Electricity Generation Using Membrane-less Microbial Fuel Cell during Wastewater Treatment

An upflow mode membrane-less microbial fuel cell (ML-MFC) was designed for wastewater treatment. Granular graphite electrodes, which are flexible in size, were adopted in the ML-MFC. Microbes present in anaerobic activated sludge were used as the biocatalyst and artificial wastewater was tested as s...

Full description

Saved in:
Bibliographic Details
Published inChinese journal of chemical engineering Vol. 16; no. 5; pp. 772 - 777
Main Author 杜竹玮 李清海 佟萌 李少华 李浩然
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.10.2008
Subjects
Online AccessGet full text
ISSN1004-9541
2210-321X
DOI10.1016/S1004-9541(08)60154-8

Cover

Abstract An upflow mode membrane-less microbial fuel cell (ML-MFC) was designed for wastewater treatment. Granular graphite electrodes, which are flexible in size, were adopted in the ML-MFC. Microbes present in anaerobic activated sludge were used as the biocatalyst and artificial wastewater was tested as substrate. During the electrochemically active microbe enrichment stage, a stable power output of 536 mW.m-3 with reference to the anode volume was generated by the ML-MFC running in batch mode. The voltage output decreased from 203 mV to about 190 mV after the ML-MFC was changed from batch mode to normally continuous mode, indicating that planktonic electrochemically active bacterial strains in the ML-MFC may be carried away along with the effluent. Cyclic voltammograms showed that the attached microbes possessed higher bioelectrochemical activity than the planktonic microbes. Forced aeration to the cathode benefited the electricity generation obviously. Higher feeding rate and longer electrode distance both increased the electricity generation. The coulombic yield was not more than 20% throughout the study, which is lower than that of MFCs with membrane. It is proposed that dissolved oxygen diffused from the cathode to the anode may consume part of the substrate.
AbstractList An upflow mode membrane-less microbial fuel cell (ML-MFC) was designed for wastewater treatment. Granular graphite electrodes, which are flexible in size, were adopted in the ML-MFC. Microbes present in anaerobic activated sludge were used as the biocatalyst and artificial wastewater was tested as substrate. During the electrochemically active microbe enrichment stage, a stable power output of 536 mW.m-3 with reference to the anode volume was generated by the ML-MFC running in batch mode. The voltage output decreased from 203 mV to about 190 mV after the ML-MFC was changed from batch mode to normally continuous mode, indicating that planktonic electrochemically active bacterial strains in the ML-MFC may be carried away along with the effluent. Cyclic voltammograms showed that the attached microbes possessed higher bioelectrochemical activity than the planktonic microbes. Forced aeration to the cathode benefited the electricity generation obviously. Higher feeding rate and longer electrode distance both increased the electricity generation. The coulombic yield was not more than 20% throughout the study, which is lower than that of MFCs with membrane. It is proposed that dissolved oxygen diffused from the cathode to the anode may consume part of the substrate.
An upflow mode membrane-less microbial fuel cell (ML-MFC) was designed for wastewater treatment. Granular graphite electrodes, which are flexible in size, were adopted in the ML-MFC. Microbes present in anaerobic activated sludge were used as the biocatalyst and artificial wastewater was tested as substrate. During the electrochemically active microbe enrichment stage, a stable power output of 536 mW.m3 with reference to the anode volume was generated by the ML-MFC running in batch mode. The voltage output decreased from 203 mV to about 190 mV after the ML-MFC was changed from batch mode to normally continuous mode, indicating that planktonic electrochemically active bacterial strains in the ML-MFC may be carried away along with the effluent. Cyclic voltammograms showed that the attached microbes possessed higher bioelectrochemical activity than the planktonic microbes. Forced aeration to the cathode benefited the electricity generation obviously. Higher feeding rate and longer electrode distance both increased the electricity generation. The coulombic yield was not more than 20% throughout the study, which is lower than that of MFCs with membrane. It is proposed that dissolved oxygen diffused from the cathode to the anode may consume part of the substrate.
An upflow mode membrane-less microbial fuel cell (ML-MFC) was designed for wastewater treatment. Granular graphite electrodes, which are flexible in size, were adopted in the ML-MFC. Microbes present in anaerobic activated sludge were used as the biocatalyst and artificial wastewater was tested as substrate. During the electrochemically active microbe enrichment stage, a stable power output of 536 mW·m−3 with reference to the anode volume was generated by the ML-MFC running in batch mode. The voltage output decreased from 203 mV to about 190 mV after the ML-MFC was changed from batch mode to normally continuous mode, indicating that planktonic electrochemically active bacterial strains in the ML-MFC may be carried away along with the effluent. Cyclic voltammograms showed that the attached microbes possessed higher bioelectrochemical activity than the planktonic microbes. Forced aeration to the cathode benefited the electricity generation obviously. Higher feeding rate and longer electrode distance both increased the electricity generation. The coulombic yield was not more than 20% throughout the study, which is lower than that of MFCs with membrane. It is proposed that dissolved oxygen diffused from the cathode to the anode may consume part of the substrate.
Author 杜竹玮 李清海 佟萌 李少华 李浩然
AuthorAffiliation National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100080, China Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Tsinghua University, Beijing 100084, China
Author_xml – sequence: 1
  fullname: 杜竹玮 李清海 佟萌 李少华 李浩然
BookMark eNqFkD9vFDEQxS0UJC6Bj4C0okBQbBj_W3tFgdApCZESpSARiMbyemeDwedNbF-ifHt8dxFFmlQzxXtv5v32yV6cIxLylsIhBdp9-k4BRNtLQT-A_tgBlaLVL8iCMQotZ_TnHln8l7wi-zn_AWCgqV6QX0cBXUne-fLQnGDEZIufY3OVfbxuznE1JBuxDZhzc-5dmgdvQ3O8xtAsMYRmXKeN8IfNBe9twdRcJrRlhbG8Ji8nGzK-eZwH5Or46HL5rT27ODldfj1rneC8tAplXYSyvdLAJR17sNCNo1TWMjkhAzH02mqmRlq7aTE4LeUkxqkflFSMH5D3u9ybNN-uMRez8tnV5-rj8zobLrnqO6Gq8PNOWGvknHAytfW2bknWB0PBbHiaLU-zgWVAmy1Po6tbPnHfJL-y6eFZ35edDyuDO4_JZOcxOhx9qujNOPtnE949Xv49x-vbytsM1v2dfEDDtKTQ9Zz_A-0TmqQ
CitedBy_id crossref_primary_10_1016_j_jbiosc_2014_12_008
crossref_primary_10_25269_jsel_v9i02_237
crossref_primary_10_1002_jctb_7301
crossref_primary_10_1016_j_chemosphere_2020_129059
crossref_primary_10_1080_10739149_2012_717331
crossref_primary_10_1016_j_seppur_2016_07_031
crossref_primary_10_1016_j_jpowsour_2010_09_064
crossref_primary_10_1016_j_desal_2015_05_021
crossref_primary_10_1016_S1004_9541_11_60023_2
crossref_primary_10_1016_j_fuel_2010_06_025
crossref_primary_10_1016_j_jenvman_2022_116538
crossref_primary_10_1016_j_jece_2022_107505
crossref_primary_10_1016_j_apenergy_2016_09_043
crossref_primary_10_1039_c2lc40405b
crossref_primary_10_1016_j_rser_2020_110590
crossref_primary_10_1007_s11270_015_2410_x
crossref_primary_10_1016_j_ijhydene_2016_05_187
crossref_primary_10_1080_15567036_2018_1548518
crossref_primary_10_24857_rgsa_v18n6_187
crossref_primary_10_1016_j_energ_2024_100001
crossref_primary_10_1016_j_ijhydene_2015_04_082
crossref_primary_10_1111_raq_12192
crossref_primary_10_1016_j_ijhydene_2017_02_064
crossref_primary_10_1080_19443994_2014_885396
crossref_primary_10_1016_j_bej_2023_108928
crossref_primary_10_1016_j_biortech_2013_03_003
crossref_primary_10_1016_j_ijhydene_2016_03_185
crossref_primary_10_1016_j_jenvman_2022_115152
crossref_primary_10_1515_ijcre_2021_0019
crossref_primary_10_3390_en11041003
crossref_primary_10_3390_membranes11100738
crossref_primary_10_1016_j_biotechadv_2015_02_013
crossref_primary_10_1016_j_matchemphys_2017_07_038
crossref_primary_10_1007_s13762_015_0844_8
crossref_primary_10_1016_j_jcou_2017_01_027
crossref_primary_10_1371_journal_pone_0136108
crossref_primary_10_1007_s11771_013_1510_2
crossref_primary_10_1002_jctb_4460
crossref_primary_10_1039_C4EW00028E
crossref_primary_10_1016_j_scitotenv_2022_154038
crossref_primary_10_3390_eng5040134
crossref_primary_10_1016_j_jallcom_2013_05_094
crossref_primary_10_1016_j_apenergy_2012_03_011
crossref_primary_10_1016_j_egyr_2022_08_192
crossref_primary_10_1080_09593330_2015_1077896
crossref_primary_10_1016_j_biortech_2011_09_007
crossref_primary_10_3390_molecules25133051
crossref_primary_10_1016_j_procbio_2020_09_014
crossref_primary_10_1016_j_rser_2013_08_052
Cites_doi 10.1002/bit.10501
10.1146/annurev.mi.47.100193.001403
10.1016/S1004-9541(07)60015-9
10.1021/es0525511
10.1289/ehp.113-a754
10.1016/S0032-9592(03)00203-6
10.1007/BF02918975
10.1016/S1872-2075(06)60010-1
10.1016/j.watres.2005.02.002
10.1038/nbt867
10.1021/bp050225j
10.1021/es0491026
10.1016/j.watres.2004.11.019
10.1038/nbt0802-788
10.1016/j.biortech.2006.09.050
10.1007/s10008-006-0167-2
10.1016/j.biortech.2005.03.027
10.1023/A:1025484009367
10.1016/S0956-5663(02)00110-0
10.1021/es0499344
10.1128/AEM.54.6.1472-1480.1988
10.1023/A:1008984516499
10.1016/S1004-9541(06)60068-2
10.1016/j.biotechadv.2007.05.004
10.1038/nbt716
ContentType Journal Article
Copyright 2008 Chemical Industry and Engineering Society of China (CIESC) and Chemical Industry Press (CIP)
Copyright_xml – notice: 2008 Chemical Industry and Engineering Society of China (CIESC) and Chemical Industry Press (CIP)
DBID 2RA
92L
CQIGP
W92
~WA
AAYXX
CITATION
7U5
8FD
L7M
DOI 10.1016/S1004-9541(08)60154-8
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库-工程技术
中文科技期刊数据库- 镜像站点
CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Solid State and Superconductivity Abstracts
DatabaseTitleList
Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitleAlternate Electricity Generation Using Membrane-less Microbial Fuel Cell during Wastewater Treatment
EISSN 2210-321X
EndPage 777
ExternalDocumentID 10_1016_S1004_9541_08_60154_8
S1004954108601548
28510693
GroupedDBID --K
--M
.~1
0R~
188
1B1
1~.
1~5
29B
2B.
2C0
2RA
4.4
457
4G.
5GY
5VR
5VS
7-5
71M
8P~
8RM
92H
92I
92L
92R
93N
AABNK
AACTN
AAEDT
AAIAV
AAIKJ
AAKOC
AALMO
AALRI
AAOAW
AAQFI
AAXUO
ABMAC
ABNUV
ABPIF
ABXDB
ABYKQ
ACDAQ
ACGFS
ACRLP
ADALY
ADBBV
ADEWK
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFUIB
AGHFR
AGUBO
AGYEJ
AHPOS
AIEXJ
AIKHN
AINHJ
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CCEZO
CDRFL
CDYEO
CHBEP
CQIGP
CS3
CW9
DU5
EBS
EFJIC
EJD
ENUVR
EO9
EP2
EP3
FA0
FDB
FEDTE
FIRID
FNPLU
FYGXN
GBLVA
HVGLF
HZ~
IPNFZ
J1W
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
RIG
ROL
SDC
SDF
SDG
SDH
SES
SPC
SPCBC
SSG
SSZ
T5K
TCJ
TGT
UGNYK
W92
~G-
~WA
AAEDW
ADMUD
EFLBG
-SB
-S~
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CAJEB
CITATION
EFKBS
Q--
U1G
U5L
~HD
7U5
8FD
L7M
ID FETCH-LOGICAL-c433t-7e5c4347a9780351d90a06dd57aa25fe204b98a827d160184bc855f4df9b75723
IEDL.DBID AIKHN
ISSN 1004-9541
IngestDate Sun Sep 28 07:30:06 EDT 2025
Wed Oct 01 03:37:03 EDT 2025
Thu Apr 24 23:12:52 EDT 2025
Fri Feb 23 02:37:34 EST 2024
Thu Nov 24 20:32:33 EST 2022
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords wastewater treatment
microbial fuel cell
membrane-less
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c433t-7e5c4347a9780351d90a06dd57aa25fe204b98a827d160184bc855f4df9b75723
Notes microbial fuel cell, membrane-less, wastewater treatment
11-3270/TQ
X703
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 35379647
PQPubID 23500
PageCount 6
ParticipantIDs proquest_miscellaneous_35379647
crossref_citationtrail_10_1016_S1004_9541_08_60154_8
crossref_primary_10_1016_S1004_9541_08_60154_8
elsevier_sciencedirect_doi_10_1016_S1004_9541_08_60154_8
chongqing_backfile_28510693
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2008-10-01
PublicationDateYYYYMMDD 2008-10-01
PublicationDate_xml – month: 10
  year: 2008
  text: 2008-10-01
  day: 01
PublicationDecade 2000
PublicationTitle Chinese journal of chemical engineering
PublicationTitleAlternate Chinese Journal of Chemical Engineering
PublicationYear 2008
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Logan, Murano, Scott, Gray, Head (bib9) 2005; 39
Zhang, Yu, Zhu, Hou, Yi, Ming (bib6) 2006; 14
Min, Cheng, Logan (bib8) 2005; 39
Min, Logan (bib1) 2004; 38
Park, Zeikus (bib11) 2003; 81
Holzman (bib7) 2005; 113
Rosenbaum, Schroder, Scholz (bib25) 2006; 10
Moon, Chang, Kim (bib2) 2006; 97
Allen, Bennetto (bib3) 1993; 39/40
Liu, Lian, Du, Li (bib19) 2006; 21
Liu, Logan (bib12) 2004; 38
Du, Li, Gu (bib10) 2007; 25
Lovley, Phillips (bib18) 1988; 54
Lovley (bib20) 1993; 47
Tartakovsky, Guiot (bib16) 2006; 22
Liu, Mao, Xu, Hess-Mohrb, Schmidtb (bib4) 2006; 14
Rabaey, Lissens, Siciliano, Verstraete (bib24) 2003; 25
Chaudhuri, Lovley (bib23) 2003; 21
Jang, Pham, Chang, Kang, Moon, Cho, Kim (bib15) 2004; 39
Pham, Jang, Chang, Kim (bib22) 2004; 14
Ghangrekar, Shinde (bib17) 2007; 98
Delong, Chandler (bib14) 2002; 20
Gil, Chang, Kim, Kim, Jang, Park, Kim (bib26) 2003; 18
Tender, Reimers, Stecher, Holmes, Bond, Lowy (bib13) 2002; 20
Wilkinson (bib5) 2000; 9
Aelterman, Rabaey, Pham, Boon, Verstraete (bib21) 2006; 40
Rosenbaum (10.1016/S1004-9541(08)60154-8_bib25) 2006; 10
Lovley (10.1016/S1004-9541(08)60154-8_bib18) 1988; 54
Zhang (10.1016/S1004-9541(08)60154-8_bib6) 2006; 14
Allen (10.1016/S1004-9541(08)60154-8_bib3) 1993; 39/40
Holzman (10.1016/S1004-9541(08)60154-8_bib7) 2005; 113
Chaudhuri (10.1016/S1004-9541(08)60154-8_bib23) 2003; 21
Delong (10.1016/S1004-9541(08)60154-8_bib14) 2002; 20
Park (10.1016/S1004-9541(08)60154-8_bib11) 2003; 81
Liu (10.1016/S1004-9541(08)60154-8_bib4) 2006; 14
Wilkinson (10.1016/S1004-9541(08)60154-8_bib5) 2000; 9
Jang (10.1016/S1004-9541(08)60154-8_bib15) 2004; 39
Logan (10.1016/S1004-9541(08)60154-8_bib9) 2005; 39
Ghangrekar (10.1016/S1004-9541(08)60154-8_bib17) 2007; 98
Min (10.1016/S1004-9541(08)60154-8_bib8) 2005; 39
Lovley (10.1016/S1004-9541(08)60154-8_bib20) 1993; 47
Tender (10.1016/S1004-9541(08)60154-8_bib13) 2002; 20
Tartakovsky (10.1016/S1004-9541(08)60154-8_bib16) 2006; 22
Aelterman (10.1016/S1004-9541(08)60154-8_bib21) 2006; 40
Du (10.1016/S1004-9541(08)60154-8_bib10) 2007; 25
Pham (10.1016/S1004-9541(08)60154-8_bib22) 2004; 14
Liu (10.1016/S1004-9541(08)60154-8_bib12) 2004; 38
Liu (10.1016/S1004-9541(08)60154-8_bib19) 2006; 21
Moon (10.1016/S1004-9541(08)60154-8_bib2) 2006; 97
Rabaey (10.1016/S1004-9541(08)60154-8_bib24) 2003; 25
Gil (10.1016/S1004-9541(08)60154-8_bib26) 2003; 18
Min (10.1016/S1004-9541(08)60154-8_bib1) 2004; 38
References_xml – volume: 47
  start-page: 263
  year: 1993
  end-page: 290
  ident: bib20
  article-title: “Dissimilatory metal reduction”
  publication-title: Annu. Rev. Microbial.
– volume: 21
  start-page: 1229
  year: 2003
  end-page: 1232
  ident: bib23
  article-title: “Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells”
  publication-title: Nat. Biotechnol.
– volume: 20
  start-page: 821
  year: 2002
  end-page: 825
  ident: bib13
  article-title: “Harnessing microbially generated power on the seafloor”
  publication-title: Nat. Biotechnol.
– volume: 38
  start-page: 4040
  year: 2004
  end-page: 4046
  ident: bib12
  article-title: “Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane”
  publication-title: Environ. Sci. Technol.
– volume: 39
  start-page: 1675
  year: 2005
  end-page: 1686
  ident: bib8
  article-title: “Electricity generation using membrane and salt bridge microbial fuel cells”
  publication-title: Water Res.
– volume: 14
  start-page: 324
  year: 2004
  end-page: 329
  ident: bib22
  article-title: “Improvement of cathode reaction of a mediatorless microbial fuel cell”
  publication-title: J. Microbiol. Biotechnol.
– volume: 39
  start-page: 1007
  year: 2004
  end-page: 1012
  ident: bib15
  article-title: “Construction and operation of a novel mediator- and membrane-less microbial fuel cell”
  publication-title: Process Biochem.
– volume: 39
  start-page: 942
  year: 2005
  end-page: 952
  ident: bib9
  article-title: “Electricity generation from cysteine in a microbial fuel cell”
  publication-title: Water Res.
– volume: 18
  start-page: 327
  year: 2003
  end-page: 334
  ident: bib26
  article-title: “Operational parameters affecting the performance of a mediator-less microbial fuel cell”
  publication-title: Biosens. Bioelectron.
– volume: 22
  start-page: 241
  year: 2006
  end-page: 246
  ident: bib16
  article-title: “A comparison of air and hydrogen peroxide oxygenated microbial fuel cell reactors”
  publication-title: Biotechnol. Prog.
– volume: 14
  start-page: 259
  year: 2006
  end-page: 265
  ident: bib4
  article-title: “Operation conditions optimization of hydrogen production by propane autothermal reforming for PEMFC application”
  publication-title: Chin. J. Chem. Eng.
– volume: 98
  start-page: 2879
  year: 2007
  end-page: 2885
  ident: bib17
  article-title: “Performance of membrane-less microbial fuel cell treating wastewater and effect of electrode distance and area on electricity production”
  publication-title: Bioresource Technol.
– volume: 81
  start-page: 348
  year: 2003
  end-page: 355
  ident: bib11
  article-title: “Improved fuel cell and electrode designs for producing electricity from microbial degradation”
  publication-title: Biotechnol. Bioeng.
– volume: 25
  start-page: 1531
  year: 2003
  end-page: 1535
  ident: bib24
  article-title: “A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency”
  publication-title: Biotechnol. Lett.
– volume: 25
  start-page: 464
  year: 2007
  end-page: 482
  ident: bib10
  article-title: “A state of the art review on microbial fuel cells: A promising technology for wastewater treatment and bioenergy”
  publication-title: Biotechnol. Adv.
– volume: 97
  start-page: 621
  year: 2006
  end-page: 627
  ident: bib2
  article-title: “Continuous electricity production from artificial wastewater using a mediator-less microbial fuel cell”
  publication-title: Bioresource Technol.
– volume: 14
  start-page: 802
  year: 2006
  end-page: 805
  ident: bib6
  article-title: “Effects of freeze/thaw cycles and gas purging method on polymer electrolyte membrane fuel cells”
  publication-title: Chin. J. Chem. Eng.
– volume: 38
  start-page: 5809
  year: 2004
  end-page: 5814
  ident: bib1
  article-title: “Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell”
  publication-title: Environ. Sci. Technol.
– volume: 113
  start-page: A754
  year: 2005
  end-page: A757
  ident: bib7
  article-title: “Microbe power”
  publication-title: Environ. Health Persp.
– volume: 20
  start-page: 788
  year: 2002
  end-page: 789
  ident: bib14
  article-title: “Power from the deep”
  publication-title: Nat. Biotechnol.
– volume: 40
  start-page: 3388
  year: 2006
  end-page: 3394
  ident: bib21
  article-title: “Continuous electricity generation at high voltages and currents using stacked microbial fuel cells”
  publication-title: Environ. Sci. Technol.
– volume: 54
  start-page: 1472
  year: 1988
  end-page: 1480
  ident: bib18
  article-title: “Novel mode of microbial energy metabolism: Organic carbon oxidation coupled to dissimilatory reduction of iron or manganese”
  publication-title: Appl. Environ. Microbial.
– volume: 39/40
  start-page: 27
  year: 1993
  end-page: 40
  ident: bib3
  article-title: “Microbial fuel-cells: Electricity production from carbohydrates”
  publication-title: Appl. Biochem. Biotechnol.
– volume: 21
  start-page: 131
  year: 2006
  end-page: 137
  ident: bib19
  article-title: “Construction of sugar-based microbial fuel cells by dissimilatory metal reduction bacteria”
  publication-title: Chin. J. Biotech.
– volume: 10
  start-page: 872
  year: 2006
  end-page: 878
  ident: bib25
  article-title: “Investigation of the electrocatalytic oxidation of formate and ethanol at platinum black under microbial fuel cell conditions”
  publication-title: J. Solid State Electrochem.
– volume: 9
  start-page: 99
  year: 2000
  end-page: 111
  ident: bib5
  article-title: “Gastrobots-benefits and challenges of microbial fuel cells in food powered robot applications”
  publication-title: Auton. Robot.
– volume: 81
  start-page: 348
  year: 2003
  ident: 10.1016/S1004-9541(08)60154-8_bib11
  article-title: “Improved fuel cell and electrode designs for producing electricity from microbial degradation”
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.10501
– volume: 47
  start-page: 263
  year: 1993
  ident: 10.1016/S1004-9541(08)60154-8_bib20
  article-title: “Dissimilatory metal reduction”
  publication-title: Annu. Rev. Microbial.
  doi: 10.1146/annurev.mi.47.100193.001403
– volume: 14
  start-page: 802
  issue: 6
  year: 2006
  ident: 10.1016/S1004-9541(08)60154-8_bib6
  article-title: “Effects of freeze/thaw cycles and gas purging method on polymer electrolyte membrane fuel cells”
  publication-title: Chin. J. Chem. Eng.
  doi: 10.1016/S1004-9541(07)60015-9
– volume: 40
  start-page: 3388
  year: 2006
  ident: 10.1016/S1004-9541(08)60154-8_bib21
  article-title: “Continuous electricity generation at high voltages and currents using stacked microbial fuel cells”
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es0525511
– volume: 113
  start-page: A754
  year: 2005
  ident: 10.1016/S1004-9541(08)60154-8_bib7
  article-title: “Microbe power”
  publication-title: Environ. Health Persp.
  doi: 10.1289/ehp.113-a754
– volume: 39
  start-page: 1007
  year: 2004
  ident: 10.1016/S1004-9541(08)60154-8_bib15
  article-title: “Construction and operation of a novel mediator- and membrane-less microbial fuel cell”
  publication-title: Process Biochem.
  doi: 10.1016/S0032-9592(03)00203-6
– volume: 39/40
  start-page: 27
  year: 1993
  ident: 10.1016/S1004-9541(08)60154-8_bib3
  article-title: “Microbial fuel-cells: Electricity production from carbohydrates”
  publication-title: Appl. Biochem. Biotechnol.
  doi: 10.1007/BF02918975
– volume: 21
  start-page: 131
  year: 2006
  ident: 10.1016/S1004-9541(08)60154-8_bib19
  article-title: “Construction of sugar-based microbial fuel cells by dissimilatory metal reduction bacteria”
  publication-title: Chin. J. Biotech.
  doi: 10.1016/S1872-2075(06)60010-1
– volume: 39
  start-page: 1675
  year: 2005
  ident: 10.1016/S1004-9541(08)60154-8_bib8
  article-title: “Electricity generation using membrane and salt bridge microbial fuel cells”
  publication-title: Water Res.
  doi: 10.1016/j.watres.2005.02.002
– volume: 21
  start-page: 1229
  year: 2003
  ident: 10.1016/S1004-9541(08)60154-8_bib23
  article-title: “Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells”
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt867
– volume: 22
  start-page: 241
  year: 2006
  ident: 10.1016/S1004-9541(08)60154-8_bib16
  article-title: “A comparison of air and hydrogen peroxide oxygenated microbial fuel cell reactors”
  publication-title: Biotechnol. Prog.
  doi: 10.1021/bp050225j
– volume: 38
  start-page: 5809
  year: 2004
  ident: 10.1016/S1004-9541(08)60154-8_bib1
  article-title: “Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell”
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es0491026
– volume: 39
  start-page: 942
  year: 2005
  ident: 10.1016/S1004-9541(08)60154-8_bib9
  article-title: “Electricity generation from cysteine in a microbial fuel cell”
  publication-title: Water Res.
  doi: 10.1016/j.watres.2004.11.019
– volume: 20
  start-page: 788
  year: 2002
  ident: 10.1016/S1004-9541(08)60154-8_bib14
  article-title: “Power from the deep”
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt0802-788
– volume: 98
  start-page: 2879
  year: 2007
  ident: 10.1016/S1004-9541(08)60154-8_bib17
  article-title: “Performance of membrane-less microbial fuel cell treating wastewater and effect of electrode distance and area on electricity production”
  publication-title: Bioresource Technol.
  doi: 10.1016/j.biortech.2006.09.050
– volume: 10
  start-page: 872
  year: 2006
  ident: 10.1016/S1004-9541(08)60154-8_bib25
  article-title: “Investigation of the electrocatalytic oxidation of formate and ethanol at platinum black under microbial fuel cell conditions”
  publication-title: J. Solid State Electrochem.
  doi: 10.1007/s10008-006-0167-2
– volume: 97
  start-page: 621
  year: 2006
  ident: 10.1016/S1004-9541(08)60154-8_bib2
  article-title: “Continuous electricity production from artificial wastewater using a mediator-less microbial fuel cell”
  publication-title: Bioresource Technol.
  doi: 10.1016/j.biortech.2005.03.027
– volume: 25
  start-page: 1531
  year: 2003
  ident: 10.1016/S1004-9541(08)60154-8_bib24
  article-title: “A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency”
  publication-title: Biotechnol. Lett.
  doi: 10.1023/A:1025484009367
– volume: 18
  start-page: 327
  year: 2003
  ident: 10.1016/S1004-9541(08)60154-8_bib26
  article-title: “Operational parameters affecting the performance of a mediator-less microbial fuel cell”
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/S0956-5663(02)00110-0
– volume: 38
  start-page: 4040
  year: 2004
  ident: 10.1016/S1004-9541(08)60154-8_bib12
  article-title: “Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane”
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es0499344
– volume: 54
  start-page: 1472
  year: 1988
  ident: 10.1016/S1004-9541(08)60154-8_bib18
  article-title: “Novel mode of microbial energy metabolism: Organic carbon oxidation coupled to dissimilatory reduction of iron or manganese”
  publication-title: Appl. Environ. Microbial.
  doi: 10.1128/AEM.54.6.1472-1480.1988
– volume: 9
  start-page: 99
  year: 2000
  ident: 10.1016/S1004-9541(08)60154-8_bib5
  article-title: “Gastrobots-benefits and challenges of microbial fuel cells in food powered robot applications”
  publication-title: Auton. Robot.
  doi: 10.1023/A:1008984516499
– volume: 14
  start-page: 324
  year: 2004
  ident: 10.1016/S1004-9541(08)60154-8_bib22
  article-title: “Improvement of cathode reaction of a mediatorless microbial fuel cell”
  publication-title: J. Microbiol. Biotechnol.
– volume: 14
  start-page: 259
  issue: 2
  year: 2006
  ident: 10.1016/S1004-9541(08)60154-8_bib4
  article-title: “Operation conditions optimization of hydrogen production by propane autothermal reforming for PEMFC application”
  publication-title: Chin. J. Chem. Eng.
  doi: 10.1016/S1004-9541(06)60068-2
– volume: 25
  start-page: 464
  year: 2007
  ident: 10.1016/S1004-9541(08)60154-8_bib10
  article-title: “A state of the art review on microbial fuel cells: A promising technology for wastewater treatment and bioenergy”
  publication-title: Biotechnol. Adv.
  doi: 10.1016/j.biotechadv.2007.05.004
– volume: 20
  start-page: 821
  year: 2002
  ident: 10.1016/S1004-9541(08)60154-8_bib13
  article-title: “Harnessing microbially generated power on the seafloor”
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt716
SSID ssj0020818
Score 2.0071735
Snippet An upflow mode membrane-less microbial fuel cell (ML-MFC) was designed for wastewater treatment. Granular graphite electrodes, which are flexible in size,...
An upflow mode membrane-less microbial fuel cell (ML-MFC) was designed for wastewater treatment. Granular graphite electrodes, which are flexible in size, were...
SourceID proquest
crossref
elsevier
chongqing
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 772
SubjectTerms membrane-less
microbial fuel cell
wastewater treatment
废水处理
无膜微生物处理
燃料电池废水
电能回收
Title Electricity Generation Using Membrane-less Microbial Fuel Cell during Wastewater Treatment
URI http://lib.cqvip.com/qk/84275X/20085/28510693.html
https://dx.doi.org/10.1016/S1004-9541(08)60154-8
https://www.proquest.com/docview/35379647
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection
  customDbUrl:
  eissn: 2210-321X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020818
  issn: 1004-9541
  databaseCode: ACRLP
  dateStart: 20060201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 2210-321X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020818
  issn: 1004-9541
  databaseCode: .~1
  dateStart: 20060201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 2210-321X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020818
  issn: 1004-9541
  databaseCode: AIKHN
  dateStart: 20060201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 2210-321X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020818
  issn: 1004-9541
  databaseCode: AKRWK
  dateStart: 20060201
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB5BuJQD6oOKQEv30EM5LPG-7N1jFCVKW8GloCIuq7W9KVFdJ0By5bezs7bTUqlC6s1aaUbWfOuZWe_MNwAfs5x554ShzjNNpUlL6hRLaZkrnPXiQgYRq3zP0-ml_HKlrrZg1PXCYFll6_sbnx69dbsyaK05WM7ng2_IdWaUxFFBMfHehh0uDOM92Bl-_jo935y7kLUtXnomkqLA70aeRklc_JTok6iHaqRZuFnUP25D8PhXuPrLccdoNHkJe20aSYbNm76CLV-_ht0_yAXfwPU4TriZFyHPJg27NIJAYpEAOfO_wjm59rQKro6czSMfU9A4WfuKjHxVkaaBkXx39_h_LZifXHRF6ftwORlfjKa0naRACynEimZehQeZOeQbEoqVJnFJWpYqc46rmeeJzI12mmclC0bQMi-0UjNZzkyeqYyLt9CrF7U_AFK4UvOZZEXOjMRCziQN-0A6ZIlxzhR9ONoYL0Ti4ifyS1keErskNaIPsjOnLVoScpyFUdlNtRkiYhERm2gbEbG6D6cbsWXDwvGcgO6wsk-2kw2R4jnRDx22NnxqeH8S0Fis761QIjbuHv6_8iN4wTtCXfYOequ7tX8fsppVfgzbpw_suN27j_Jt7xM
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT-MwEB1Be1g4rNgFRGFZfNgDHEyT2E7sY1VRlYX2QtEiLpaTuFAR0gLt_1-Pk3Q_pBXS3iJLM4rmOTPjeOYNwLckDa0xTFFjQ0m5inNqRBjTPBU468W4DMJX-Y7j4S3_fifuNqDf9MJgWWXt-yuf7r11vdKtrdldzGbdG-Q6U4LjqCCfeG9CmwumZAvavcur4Xh97kLWNn_pGXCKAr8aeSolfvE0kGdeD5VIs_A4Lx9eXPD4V7j6y3H7aDTYgY91Gkl61Zt-gg1bfobt38gFd-H-wk-4mWUuzyYVuzSCQHyRABnZZ3dOLi0tnKsjo5nnY3IaBytbkL4tClI1MJIf5g3_rznzk0lTlL4Ht4OLSX9I60kKNOOMLWlihXvgiUG-ISbCXAUmiPNcJMZEYmqjgKdKGhkleeiMIHmaSSGmPJ-qNBFJxPahVc5LewAkM7mMpjzM0lBxLOQMYrcPuEGWGGNU1oGjtfFcJM6ekF9KRy6xC2LFOsAbc-qsJiHHWRiFXlebISIaEdGB1B4RLTtwvhZbVCwc7wnIBiv9x3bSLlK8J3rSYKvdp4b3Jw6N-epNM8F84-7h_ys_gQ_DyehaX1-Or45gK2rIdcMv0Fq-ruyxy3CW6dd6B_8Ex8rxCw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electricity+Generation+Using+Membrane-less+Microbial+Fuel+Cell+during+Wastewater+Treatment&rft.jtitle=Chinese+journal+of+chemical+engineering&rft.au=Du%2C+Zhuwei&rft.au=Li%2C+Qinghai&rft.au=Tong%2C+Meng&rft.au=Li%2C+Shaohua&rft.date=2008-10-01&rft.issn=1004-9541&rft.volume=16&rft.issue=5&rft.spage=772&rft.epage=777&rft_id=info:doi/10.1016%2FS1004-9541%2808%2960154-8&rft.externalDBID=NO_FULL_TEXT
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F84275X%2F84275X.jpg