: 10.1186/1475-925X-9-45
– volume: 123
  start-page: 1733
  issue: 8
  year: 2000
  ident: 2025031814212334400_bib9
  article-title: Stereoelectroencephalography in focal cortical dysplasia: A 3D approach to delineating the dysplastic cortex
  publication-title: Brain
  doi: 10.1093/brain/123.8.1733
– volume: 11
  start-page: 19025
  issue: 1
  year: 2021
  ident: 2025031814212334400_bib56
  article-title: Optimization of epilepsy surgery through virtual resections on individual structural brain networks
  publication-title: Scientific Reports
  doi: 10.1038/s41598-021-98046-0
– volume: 23
  start-page: 9664
  issue: 29
  year: 2003
  ident: 2025031814212334400_bib3
  article-title: Major differences in inhibitory synaptic transmission onto two neocortical interneuron subclasses
  publication-title: Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.23-29-09664.2003
– volume: 14
  start-page: e0213904
  issue: 3
  year: 2019
  ident: 2025031814212334400_bib10
  article-title: Mathematical model of Na-K-Cl homeostasis in ictal and interictal discharges
  publication-title: PLOS ONE
  doi: 10.1371/journal.pone.0213904
– volume: 56
  start-page: 139
  issue: 2–3
  year: 1987
  ident: 2025031814212334400_bib24
  article-title: Simulation of chaotic EEG patterns with a dynamic model of the olfactory system
  publication-title: Biological Cybernetics
  doi: 10.1007/BF00317988
– volume: 145
  start-page: 1653
  issue: 5
  year: 2022
  ident: 2025031814212334400_bib39
  article-title: A brain atlas of axonal and synaptic delays based on modelling of cortico-cortical evoked potentials
  publication-title: Brain
  doi: 10.1093/brain/awab362
– volume: 10
  start-page: 8
  issue: 1
  year: 2020
  ident: 2025031814212334400_bib2
  article-title: Artificial intelligence and computational approaches for epilepsy
  publication-title: Journal of Epilepsy Research
  doi: 10.14581/jer.20003
– volume: 63
  start-page: 1899
  issue: 8
  year: 2022
  ident: 2025031814212334400_bib55
  article-title: The ILAE consensus classification of focal cortical dysplasia: An update proposed by an ad hoc task force of the ILAE diagnostic methods commission
  publication-title: Epilepsia
  doi: 10.1111/epi.17301
– volume: 80
  start-page: 62
  year: 2013
  ident: 2025031814212334400_bib78
  article-title: The WU-Minn Human Connectome Project: An overview
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.05.041
– volume: 80
  start-page: 1112
  issue: 5
  year: 2013
  ident: 2025031814212334400_bib43
  article-title: EEG and MEG: Relevance to neuroscience
  publication-title: Neuron
  doi: 10.1016/j.neuron.2013.10.017
– volume: 7
  start-page: 57
  year: 2013
  ident: 2025031814212334400_bib53
  article-title: Neural masses and fields in dynamic causal modeling
  publication-title: Frontiers in Computational Neuroscience
  doi: 10.3389/fncom.2013.00057
– volume: 33
  start-page: 19724
  issue: 50
  year: 2013
  ident: 2025031814212334400_bib88
  article-title: Development of GABA circuitry of fast-spiking basket interneurons in the medial prefrontal cortex of erbb4-mutant mice
  publication-title: Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.1584-13.2013
– volume: 29
  start-page: 423
  issue: 3
  year: 2010
  ident: 2025031814212334400_bib41
  article-title: Intrinsic dendritic filtering gives low-pass power spectra of local field potentials
  publication-title: Journal of Computational Neuroscience
  doi: 10.1007/s10827-010-0245-4
– volume: 15
  start-page: eabp8982
  issue: 680
  year: 2023
  ident: 2025031814212334400_bib80
  article-title: Delineating epileptogenic networks using brain imaging data and personalized modeling in drug-resistant epilepsy
  publication-title: Science Translational Medicine
  doi: 10.1126/scitranslmed.abp8982
– volume: 9
  start-page: 179
  issue: 2
  year: 1999
  ident: 2025031814212334400_bib13
  article-title: Cortical surface-based analysis: I. Segmentation and surface reconstruction
  publication-title: NeuroImage
  doi: 10.1006/nimg.1998.0395
– volume: 140
  start-page: 218
  issue: 1
  year: 2024
  ident: 2025031814212334400_bib38
  article-title: Computational modeling of whole-brain dynamics: A review of neurosurgical applications
  publication-title: Journal of Neurosurgery
  doi: 10.3171/2023.5.JNS23250
– volume: 18
  start-page: 299
  issue: 5
  year: 2017
  ident: 2025031814212334400_bib79
  article-title: Genetic and activity-dependent mechanisms underlying interneuron diversity
  publication-title: Nature Reviews Neuroscience
  doi: 10.1038/nrn.2017.30
– volume: 71
  start-page: 342
  issue: 3
  year: 2012
  ident: 2025031814212334400_bib17
  article-title: Distinct hyperexcitability mechanisms underlie fast ripples and epileptic spikes
  publication-title: Annals of Neurology
  doi: 10.1002/ana.22610
– volume: 7
  start-page: 811
  issue: 2
  year: 2023
  ident: 2025031814212334400_bib50
  article-title: The role of epidemic spreading in seizure dynamics and epilepsy surgery
  publication-title: Network Neuroscience
  doi: 10.1162/netn_a_00305
– volume: 12
  start-page: 181
  year: 2018
  ident: 2025031814212334400_bib22
  article-title: Human cortical pyramidal neurons: From spines to spikes via models
  publication-title: Frontiers in Cellular Neuroscience
  doi: 10.3389/fncel.2018.00181
– volume: 108
  start-page: 595
  issue: 2
  year: 2012
  ident: 2025031814212334400_bib89
  article-title: Electrophysiological classes of layer 2/3 pyramidal cells in monkey prefrontal cortex
  publication-title: Journal of Neurophysiology
  doi: 10.1152/jn.00859.2011
– volume: 270
  start-page: 119938
  year: 2023
  ident: 2025031814212334400_bib64
  article-title: A physical neural mass model framework for the analysis of oscillatory generators from laminar electrophysiological recordings
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2023.119938
– volume: 45
  start-page: 314
  issue: 4
  year: 2004
  ident: 2025031814212334400_bib90
  article-title: Increased numbers of coassembled PSD-95 to NMDA-receptor subunits NR2B and NR1 in human epileptic cortical dysplasia
  publication-title: Epilepsia
  doi: 10.1111/j.0013-9580.2004.37703.x
– volume: 15
  start-page: 1499
  issue: 9
  year: 2002
  ident: 2025031814212334400_bib81
  article-title: Epileptic fast activity can be explained by a model of impaired GABAergic dendritic inhibition
  publication-title: European Journal of Neuroscience
  doi: 10.1046/j.1460-9568.2002.01985.x
– volume: 225
  start-page: 117467
  year: 2021
  ident: 2025031814212334400_bib54
  article-title: Biophysically detailed forward modeling of the neural origin of EEG and MEG signals
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2020.117467
– volume: 13
  start-page: 13436
  issue: 1
  year: 2023
  ident: 2025031814212334400_bib14
  article-title: Computational modeling allows unsupervised classification of epileptic brain states across species
  publication-title: Scientific Reports
  doi: 10.1038/s41598-023-39867-z
– volume: 13
  start-page: 5
  issue: 1
  year: 2003
  ident: 2025031814212334400_bib75
  article-title: Interlaminar connections in the neocortex
  publication-title: Cerebral Cortex
  doi: 10.1093/cercor/13.1.5
– volume: 127
  start-page: 1157
  issue: 2
  year: 2016
  ident: 2025031814212334400_bib4
  article-title: What is the concordance between the seizure onset zone and the irritative zone? A SEEG quantified study
  publication-title: Clinical Neurophysiology
  doi: 10.1016/j.clinph.2015.10.029
– volume: 19
  start-page: 055002
  issue: 5
  year: 2022
  ident: 2025031814212334400_bib45
  article-title: A personalizable autonomous neural mass model of epileptic seizures
  publication-title: Journal of Neural Engineering
  doi: 10.1088/1741-2552/ac8ba8
– volume: 72
  start-page: 54
  year: 2019
  ident: 2025031814212334400_bib20
  article-title: Stereo-EEG ictal/interictal patterns and underlying pathologies
  publication-title: Seizure
  doi: 10.1016/j.seizure.2019.10.001
– volume: 54
  start-page: 103005
  issue: 5
  year: 2024
  ident: 2025031814212334400_bib35
  article-title: Whole-brain simulation of interictal epileptic discharges for patient-specific interpretation of interictal SEEG data
  publication-title: Clinical Neurophysiology
  doi: 10.1016/j.neucli.2024.103005
– volume: 7
  start-page: 377
  issue: 2
  year: 2023
  ident: 2025031814212334400_bib67
  article-title: Expanding connectomics to the laminar level: A perspective
  publication-title: Network Neuroscience
  doi: 10.1162/netn_a_00304
– volume: 126
  start-page: 467
  issue: 2
  year: 2004
  ident: 2025031814212334400_bib70
  article-title: Dynamics of non-convulsive epileptic phenomena modeled by a bistable neuronal network
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2004.03.014
– volume: 137
  start-page: 2210
  issue: 8
  year: 2014
  ident: 2025031814212334400_bib29
  article-title: On the nature of seizure dynamics
  publication-title: Brain
  doi: 10.1093/brain/awu133
– volume: 283
  start-page: 57
  issue: Part A
  year: 2016
  ident: 2025031814212334400_bib37
  article-title: Dynamic changes of depolarizing GABA in a computational model of epileptogenic brain: Insight for Dravet syndrome
  publication-title: Experimental Neurology
  doi: 10.1016/j.expneurol.2016.05.037
– volume: 97
  start-page: 1030
  issue: 2
  year: 2007
  ident: 2025031814212334400_bib60
  article-title: Electrophysiological differences between neurogliaform cells from monkey and rat prefrontal cortex
  publication-title: Journal of Neurophysiology
  doi: 10.1152/jn.00794.2006
– volume: 260
  start-page: 233
  year: 2016
  ident: 2025031814212334400_bib82
  article-title: Computational models of epileptiform activity
  publication-title: Journal of Neuroscience Methods
  doi: 10.1016/j.jneumeth.2015.03.027
– volume: 9
  start-page: 195
  issue: 2
  year: 1999
  ident: 2025031814212334400_bib23
  article-title: Cortical surface-based analysis: II: Inflation, flattening, and a surface-based coordinate system
  publication-title: NeuroImage
  doi: 10.1006/nimg.1998.0396
– volume: 119
  start-page: e2201128119
  issue: 31
  year: 2022
  ident: 2025031814212334400_bib71
  article-title: Deep neural networks constrained by neural mass models improve electrophysiological source imaging of spatiotemporal brain dynamics
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
  doi: 10.1073/pnas.2201128119
– volume: 2
  start-page: 218
  issue: 2
  year: 2018
  ident: 2025031814212334400_bib40
  article-title: Using network analysis to localize the epileptogenic zone from invasive EEG recordings in intractable focal epilepsy
  publication-title: Network Neuroscience
  doi: 10.1162/netn_a_00043
– volume-title: Introduction to nervous systems
  year: 1977
  ident: 2025031814212334400_bib6
– volume: 161
  start-page: 198
  year: 2024
  ident: 2025031814212334400_bib83
  article-title: Multiscale neuro-inspired models for interpretation of EEG signals in patients with epilepsy
  publication-title: Clinical Neurophysiology
  doi: 10.1016/j.clinph.2024.03.006
– volume: 12
  start-page: 4086
  issue: 1
  year: 2022
  ident: 2025031814212334400_bib49
  article-title: Epidemic models characterize seizure propagation and the effects of epilepsy surgery in individualized brain networks based on MEG and invasive EEG recordings
  publication-title: Scientific Reports
  doi: 10.1038/s41598-022-07730-2
– volume: 26
  start-page: 2612
  issue: 6
  year: 2016
  ident: 2025031814212334400_bib27
  article-title: Thalamocortical innervation pattern in mouse auditory and visual cortex: Laminar and cell-type specificity
  publication-title: Cerebral Cortex
  doi: 10.1093/cercor/bhv099
– volume: 144
  start-page: 251
  issue: 1
  year: 2021
  ident: 2025031814212334400_bib62
  article-title: Dendritic pathology, spine loss and synaptic reorganization in human cortex from epilepsy patients
  publication-title: Brain
  doi: 10.1093/brain/awaa387
– volume: 2011
  start-page: 879716
  year: 2011
  ident: 2025031814212334400_bib73
  article-title: Brainstorm: A user-friendly application for MEG/EEG analysis
  publication-title: Computational Intelligence and Neuroscience
  doi: 10.1155/2011/879716
– volume: 13
  start-page: 59
  year: 2019
  ident: 2025031814212334400_bib5
  article-title: COALIA: A computational model of human EEG for consciousness research
  publication-title: Frontiers in Systems Neuroscience
  doi: 10.3389/fnsys.2019.00059
– volume: 73
  start-page: 357
  issue: 4
  year: 1995
  ident: 2025031814212334400_bib26
  article-title: Electroencephalogram and visual evoked potential generation in a mathematical model of coupled cortical columns
  publication-title: Biological Cybernetics
  doi: 10.1007/BF00199471
– volume: 63
  start-page: 1942
  issue: 8
  year: 2022
  ident: 2025031814212334400_bib46
  article-title: Virtual epileptic patient brain modeling: Relationships with seizure onset and surgical outcome
  publication-title: Epilepsia
  doi: 10.1111/epi.17310
– volume: 52
  start-page: 1109
  issue: 3
  year: 2010
  ident: 2025031814212334400_bib52
  article-title: Computational modeling of high-frequency oscillations at the onset of neocortical partial seizures: From “altered structure” to “dysfunction”
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2009.12.049
– volume: 19
  start-page: 056032
  issue: 5
  year: 2022
  ident: 2025031814212334400_bib72
  article-title: Assessing HD-EEG functional connectivity states using a human brain computational model
  publication-title: Journal of Neural Engineering
  doi: 10.1088/1741-2552/ac954f
– volume: 90
  start-page: 86
  issue: 1
  year: 2016
  ident: 2025031814212334400_bib31
  article-title: Cooperative subnetworks of molecularly similar interneurons in mouse neocortex
  publication-title: Neuron
  doi: 10.1016/j.neuron.2016.02.037
– volume: 25
  start-page: 258
  issue: 1
  year: 2015
  ident: 2025031814212334400_bib28
  article-title: Developmental reduction of asynchronous GABA release from neocortical fast-spiking neurons
  publication-title: Cerebral Cortex
  doi: 10.1093/cercor/bht236
– volume: 149
  start-page: 147
  year: 2005
  ident: 2025031814212334400_bib1
  article-title: Drivers and modulators from push-pull and balanced synaptic input
  publication-title: Progress in Brain Research
  doi: 10.1016/S0079-6123(05)49011-1
– volume: 56
  start-page: 906
  issue: 7
  year: 2001
  ident: 2025031814212334400_bib11
  article-title: Differential expression of glutamate and GABA-A receptor subunit mRNA in cortical dysplasia
  publication-title: Neurology
  doi: 10.1212/WNL.56.7.906
– volume: 14
  start-page: 581040
  year: 2020
  ident: 2025031814212334400_bib18
  article-title: On the validity of neural mass models
  publication-title: Frontiers in Computational Neuroscience
  doi: 10.3389/fncom.2020.581040
– volume: 142
  start-page: 3892
  issue: 12
  year: 2019
  ident: 2025031814212334400_bib32
  article-title: Virtual resection predicts surgical outcome for drug-resistant epilepsy
  publication-title: Brain
  doi: 10.1093/brain/awz303
– volume: 21
  start-page: 1818
  issue: 8
  year: 2011
  ident: 2025031814212334400_bib86
  article-title: Specificity of synaptic connectivity between layer 1 inhibitory interneurons and layer 2/3 pyramidal neurons in the rat neocortex
  publication-title: Cerebral Cortex
  doi: 10.1093/cercor/bhq257
– volume: 10
  start-page: 462
  issue: 4
  year: 2007
  ident: 2025031814212334400_bib12
  article-title: Synaptic basis for intense thalamocortical activation of feedforward inhibitory cells in neocortex
  publication-title: Nature Neuroscience
  doi: 10.1038/nn1861
– volume: 44
  start-page: 72
  issue: S12
  year: 2003
  ident: 2025031814212334400_bib44
  article-title: Epilepsies as dynamical diseases of brain systems: Basic models of the transition between normal and epileptic activity
  publication-title: Epilepsia
  doi: 10.1111/j.0013-9580.2003.12005.x
– volume: 140
  start-page: 641
  issue: 3
  year: 2017
  ident: 2025031814212334400_bib61
  article-title: Individual brain structure and modelling predict seizure propagation
  publication-title: Brain
  doi: 10.1093/brain/awx004
– volume: 9
  start-page: e55632
  year: 2020
  ident: 2025031814212334400_bib63
  article-title: A taxonomy of seizure dynamotypes
  publication-title: eLife
  doi: 10.7554/eLife.55632
– volume: 38
  start-page: 1007
  issue: 9
  year: 2022
  ident: 2025031814212334400_bib68
  article-title: Pathological networks involving dysmorphic neurons in type II focal cortical dysplasia
  publication-title: Neuroscience Bulletin
  doi: 10.1007/s12264-022-00828-7
– volume: 101
  start-page: 91
  issue: 1
  year: 2019
  ident: 2025031814212334400_bib84
  article-title: Higher-order thalamocortical inputs gate synaptic long-term potentiation via disinhibition
  publication-title: Neuron
  doi: 10.1016/j.neuron.2018.10.049
– volume: 116
  start-page: 55
  year: 2013
  ident: 2025031814212334400_bib48
  article-title: Computational modeling of deep brain stimulation
  publication-title: Handbook of Clinical Neurology
  doi: 10.1016/B978-0-444-53497-2.00005-X
– volume: 1
  start-page: 4
  year: 2007
  ident: 2025031814212334400_bib58
  article-title: Output of neurogliaform cells to various neuron types in the human and rat cerebral cortex
  publication-title: Frontiers in Neural Circuits
  doi: 10.3389/neuro.04.004.2007
– volume: 30
  start-page: 113106
  issue: 11
  year: 2020
  ident: 2025031814212334400_bib30
  article-title: Epilepsy surgery: Evaluating robustness using dynamic network models
  publication-title: Chaos
  doi: 10.1063/5.0022171
– volume: 62
  start-page: 683
  issue: 3
  year: 2021
  ident: 2025031814212334400_bib36
  article-title: In silico model reveals the key role of GABA in KCNT1-epilepsy in infancy with migrating focal seizures
  publication-title: Epilepsia
  doi: 10.1111/epi.16834
– volume: 59
  start-page: 2272
  issue: 12
  year: 2018
  ident: 2025031814212334400_bib33
  article-title: Diagnostic and prognostic value of noninvasive long-term video-electroencephalographic monitoring in epilepsy surgery: A systematic review and meta-analysis from the E-PILEPSY consortium
  publication-title: Epilepsia
  doi: 10.1111/epi.14598
– volume: 132
  start-page: 344
  year: 2016
  ident: 2025031814212334400_bib21
  article-title: A connectomics approach combining structural and effective connectivity assessed by intracranial electrical stimulation
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2016.02.054
– volume: 28
  start-page: 10062
  issue: 40
  year: 2008
  ident: 2025031814212334400_bib74
  article-title: A local circuit model of learned striatal and dopamine cell responses under probabilistic schedules of reward
  publication-title: Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.0259-08.2008
– volume: 17
  start-page: 1031
  issue: 8
  year: 2014
  ident: 2025031814212334400_bib85
  article-title: Dynamic circuit motifs underlying rhythmic gain control, gating and integration
  publication-title: Nature Neuroscience
  doi: 10.1038/nn.3764
– volume: 64
  start-page: 2221
  issue: 9
  year: 2023
  ident: 2025031814212334400_bib15
  article-title: Personalized dynamic network models of the human brain as a future tool for planning and optimizing epilepsy therapy
  publication-title: Epilepsia
  doi: 10.1111/epi.17690
– volume: 7
  start-page: 640
  issue: 1
  year: 2017
  ident: 2025031814212334400_bib87
  article-title: KATP channels mediate differential metabolic responses to glucose shortage of the dorsomedial and ventrolateral oscillators in the central clock
  publication-title: Scientific Reports
  doi: 10.1038/s41598-017-00699-3
– volume: 48
  start-page: 273
  issue: 2
  year: 2012
  ident: 2025031814212334400_bib8
  article-title: Short frontal lobe connections of the human brain
  publication-title: Cortex
  doi: 10.1016/j.cortex.2011.12.001
– volume: 13
  start-page: 1015838
  year: 2022
  ident: 2025031814212334400_bib42
  article-title: Localizing targets for neuromodulation in drug-resistant epilepsy using intracranial EEG and computational model
  publication-title: Frontiers in Physiology
  doi: 10.3389/fphys.2022.1015838
– volume: 8
  start-page: 830
  issue: 9
  year: 2009
  ident: 2025031814212334400_bib69
  article-title: Focal cortical dysplasia type II: Biological features and clinical perspectives
  publication-title: Lancet Neurology
  doi: 10.1016/S1474-4422(09)70201-7
– volume: 216
  start-page: 745
  issue: 4547
  year: 1982
  ident: 2025031814212334400_bib76
  article-title: Cellular mechanism of neuronal synchronization in epilepsy
  publication-title: Science
  doi: 10.1126/science.7079735
– volume: 91
  start-page: 260
  issue: 2
  year: 2016
  ident: 2025031814212334400_bib77
  article-title: GABAergic interneurons in the neocortex: From cellular properties to circuits
  publication-title: Neuron
  doi: 10.1016/j.neuron.2016.06.033
SSID ssj0002121048
ssj0002507470
Score 2.2881649
Snippet Computational modeling is a key tool for elucidating the neuronal mechanisms underlying epileptic activity. Despite considerable progress, existing models...
SourceID doaj
pubmedcentral
hal
proquest
pubmed
crossref
mit
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 18
SubjectTerms Accuracy
Bioengineering
Brain
Cerebral cortex
Consciousness
Digital brain
Dysplasia
ECoG
EEG
EEG modeling
Electroencephalography
Epilepsy
Epilepsy surgery
Firing pattern
Focal cortical dysplasia (FCD)
Interictal epileptiform discharges (IED)
Lesions
Life Sciences
Localization
Neocortex
Neuroimaging
Patients
Simulation
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BT1x4PwIFGQRHq4lfiY8FbVmhwolKvVmxY9M9kF3RlP79zjjZZYNAXJByii3HGY_9fZPMA-Ct9cmkMnVco_pwJVXgXnvLa8Qu3VYqyZpihz9_Mcsz9elcn--V-iKfsDE98Ci4I91E2wnjYzJGaS28TSFVdRdEk38R0umLMLZnTNEZjMCOPLncerobcYSGfu9aR_mlmhkG5VT9iCwX5Ah5-_tq-BPX_N1lcg-DTu7D3Yk8suNx0g_gVuwfwr1tYQY27dNHEE4JoaYIS7ZODFkeixs8ADbDGjVmFVg_un8zCi9hl9h7wxaLj4zc4L-xlk3pVjkFYpIzEbumOrrcU0EJlqvnPIazk8XXD0s-VVPgQUk5cJQjgrf2jS7LqPFSnY3StK0vk23rZEp8u66V0WplGhXoY0iylSDC59EqkU_goF_38Rkw2XXaBxmETrXSlW9CSEr4pvMqJgS8At5t5es2Y9IMl40NI9z-OhTwnoS_60OprvMNVAA3KYD7lwIU8AaXbjbG8vjU0T3KPEQA_FMW8BpX1k378_Ivszncrvuvjjm4HI3IqsIhds24Bem_StvH9VXugzS0Rlgp4OmoJrvpKKLUyAELaGYKNJvvvKVfXeQ031Vl8cFKPf8fUnoBdwRVLibvOXkIB8OPq_gS6dTgX-WdcwNb4x3s
  priority: 102
  providerName: Directory of Open Access Journals
Title Localization of the epileptogenic network from scalp EEG using a patient-specific whole-brain model
URI https://direct.mit.edu/netn/article/doi/10.1162/netn_a_00418
https://www.ncbi.nlm.nih.gov/pubmed/40161993
https://www.proquest.com/docview/3185249511
https://www.proquest.com/docview/3184567762
https://hal.science/hal-04780128
https://pubmed.ncbi.nlm.nih.gov/PMC11949544
https://doaj.org/article/58e9d26bef664552b9fcf17dc2860106
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2472-1751
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002121048
  issn: 2472-1751
  databaseCode: M~E
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2472-1751
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002507470
  issn: 2472-1751
  databaseCode: M~E
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAPP
  databaseName: MIT Press Direct OA Journals
  issn: 2472-1751
  databaseCode: JMNJE
  dateStart: 20190701
  customDbUrl:
  isFulltext: true
  eissn: 2472-1751
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002507470
  providerName: MIT
– providerCode: PRVAPP
  databaseName: MIT Press Direct OA Journals
  issn: 2472-1751
  databaseCode: JMNJE
  dateStart: 20170201
  customDbUrl:
  isFulltext: true
  eissn: 2472-1751
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002121048
  providerName: MIT
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2472-1751
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002121048
  issn: 2472-1751
  databaseCode: RPM
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2472-1751
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002121048
  issn: 2472-1751
  databaseCode: BENPR
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEF7R9sIFgXgZSrQgOK5q78v2CbXIaYTaCiEq9WZ5X20OtU3jwo3fzszGSWsESFEO9sqZ7M74-3Z2HoS8L03QIQ2OKVAfJoW0zChTshywSzWZDCLH3OHTM704l58v1MXocFuNYZWbd2J8UbvOoo_8IGb5ApvPso_9d4Zdo_B0dWyhsUP2Mg6ahJni8-Otj4VjdSxZbOLdNT-A7X5bNzVWmSomSBQL9gO-XGE45M71cvgb4_wzcPIeEs0fk0cjhaSH6zV_Qh749imxJwhKY1Il7QIFYkd9DzbfDx0oydLSdh3xTTGjhK5gdE-r6phi5PslbehYYZVh7iXGD9Gf2DqXGewhQWPDnGfkfF59-7RgYwMFZqUQAyt8CXitTKHS1Cv4SFd6oZvGpKFs8qBT-CuuEb5UUhfSov8jlDCTwPEMbETEc7Lbdq1_SahwThkrLFchlyozhbVBclM4I30AjEvIh81k1v26TkYd9xea1_cnPSFHONPbMVjdOl7obi7r0VhqBYI7ro0PWkuluCmDDVnuLC_isXBC3sE6TZ6xODyp8RoWG0LM_SES8haWsR5NcvUPafY3i3w38E7T4BHb22B1eJTStL67jWOAeeaAJAl5sdaJrTgSWTTQvoQUE22ZyDu90y6vYmXvLCvhh6V89X-5XpOHHNsQYyic2Ce7w82tfwPcaDCzaAAzsndUnX35OoseBvg-_VX9Bo3DEvw
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbacoALAvEKLWAQPUZN_EicA0IFdrul255aqbcQO3a7B5LQTVvxp_iNzDjJtkHArVJOtuWM7LG_z_Y8CHmfaZe4yJWhBPUJBRcm1FJnYQrYJYtYOJ6i7_DhUTI7EV9P5eka-TX4wqBZ5bAn-o26rA3eke94L19g83H8sfkRYtYofF0dUmh0anFgf17DkW35Yf8LzO82Y9PJ8edZ2GcVCI3gvA2VzQDEpFYyiqyET5SZ5UlR6MhlReqSyJamLLjNpEiUMHgp4LKYIfHRwM459LtO7kFfHGP1q-ne6k6HYTQuoQb7-oTtVLat8iLHqFZqhHw-QQDg2TmaX65_X7R_Y7h_GmreQr7pI_Kwp6x0t9Oxx2TNVk-ImSMI9k6ctHYUiCS1DewxTVuDUi4MrToLc4oeLHQJrRs6mexRtLQ_owXtI7qG6OuJ9kr0GlP1hhpzVlCfoOcpObmToX1GNqq6si8I5WUpteGGSZcKGWtljBNMq1IL6wBTA7I9DGbedHE5cn-eSVh-e9AD8glHetUGo2n7gvriLO8XZy5B8JIl2rokEVIynTnj4rQ0TPln6IC8g3ka9THbnedYhsGNEOOveEDewjTm_Raw_Ic0W8Mk3zS80WzoYlUNqxyfborK1pe-DTDdFJArIM87nViJI5C1A80MiBppy0jecU21OPeRxOM4gx8L8fL_cr0h92fHh_N8vn90sEkeMEyBjGZ4fItstBeX9hXwsla_9ouBkm93vfp-A4tDSuQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Localization+of+the+epileptogenic+network+from+scalp+EEG+using+a+patient-specific+whole-brain+model&rft.jtitle=Network+neuroscience+%28Cambridge%2C+Mass.%29&rft.au=Maliia%2C+Mihai+Dragos&rft.au=K%C3%B6ksal-Ers%C3%B6z%2C+Elif&rft.au=Benard%2C+Adrien&rft.au=Calas%2C+Tristan&rft.date=2025-03-03&rft.issn=2472-1751&rft.eissn=2472-1751&rft.volume=9&rft.issue=1&rft.spage=18&rft.epage=37&rft_id=info:doi/10.1162%2Fnetn_a_00418&rft.externalDBID=n%2Fa&rft.externalDocID=10_1162_netn_a_00418
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2472-1751&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2472-1751&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2472-1751&client=summon