Electricity Generation Using Membrane-less Microbial Fuel Cell during Wastewater Treatment
An upflow mode membrane-less microbial fuel cell (ML-MFC) was designed for wastewater treatment. Granular graphite electrodes, which are flexible in size, were adopted in the ML-MFC. Microbes present in anaerobic activated sludge were used as the biocatalyst and artificial wastewater was tested as s...
Saved in:
Published in | Chinese journal of chemical engineering Vol. 16; no. 5; pp. 772 - 777 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.10.2008
|
Subjects | |
Online Access | Get full text |
ISSN | 1004-9541 2210-321X |
DOI | 10.1016/S1004-9541(08)60154-8 |
Cover
Abstract | An upflow mode membrane-less microbial fuel cell (ML-MFC) was designed for wastewater treatment. Granular graphite electrodes, which are flexible in size, were adopted in the ML-MFC. Microbes present in anaerobic activated sludge were used as the biocatalyst and artificial wastewater was tested as substrate. During the electrochemically active microbe enrichment stage, a stable power output of 536 mW.m-3 with reference to the anode volume was generated by the ML-MFC running in batch mode. The voltage output decreased from 203 mV to about 190 mV after the ML-MFC was changed from batch mode to normally continuous mode, indicating that planktonic electrochemically active bacterial strains in the ML-MFC may be carried away along with the effluent. Cyclic voltammograms showed that the attached microbes possessed higher bioelectrochemical activity than the planktonic microbes. Forced aeration to the cathode benefited the electricity generation obviously. Higher feeding rate and longer electrode distance both increased the electricity generation. The coulombic yield was not more than 20% throughout the study, which is lower than that of MFCs with membrane. It is proposed that dissolved oxygen diffused from the cathode to the anode may consume part of the substrate. |
---|---|
AbstractList | An upflow mode membrane-less microbial fuel cell (ML-MFC) was designed for wastewater treatment. Granular graphite electrodes, which are flexible in size, were adopted in the ML-MFC. Microbes present in anaerobic activated sludge were used as the biocatalyst and artificial wastewater was tested as substrate. During the electrochemically active microbe enrichment stage, a stable power output of 536 mW.m-3 with reference to the anode volume was generated by the ML-MFC running in batch mode. The voltage output decreased from 203 mV to about 190 mV after the ML-MFC was changed from batch mode to normally continuous mode, indicating that planktonic electrochemically active bacterial strains in the ML-MFC may be carried away along with the effluent. Cyclic voltammograms showed that the attached microbes possessed higher bioelectrochemical activity than the planktonic microbes. Forced aeration to the cathode benefited the electricity generation obviously. Higher feeding rate and longer electrode distance both increased the electricity generation. The coulombic yield was not more than 20% throughout the study, which is lower than that of MFCs with membrane. It is proposed that dissolved oxygen diffused from the cathode to the anode may consume part of the substrate. An upflow mode membrane-less microbial fuel cell (ML-MFC) was designed for wastewater treatment. Granular graphite electrodes, which are flexible in size, were adopted in the ML-MFC. Microbes present in anaerobic activated sludge were used as the biocatalyst and artificial wastewater was tested as substrate. During the electrochemically active microbe enrichment stage, a stable power output of 536 mW.m3 with reference to the anode volume was generated by the ML-MFC running in batch mode. The voltage output decreased from 203 mV to about 190 mV after the ML-MFC was changed from batch mode to normally continuous mode, indicating that planktonic electrochemically active bacterial strains in the ML-MFC may be carried away along with the effluent. Cyclic voltammograms showed that the attached microbes possessed higher bioelectrochemical activity than the planktonic microbes. Forced aeration to the cathode benefited the electricity generation obviously. Higher feeding rate and longer electrode distance both increased the electricity generation. The coulombic yield was not more than 20% throughout the study, which is lower than that of MFCs with membrane. It is proposed that dissolved oxygen diffused from the cathode to the anode may consume part of the substrate. An upflow mode membrane-less microbial fuel cell (ML-MFC) was designed for wastewater treatment. Granular graphite electrodes, which are flexible in size, were adopted in the ML-MFC. Microbes present in anaerobic activated sludge were used as the biocatalyst and artificial wastewater was tested as substrate. During the electrochemically active microbe enrichment stage, a stable power output of 536 mW·m−3 with reference to the anode volume was generated by the ML-MFC running in batch mode. The voltage output decreased from 203 mV to about 190 mV after the ML-MFC was changed from batch mode to normally continuous mode, indicating that planktonic electrochemically active bacterial strains in the ML-MFC may be carried away along with the effluent. Cyclic voltammograms showed that the attached microbes possessed higher bioelectrochemical activity than the planktonic microbes. Forced aeration to the cathode benefited the electricity generation obviously. Higher feeding rate and longer electrode distance both increased the electricity generation. The coulombic yield was not more than 20% throughout the study, which is lower than that of MFCs with membrane. It is proposed that dissolved oxygen diffused from the cathode to the anode may consume part of the substrate. |
Author | 杜竹玮 李清海 佟萌 李少华 李浩然 |
AuthorAffiliation | National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100080, China Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Tsinghua University, Beijing 100084, China |
Author_xml | – sequence: 1 fullname: 杜竹玮 李清海 佟萌 李少华 李浩然 |
BookMark | eNqFkD9vFDEQxS0UJC6Bj4C0okBQbBj_W3tFgdApCZESpSARiMbyemeDwedNbF-ifHt8dxFFmlQzxXtv5v32yV6cIxLylsIhBdp9-k4BRNtLQT-A_tgBlaLVL8iCMQotZ_TnHln8l7wi-zn_AWCgqV6QX0cBXUne-fLQnGDEZIufY3OVfbxuznE1JBuxDZhzc-5dmgdvQ3O8xtAsMYRmXKeN8IfNBe9twdRcJrRlhbG8Ji8nGzK-eZwH5Or46HL5rT27ODldfj1rneC8tAplXYSyvdLAJR17sNCNo1TWMjkhAzH02mqmRlq7aTE4LeUkxqkflFSMH5D3u9ybNN-uMRez8tnV5-rj8zobLrnqO6Gq8PNOWGvknHAytfW2bknWB0PBbHiaLU-zgWVAmy1Po6tbPnHfJL-y6eFZ35edDyuDO4_JZOcxOhx9qujNOPtnE949Xv49x-vbytsM1v2dfEDDtKTQ9Zz_A-0TmqQ |
CitedBy_id | crossref_primary_10_1016_j_jbiosc_2014_12_008 crossref_primary_10_25269_jsel_v9i02_237 crossref_primary_10_1002_jctb_7301 crossref_primary_10_1016_j_chemosphere_2020_129059 crossref_primary_10_1080_10739149_2012_717331 crossref_primary_10_1016_j_seppur_2016_07_031 crossref_primary_10_1016_j_jpowsour_2010_09_064 crossref_primary_10_1016_j_desal_2015_05_021 crossref_primary_10_1016_S1004_9541_11_60023_2 crossref_primary_10_1016_j_fuel_2010_06_025 crossref_primary_10_1016_j_jenvman_2022_116538 crossref_primary_10_1016_j_jece_2022_107505 crossref_primary_10_1016_j_apenergy_2016_09_043 crossref_primary_10_1039_c2lc40405b crossref_primary_10_1016_j_rser_2020_110590 crossref_primary_10_1007_s11270_015_2410_x crossref_primary_10_1016_j_ijhydene_2016_05_187 crossref_primary_10_1080_15567036_2018_1548518 crossref_primary_10_24857_rgsa_v18n6_187 crossref_primary_10_1016_j_energ_2024_100001 crossref_primary_10_1016_j_ijhydene_2015_04_082 crossref_primary_10_1111_raq_12192 crossref_primary_10_1016_j_ijhydene_2017_02_064 crossref_primary_10_1080_19443994_2014_885396 crossref_primary_10_1016_j_bej_2023_108928 crossref_primary_10_1016_j_biortech_2013_03_003 crossref_primary_10_1016_j_ijhydene_2016_03_185 crossref_primary_10_1016_j_jenvman_2022_115152 crossref_primary_10_1515_ijcre_2021_0019 crossref_primary_10_3390_en11041003 crossref_primary_10_3390_membranes11100738 crossref_primary_10_1016_j_biotechadv_2015_02_013 crossref_primary_10_1016_j_matchemphys_2017_07_038 crossref_primary_10_1007_s13762_015_0844_8 crossref_primary_10_1016_j_jcou_2017_01_027 crossref_primary_10_1371_journal_pone_0136108 crossref_primary_10_1007_s11771_013_1510_2 crossref_primary_10_1002_jctb_4460 crossref_primary_10_1039_C4EW00028E crossref_primary_10_1016_j_scitotenv_2022_154038 crossref_primary_10_3390_eng5040134 crossref_primary_10_1016_j_jallcom_2013_05_094 crossref_primary_10_1016_j_apenergy_2012_03_011 crossref_primary_10_1016_j_egyr_2022_08_192 crossref_primary_10_1080_09593330_2015_1077896 crossref_primary_10_1016_j_biortech_2011_09_007 crossref_primary_10_3390_molecules25133051 crossref_primary_10_1016_j_procbio_2020_09_014 crossref_primary_10_1016_j_rser_2013_08_052 |
Cites_doi | 10.1002/bit.10501 10.1146/annurev.mi.47.100193.001403 10.1016/S1004-9541(07)60015-9 10.1021/es0525511 10.1289/ehp.113-a754 10.1016/S0032-9592(03)00203-6 10.1007/BF02918975 10.1016/S1872-2075(06)60010-1 10.1016/j.watres.2005.02.002 10.1038/nbt867 10.1021/bp050225j 10.1021/es0491026 10.1016/j.watres.2004.11.019 10.1038/nbt0802-788 10.1016/j.biortech.2006.09.050 10.1007/s10008-006-0167-2 10.1016/j.biortech.2005.03.027 10.1023/A:1025484009367 10.1016/S0956-5663(02)00110-0 10.1021/es0499344 10.1128/AEM.54.6.1472-1480.1988 10.1023/A:1008984516499 10.1016/S1004-9541(06)60068-2 10.1016/j.biotechadv.2007.05.004 10.1038/nbt716 |
ContentType | Journal Article |
Copyright | 2008 Chemical Industry and Engineering Society of China (CIESC) and Chemical Industry Press (CIP) |
Copyright_xml | – notice: 2008 Chemical Industry and Engineering Society of China (CIESC) and Chemical Industry Press (CIP) |
DBID | 2RA 92L CQIGP W92 ~WA AAYXX CITATION 7U5 8FD L7M |
DOI | 10.1016/S1004-9541(08)60154-8 |
DatabaseName | 维普期刊资源整合服务平台 中文科技期刊数据库-CALIS站点 维普中文期刊数据库 中文科技期刊数据库-工程技术 中文科技期刊数据库- 镜像站点 CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Solid State and Superconductivity Abstracts |
DatabaseTitleList | Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
DocumentTitleAlternate | Electricity Generation Using Membrane-less Microbial Fuel Cell during Wastewater Treatment |
EISSN | 2210-321X |
EndPage | 777 |
ExternalDocumentID | 10_1016_S1004_9541_08_60154_8 S1004954108601548 28510693 |
GroupedDBID | --K --M .~1 0R~ 188 1B1 1~. 1~5 29B 2B. 2C0 2RA 4.4 457 4G. 5GY 5VR 5VS 7-5 71M 8P~ 8RM 92H 92I 92L 92R 93N AABNK AACTN AAEDT AAIAV AAIKJ AAKOC AALMO AALRI AAOAW AAQFI AAXUO ABMAC ABNUV ABPIF ABXDB ABYKQ ACDAQ ACGFS ACRLP ADALY ADBBV ADEWK ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFUIB AGHFR AGUBO AGYEJ AHPOS AIEXJ AIKHN AINHJ AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CCEZO CDRFL CDYEO CHBEP CQIGP CS3 CW9 DU5 EBS EFJIC EJD ENUVR EO9 EP2 EP3 FA0 FDB FEDTE FIRID FNPLU FYGXN GBLVA HVGLF HZ~ IPNFZ J1W KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 RIG ROL SDC SDF SDG SDH SES SPC SPCBC SSG SSZ T5K TCJ TGT UGNYK W92 ~G- ~WA AAEDW ADMUD EFLBG -SB -S~ AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CAJEB CITATION EFKBS Q-- U1G U5L ~HD 7U5 8FD L7M |
ID | FETCH-LOGICAL-c433t-7e5c4347a9780351d90a06dd57aa25fe204b98a827d160184bc855f4df9b75723 |
IEDL.DBID | AIKHN |
ISSN | 1004-9541 |
IngestDate | Sun Sep 28 07:30:06 EDT 2025 Wed Oct 01 03:37:03 EDT 2025 Thu Apr 24 23:12:52 EDT 2025 Fri Feb 23 02:37:34 EST 2024 Thu Nov 24 20:32:33 EST 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | wastewater treatment microbial fuel cell membrane-less |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c433t-7e5c4347a9780351d90a06dd57aa25fe204b98a827d160184bc855f4df9b75723 |
Notes | microbial fuel cell, membrane-less, wastewater treatment 11-3270/TQ X703 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PQID | 35379647 |
PQPubID | 23500 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_35379647 crossref_citationtrail_10_1016_S1004_9541_08_60154_8 crossref_primary_10_1016_S1004_9541_08_60154_8 elsevier_sciencedirect_doi_10_1016_S1004_9541_08_60154_8 chongqing_backfile_28510693 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2008-10-01 |
PublicationDateYYYYMMDD | 2008-10-01 |
PublicationDate_xml | – month: 10 year: 2008 text: 2008-10-01 day: 01 |
PublicationDecade | 2000 |
PublicationTitle | Chinese journal of chemical engineering |
PublicationTitleAlternate | Chinese Journal of Chemical Engineering |
PublicationYear | 2008 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Logan, Murano, Scott, Gray, Head (bib9) 2005; 39 Zhang, Yu, Zhu, Hou, Yi, Ming (bib6) 2006; 14 Min, Cheng, Logan (bib8) 2005; 39 Min, Logan (bib1) 2004; 38 Park, Zeikus (bib11) 2003; 81 Holzman (bib7) 2005; 113 Rosenbaum, Schroder, Scholz (bib25) 2006; 10 Moon, Chang, Kim (bib2) 2006; 97 Allen, Bennetto (bib3) 1993; 39/40 Liu, Lian, Du, Li (bib19) 2006; 21 Liu, Logan (bib12) 2004; 38 Du, Li, Gu (bib10) 2007; 25 Lovley, Phillips (bib18) 1988; 54 Lovley (bib20) 1993; 47 Tartakovsky, Guiot (bib16) 2006; 22 Liu, Mao, Xu, Hess-Mohrb, Schmidtb (bib4) 2006; 14 Rabaey, Lissens, Siciliano, Verstraete (bib24) 2003; 25 Chaudhuri, Lovley (bib23) 2003; 21 Jang, Pham, Chang, Kang, Moon, Cho, Kim (bib15) 2004; 39 Pham, Jang, Chang, Kim (bib22) 2004; 14 Ghangrekar, Shinde (bib17) 2007; 98 Delong, Chandler (bib14) 2002; 20 Gil, Chang, Kim, Kim, Jang, Park, Kim (bib26) 2003; 18 Tender, Reimers, Stecher, Holmes, Bond, Lowy (bib13) 2002; 20 Wilkinson (bib5) 2000; 9 Aelterman, Rabaey, Pham, Boon, Verstraete (bib21) 2006; 40 Rosenbaum (10.1016/S1004-9541(08)60154-8_bib25) 2006; 10 Lovley (10.1016/S1004-9541(08)60154-8_bib18) 1988; 54 Zhang (10.1016/S1004-9541(08)60154-8_bib6) 2006; 14 Allen (10.1016/S1004-9541(08)60154-8_bib3) 1993; 39/40 Holzman (10.1016/S1004-9541(08)60154-8_bib7) 2005; 113 Chaudhuri (10.1016/S1004-9541(08)60154-8_bib23) 2003; 21 Delong (10.1016/S1004-9541(08)60154-8_bib14) 2002; 20 Park (10.1016/S1004-9541(08)60154-8_bib11) 2003; 81 Liu (10.1016/S1004-9541(08)60154-8_bib4) 2006; 14 Wilkinson (10.1016/S1004-9541(08)60154-8_bib5) 2000; 9 Jang (10.1016/S1004-9541(08)60154-8_bib15) 2004; 39 Logan (10.1016/S1004-9541(08)60154-8_bib9) 2005; 39 Ghangrekar (10.1016/S1004-9541(08)60154-8_bib17) 2007; 98 Min (10.1016/S1004-9541(08)60154-8_bib8) 2005; 39 Lovley (10.1016/S1004-9541(08)60154-8_bib20) 1993; 47 Tender (10.1016/S1004-9541(08)60154-8_bib13) 2002; 20 Tartakovsky (10.1016/S1004-9541(08)60154-8_bib16) 2006; 22 Aelterman (10.1016/S1004-9541(08)60154-8_bib21) 2006; 40 Du (10.1016/S1004-9541(08)60154-8_bib10) 2007; 25 Pham (10.1016/S1004-9541(08)60154-8_bib22) 2004; 14 Liu (10.1016/S1004-9541(08)60154-8_bib12) 2004; 38 Liu (10.1016/S1004-9541(08)60154-8_bib19) 2006; 21 Moon (10.1016/S1004-9541(08)60154-8_bib2) 2006; 97 Rabaey (10.1016/S1004-9541(08)60154-8_bib24) 2003; 25 Gil (10.1016/S1004-9541(08)60154-8_bib26) 2003; 18 Min (10.1016/S1004-9541(08)60154-8_bib1) 2004; 38 |
References_xml | – volume: 47 start-page: 263 year: 1993 end-page: 290 ident: bib20 article-title: “Dissimilatory metal reduction” publication-title: Annu. Rev. Microbial. – volume: 21 start-page: 1229 year: 2003 end-page: 1232 ident: bib23 article-title: “Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells” publication-title: Nat. Biotechnol. – volume: 20 start-page: 821 year: 2002 end-page: 825 ident: bib13 article-title: “Harnessing microbially generated power on the seafloor” publication-title: Nat. Biotechnol. – volume: 38 start-page: 4040 year: 2004 end-page: 4046 ident: bib12 article-title: “Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane” publication-title: Environ. Sci. Technol. – volume: 39 start-page: 1675 year: 2005 end-page: 1686 ident: bib8 article-title: “Electricity generation using membrane and salt bridge microbial fuel cells” publication-title: Water Res. – volume: 14 start-page: 324 year: 2004 end-page: 329 ident: bib22 article-title: “Improvement of cathode reaction of a mediatorless microbial fuel cell” publication-title: J. Microbiol. Biotechnol. – volume: 39 start-page: 1007 year: 2004 end-page: 1012 ident: bib15 article-title: “Construction and operation of a novel mediator- and membrane-less microbial fuel cell” publication-title: Process Biochem. – volume: 39 start-page: 942 year: 2005 end-page: 952 ident: bib9 article-title: “Electricity generation from cysteine in a microbial fuel cell” publication-title: Water Res. – volume: 18 start-page: 327 year: 2003 end-page: 334 ident: bib26 article-title: “Operational parameters affecting the performance of a mediator-less microbial fuel cell” publication-title: Biosens. Bioelectron. – volume: 22 start-page: 241 year: 2006 end-page: 246 ident: bib16 article-title: “A comparison of air and hydrogen peroxide oxygenated microbial fuel cell reactors” publication-title: Biotechnol. Prog. – volume: 14 start-page: 259 year: 2006 end-page: 265 ident: bib4 article-title: “Operation conditions optimization of hydrogen production by propane autothermal reforming for PEMFC application” publication-title: Chin. J. Chem. Eng. – volume: 98 start-page: 2879 year: 2007 end-page: 2885 ident: bib17 article-title: “Performance of membrane-less microbial fuel cell treating wastewater and effect of electrode distance and area on electricity production” publication-title: Bioresource Technol. – volume: 81 start-page: 348 year: 2003 end-page: 355 ident: bib11 article-title: “Improved fuel cell and electrode designs for producing electricity from microbial degradation” publication-title: Biotechnol. Bioeng. – volume: 25 start-page: 1531 year: 2003 end-page: 1535 ident: bib24 article-title: “A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency” publication-title: Biotechnol. Lett. – volume: 25 start-page: 464 year: 2007 end-page: 482 ident: bib10 article-title: “A state of the art review on microbial fuel cells: A promising technology for wastewater treatment and bioenergy” publication-title: Biotechnol. Adv. – volume: 97 start-page: 621 year: 2006 end-page: 627 ident: bib2 article-title: “Continuous electricity production from artificial wastewater using a mediator-less microbial fuel cell” publication-title: Bioresource Technol. – volume: 14 start-page: 802 year: 2006 end-page: 805 ident: bib6 article-title: “Effects of freeze/thaw cycles and gas purging method on polymer electrolyte membrane fuel cells” publication-title: Chin. J. Chem. Eng. – volume: 38 start-page: 5809 year: 2004 end-page: 5814 ident: bib1 article-title: “Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell” publication-title: Environ. Sci. Technol. – volume: 113 start-page: A754 year: 2005 end-page: A757 ident: bib7 article-title: “Microbe power” publication-title: Environ. Health Persp. – volume: 20 start-page: 788 year: 2002 end-page: 789 ident: bib14 article-title: “Power from the deep” publication-title: Nat. Biotechnol. – volume: 40 start-page: 3388 year: 2006 end-page: 3394 ident: bib21 article-title: “Continuous electricity generation at high voltages and currents using stacked microbial fuel cells” publication-title: Environ. Sci. Technol. – volume: 54 start-page: 1472 year: 1988 end-page: 1480 ident: bib18 article-title: “Novel mode of microbial energy metabolism: Organic carbon oxidation coupled to dissimilatory reduction of iron or manganese” publication-title: Appl. Environ. Microbial. – volume: 39/40 start-page: 27 year: 1993 end-page: 40 ident: bib3 article-title: “Microbial fuel-cells: Electricity production from carbohydrates” publication-title: Appl. Biochem. Biotechnol. – volume: 21 start-page: 131 year: 2006 end-page: 137 ident: bib19 article-title: “Construction of sugar-based microbial fuel cells by dissimilatory metal reduction bacteria” publication-title: Chin. J. Biotech. – volume: 10 start-page: 872 year: 2006 end-page: 878 ident: bib25 article-title: “Investigation of the electrocatalytic oxidation of formate and ethanol at platinum black under microbial fuel cell conditions” publication-title: J. Solid State Electrochem. – volume: 9 start-page: 99 year: 2000 end-page: 111 ident: bib5 article-title: “Gastrobots-benefits and challenges of microbial fuel cells in food powered robot applications” publication-title: Auton. Robot. – volume: 81 start-page: 348 year: 2003 ident: 10.1016/S1004-9541(08)60154-8_bib11 article-title: “Improved fuel cell and electrode designs for producing electricity from microbial degradation” publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.10501 – volume: 47 start-page: 263 year: 1993 ident: 10.1016/S1004-9541(08)60154-8_bib20 article-title: “Dissimilatory metal reduction” publication-title: Annu. Rev. Microbial. doi: 10.1146/annurev.mi.47.100193.001403 – volume: 14 start-page: 802 issue: 6 year: 2006 ident: 10.1016/S1004-9541(08)60154-8_bib6 article-title: “Effects of freeze/thaw cycles and gas purging method on polymer electrolyte membrane fuel cells” publication-title: Chin. J. Chem. Eng. doi: 10.1016/S1004-9541(07)60015-9 – volume: 40 start-page: 3388 year: 2006 ident: 10.1016/S1004-9541(08)60154-8_bib21 article-title: “Continuous electricity generation at high voltages and currents using stacked microbial fuel cells” publication-title: Environ. Sci. Technol. doi: 10.1021/es0525511 – volume: 113 start-page: A754 year: 2005 ident: 10.1016/S1004-9541(08)60154-8_bib7 article-title: “Microbe power” publication-title: Environ. Health Persp. doi: 10.1289/ehp.113-a754 – volume: 39 start-page: 1007 year: 2004 ident: 10.1016/S1004-9541(08)60154-8_bib15 article-title: “Construction and operation of a novel mediator- and membrane-less microbial fuel cell” publication-title: Process Biochem. doi: 10.1016/S0032-9592(03)00203-6 – volume: 39/40 start-page: 27 year: 1993 ident: 10.1016/S1004-9541(08)60154-8_bib3 article-title: “Microbial fuel-cells: Electricity production from carbohydrates” publication-title: Appl. Biochem. Biotechnol. doi: 10.1007/BF02918975 – volume: 21 start-page: 131 year: 2006 ident: 10.1016/S1004-9541(08)60154-8_bib19 article-title: “Construction of sugar-based microbial fuel cells by dissimilatory metal reduction bacteria” publication-title: Chin. J. Biotech. doi: 10.1016/S1872-2075(06)60010-1 – volume: 39 start-page: 1675 year: 2005 ident: 10.1016/S1004-9541(08)60154-8_bib8 article-title: “Electricity generation using membrane and salt bridge microbial fuel cells” publication-title: Water Res. doi: 10.1016/j.watres.2005.02.002 – volume: 21 start-page: 1229 year: 2003 ident: 10.1016/S1004-9541(08)60154-8_bib23 article-title: “Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells” publication-title: Nat. Biotechnol. doi: 10.1038/nbt867 – volume: 22 start-page: 241 year: 2006 ident: 10.1016/S1004-9541(08)60154-8_bib16 article-title: “A comparison of air and hydrogen peroxide oxygenated microbial fuel cell reactors” publication-title: Biotechnol. Prog. doi: 10.1021/bp050225j – volume: 38 start-page: 5809 year: 2004 ident: 10.1016/S1004-9541(08)60154-8_bib1 article-title: “Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell” publication-title: Environ. Sci. Technol. doi: 10.1021/es0491026 – volume: 39 start-page: 942 year: 2005 ident: 10.1016/S1004-9541(08)60154-8_bib9 article-title: “Electricity generation from cysteine in a microbial fuel cell” publication-title: Water Res. doi: 10.1016/j.watres.2004.11.019 – volume: 20 start-page: 788 year: 2002 ident: 10.1016/S1004-9541(08)60154-8_bib14 article-title: “Power from the deep” publication-title: Nat. Biotechnol. doi: 10.1038/nbt0802-788 – volume: 98 start-page: 2879 year: 2007 ident: 10.1016/S1004-9541(08)60154-8_bib17 article-title: “Performance of membrane-less microbial fuel cell treating wastewater and effect of electrode distance and area on electricity production” publication-title: Bioresource Technol. doi: 10.1016/j.biortech.2006.09.050 – volume: 10 start-page: 872 year: 2006 ident: 10.1016/S1004-9541(08)60154-8_bib25 article-title: “Investigation of the electrocatalytic oxidation of formate and ethanol at platinum black under microbial fuel cell conditions” publication-title: J. Solid State Electrochem. doi: 10.1007/s10008-006-0167-2 – volume: 97 start-page: 621 year: 2006 ident: 10.1016/S1004-9541(08)60154-8_bib2 article-title: “Continuous electricity production from artificial wastewater using a mediator-less microbial fuel cell” publication-title: Bioresource Technol. doi: 10.1016/j.biortech.2005.03.027 – volume: 25 start-page: 1531 year: 2003 ident: 10.1016/S1004-9541(08)60154-8_bib24 article-title: “A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency” publication-title: Biotechnol. Lett. doi: 10.1023/A:1025484009367 – volume: 18 start-page: 327 year: 2003 ident: 10.1016/S1004-9541(08)60154-8_bib26 article-title: “Operational parameters affecting the performance of a mediator-less microbial fuel cell” publication-title: Biosens. Bioelectron. doi: 10.1016/S0956-5663(02)00110-0 – volume: 38 start-page: 4040 year: 2004 ident: 10.1016/S1004-9541(08)60154-8_bib12 article-title: “Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane” publication-title: Environ. Sci. Technol. doi: 10.1021/es0499344 – volume: 54 start-page: 1472 year: 1988 ident: 10.1016/S1004-9541(08)60154-8_bib18 article-title: “Novel mode of microbial energy metabolism: Organic carbon oxidation coupled to dissimilatory reduction of iron or manganese” publication-title: Appl. Environ. Microbial. doi: 10.1128/AEM.54.6.1472-1480.1988 – volume: 9 start-page: 99 year: 2000 ident: 10.1016/S1004-9541(08)60154-8_bib5 article-title: “Gastrobots-benefits and challenges of microbial fuel cells in food powered robot applications” publication-title: Auton. Robot. doi: 10.1023/A:1008984516499 – volume: 14 start-page: 324 year: 2004 ident: 10.1016/S1004-9541(08)60154-8_bib22 article-title: “Improvement of cathode reaction of a mediatorless microbial fuel cell” publication-title: J. Microbiol. Biotechnol. – volume: 14 start-page: 259 issue: 2 year: 2006 ident: 10.1016/S1004-9541(08)60154-8_bib4 article-title: “Operation conditions optimization of hydrogen production by propane autothermal reforming for PEMFC application” publication-title: Chin. J. Chem. Eng. doi: 10.1016/S1004-9541(06)60068-2 – volume: 25 start-page: 464 year: 2007 ident: 10.1016/S1004-9541(08)60154-8_bib10 article-title: “A state of the art review on microbial fuel cells: A promising technology for wastewater treatment and bioenergy” publication-title: Biotechnol. Adv. doi: 10.1016/j.biotechadv.2007.05.004 – volume: 20 start-page: 821 year: 2002 ident: 10.1016/S1004-9541(08)60154-8_bib13 article-title: “Harnessing microbially generated power on the seafloor” publication-title: Nat. Biotechnol. doi: 10.1038/nbt716 |
SSID | ssj0020818 |
Score | 2.0071735 |
Snippet | An upflow mode membrane-less microbial fuel cell (ML-MFC) was designed for wastewater treatment. Granular graphite electrodes, which are flexible in size,... An upflow mode membrane-less microbial fuel cell (ML-MFC) was designed for wastewater treatment. Granular graphite electrodes, which are flexible in size, were... |
SourceID | proquest crossref elsevier chongqing |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 772 |
SubjectTerms | membrane-less microbial fuel cell wastewater treatment 废水处理 无膜微生物处理 燃料电池废水 电能回收 |
Title | Electricity Generation Using Membrane-less Microbial Fuel Cell during Wastewater Treatment |
URI | http://lib.cqvip.com/qk/84275X/20085/28510693.html https://dx.doi.org/10.1016/S1004-9541(08)60154-8 https://www.proquest.com/docview/35379647 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection customDbUrl: eissn: 2210-321X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0020818 issn: 1004-9541 databaseCode: ACRLP dateStart: 20060201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 2210-321X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0020818 issn: 1004-9541 databaseCode: .~1 dateStart: 20060201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 2210-321X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0020818 issn: 1004-9541 databaseCode: AIKHN dateStart: 20060201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 2210-321X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0020818 issn: 1004-9541 databaseCode: AKRWK dateStart: 20060201 isFulltext: true providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB5BuJQD6oOKQEv30EM5LPG-7N1jFCVKW8GloCIuq7W9KVFdJ0By5bezs7bTUqlC6s1aaUbWfOuZWe_MNwAfs5x554ShzjNNpUlL6hRLaZkrnPXiQgYRq3zP0-ml_HKlrrZg1PXCYFll6_sbnx69dbsyaK05WM7ng2_IdWaUxFFBMfHehh0uDOM92Bl-_jo935y7kLUtXnomkqLA70aeRklc_JTok6iHaqRZuFnUP25D8PhXuPrLccdoNHkJe20aSYbNm76CLV-_ht0_yAXfwPU4TriZFyHPJg27NIJAYpEAOfO_wjm59rQKro6czSMfU9A4WfuKjHxVkaaBkXx39_h_LZifXHRF6ftwORlfjKa0naRACynEimZehQeZOeQbEoqVJnFJWpYqc46rmeeJzI12mmclC0bQMi-0UjNZzkyeqYyLt9CrF7U_AFK4UvOZZEXOjMRCziQN-0A6ZIlxzhR9ONoYL0Ti4ifyS1keErskNaIPsjOnLVoScpyFUdlNtRkiYhERm2gbEbG6D6cbsWXDwvGcgO6wsk-2kw2R4jnRDx22NnxqeH8S0Fis761QIjbuHv6_8iN4wTtCXfYOequ7tX8fsppVfgzbpw_suN27j_Jt7xM |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT-MwEB1Be1g4rNgFRGFZfNgDHEyT2E7sY1VRlYX2QtEiLpaTuFAR0gLt_1-Pk3Q_pBXS3iJLM4rmOTPjeOYNwLckDa0xTFFjQ0m5inNqRBjTPBU468W4DMJX-Y7j4S3_fifuNqDf9MJgWWXt-yuf7r11vdKtrdldzGbdG-Q6U4LjqCCfeG9CmwumZAvavcur4Xh97kLWNn_pGXCKAr8aeSolfvE0kGdeD5VIs_A4Lx9eXPD4V7j6y3H7aDTYgY91Gkl61Zt-gg1bfobt38gFd-H-wk-4mWUuzyYVuzSCQHyRABnZZ3dOLi0tnKsjo5nnY3IaBytbkL4tClI1MJIf5g3_rznzk0lTlL4Ht4OLSX9I60kKNOOMLWlihXvgiUG-ISbCXAUmiPNcJMZEYmqjgKdKGhkleeiMIHmaSSGmPJ-qNBFJxPahVc5LewAkM7mMpjzM0lBxLOQMYrcPuEGWGGNU1oGjtfFcJM6ekF9KRy6xC2LFOsAbc-qsJiHHWRiFXlebISIaEdGB1B4RLTtwvhZbVCwc7wnIBiv9x3bSLlK8J3rSYKvdp4b3Jw6N-epNM8F84-7h_ys_gQ_DyehaX1-Or45gK2rIdcMv0Fq-ruyxy3CW6dd6B_8Ex8rxCw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electricity+Generation+Using+Membrane-less+Microbial+Fuel+Cell+during+Wastewater+Treatment&rft.jtitle=Chinese+journal+of+chemical+engineering&rft.au=Du%2C+Zhuwei&rft.au=Li%2C+Qinghai&rft.au=Tong%2C+Meng&rft.au=Li%2C+Shaohua&rft.date=2008-10-01&rft.issn=1004-9541&rft.volume=16&rft.issue=5&rft.spage=772&rft.epage=777&rft_id=info:doi/10.1016%2FS1004-9541%2808%2960154-8&rft.externalDBID=NO_FULL_TEXT |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F84275X%2F84275X.jpg |