Effect of material properties on the residence time distribution (RTD) characterization of powder blending unit operations. Part II of II: Application of models

Residence time distribution (RTD) modeling can aid the understanding and characterization of macro-mixing in continuous powder processing unit operations by relating observed behavior to quantitative model parameters. This article is the second part of the work done to characterize the effect of mat...

Full description

Saved in:
Bibliographic Details
Published inPowder technology Vol. 344; pp. 525 - 544
Main Authors Escotet-Espinoza, M. Sebastian, Moghtadernejad, Sara, Oka, Sarang, Wang, Zilong, Wang, Yifan, Roman-Ospino, Andres, Schäfer, Elisabeth, Cappuyns, Philippe, Van Assche, Ivo, Futran, Mauricio, Muzzio, Fernando, Ierapetritou, Marianthi
Format Journal Article
LanguageEnglish
Published Lausanne Elsevier B.V 15.02.2019
Elsevier BV
Subjects
Online AccessGet full text
ISSN0032-5910
1873-328X
DOI10.1016/j.powtec.2018.12.051

Cover

Abstract Residence time distribution (RTD) modeling can aid the understanding and characterization of macro-mixing in continuous powder processing unit operations by relating observed behavior to quantitative model parameters. This article is the second part of the work done to characterize the effect of material properties on the measurement of RTDs in continuous powder processing operations. The goal of this paper is to examine the behavior of the RTD given different sets of tracer material properties. Tracer addition methods are discussed within the framework of their mathematical representation. The two most widely used RTD models in powder systems in the literature, the axial dispersion and the tank-in-series model, are presented and used to describe the experimental data. The RTD model parameters (e.g., Peclét number, number of tanks in series, and residence times) were regressed from the experimental data and compared using one-way ANOVA to determine the effects of materials properties on RTD. A model independent approach using a Multivariate Analysis of Variance (MANOVA) was also applied to compare the results with the model dependent method. Lastly, examples of how the RTD models can aid process design and understanding were described using both continuous and discrete convolution. The RTD models and their regressed coefficients were used to predict the mixing outputs of a semi-random input and the impact of disturbances on the process. [Display omitted] •Two residence time distribution (RTD) models used for powder blending are reviewed.•Parametric regression methods are discussed for RTD model parameter estimation.•The three parameters for each of the RTD models were regressed for each pulse curve.•Statistical analysis on parameters was performed relating material properties to RTD.•RTD models and parameters were used to establish disturbance dissipation regimes.
AbstractList Residence time distribution (RTD) modeling can aid the understanding and characterization of macro-mixing in continuous powder processing unit operations by relating observed behavior to quantitative model parameters. This article is the second part of the work done to characterize the effect of material properties on the measurement of RTDs in continuous powder processing operations. The goal of this paper is to examine the behavior of the RTD given different sets of tracer material properties. Tracer addition methods are discussed within the framework of their mathematical representation. The two most widely used RTD models in powder systems in the literature, the axial dispersion and the tank-in-series model, are presented and used to describe the experimental data. The RTD model parameters (e.g., Peclét number, number of tanks in series, and residence times) were regressed from the experimental data and compared using one-way ANOVA to determine the effects of materials properties on RTD. A model independent approach using a Multivariate Analysis of Variance (MANOVA) was also applied to compare the results with the model dependent method. Lastly, examples of how the RTD models can aid process design and understanding were described using both continuous and discrete convolution. The RTD models and their regressed coefficients were used to predict the mixing outputs of a semi-random input and the impact of disturbances on the process.
Residence time distribution (RTD) modeling can aid the understanding and characterization of macro-mixing in continuous powder processing unit operations by relating observed behavior to quantitative model parameters. This article is the second part of the work done to characterize the effect of material properties on the measurement of RTDs in continuous powder processing operations. The goal of this paper is to examine the behavior of the RTD given different sets of tracer material properties. Tracer addition methods are discussed within the framework of their mathematical representation. The two most widely used RTD models in powder systems in the literature, the axial dispersion and the tank-in-series model, are presented and used to describe the experimental data. The RTD model parameters (e.g., Peclét number, number of tanks in series, and residence times) were regressed from the experimental data and compared using one-way ANOVA to determine the effects of materials properties on RTD. A model independent approach using a Multivariate Analysis of Variance (MANOVA) was also applied to compare the results with the model dependent method. Lastly, examples of how the RTD models can aid process design and understanding were described using both continuous and discrete convolution. The RTD models and their regressed coefficients were used to predict the mixing outputs of a semi-random input and the impact of disturbances on the process. [Display omitted] •Two residence time distribution (RTD) models used for powder blending are reviewed.•Parametric regression methods are discussed for RTD model parameter estimation.•The three parameters for each of the RTD models were regressed for each pulse curve.•Statistical analysis on parameters was performed relating material properties to RTD.•RTD models and parameters were used to establish disturbance dissipation regimes.
Author Escotet-Espinoza, M. Sebastian
Oka, Sarang
Moghtadernejad, Sara
Wang, Zilong
Futran, Mauricio
Ierapetritou, Marianthi
Cappuyns, Philippe
Roman-Ospino, Andres
Van Assche, Ivo
Wang, Yifan
Schäfer, Elisabeth
Muzzio, Fernando
Author_xml – sequence: 1
  givenname: M. Sebastian
  surname: Escotet-Espinoza
  fullname: Escotet-Espinoza, M. Sebastian
  organization: Engineering Research Center for Structured Organic Particulate Systems (C-SOPS), Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
– sequence: 2
  givenname: Sara
  surname: Moghtadernejad
  fullname: Moghtadernejad, Sara
  organization: Engineering Research Center for Structured Organic Particulate Systems (C-SOPS), Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
– sequence: 3
  givenname: Sarang
  surname: Oka
  fullname: Oka, Sarang
  organization: Engineering Research Center for Structured Organic Particulate Systems (C-SOPS), Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
– sequence: 4
  givenname: Zilong
  surname: Wang
  fullname: Wang, Zilong
  organization: Engineering Research Center for Structured Organic Particulate Systems (C-SOPS), Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
– sequence: 5
  givenname: Yifan
  surname: Wang
  fullname: Wang, Yifan
  organization: Engineering Research Center for Structured Organic Particulate Systems (C-SOPS), Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
– sequence: 6
  givenname: Andres
  surname: Roman-Ospino
  fullname: Roman-Ospino, Andres
  organization: Engineering Research Center for Structured Organic Particulate Systems (C-SOPS), Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
– sequence: 7
  givenname: Elisabeth
  surname: Schäfer
  fullname: Schäfer, Elisabeth
  organization: The Janssen Pharmaceutical Companies of Johnson and Johnson, Beerse, Belgium
– sequence: 8
  givenname: Philippe
  surname: Cappuyns
  fullname: Cappuyns, Philippe
  organization: The Janssen Pharmaceutical Companies of Johnson and Johnson, Beerse, Belgium
– sequence: 9
  givenname: Ivo
  surname: Van Assche
  fullname: Van Assche, Ivo
  organization: The Janssen Pharmaceutical Companies of Johnson and Johnson, Beerse, Belgium
– sequence: 10
  givenname: Mauricio
  surname: Futran
  fullname: Futran, Mauricio
  organization: The Janssen Pharmaceutical Companies of Johnson and Johnson, Raritan, NJ 08869, USA
– sequence: 11
  givenname: Fernando
  surname: Muzzio
  fullname: Muzzio, Fernando
  organization: Engineering Research Center for Structured Organic Particulate Systems (C-SOPS), Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
– sequence: 12
  givenname: Marianthi
  surname: Ierapetritou
  fullname: Ierapetritou, Marianthi
  email: marianth@soe.rutgers.edu
  organization: Engineering Research Center for Structured Organic Particulate Systems (C-SOPS), Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
BookMark eNqFkc9qFTEUxoNU8Lb6Bi4CbupixvyZzMztQii16kBBkQruQm5yYnOZScYkU9Gn8VHN3CsuulAIBHJ-33fOyXeKTnzwgNBzSmpKaPtqX8_hewZdM0L7mrKaCPoIbWjf8Yqz_ssJ2hDCWSW2lDxBpyntCSEtp2SDfl1bCzrjYPGkMkSnRjzHMEPMDhIOHuc7wBGSM-A14OwmwMalHN1uya7Uzz_dvnmJ9Z2KSq8GP9XhuRiWoQxEvBvBG-e_4sW70qhYH4hU448qZjwMKzsMF_hynken_8qnYGBMT9Fjq8YEz_7cZ-jz2-vbq_fVzYd3w9XlTaUbznPVma21fMfFzrbaKiVY0xChLCO8Yx2zndaiJUoQxVq7LYVy-l5YYSiortvyM3R-9C3bf1sgZTm5pGEclYewJMkYo4QI3rUFffEA3Ycl-jJdoagQtOWsKdTFkdIxpBTBSu3yYbkclRslJXINT-7lMTy5hicpkyW8Im4eiOfoJhV__E_2-igrHwf3DqJM2q25GRdLytIE92-D3wa8ulI
CitedBy_id crossref_primary_10_1016_j_powtec_2023_118864
crossref_primary_10_1016_j_apt_2020_05_027
crossref_primary_10_3390_pharmaceutics13081311
crossref_primary_10_1021_acs_iecr_4c00201
crossref_primary_10_1016_j_ijpharm_2025_125165
crossref_primary_10_1016_j_eti_2021_102220
crossref_primary_10_1016_j_ijpharm_2022_122326
crossref_primary_10_1016_j_ijpharm_2023_122969
crossref_primary_10_1016_j_powtec_2024_120440
crossref_primary_10_1016_j_ijpharm_2020_120048
crossref_primary_10_1016_j_ijpharm_2021_121313
crossref_primary_10_1016_j_ijpharm_2021_120624
crossref_primary_10_3390_fractalfract6040191
crossref_primary_10_1208_s12249_019_1473_1
crossref_primary_10_1016_j_compchemeng_2022_107664
crossref_primary_10_1007_s12247_020_09504_7
crossref_primary_10_3390_pharmaceutics14020355
crossref_primary_10_1002_aic_16996
crossref_primary_10_1007_s11071_022_07688_w
crossref_primary_10_1002_ente_202402196
crossref_primary_10_3390_pr8091088
crossref_primary_10_1208_s12249_020_01911_w
crossref_primary_10_1016_j_ijpharm_2020_119961
crossref_primary_10_1016_j_ijpharm_2021_121248
crossref_primary_10_1016_j_powtec_2022_117507
crossref_primary_10_1016_j_ijpharm_2022_121467
crossref_primary_10_1016_j_ijpharm_2022_121528
crossref_primary_10_1016_j_xphs_2020_10_067
crossref_primary_10_1016_j_ceramint_2021_08_044
crossref_primary_10_1007_s12247_023_09728_3
crossref_primary_10_1016_j_ijpharm_2023_122653
crossref_primary_10_1021_acs_iecr_1c02415
crossref_primary_10_1016_j_ijpharm_2024_124133
crossref_primary_10_1016_j_cherd_2019_10_026
crossref_primary_10_1016_j_ijpx_2024_100287
crossref_primary_10_1016_j_ejps_2024_106890
crossref_primary_10_3390_pharmaceutics15061587
Cites_doi 10.1016/j.ijpharm.2017.10.003
10.1016/j.ijpharm.2016.10.038
10.1007/s12247-013-9152-3
10.1016/j.ijpharm.2017.06.001
10.1016/j.ces.2009.02.011
10.1016/j.ijpharm.2018.09.032
10.1205/cherd.04359
10.1016/B978-0-444-63433-7.50015-8
10.1002/9780470238004.app1
10.1016/j.ces.2010.05.003
10.1002/aic.15967
10.1007/s12247-018-9313-5
10.1016/j.ijpharm.2018.08.056
10.1016/j.compchemeng.2012.02.022
10.1016/S0167-3785(01)80068-3
10.1016/B978-0-444-63578-5.50011-6
10.1007/s12247-015-9215-8
10.1016/j.compchemeng.2017.02.030
10.1016/j.ces.2010.06.036
10.1016/0009-2509(53)80001-1
10.1016/j.ijpharm.2017.01.010
10.1016/j.ces.2010.10.045
10.1016/j.xphs.2016.12.014
10.1002/anie.201305429
10.1016/j.powtec.2006.06.010
10.1016/j.powtec.2018.03.019
10.1016/j.powtec.2013.05.002
10.1021/op400294z
10.1016/j.powtec.2012.05.060
10.1002/aic.15210
10.1016/j.ces.2005.06.016
10.1016/j.ijpharm.2017.07.003
10.1093/nsr/nwt032
10.1016/j.compchemeng.2012.02.015
10.1002/aic.12563
10.1016/j.ijpharm.2018.03.027
10.1214/ss/1009213004
10.1007/s12247-012-9143-9
10.1007/s12247-015-9238-1
10.1002/mame.201000389
10.1016/0951-8320(96)00002-6
10.1016/j.powtec.2018.10.040
10.1016/j.jpba.2018.01.032
10.1007/s12247-018-9356-7
10.3109/03639045.2015.1078349
ContentType Journal Article
Copyright 2018 Elsevier B.V.
Copyright Elsevier BV Feb 15, 2019
Copyright_xml – notice: 2018 Elsevier B.V.
– notice: Copyright Elsevier BV Feb 15, 2019
DBID AAYXX
CITATION
7SR
7ST
8BQ
8FD
C1K
JG9
SOI
7S9
L.6
DOI 10.1016/j.powtec.2018.12.051
DatabaseName CrossRef
Engineered Materials Abstracts
Environment Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
Materials Research Database
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Environment Abstracts
METADEX
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Materials Research Database

AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-328X
EndPage 544
ExternalDocumentID 10_1016_j_powtec_2018_12_051
S003259101831088X
GroupedDBID ---
--K
--M
-~X
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARLI
AAXUO
ABJNI
ABMAC
ABNUV
ABXRA
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEWK
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRAH
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LX7
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSG
SSM
SSZ
T5K
~02
~G-
29O
8WZ
A6W
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CITATION
FEDTE
FGOYB
HLY
HVGLF
HZ~
NDZJH
R2-
SCB
SCE
SEW
SSH
T9H
WUQ
XPP
ZY4
7SR
7ST
8BQ
8FD
C1K
EFKBS
JG9
SOI
7S9
L.6
ID FETCH-LOGICAL-c433t-7d9ff3b35bf6cfaa524405af2037272f7cc560a50a26f95af5af885f5d1ea7793
IEDL.DBID .~1
ISSN 0032-5910
IngestDate Thu Sep 04 21:06:49 EDT 2025
Wed Aug 13 11:30:40 EDT 2025
Thu Apr 24 23:09:03 EDT 2025
Tue Jul 01 01:21:49 EDT 2025
Fri Feb 23 02:29:52 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Continuous manufacturing
Mixing
Tanks-in-series
Modeling
Axial dispersion
Powder blending
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c433t-7d9ff3b35bf6cfaa524405af2037272f7cc560a50a26f95af5af885f5d1ea7793
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 2215516324
PQPubID 2045415
PageCount 20
ParticipantIDs proquest_miscellaneous_2221005376
proquest_journals_2215516324
crossref_citationtrail_10_1016_j_powtec_2018_12_051
crossref_primary_10_1016_j_powtec_2018_12_051
elsevier_sciencedirect_doi_10_1016_j_powtec_2018_12_051
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-02-15
PublicationDateYYYYMMDD 2019-02-15
PublicationDate_xml – month: 02
  year: 2019
  text: 2019-02-15
  day: 15
PublicationDecade 2010
PublicationPlace Lausanne
PublicationPlace_xml – name: Lausanne
PublicationTitle Powder technology
PublicationYear 2019
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Kleinebudde, Khinast, Rantanen (bb0265) 2017; Vol. 7703
Tian (bb0320) 2017; 315
Danckwerts (bb0085) 1953; 2
Kresta (bb0095) 2004
Lorences (bb0255) 2006; 168
Escotet-Espinoza (bb0035) 2018
Vanarase, Osorio, Muzzio (bb0205) 2013; 246
Dubey (bb0170) 2011; 296
Portillo, Vanarase, Ingram, Seville (bb0310) 2010; 65
Gernaey, Cervera-Padrell, Woodley (bb0045) 2012; 42
Boukouvala (bb0050) 2012; 42
Lee (bb0005) 2015; 10
Rogers, Ierapetritou (bb0070) 2015
Moghtadernejad (bb0160) 2018; 13
Sarkar, Wassgren (bb0175) 2009; 64
Bhaskar (bb0150) 2018
Fogler (bb0250) 2016
Comput. Chem. Eng., 2012. 42: p. 30–47.
Mascia (bb0015) 2013; 52
Toson (bb0240) 2018; 552
Thas (bb0280) 2010
Hill (bb0115) 1977
Galbraith (bb0230) 2018
Fisher (bb0020) 2016; 515
Gao, Ierapetritou, Muzzio (bb0200) 2012; 58
Biegler (bb0090) 2008
Heider (bb0010) 2014; 18
Oka (bb0155) 2017
Gao (bb0195) 2011; 66
Kroonenberg (bb0275) 2008
Weinekötter, Gericke (bb0120) 2013
Wang, Escotet-Espinoza, Ierapetritou (bb0210) 5 December 2017; 107
Van Snick (bb0215) 2017; 519
García-Muñoz, Butterbaugh, Leavesley, Manley, Slade, Bermingham (bb0135) 2018; 64
Pernenkil, Cooney (bb0180) 2006; 61
Gao (bb0130) 2013; 8
Szépvölgyi (bb0100) 2001; 10
Fan, Han, Liu (bb0270) 2014; 1
Escotet-Espinoza (bb0030) 2015
Boukouvala (bb0060) 2013; 8
Ierapetritou, Muzzio, Reklaitis (bb0065) 2016; 62
Kruisz (bb0165) 2018; 550
Kruisz (bb0260) 2017; 528
Plumb (bb0185) 2005; 83
Levenspiel (bb0105) 1999
Gao, Muzzio, Ierapetritou (bb0245) 2012; 228
Gernaey, Gani (bb0055) 2010; 65
Almaya (bb0040) 2017; 106
Ierapetritou, Escotet-Espinoza, Singh (bb0075) 2017
Rogers, Ierapetritou (bb0025) 2014
Kehlenbeck (bb0140) 2003
Saltelli, Tarantola, Campolongo (bb0300) 2000; 15
Wang (bb0305) 2016; 42
Boukouvala (bb0285) 2013
Bhaskar, Barros, Singh (bb0145) 2017; 534
Rehrl (bb0225) 2018; 543
Froment, Bischoff, Wilde (bb0110) 2011
Homma, Saltelli (bb0295) 1996; 52
Boukouvala, F., Niotis,V., Ramachandran, R. Muzzio, F.J., Ierapetritou, M.G., An integrated approach for dynamic flowsheet modeling and sensitivity analysis of a continuous tablet manufacturing process
Escotet-Espinoza (bb0080) 2019; 342
Van Snick (bb0220) 2017; 529
De Leersnyder (bb0315) 2018; 151
Engisch, Muzzio (bb0125) 2016; 11
Himmelblau, Bischoff (bb0190) 1968
Dülle, Özcoban, Leopold (bb0235) 2018; 331
Heider (10.1016/j.powtec.2018.12.051_bb0010) 2014; 18
Rogers (10.1016/j.powtec.2018.12.051_bb0025) 2014
Escotet-Espinoza (10.1016/j.powtec.2018.12.051_bb0035) 2018
Escotet-Espinoza (10.1016/j.powtec.2018.12.051_bb0030) 2015; 39
Kehlenbeck (10.1016/j.powtec.2018.12.051_bb0140) 2003
Hill (10.1016/j.powtec.2018.12.051_bb0115) 1977
Biegler (10.1016/j.powtec.2018.12.051_bb0090) 2008
Weinekötter (10.1016/j.powtec.2018.12.051_bb0120) 2013
Sarkar (10.1016/j.powtec.2018.12.051_bb0175) 2009; 64
Oka (10.1016/j.powtec.2018.12.051_bb0155) 2017
Himmelblau (10.1016/j.powtec.2018.12.051_bb0190) 1968
Froment (10.1016/j.powtec.2018.12.051_bb0110) 2011
Dubey (10.1016/j.powtec.2018.12.051_bb0170) 2011; 296
Gao (10.1016/j.powtec.2018.12.051_bb0130) 2013; 8
Lorences (10.1016/j.powtec.2018.12.051_bb0255) 2006; 168
Dülle (10.1016/j.powtec.2018.12.051_bb0235) 2018; 331
Galbraith (10.1016/j.powtec.2018.12.051_bb0230) 2018
Plumb (10.1016/j.powtec.2018.12.051_bb0185) 2005; 83
Vanarase (10.1016/j.powtec.2018.12.051_bb0205) 2013; 246
Lee (10.1016/j.powtec.2018.12.051_bb0005) 2015; 10
Wang (10.1016/j.powtec.2018.12.051_bb0210) 2017; 107
Boukouvala (10.1016/j.powtec.2018.12.051_bb0060) 2013; 8
Ierapetritou (10.1016/j.powtec.2018.12.051_bb0065) 2016; 62
De Leersnyder (10.1016/j.powtec.2018.12.051_bb0315) 2018; 151
Szépvölgyi (10.1016/j.powtec.2018.12.051_bb0100) 2001; 10
Tian (10.1016/j.powtec.2018.12.051_bb0320) 2017; 315
Gernaey (10.1016/j.powtec.2018.12.051_bb0045) 2012; 42
Bhaskar (10.1016/j.powtec.2018.12.051_bb0145) 2017; 534
Mascia (10.1016/j.powtec.2018.12.051_bb0015) 2013; 52
Kroonenberg (10.1016/j.powtec.2018.12.051_bb0275) 2008
Fan (10.1016/j.powtec.2018.12.051_bb0270) 2014; 1
Bhaskar (10.1016/j.powtec.2018.12.051_bb0150) 2018
Boukouvala (10.1016/j.powtec.2018.12.051_bb0285) 2013
Escotet-Espinoza (10.1016/j.powtec.2018.12.051_bb0080) 2019; 342
Kruisz (10.1016/j.powtec.2018.12.051_bb0260) 2017; 528
10.1016/j.powtec.2018.12.051_bb0290
Saltelli (10.1016/j.powtec.2018.12.051_bb0300) 2000; 15
Fisher (10.1016/j.powtec.2018.12.051_bb0020) 2016; 515
Fogler (10.1016/j.powtec.2018.12.051_bb0250) 2016
Van Snick (10.1016/j.powtec.2018.12.051_bb0215) 2017; 519
Wang (10.1016/j.powtec.2018.12.051_bb0305) 2016; 42
Danckwerts (10.1016/j.powtec.2018.12.051_bb0085) 1953; 2
Moghtadernejad (10.1016/j.powtec.2018.12.051_bb0160) 2018; 13
Gao (10.1016/j.powtec.2018.12.051_bb0195) 2011; 66
Thas (10.1016/j.powtec.2018.12.051_bb0280) 2010
Boukouvala (10.1016/j.powtec.2018.12.051_bb0050) 2012; 42
Kresta (10.1016/j.powtec.2018.12.051_bb0095) 2004
Homma (10.1016/j.powtec.2018.12.051_bb0295) 1996; 52
Kruisz (10.1016/j.powtec.2018.12.051_bb0165) 2018; 550
Ierapetritou (10.1016/j.powtec.2018.12.051_bb0075) 2017
Portillo (10.1016/j.powtec.2018.12.051_bb0310) 2010; 65
Levenspiel (10.1016/j.powtec.2018.12.051_bb0105) 1999
García-Muñoz (10.1016/j.powtec.2018.12.051_bb0135) 2018; 64
Rogers (10.1016/j.powtec.2018.12.051_bb0070) 2015
Toson (10.1016/j.powtec.2018.12.051_bb0240) 2018; 552
Almaya (10.1016/j.powtec.2018.12.051_bb0040) 2017; 106
Gernaey (10.1016/j.powtec.2018.12.051_bb0055) 2010; 65
Gao (10.1016/j.powtec.2018.12.051_bb0245) 2012; 228
Engisch (10.1016/j.powtec.2018.12.051_bb0125) 2016; 11
Van Snick (10.1016/j.powtec.2018.12.051_bb0220) 2017; 529
Rehrl (10.1016/j.powtec.2018.12.051_bb0225) 2018; 543
Gao (10.1016/j.powtec.2018.12.051_bb0200) 2012; 58
Kleinebudde (10.1016/j.powtec.2018.12.051_bb0265) 2017; Vol. 7703
Pernenkil (10.1016/j.powtec.2018.12.051_bb0180) 2006; 61
References_xml – year: 2008
  ident: bb0275
  article-title: Applied multiway data analysis
  publication-title: Wiley Series in Probability and Statistics
– volume: 10
  start-page: 191
  year: 2015
  end-page: 199
  ident: bb0005
  article-title: Modernizing pharmaceutical manufacturing: from batch to continuous production
  publication-title: J. Pharm. Innov.
– volume: 342
  start-page: 744
  year: 2019
  end-page: 763
  ident: bb0080
  article-title: Effect of tracer material properties on the residence time distribution (RTD) of continuous powder blending operations. Part I of II: Experimental evaluation
  publication-title: Powder Technol.
– volume: 65
  start-page: 5757
  year: 2010
  end-page: 5769
  ident: bb0055
  article-title: A model-based systems approach to pharmaceutical product-process design and analysis
  publication-title: Chem. Eng. Sci.
– year: 2013
  ident: bb0120
  article-title: Mixing of Solids
– volume: 13
  start-page: 155
  year: 2018
  end-page: 187
  ident: bb0160
  article-title: A Training on: continuous manufacturing (Direct compaction) of solid dose pharmaceutical products
  publication-title: J. Pharm. Innov.
– volume: 42
  start-page: 30
  year: 2012
  end-page: 47
  ident: bb0050
  article-title: An integrated approach for dynamic flowsheet modeling and sensitivity analysis of a continuous tablet manufacturing process
  publication-title: Comput. Chem. Eng.
– volume: 228
  start-page: 416
  year: 2012
  end-page: 423
  ident: bb0245
  article-title: A review of the residence time distribution (RTD) applications in solid unit operations
  publication-title: Powder Technol.
– volume: 10
  start-page: 665
  year: 2001
  end-page: 671
  ident: bb0100
  article-title: Investigation of Flow Regimes in Continuous Mixer Tubes
  publication-title: Handbook Powder Technol.
– reference: Comput. Chem. Eng., 2012. 42: p. 30–47.
– volume: 515
  start-page: 390
  year: 2016
  end-page: 402
  ident: bb0020
  article-title: Advancing pharmaceutical quality: an overview of science and research in the U.S. FDA's Office of Pharmaceutical Quality
  publication-title: Int. J. Pharm.
– volume: 42
  start-page: 796
  year: 2016
  end-page: 807
  ident: bb0305
  article-title: Statistical comparison of dissolution profiles
  publication-title: Drug Dev. Ind. Pharm.
– volume: 62
  start-page: 1846
  year: 2016
  end-page: 1862
  ident: bb0065
  article-title: Perspectives on the continuous manufacturing of powder-based pharmaceutical processes
  publication-title: AICHE J.
– start-page: 33
  year: 2017
  end-page: 105
  ident: bb0075
  article-title: Process simulation and control for continuous pharmaceutical manufacturing of solid drug products
  publication-title: Contin. Manuf. Pharma.
– volume: 1
  start-page: 293
  year: 2014
  end-page: 314
  ident: bb0270
  article-title: Challenges of big data ANALYSIS
  publication-title: Nat. Sci. Rev.
– year: 2018
  ident: bb0150
  article-title: Residence Time Distribution (RTD)-Based Control System for Continuous Pharmaceutical Manufacturing Process
  publication-title: J. Pharm. Innov.
– volume: 107
  start-page: 77
  year: 5 December 2017
  end-page: 91
  ident: bb0210
  article-title: Process analysis and optimization of continuous pharmaceutical manufacturing using flowsheet models
  publication-title: Comput. Chem. Eng.
– volume: 64
  start-page: 2672
  year: 2009
  end-page: 2682
  ident: bb0175
  article-title: Simulation of a continuous granular mixer: effect of operating conditions on flow and mixing
  publication-title: Chem. Eng. Sci.
– volume: 18
  start-page: 402
  year: 2014
  end-page: 409
  ident: bb0010
  article-title: Development of a multi-step synthesis and workup sequence for an integrated, continuous manufacturing process of a pharmaceutical
  publication-title: Org. Process Res. Dev.
– year: 1968
  ident: bb0190
  article-title: Process Analysis and Simulation: Deterministic Systems
– start-page: 1
  year: 2018
  end-page: 11
  ident: bb0230
  article-title: Modeling and simulation of continuous powder blending applied to a continuous direct compression process
  publication-title: Pharm. Dev. Technol.
– volume: 8
  start-page: 99
  year: 2013
  end-page: 110
  ident: bb0130
  article-title: Improving continuous powder blending performance using projection to latent structures regression
  publication-title: J. Pharm. Innov.
– year: 2018
  ident: bb0035
  article-title: Phenomenological and Residence Time Distribution Models for Unit Operations in a Continuous Pharmaceutical Manufacturing Process
– volume: 543
  start-page: 60
  year: 2018
  end-page: 72
  ident: bb0225
  article-title: Control of three different continuous pharmaceutical manufacturing processes: use of soft sensors
  publication-title: Int. J. Pharm.
– year: 2015
  ident: bb0030
  article-title: Flowsheet models modernize pharmaceutical manufacturing design and risk assessment
  publication-title: Pharm. Technol.
– volume: 52
  start-page: 1
  year: 1996
  end-page: 17
  ident: bb0295
  article-title: Importance measures in global sensitivity analysis of nonlinear models
  publication-title: Reliabil. Eng. Sys. Saf.
– volume: 2
  start-page: 1
  year: 1953
  end-page: 13
  ident: bb0085
  article-title: Continuous flow systems: distribution of residence times
  publication-title: Chem. Eng. Sci.
– volume: 65
  start-page: 5685
  year: 2010
  end-page: 5688
  ident: bb0310
  article-title: Investigation of the effect of impeller rotation rate, powder flowrate, and cohesion on powder flow behavior in a continuous blender using PEPT
  publication-title: Chem. Eng. Sci.
– start-page: 405
  year: 2017
  end-page: 446
  ident: bb0155
  article-title: Design of an integrated continuous manufacturing system
  publication-title: Contin. Manuf. Pharma.
– volume: 61
  start-page: 720
  year: 2006
  end-page: 742
  ident: bb0180
  article-title: A review on the continuous blending of powders
  publication-title: Chem. Eng. Sci.
– volume: 534
  start-page: 159
  year: 2017
  end-page: 178
  ident: bb0145
  article-title: Development and implementation of an advanced model predictive control system into continuous pharmaceutical tablet compaction process
  publication-title: Int. J. Pharm.
– volume: 519
  start-page: 390
  year: 2017
  end-page: 407
  ident: bb0215
  article-title: Continuous direct compression as manufacturing platform for sustained release tablets
  publication-title: Int. J. Pharm.
– volume: 58
  start-page: 69
  year: 2012
  end-page: 78
  ident: bb0200
  article-title: Periodic section modeling of convective continuous powder mixing processes
  publication-title: AICHE J.
– volume: 315
  start-page: 332
  year: 2017
  end-page: 338
  ident: bb0320
  article-title: A dimensionless analysis of residence time distributions for continuous powder mixing
  publication-title: Powder Technology
– volume: 296
  start-page: 290
  year: 2011
  end-page: 307
  ident: bb0170
  article-title: Computational approaches for studying the granular dynamics of continuous blending processes, 1 – dem based methods
  publication-title: Macromol. Mater. Eng.
– year: 2003
  ident: bb0140
  article-title: Continuous dynamic mixing of cohesive powders in Mechanical Engineering
– year: 2016
  ident: bb0250
  article-title: Essential of Chemical Reaction Engineering
– volume: 11
  start-page: 64
  year: 2016
  end-page: 81
  ident: bb0125
  article-title: Using residence time distributions (rtds) to address the traceability of raw materials in continuous pharmaceutical manufacturing
  publication-title: J. Pharm. Innov.
– volume: 42
  start-page: 15
  year: 2012
  end-page: 29
  ident: bb0045
  article-title: A perspective on PSE in pharmaceutical process development and innovation
  publication-title: Comput. Chem. Eng.
– volume: 52
  start-page: 12359
  year: 2013
  end-page: 12363
  ident: bb0015
  article-title: End-to-end continuous manufacturing of pharmaceuticals: integrated synthesis, purification, and final dosage formation
  publication-title: Angew. Chem. Int. Ed.
– start-page: 85
  year: 2015
  end-page: 92
  ident: bb0070
  article-title: Modeling and optimization of continuous pharmaceutical manufacturing processes
  publication-title: Comp. Aided Chem. Eng.
– volume: 15
  start-page: 377
  year: 2000
  end-page: 395
  ident: bb0300
  article-title: Sensitivity analysis as an ingredient of modeling
  publication-title: Stat. Sci.
– year: 1977
  ident: bb0115
  article-title: An Introduction to Chemical Engineering Kinetics & Reactor Design
– volume: 83
  start-page: 730
  year: 2005
  end-page: 738
  ident: bb0185
  article-title: Continuous processing in the pharmaceutical industry - changing the mind set
  publication-title: Chem. Eng. Res. Design
– volume: 331
  start-page: 276
  year: 2018
  end-page: 285
  ident: bb0235
  article-title: Investigations on the residence time distribution of a three-chamber feed frame with special focus on its geometric and parametric setups
  publication-title: Powder Technol.
– volume: Vol. 7703
  year: 2017
  ident: bb0265
  article-title: Continuous Manufacturing of Pharmaceuticals
– volume: 528
  start-page: 334
  year: 2017
  end-page: 344
  ident: bb0260
  article-title: RTD modeling of a continuous dry granulation process for process control and materials diversion
  publication-title: Int. J. Pharm.
– reference: Boukouvala, F., Niotis,V., Ramachandran, R. Muzzio, F.J., Ierapetritou, M.G., An integrated approach for dynamic flowsheet modeling and sensitivity analysis of a continuous tablet manufacturing process
– volume: 552
  start-page: 288
  year: 2018
  end-page: 300
  ident: bb0240
  article-title: Detailed modeling and process design of an advanced continuous powder mixer
  publication-title: Int. J. Pharm.
– volume: 529
  start-page: 329
  year: 2017
  end-page: 346
  ident: bb0220
  article-title: Development of a continuous direct compression platform for low-dose drug products
  publication-title: Int. J. Pharm.
– year: 2010
  ident: bb0280
  article-title: Comparing Distributions
– start-page: 144
  year: 2014
  end-page: 149
  ident: bb0025
  article-title: Challenges and Opportunities in Pharmaceutical Manufacturing Modeling and Optimization
  publication-title: Computer Aided Chemical Engineering
– year: 2008
  ident: bb0090
  publication-title: Perry's Chemical Engineering Handbook
– volume: 151
  start-page: 274
  year: 2018
  end-page: 283
  ident: bb0315
  article-title: Development and validation of an in-line NIR spectroscopic method for continuous blend potency determination in the feed frame of a tablet press
  publication-title: J. Pharm. Biomed. Anal.
– volume: 106
  start-page: 930
  year: 2017
  end-page: 943
  ident: bb0040
  article-title: Control strategies for drug product continuous direct compression-state of control, product collection strategies, and startup/shutdown operations for the production of clinical trial materials and commercial products
  publication-title: J. Pharm. Sci.
– volume: 168
  start-page: 1
  year: 2006
  end-page: 9
  ident: bb0255
  article-title: Fluid bed gas RTD: effect of fines and internals
  publication-title: Powder Technol.
– volume: 66
  start-page: 417
  year: 2011
  end-page: 425
  ident: bb0195
  article-title: Characterizing continuous powder mixing using residence time distribution
  publication-title: Chem. Eng. Sci.
– year: 2013
  ident: bb0285
  article-title: Integrated simulation and optimization of continuous pharmaceutical manufacturing
  publication-title: Chemical and Biochemical Engineering
– year: 1999
  ident: bb0105
  article-title: Chemical Reaction Engineering
– volume: 246
  start-page: 63
  year: 2013
  end-page: 72
  ident: bb0205
  article-title: Effects of powder flow properties and shear environment on the performance of continuous mixing of pharmaceutical powders
  publication-title: Powder Technol.
– volume: 64
  start-page: 511
  year: 2018
  end-page: 525
  ident: bb0135
  article-title: A flowsheet model for the development of a continuous process for pharmaceutical tablets: An industrial perspective
  publication-title: AIChE J.
– volume: 550
  start-page: 347
  year: 2018
  end-page: 358
  ident: bb0165
  article-title: Material tracking in a continuous direct capsule-filling process via residence time distribution measurements
  publication-title: Int. J. Pharm.
– volume: 8
  start-page: 11
  year: 2013
  end-page: 27
  ident: bb0060
  article-title: Computer-aided flowsheet simulation of a pharmaceutical tablet manufacturing process incorporating wet granulation
  publication-title: J. Pharm. Innov.
– year: 2004
  ident: bb0095
  article-title: Handbook of Industrial Mixing : Science and Practice
– year: 2011
  ident: bb0110
  article-title: Chemical Reactor Analysis and Design
– volume: 534
  start-page: 159
  issue: 1
  year: 2017
  ident: 10.1016/j.powtec.2018.12.051_bb0145
  article-title: Development and implementation of an advanced model predictive control system into continuous pharmaceutical tablet compaction process
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2017.10.003
– volume: 515
  start-page: 390
  issue: 1
  year: 2016
  ident: 10.1016/j.powtec.2018.12.051_bb0020
  article-title: Advancing pharmaceutical quality: an overview of science and research in the U.S. FDA's Office of Pharmaceutical Quality
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2016.10.038
– volume: 8
  start-page: 99
  issue: 2
  year: 2013
  ident: 10.1016/j.powtec.2018.12.051_bb0130
  article-title: Improving continuous powder blending performance using projection to latent structures regression
  publication-title: J. Pharm. Innov.
  doi: 10.1007/s12247-013-9152-3
– year: 2004
  ident: 10.1016/j.powtec.2018.12.051_bb0095
– volume: 528
  start-page: 334
  issue: 1
  year: 2017
  ident: 10.1016/j.powtec.2018.12.051_bb0260
  article-title: RTD modeling of a continuous dry granulation process for process control and materials diversion
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2017.06.001
– year: 2018
  ident: 10.1016/j.powtec.2018.12.051_bb0035
– year: 1999
  ident: 10.1016/j.powtec.2018.12.051_bb0105
– volume: 64
  start-page: 2672
  issue: 11
  year: 2009
  ident: 10.1016/j.powtec.2018.12.051_bb0175
  article-title: Simulation of a continuous granular mixer: effect of operating conditions on flow and mixing
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2009.02.011
– volume: 552
  start-page: 288
  issue: 1
  year: 2018
  ident: 10.1016/j.powtec.2018.12.051_bb0240
  article-title: Detailed modeling and process design of an advanced continuous powder mixer
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2018.09.032
– volume: 83
  start-page: 730
  issue: A6
  year: 2005
  ident: 10.1016/j.powtec.2018.12.051_bb0185
  article-title: Continuous processing in the pharmaceutical industry - changing the mind set
  publication-title: Chem. Eng. Res. Design
  doi: 10.1205/cherd.04359
– start-page: 144
  year: 2014
  ident: 10.1016/j.powtec.2018.12.051_bb0025
  article-title: Challenges and Opportunities in Pharmaceutical Manufacturing Modeling and Optimization
  doi: 10.1016/B978-0-444-63433-7.50015-8
– start-page: 33
  year: 2017
  ident: 10.1016/j.powtec.2018.12.051_bb0075
  article-title: Process simulation and control for continuous pharmaceutical manufacturing of solid drug products
  publication-title: Contin. Manuf. Pharma.
– year: 2008
  ident: 10.1016/j.powtec.2018.12.051_bb0275
  article-title: Applied multiway data analysis
  doi: 10.1002/9780470238004.app1
– year: 2008
  ident: 10.1016/j.powtec.2018.12.051_bb0090
– volume: 65
  start-page: 5757
  issue: 21
  year: 2010
  ident: 10.1016/j.powtec.2018.12.051_bb0055
  article-title: A model-based systems approach to pharmaceutical product-process design and analysis
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2010.05.003
– volume: 64
  start-page: 511
  year: 2018
  ident: 10.1016/j.powtec.2018.12.051_bb0135
  article-title: A flowsheet model for the development of a continuous process for pharmaceutical tablets: An industrial perspective
  publication-title: AIChE J.
  doi: 10.1002/aic.15967
– volume: 13
  start-page: 155
  issue: 2
  year: 2018
  ident: 10.1016/j.powtec.2018.12.051_bb0160
  article-title: A Training on: continuous manufacturing (Direct compaction) of solid dose pharmaceutical products
  publication-title: J. Pharm. Innov.
  doi: 10.1007/s12247-018-9313-5
– volume: 550
  start-page: 347
  issue: 1
  year: 2018
  ident: 10.1016/j.powtec.2018.12.051_bb0165
  article-title: Material tracking in a continuous direct capsule-filling process via residence time distribution measurements
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2018.08.056
– volume: 315
  start-page: 332
  year: 2017
  ident: 10.1016/j.powtec.2018.12.051_bb0320
  article-title: A dimensionless analysis of residence time distributions for continuous powder mixing
– volume: 42
  start-page: 15
  year: 2012
  ident: 10.1016/j.powtec.2018.12.051_bb0045
  article-title: A perspective on PSE in pharmaceutical process development and innovation
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2012.02.022
– volume: 10
  start-page: 665
  year: 2001
  ident: 10.1016/j.powtec.2018.12.051_bb0100
  article-title: Investigation of Flow Regimes in Continuous Mixer Tubes
  publication-title: Handbook Powder Technol.
  doi: 10.1016/S0167-3785(01)80068-3
– year: 1968
  ident: 10.1016/j.powtec.2018.12.051_bb0190
– start-page: 85
  year: 2015
  ident: 10.1016/j.powtec.2018.12.051_bb0070
  article-title: Modeling and optimization of continuous pharmaceutical manufacturing processes
  doi: 10.1016/B978-0-444-63578-5.50011-6
– volume: 10
  start-page: 191
  issue: 3
  year: 2015
  ident: 10.1016/j.powtec.2018.12.051_bb0005
  article-title: Modernizing pharmaceutical manufacturing: from batch to continuous production
  publication-title: J. Pharm. Innov.
  doi: 10.1007/s12247-015-9215-8
– volume: 107
  start-page: 77
  year: 2017
  ident: 10.1016/j.powtec.2018.12.051_bb0210
  article-title: Process analysis and optimization of continuous pharmaceutical manufacturing using flowsheet models
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2017.02.030
– volume: 65
  start-page: 5685
  year: 2010
  ident: 10.1016/j.powtec.2018.12.051_bb0310
  article-title: Investigation of the effect of impeller rotation rate, powder flowrate, and cohesion on powder flow behavior in a continuous blender using PEPT
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2010.06.036
– volume: 2
  start-page: 1
  issue: 1
  year: 1953
  ident: 10.1016/j.powtec.2018.12.051_bb0085
  article-title: Continuous flow systems: distribution of residence times
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/0009-2509(53)80001-1
– volume: 39
  issue: 4
  year: 2015
  ident: 10.1016/j.powtec.2018.12.051_bb0030
  article-title: Flowsheet models modernize pharmaceutical manufacturing design and risk assessment
  publication-title: Pharm. Technol.
– volume: 519
  start-page: 390
  issue: 1
  year: 2017
  ident: 10.1016/j.powtec.2018.12.051_bb0215
  article-title: Continuous direct compression as manufacturing platform for sustained release tablets
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2017.01.010
– volume: 66
  start-page: 417
  issue: 3
  year: 2011
  ident: 10.1016/j.powtec.2018.12.051_bb0195
  article-title: Characterizing continuous powder mixing using residence time distribution
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2010.10.045
– volume: 106
  start-page: 930
  issue: 4
  year: 2017
  ident: 10.1016/j.powtec.2018.12.051_bb0040
  article-title: Control strategies for drug product continuous direct compression-state of control, product collection strategies, and startup/shutdown operations for the production of clinical trial materials and commercial products
  publication-title: J. Pharm. Sci.
  doi: 10.1016/j.xphs.2016.12.014
– year: 2013
  ident: 10.1016/j.powtec.2018.12.051_bb0285
  article-title: Integrated simulation and optimization of continuous pharmaceutical manufacturing
– volume: 52
  start-page: 12359
  issue: 47
  year: 2013
  ident: 10.1016/j.powtec.2018.12.051_bb0015
  article-title: End-to-end continuous manufacturing of pharmaceuticals: integrated synthesis, purification, and final dosage formation
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201305429
– volume: 168
  start-page: 1
  issue: 1
  year: 2006
  ident: 10.1016/j.powtec.2018.12.051_bb0255
  article-title: Fluid bed gas RTD: effect of fines and internals
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2006.06.010
– volume: 331
  start-page: 276
  year: 2018
  ident: 10.1016/j.powtec.2018.12.051_bb0235
  article-title: Investigations on the residence time distribution of a three-chamber feed frame with special focus on its geometric and parametric setups
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2018.03.019
– year: 1977
  ident: 10.1016/j.powtec.2018.12.051_bb0115
– volume: 246
  start-page: 63
  year: 2013
  ident: 10.1016/j.powtec.2018.12.051_bb0205
  article-title: Effects of powder flow properties and shear environment on the performance of continuous mixing of pharmaceutical powders
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2013.05.002
– start-page: 405
  year: 2017
  ident: 10.1016/j.powtec.2018.12.051_bb0155
  article-title: Design of an integrated continuous manufacturing system
  publication-title: Contin. Manuf. Pharma.
– volume: 18
  start-page: 402
  issue: 3
  year: 2014
  ident: 10.1016/j.powtec.2018.12.051_bb0010
  article-title: Development of a multi-step synthesis and workup sequence for an integrated, continuous manufacturing process of a pharmaceutical
  publication-title: Org. Process Res. Dev.
  doi: 10.1021/op400294z
– volume: 228
  start-page: 416
  year: 2012
  ident: 10.1016/j.powtec.2018.12.051_bb0245
  article-title: A review of the residence time distribution (RTD) applications in solid unit operations
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2012.05.060
– volume: 62
  start-page: 1846
  issue: 6
  year: 2016
  ident: 10.1016/j.powtec.2018.12.051_bb0065
  article-title: Perspectives on the continuous manufacturing of powder-based pharmaceutical processes
  publication-title: AICHE J.
  doi: 10.1002/aic.15210
– volume: 61
  start-page: 720
  year: 2006
  ident: 10.1016/j.powtec.2018.12.051_bb0180
  article-title: A review on the continuous blending of powders
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2005.06.016
– ident: 10.1016/j.powtec.2018.12.051_bb0290
– year: 2013
  ident: 10.1016/j.powtec.2018.12.051_bb0120
– start-page: 1
  year: 2018
  ident: 10.1016/j.powtec.2018.12.051_bb0230
  article-title: Modeling and simulation of continuous powder blending applied to a continuous direct compression process
  publication-title: Pharm. Dev. Technol.
– volume: 529
  start-page: 329
  issue: 1–2
  year: 2017
  ident: 10.1016/j.powtec.2018.12.051_bb0220
  article-title: Development of a continuous direct compression platform for low-dose drug products
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2017.07.003
– volume: 1
  start-page: 293
  issue: 2
  year: 2014
  ident: 10.1016/j.powtec.2018.12.051_bb0270
  article-title: Challenges of big data ANALYSIS
  publication-title: Nat. Sci. Rev.
  doi: 10.1093/nsr/nwt032
– volume: 42
  start-page: 30
  issue: 0
  year: 2012
  ident: 10.1016/j.powtec.2018.12.051_bb0050
  article-title: An integrated approach for dynamic flowsheet modeling and sensitivity analysis of a continuous tablet manufacturing process
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2012.02.015
– volume: 58
  start-page: 69
  issue: 1
  year: 2012
  ident: 10.1016/j.powtec.2018.12.051_bb0200
  article-title: Periodic section modeling of convective continuous powder mixing processes
  publication-title: AICHE J.
  doi: 10.1002/aic.12563
– year: 2010
  ident: 10.1016/j.powtec.2018.12.051_bb0280
– volume: 543
  start-page: 60
  issue: 1
  year: 2018
  ident: 10.1016/j.powtec.2018.12.051_bb0225
  article-title: Control of three different continuous pharmaceutical manufacturing processes: use of soft sensors
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2018.03.027
– year: 2016
  ident: 10.1016/j.powtec.2018.12.051_bb0250
– volume: Vol. 7703
  year: 2017
  ident: 10.1016/j.powtec.2018.12.051_bb0265
– volume: 15
  start-page: 377
  issue: 4
  year: 2000
  ident: 10.1016/j.powtec.2018.12.051_bb0300
  article-title: Sensitivity analysis as an ingredient of modeling
  publication-title: Stat. Sci.
  doi: 10.1214/ss/1009213004
– volume: 8
  start-page: 11
  issue: 1
  year: 2013
  ident: 10.1016/j.powtec.2018.12.051_bb0060
  article-title: Computer-aided flowsheet simulation of a pharmaceutical tablet manufacturing process incorporating wet granulation
  publication-title: J. Pharm. Innov.
  doi: 10.1007/s12247-012-9143-9
– volume: 11
  start-page: 64
  issue: 1
  year: 2016
  ident: 10.1016/j.powtec.2018.12.051_bb0125
  article-title: Using residence time distributions (rtds) to address the traceability of raw materials in continuous pharmaceutical manufacturing
  publication-title: J. Pharm. Innov.
  doi: 10.1007/s12247-015-9238-1
– volume: 296
  start-page: 290
  issue: 3–4
  year: 2011
  ident: 10.1016/j.powtec.2018.12.051_bb0170
  article-title: Computational approaches for studying the granular dynamics of continuous blending processes, 1 – dem based methods
  publication-title: Macromol. Mater. Eng.
  doi: 10.1002/mame.201000389
– volume: 52
  start-page: 1
  issue: 1
  year: 1996
  ident: 10.1016/j.powtec.2018.12.051_bb0295
  article-title: Importance measures in global sensitivity analysis of nonlinear models
  publication-title: Reliabil. Eng. Sys. Saf.
  doi: 10.1016/0951-8320(96)00002-6
– year: 2011
  ident: 10.1016/j.powtec.2018.12.051_bb0110
– volume: 342
  start-page: 744
  year: 2019
  ident: 10.1016/j.powtec.2018.12.051_bb0080
  article-title: Effect of tracer material properties on the residence time distribution (RTD) of continuous powder blending operations. Part I of II: Experimental evaluation
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2018.10.040
– volume: 151
  start-page: 274
  year: 2018
  ident: 10.1016/j.powtec.2018.12.051_bb0315
  article-title: Development and validation of an in-line NIR spectroscopic method for continuous blend potency determination in the feed frame of a tablet press
  publication-title: J. Pharm. Biomed. Anal.
  doi: 10.1016/j.jpba.2018.01.032
– year: 2003
  ident: 10.1016/j.powtec.2018.12.051_bb0140
– year: 2018
  ident: 10.1016/j.powtec.2018.12.051_bb0150
  article-title: Residence Time Distribution (RTD)-Based Control System for Continuous Pharmaceutical Manufacturing Process
  publication-title: J. Pharm. Innov.
  doi: 10.1007/s12247-018-9356-7
– volume: 42
  start-page: 796
  issue: 5
  year: 2016
  ident: 10.1016/j.powtec.2018.12.051_bb0305
  article-title: Statistical comparison of dissolution profiles
  publication-title: Drug Dev. Ind. Pharm.
  doi: 10.3109/03639045.2015.1078349
SSID ssj0006310
Score 2.456789
Snippet Residence time distribution (RTD) modeling can aid the understanding and characterization of macro-mixing in continuous powder processing unit operations by...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 525
SubjectTerms Axial dispersion
Continuous manufacturing
Convolution
Experimental data
Material properties
Mathematical models
Mixing
Modeling
Multivariate analysis
Parameters
Powder
Powder blending
powders
process design
Regression analysis
Residence time distribution
tanks
Tanks-in-series
Variance analysis
Title Effect of material properties on the residence time distribution (RTD) characterization of powder blending unit operations. Part II of II: Application of models
URI https://dx.doi.org/10.1016/j.powtec.2018.12.051
https://www.proquest.com/docview/2215516324
https://www.proquest.com/docview/2221005376
Volume 344
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhvTSH0EdCtk2XKfSQHNysLEv29rZsG9YtDaEksDchyxIkBHvZ7NJbfkt-amdkeZMUSqDgi-3xSxrNfLJmvmHsU5UpY3jFE-VxuGVFLZOwK43IXMZdUXFKcP55pmaX2fe5nG-xaZ8LQ2GV0fZ3Nj1Y63jkJLbmyeLqinJ8BWJ3YpxCiFIUc8pgz3LS9c93D2EeSvBIzYiTLpTu0-dCjNei_b1yRGTIi_BTUPJ_uae_DHXwPqev2G6EjTDp3uw123LNG7bziEzwLbvviIih9YAoNCgWLOhX-5I4U6FtALEe4Oy6KyMKVFUeauLNjSWv4OjXxddjsBsK5y5Dk26IX1C7JVToosjXwRoNAdCtYygQnGObQVmSbFl-gcnDsnh4Hyq3c7vHLk-_XUxnSay_kNhMiFWS12PvRSVk5ZX1xkiEAiNpfDoStHzrc2sRLxk5MqnyYzyBW1FIL2vuTI4Df59tN23jDhgIWXtr0BNaBGAIYYySXimUqW3u6yobMNE3u7aRnJxqZNzoPgrtWnedpamzNE81dtaAJZurFh05xzPyed-j-omSafQfz1x52CuAjoP8VqdpWGZESDpgHzencXjSmotpXLsmGZxTB86cd__98PfsJe6NKVacy0O2vVqu3QeEQqtqGHR9yF5Myh-zsz95nAuz
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYoHNoeqtKH2ELLVOqBHlLWcexke0MUtKGAULVIe7Mcx5ZAKFktu-qtv4Wf2hnHWdpKFRJSLoknLz9mPtsz3zD2qcqUMbziifI43LKilkk4lUZkLuOuqDgFOJ-dq_FldjKV0zV22MfCkFtl1P2dTg_aOl7Zj7W5P7u6ohhfgdidGKcQohTF9AnbyKTIiUD_y697Pw8leORmxFkXivfxc8HJa9b-XDhiMuRFWBWU_H_26R9NHczP8Uv2IuJGOOg-bZOtueYVe_4Hm-BrdtcxEUPrAWFo6Fkwo7X2OZGmQtsAgj3A6XWXRxQorTzURJwbc17B3o_Jt89gVxzOXYgmPRD_oHZzqNBGkbGDJWoCoEdHXyC4wEqDsiTZsvwKB_f74uF7KN_O7Rt2eXw0ORwnMQFDYjMhFklej7wXlZCVV9YbIxELDKXx6VDQ_q3PrUXAZOTQpMqPsACPopBe1tyZHEf-W7betI3bYiBk7a1BU2gRgSGGMUp6pVCmtrmvq2zARF_t2kZ2ckqScaN7N7Rr3TWWpsbSPNXYWAOWrO6adewcD8jnfYvqv3qZRgPywJ07fQfQcZTf6jQN-4yISQfs46oYxydtupjGtUuSwUl1IM159-iX77Kn48nZqT4tz79vs2dYMiLHcS532PpivnTvERctqg-h3_8Gg58NRQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+material+properties+on+the+residence+time+distribution+%28RTD%29+characterization+of+powder+blending+unit+operations.+Part+II+of+II%3A+Application+of+models&rft.jtitle=Powder+technology&rft.au=Escotet-Espinoza%2C+M.+Sebastian&rft.au=Moghtadernejad%2C+Sara&rft.au=Oka%2C+Sarang&rft.au=Wang%2C+Zilong&rft.date=2019-02-15&rft.pub=Elsevier+B.V&rft.issn=0032-5910&rft.eissn=1873-328X&rft.volume=344&rft.spage=525&rft.epage=544&rft_id=info:doi/10.1016%2Fj.powtec.2018.12.051&rft.externalDocID=S003259101831088X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-5910&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-5910&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-5910&client=summon