Effect of material properties on the residence time distribution (RTD) characterization of powder blending unit operations. Part II of II: Application of models
Residence time distribution (RTD) modeling can aid the understanding and characterization of macro-mixing in continuous powder processing unit operations by relating observed behavior to quantitative model parameters. This article is the second part of the work done to characterize the effect of mat...
Saved in:
Published in | Powder technology Vol. 344; pp. 525 - 544 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Lausanne
Elsevier B.V
15.02.2019
Elsevier BV |
Subjects | |
Online Access | Get full text |
ISSN | 0032-5910 1873-328X |
DOI | 10.1016/j.powtec.2018.12.051 |
Cover
Abstract | Residence time distribution (RTD) modeling can aid the understanding and characterization of macro-mixing in continuous powder processing unit operations by relating observed behavior to quantitative model parameters. This article is the second part of the work done to characterize the effect of material properties on the measurement of RTDs in continuous powder processing operations. The goal of this paper is to examine the behavior of the RTD given different sets of tracer material properties. Tracer addition methods are discussed within the framework of their mathematical representation. The two most widely used RTD models in powder systems in the literature, the axial dispersion and the tank-in-series model, are presented and used to describe the experimental data. The RTD model parameters (e.g., Peclét number, number of tanks in series, and residence times) were regressed from the experimental data and compared using one-way ANOVA to determine the effects of materials properties on RTD. A model independent approach using a Multivariate Analysis of Variance (MANOVA) was also applied to compare the results with the model dependent method. Lastly, examples of how the RTD models can aid process design and understanding were described using both continuous and discrete convolution. The RTD models and their regressed coefficients were used to predict the mixing outputs of a semi-random input and the impact of disturbances on the process.
[Display omitted]
•Two residence time distribution (RTD) models used for powder blending are reviewed.•Parametric regression methods are discussed for RTD model parameter estimation.•The three parameters for each of the RTD models were regressed for each pulse curve.•Statistical analysis on parameters was performed relating material properties to RTD.•RTD models and parameters were used to establish disturbance dissipation regimes. |
---|---|
AbstractList | Residence time distribution (RTD) modeling can aid the understanding and characterization of macro-mixing in continuous powder processing unit operations by relating observed behavior to quantitative model parameters. This article is the second part of the work done to characterize the effect of material properties on the measurement of RTDs in continuous powder processing operations. The goal of this paper is to examine the behavior of the RTD given different sets of tracer material properties. Tracer addition methods are discussed within the framework of their mathematical representation. The two most widely used RTD models in powder systems in the literature, the axial dispersion and the tank-in-series model, are presented and used to describe the experimental data. The RTD model parameters (e.g., Peclét number, number of tanks in series, and residence times) were regressed from the experimental data and compared using one-way ANOVA to determine the effects of materials properties on RTD. A model independent approach using a Multivariate Analysis of Variance (MANOVA) was also applied to compare the results with the model dependent method. Lastly, examples of how the RTD models can aid process design and understanding were described using both continuous and discrete convolution. The RTD models and their regressed coefficients were used to predict the mixing outputs of a semi-random input and the impact of disturbances on the process. Residence time distribution (RTD) modeling can aid the understanding and characterization of macro-mixing in continuous powder processing unit operations by relating observed behavior to quantitative model parameters. This article is the second part of the work done to characterize the effect of material properties on the measurement of RTDs in continuous powder processing operations. The goal of this paper is to examine the behavior of the RTD given different sets of tracer material properties. Tracer addition methods are discussed within the framework of their mathematical representation. The two most widely used RTD models in powder systems in the literature, the axial dispersion and the tank-in-series model, are presented and used to describe the experimental data. The RTD model parameters (e.g., Peclét number, number of tanks in series, and residence times) were regressed from the experimental data and compared using one-way ANOVA to determine the effects of materials properties on RTD. A model independent approach using a Multivariate Analysis of Variance (MANOVA) was also applied to compare the results with the model dependent method. Lastly, examples of how the RTD models can aid process design and understanding were described using both continuous and discrete convolution. The RTD models and their regressed coefficients were used to predict the mixing outputs of a semi-random input and the impact of disturbances on the process. [Display omitted] •Two residence time distribution (RTD) models used for powder blending are reviewed.•Parametric regression methods are discussed for RTD model parameter estimation.•The three parameters for each of the RTD models were regressed for each pulse curve.•Statistical analysis on parameters was performed relating material properties to RTD.•RTD models and parameters were used to establish disturbance dissipation regimes. |
Author | Escotet-Espinoza, M. Sebastian Oka, Sarang Moghtadernejad, Sara Wang, Zilong Futran, Mauricio Ierapetritou, Marianthi Cappuyns, Philippe Roman-Ospino, Andres Van Assche, Ivo Wang, Yifan Schäfer, Elisabeth Muzzio, Fernando |
Author_xml | – sequence: 1 givenname: M. Sebastian surname: Escotet-Espinoza fullname: Escotet-Espinoza, M. Sebastian organization: Engineering Research Center for Structured Organic Particulate Systems (C-SOPS), Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA – sequence: 2 givenname: Sara surname: Moghtadernejad fullname: Moghtadernejad, Sara organization: Engineering Research Center for Structured Organic Particulate Systems (C-SOPS), Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA – sequence: 3 givenname: Sarang surname: Oka fullname: Oka, Sarang organization: Engineering Research Center for Structured Organic Particulate Systems (C-SOPS), Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA – sequence: 4 givenname: Zilong surname: Wang fullname: Wang, Zilong organization: Engineering Research Center for Structured Organic Particulate Systems (C-SOPS), Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA – sequence: 5 givenname: Yifan surname: Wang fullname: Wang, Yifan organization: Engineering Research Center for Structured Organic Particulate Systems (C-SOPS), Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA – sequence: 6 givenname: Andres surname: Roman-Ospino fullname: Roman-Ospino, Andres organization: Engineering Research Center for Structured Organic Particulate Systems (C-SOPS), Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA – sequence: 7 givenname: Elisabeth surname: Schäfer fullname: Schäfer, Elisabeth organization: The Janssen Pharmaceutical Companies of Johnson and Johnson, Beerse, Belgium – sequence: 8 givenname: Philippe surname: Cappuyns fullname: Cappuyns, Philippe organization: The Janssen Pharmaceutical Companies of Johnson and Johnson, Beerse, Belgium – sequence: 9 givenname: Ivo surname: Van Assche fullname: Van Assche, Ivo organization: The Janssen Pharmaceutical Companies of Johnson and Johnson, Beerse, Belgium – sequence: 10 givenname: Mauricio surname: Futran fullname: Futran, Mauricio organization: The Janssen Pharmaceutical Companies of Johnson and Johnson, Raritan, NJ 08869, USA – sequence: 11 givenname: Fernando surname: Muzzio fullname: Muzzio, Fernando organization: Engineering Research Center for Structured Organic Particulate Systems (C-SOPS), Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA – sequence: 12 givenname: Marianthi surname: Ierapetritou fullname: Ierapetritou, Marianthi email: marianth@soe.rutgers.edu organization: Engineering Research Center for Structured Organic Particulate Systems (C-SOPS), Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA |
BookMark | eNqFkc9qFTEUxoNU8Lb6Bi4CbupixvyZzMztQii16kBBkQruQm5yYnOZScYkU9Gn8VHN3CsuulAIBHJ-33fOyXeKTnzwgNBzSmpKaPtqX8_hewZdM0L7mrKaCPoIbWjf8Yqz_ssJ2hDCWSW2lDxBpyntCSEtp2SDfl1bCzrjYPGkMkSnRjzHMEPMDhIOHuc7wBGSM-A14OwmwMalHN1uya7Uzz_dvnmJ9Z2KSq8GP9XhuRiWoQxEvBvBG-e_4sW70qhYH4hU448qZjwMKzsMF_hynken_8qnYGBMT9Fjq8YEz_7cZ-jz2-vbq_fVzYd3w9XlTaUbznPVma21fMfFzrbaKiVY0xChLCO8Yx2zndaiJUoQxVq7LYVy-l5YYSiortvyM3R-9C3bf1sgZTm5pGEclYewJMkYo4QI3rUFffEA3Ycl-jJdoagQtOWsKdTFkdIxpBTBSu3yYbkclRslJXINT-7lMTy5hicpkyW8Im4eiOfoJhV__E_2-igrHwf3DqJM2q25GRdLytIE92-D3wa8ulI |
CitedBy_id | crossref_primary_10_1016_j_powtec_2023_118864 crossref_primary_10_1016_j_apt_2020_05_027 crossref_primary_10_3390_pharmaceutics13081311 crossref_primary_10_1021_acs_iecr_4c00201 crossref_primary_10_1016_j_ijpharm_2025_125165 crossref_primary_10_1016_j_eti_2021_102220 crossref_primary_10_1016_j_ijpharm_2022_122326 crossref_primary_10_1016_j_ijpharm_2023_122969 crossref_primary_10_1016_j_powtec_2024_120440 crossref_primary_10_1016_j_ijpharm_2020_120048 crossref_primary_10_1016_j_ijpharm_2021_121313 crossref_primary_10_1016_j_ijpharm_2021_120624 crossref_primary_10_3390_fractalfract6040191 crossref_primary_10_1208_s12249_019_1473_1 crossref_primary_10_1016_j_compchemeng_2022_107664 crossref_primary_10_1007_s12247_020_09504_7 crossref_primary_10_3390_pharmaceutics14020355 crossref_primary_10_1002_aic_16996 crossref_primary_10_1007_s11071_022_07688_w crossref_primary_10_1002_ente_202402196 crossref_primary_10_3390_pr8091088 crossref_primary_10_1208_s12249_020_01911_w crossref_primary_10_1016_j_ijpharm_2020_119961 crossref_primary_10_1016_j_ijpharm_2021_121248 crossref_primary_10_1016_j_powtec_2022_117507 crossref_primary_10_1016_j_ijpharm_2022_121467 crossref_primary_10_1016_j_ijpharm_2022_121528 crossref_primary_10_1016_j_xphs_2020_10_067 crossref_primary_10_1016_j_ceramint_2021_08_044 crossref_primary_10_1007_s12247_023_09728_3 crossref_primary_10_1016_j_ijpharm_2023_122653 crossref_primary_10_1021_acs_iecr_1c02415 crossref_primary_10_1016_j_ijpharm_2024_124133 crossref_primary_10_1016_j_cherd_2019_10_026 crossref_primary_10_1016_j_ijpx_2024_100287 crossref_primary_10_1016_j_ejps_2024_106890 crossref_primary_10_3390_pharmaceutics15061587 |
Cites_doi | 10.1016/j.ijpharm.2017.10.003 10.1016/j.ijpharm.2016.10.038 10.1007/s12247-013-9152-3 10.1016/j.ijpharm.2017.06.001 10.1016/j.ces.2009.02.011 10.1016/j.ijpharm.2018.09.032 10.1205/cherd.04359 10.1016/B978-0-444-63433-7.50015-8 10.1002/9780470238004.app1 10.1016/j.ces.2010.05.003 10.1002/aic.15967 10.1007/s12247-018-9313-5 10.1016/j.ijpharm.2018.08.056 10.1016/j.compchemeng.2012.02.022 10.1016/S0167-3785(01)80068-3 10.1016/B978-0-444-63578-5.50011-6 10.1007/s12247-015-9215-8 10.1016/j.compchemeng.2017.02.030 10.1016/j.ces.2010.06.036 10.1016/0009-2509(53)80001-1 10.1016/j.ijpharm.2017.01.010 10.1016/j.ces.2010.10.045 10.1016/j.xphs.2016.12.014 10.1002/anie.201305429 10.1016/j.powtec.2006.06.010 10.1016/j.powtec.2018.03.019 10.1016/j.powtec.2013.05.002 10.1021/op400294z 10.1016/j.powtec.2012.05.060 10.1002/aic.15210 10.1016/j.ces.2005.06.016 10.1016/j.ijpharm.2017.07.003 10.1093/nsr/nwt032 10.1016/j.compchemeng.2012.02.015 10.1002/aic.12563 10.1016/j.ijpharm.2018.03.027 10.1214/ss/1009213004 10.1007/s12247-012-9143-9 10.1007/s12247-015-9238-1 10.1002/mame.201000389 10.1016/0951-8320(96)00002-6 10.1016/j.powtec.2018.10.040 10.1016/j.jpba.2018.01.032 10.1007/s12247-018-9356-7 10.3109/03639045.2015.1078349 |
ContentType | Journal Article |
Copyright | 2018 Elsevier B.V. Copyright Elsevier BV Feb 15, 2019 |
Copyright_xml | – notice: 2018 Elsevier B.V. – notice: Copyright Elsevier BV Feb 15, 2019 |
DBID | AAYXX CITATION 7SR 7ST 8BQ 8FD C1K JG9 SOI 7S9 L.6 |
DOI | 10.1016/j.powtec.2018.12.051 |
DatabaseName | CrossRef Engineered Materials Abstracts Environment Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management Materials Research Database Environment Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Environment Abstracts METADEX Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Materials Research Database AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-328X |
EndPage | 544 |
ExternalDocumentID | 10_1016_j_powtec_2018_12_051 S003259101831088X |
GroupedDBID | --- --K --M -~X .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AARLI AAXUO ABJNI ABMAC ABNUV ABXRA ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEWK ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRAH AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W KOM LX7 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SPC SPCBC SSG SSM SSZ T5K ~02 ~G- 29O 8WZ A6W AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CITATION FEDTE FGOYB HLY HVGLF HZ~ NDZJH R2- SCB SCE SEW SSH T9H WUQ XPP ZY4 7SR 7ST 8BQ 8FD C1K EFKBS JG9 SOI 7S9 L.6 |
ID | FETCH-LOGICAL-c433t-7d9ff3b35bf6cfaa524405af2037272f7cc560a50a26f95af5af885f5d1ea7793 |
IEDL.DBID | .~1 |
ISSN | 0032-5910 |
IngestDate | Thu Sep 04 21:06:49 EDT 2025 Wed Aug 13 11:30:40 EDT 2025 Thu Apr 24 23:09:03 EDT 2025 Tue Jul 01 01:21:49 EDT 2025 Fri Feb 23 02:29:52 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Continuous manufacturing Mixing Tanks-in-series Modeling Axial dispersion Powder blending |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c433t-7d9ff3b35bf6cfaa524405af2037272f7cc560a50a26f95af5af885f5d1ea7793 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PQID | 2215516324 |
PQPubID | 2045415 |
PageCount | 20 |
ParticipantIDs | proquest_miscellaneous_2221005376 proquest_journals_2215516324 crossref_citationtrail_10_1016_j_powtec_2018_12_051 crossref_primary_10_1016_j_powtec_2018_12_051 elsevier_sciencedirect_doi_10_1016_j_powtec_2018_12_051 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-02-15 |
PublicationDateYYYYMMDD | 2019-02-15 |
PublicationDate_xml | – month: 02 year: 2019 text: 2019-02-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | Lausanne |
PublicationPlace_xml | – name: Lausanne |
PublicationTitle | Powder technology |
PublicationYear | 2019 |
Publisher | Elsevier B.V Elsevier BV |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
References | Kleinebudde, Khinast, Rantanen (bb0265) 2017; Vol. 7703 Tian (bb0320) 2017; 315 Danckwerts (bb0085) 1953; 2 Kresta (bb0095) 2004 Lorences (bb0255) 2006; 168 Escotet-Espinoza (bb0035) 2018 Vanarase, Osorio, Muzzio (bb0205) 2013; 246 Dubey (bb0170) 2011; 296 Portillo, Vanarase, Ingram, Seville (bb0310) 2010; 65 Gernaey, Cervera-Padrell, Woodley (bb0045) 2012; 42 Boukouvala (bb0050) 2012; 42 Lee (bb0005) 2015; 10 Rogers, Ierapetritou (bb0070) 2015 Moghtadernejad (bb0160) 2018; 13 Sarkar, Wassgren (bb0175) 2009; 64 Bhaskar (bb0150) 2018 Fogler (bb0250) 2016 Comput. Chem. Eng., 2012. 42: p. 30–47. Mascia (bb0015) 2013; 52 Toson (bb0240) 2018; 552 Thas (bb0280) 2010 Hill (bb0115) 1977 Galbraith (bb0230) 2018 Fisher (bb0020) 2016; 515 Gao, Ierapetritou, Muzzio (bb0200) 2012; 58 Biegler (bb0090) 2008 Heider (bb0010) 2014; 18 Oka (bb0155) 2017 Gao (bb0195) 2011; 66 Kroonenberg (bb0275) 2008 Weinekötter, Gericke (bb0120) 2013 Wang, Escotet-Espinoza, Ierapetritou (bb0210) 5 December 2017; 107 Van Snick (bb0215) 2017; 519 García-Muñoz, Butterbaugh, Leavesley, Manley, Slade, Bermingham (bb0135) 2018; 64 Pernenkil, Cooney (bb0180) 2006; 61 Gao (bb0130) 2013; 8 Szépvölgyi (bb0100) 2001; 10 Fan, Han, Liu (bb0270) 2014; 1 Escotet-Espinoza (bb0030) 2015 Boukouvala (bb0060) 2013; 8 Ierapetritou, Muzzio, Reklaitis (bb0065) 2016; 62 Kruisz (bb0165) 2018; 550 Kruisz (bb0260) 2017; 528 Plumb (bb0185) 2005; 83 Levenspiel (bb0105) 1999 Gao, Muzzio, Ierapetritou (bb0245) 2012; 228 Gernaey, Gani (bb0055) 2010; 65 Almaya (bb0040) 2017; 106 Ierapetritou, Escotet-Espinoza, Singh (bb0075) 2017 Rogers, Ierapetritou (bb0025) 2014 Kehlenbeck (bb0140) 2003 Saltelli, Tarantola, Campolongo (bb0300) 2000; 15 Wang (bb0305) 2016; 42 Boukouvala (bb0285) 2013 Bhaskar, Barros, Singh (bb0145) 2017; 534 Rehrl (bb0225) 2018; 543 Froment, Bischoff, Wilde (bb0110) 2011 Homma, Saltelli (bb0295) 1996; 52 Boukouvala, F., Niotis,V., Ramachandran, R. Muzzio, F.J., Ierapetritou, M.G., An integrated approach for dynamic flowsheet modeling and sensitivity analysis of a continuous tablet manufacturing process Escotet-Espinoza (bb0080) 2019; 342 Van Snick (bb0220) 2017; 529 De Leersnyder (bb0315) 2018; 151 Engisch, Muzzio (bb0125) 2016; 11 Himmelblau, Bischoff (bb0190) 1968 Dülle, Özcoban, Leopold (bb0235) 2018; 331 Heider (10.1016/j.powtec.2018.12.051_bb0010) 2014; 18 Rogers (10.1016/j.powtec.2018.12.051_bb0025) 2014 Escotet-Espinoza (10.1016/j.powtec.2018.12.051_bb0035) 2018 Escotet-Espinoza (10.1016/j.powtec.2018.12.051_bb0030) 2015; 39 Kehlenbeck (10.1016/j.powtec.2018.12.051_bb0140) 2003 Hill (10.1016/j.powtec.2018.12.051_bb0115) 1977 Biegler (10.1016/j.powtec.2018.12.051_bb0090) 2008 Weinekötter (10.1016/j.powtec.2018.12.051_bb0120) 2013 Sarkar (10.1016/j.powtec.2018.12.051_bb0175) 2009; 64 Oka (10.1016/j.powtec.2018.12.051_bb0155) 2017 Himmelblau (10.1016/j.powtec.2018.12.051_bb0190) 1968 Froment (10.1016/j.powtec.2018.12.051_bb0110) 2011 Dubey (10.1016/j.powtec.2018.12.051_bb0170) 2011; 296 Gao (10.1016/j.powtec.2018.12.051_bb0130) 2013; 8 Lorences (10.1016/j.powtec.2018.12.051_bb0255) 2006; 168 Dülle (10.1016/j.powtec.2018.12.051_bb0235) 2018; 331 Galbraith (10.1016/j.powtec.2018.12.051_bb0230) 2018 Plumb (10.1016/j.powtec.2018.12.051_bb0185) 2005; 83 Vanarase (10.1016/j.powtec.2018.12.051_bb0205) 2013; 246 Lee (10.1016/j.powtec.2018.12.051_bb0005) 2015; 10 Wang (10.1016/j.powtec.2018.12.051_bb0210) 2017; 107 Boukouvala (10.1016/j.powtec.2018.12.051_bb0060) 2013; 8 Ierapetritou (10.1016/j.powtec.2018.12.051_bb0065) 2016; 62 De Leersnyder (10.1016/j.powtec.2018.12.051_bb0315) 2018; 151 Szépvölgyi (10.1016/j.powtec.2018.12.051_bb0100) 2001; 10 Tian (10.1016/j.powtec.2018.12.051_bb0320) 2017; 315 Gernaey (10.1016/j.powtec.2018.12.051_bb0045) 2012; 42 Bhaskar (10.1016/j.powtec.2018.12.051_bb0145) 2017; 534 Mascia (10.1016/j.powtec.2018.12.051_bb0015) 2013; 52 Kroonenberg (10.1016/j.powtec.2018.12.051_bb0275) 2008 Fan (10.1016/j.powtec.2018.12.051_bb0270) 2014; 1 Bhaskar (10.1016/j.powtec.2018.12.051_bb0150) 2018 Boukouvala (10.1016/j.powtec.2018.12.051_bb0285) 2013 Escotet-Espinoza (10.1016/j.powtec.2018.12.051_bb0080) 2019; 342 Kruisz (10.1016/j.powtec.2018.12.051_bb0260) 2017; 528 10.1016/j.powtec.2018.12.051_bb0290 Saltelli (10.1016/j.powtec.2018.12.051_bb0300) 2000; 15 Fisher (10.1016/j.powtec.2018.12.051_bb0020) 2016; 515 Fogler (10.1016/j.powtec.2018.12.051_bb0250) 2016 Van Snick (10.1016/j.powtec.2018.12.051_bb0215) 2017; 519 Wang (10.1016/j.powtec.2018.12.051_bb0305) 2016; 42 Danckwerts (10.1016/j.powtec.2018.12.051_bb0085) 1953; 2 Moghtadernejad (10.1016/j.powtec.2018.12.051_bb0160) 2018; 13 Gao (10.1016/j.powtec.2018.12.051_bb0195) 2011; 66 Thas (10.1016/j.powtec.2018.12.051_bb0280) 2010 Boukouvala (10.1016/j.powtec.2018.12.051_bb0050) 2012; 42 Kresta (10.1016/j.powtec.2018.12.051_bb0095) 2004 Homma (10.1016/j.powtec.2018.12.051_bb0295) 1996; 52 Kruisz (10.1016/j.powtec.2018.12.051_bb0165) 2018; 550 Ierapetritou (10.1016/j.powtec.2018.12.051_bb0075) 2017 Portillo (10.1016/j.powtec.2018.12.051_bb0310) 2010; 65 Levenspiel (10.1016/j.powtec.2018.12.051_bb0105) 1999 García-Muñoz (10.1016/j.powtec.2018.12.051_bb0135) 2018; 64 Rogers (10.1016/j.powtec.2018.12.051_bb0070) 2015 Toson (10.1016/j.powtec.2018.12.051_bb0240) 2018; 552 Almaya (10.1016/j.powtec.2018.12.051_bb0040) 2017; 106 Gernaey (10.1016/j.powtec.2018.12.051_bb0055) 2010; 65 Gao (10.1016/j.powtec.2018.12.051_bb0245) 2012; 228 Engisch (10.1016/j.powtec.2018.12.051_bb0125) 2016; 11 Van Snick (10.1016/j.powtec.2018.12.051_bb0220) 2017; 529 Rehrl (10.1016/j.powtec.2018.12.051_bb0225) 2018; 543 Gao (10.1016/j.powtec.2018.12.051_bb0200) 2012; 58 Kleinebudde (10.1016/j.powtec.2018.12.051_bb0265) 2017; Vol. 7703 Pernenkil (10.1016/j.powtec.2018.12.051_bb0180) 2006; 61 |
References_xml | – year: 2008 ident: bb0275 article-title: Applied multiway data analysis publication-title: Wiley Series in Probability and Statistics – volume: 10 start-page: 191 year: 2015 end-page: 199 ident: bb0005 article-title: Modernizing pharmaceutical manufacturing: from batch to continuous production publication-title: J. Pharm. Innov. – volume: 342 start-page: 744 year: 2019 end-page: 763 ident: bb0080 article-title: Effect of tracer material properties on the residence time distribution (RTD) of continuous powder blending operations. Part I of II: Experimental evaluation publication-title: Powder Technol. – volume: 65 start-page: 5757 year: 2010 end-page: 5769 ident: bb0055 article-title: A model-based systems approach to pharmaceutical product-process design and analysis publication-title: Chem. Eng. Sci. – year: 2013 ident: bb0120 article-title: Mixing of Solids – volume: 13 start-page: 155 year: 2018 end-page: 187 ident: bb0160 article-title: A Training on: continuous manufacturing (Direct compaction) of solid dose pharmaceutical products publication-title: J. Pharm. Innov. – volume: 42 start-page: 30 year: 2012 end-page: 47 ident: bb0050 article-title: An integrated approach for dynamic flowsheet modeling and sensitivity analysis of a continuous tablet manufacturing process publication-title: Comput. Chem. Eng. – volume: 228 start-page: 416 year: 2012 end-page: 423 ident: bb0245 article-title: A review of the residence time distribution (RTD) applications in solid unit operations publication-title: Powder Technol. – volume: 10 start-page: 665 year: 2001 end-page: 671 ident: bb0100 article-title: Investigation of Flow Regimes in Continuous Mixer Tubes publication-title: Handbook Powder Technol. – reference: Comput. Chem. Eng., 2012. 42: p. 30–47. – volume: 515 start-page: 390 year: 2016 end-page: 402 ident: bb0020 article-title: Advancing pharmaceutical quality: an overview of science and research in the U.S. FDA's Office of Pharmaceutical Quality publication-title: Int. J. Pharm. – volume: 42 start-page: 796 year: 2016 end-page: 807 ident: bb0305 article-title: Statistical comparison of dissolution profiles publication-title: Drug Dev. Ind. Pharm. – volume: 62 start-page: 1846 year: 2016 end-page: 1862 ident: bb0065 article-title: Perspectives on the continuous manufacturing of powder-based pharmaceutical processes publication-title: AICHE J. – start-page: 33 year: 2017 end-page: 105 ident: bb0075 article-title: Process simulation and control for continuous pharmaceutical manufacturing of solid drug products publication-title: Contin. Manuf. Pharma. – volume: 1 start-page: 293 year: 2014 end-page: 314 ident: bb0270 article-title: Challenges of big data ANALYSIS publication-title: Nat. Sci. Rev. – year: 2018 ident: bb0150 article-title: Residence Time Distribution (RTD)-Based Control System for Continuous Pharmaceutical Manufacturing Process publication-title: J. Pharm. Innov. – volume: 107 start-page: 77 year: 5 December 2017 end-page: 91 ident: bb0210 article-title: Process analysis and optimization of continuous pharmaceutical manufacturing using flowsheet models publication-title: Comput. Chem. Eng. – volume: 64 start-page: 2672 year: 2009 end-page: 2682 ident: bb0175 article-title: Simulation of a continuous granular mixer: effect of operating conditions on flow and mixing publication-title: Chem. Eng. Sci. – volume: 18 start-page: 402 year: 2014 end-page: 409 ident: bb0010 article-title: Development of a multi-step synthesis and workup sequence for an integrated, continuous manufacturing process of a pharmaceutical publication-title: Org. Process Res. Dev. – year: 1968 ident: bb0190 article-title: Process Analysis and Simulation: Deterministic Systems – start-page: 1 year: 2018 end-page: 11 ident: bb0230 article-title: Modeling and simulation of continuous powder blending applied to a continuous direct compression process publication-title: Pharm. Dev. Technol. – volume: 8 start-page: 99 year: 2013 end-page: 110 ident: bb0130 article-title: Improving continuous powder blending performance using projection to latent structures regression publication-title: J. Pharm. Innov. – year: 2018 ident: bb0035 article-title: Phenomenological and Residence Time Distribution Models for Unit Operations in a Continuous Pharmaceutical Manufacturing Process – volume: 543 start-page: 60 year: 2018 end-page: 72 ident: bb0225 article-title: Control of three different continuous pharmaceutical manufacturing processes: use of soft sensors publication-title: Int. J. Pharm. – year: 2015 ident: bb0030 article-title: Flowsheet models modernize pharmaceutical manufacturing design and risk assessment publication-title: Pharm. Technol. – volume: 52 start-page: 1 year: 1996 end-page: 17 ident: bb0295 article-title: Importance measures in global sensitivity analysis of nonlinear models publication-title: Reliabil. Eng. Sys. Saf. – volume: 2 start-page: 1 year: 1953 end-page: 13 ident: bb0085 article-title: Continuous flow systems: distribution of residence times publication-title: Chem. Eng. Sci. – volume: 65 start-page: 5685 year: 2010 end-page: 5688 ident: bb0310 article-title: Investigation of the effect of impeller rotation rate, powder flowrate, and cohesion on powder flow behavior in a continuous blender using PEPT publication-title: Chem. Eng. Sci. – start-page: 405 year: 2017 end-page: 446 ident: bb0155 article-title: Design of an integrated continuous manufacturing system publication-title: Contin. Manuf. Pharma. – volume: 61 start-page: 720 year: 2006 end-page: 742 ident: bb0180 article-title: A review on the continuous blending of powders publication-title: Chem. Eng. Sci. – volume: 534 start-page: 159 year: 2017 end-page: 178 ident: bb0145 article-title: Development and implementation of an advanced model predictive control system into continuous pharmaceutical tablet compaction process publication-title: Int. J. Pharm. – volume: 519 start-page: 390 year: 2017 end-page: 407 ident: bb0215 article-title: Continuous direct compression as manufacturing platform for sustained release tablets publication-title: Int. J. Pharm. – volume: 58 start-page: 69 year: 2012 end-page: 78 ident: bb0200 article-title: Periodic section modeling of convective continuous powder mixing processes publication-title: AICHE J. – volume: 315 start-page: 332 year: 2017 end-page: 338 ident: bb0320 article-title: A dimensionless analysis of residence time distributions for continuous powder mixing publication-title: Powder Technology – volume: 296 start-page: 290 year: 2011 end-page: 307 ident: bb0170 article-title: Computational approaches for studying the granular dynamics of continuous blending processes, 1 – dem based methods publication-title: Macromol. Mater. Eng. – year: 2003 ident: bb0140 article-title: Continuous dynamic mixing of cohesive powders in Mechanical Engineering – year: 2016 ident: bb0250 article-title: Essential of Chemical Reaction Engineering – volume: 11 start-page: 64 year: 2016 end-page: 81 ident: bb0125 article-title: Using residence time distributions (rtds) to address the traceability of raw materials in continuous pharmaceutical manufacturing publication-title: J. Pharm. Innov. – volume: 42 start-page: 15 year: 2012 end-page: 29 ident: bb0045 article-title: A perspective on PSE in pharmaceutical process development and innovation publication-title: Comput. Chem. Eng. – volume: 52 start-page: 12359 year: 2013 end-page: 12363 ident: bb0015 article-title: End-to-end continuous manufacturing of pharmaceuticals: integrated synthesis, purification, and final dosage formation publication-title: Angew. Chem. Int. Ed. – start-page: 85 year: 2015 end-page: 92 ident: bb0070 article-title: Modeling and optimization of continuous pharmaceutical manufacturing processes publication-title: Comp. Aided Chem. Eng. – volume: 15 start-page: 377 year: 2000 end-page: 395 ident: bb0300 article-title: Sensitivity analysis as an ingredient of modeling publication-title: Stat. Sci. – year: 1977 ident: bb0115 article-title: An Introduction to Chemical Engineering Kinetics & Reactor Design – volume: 83 start-page: 730 year: 2005 end-page: 738 ident: bb0185 article-title: Continuous processing in the pharmaceutical industry - changing the mind set publication-title: Chem. Eng. Res. Design – volume: 331 start-page: 276 year: 2018 end-page: 285 ident: bb0235 article-title: Investigations on the residence time distribution of a three-chamber feed frame with special focus on its geometric and parametric setups publication-title: Powder Technol. – volume: Vol. 7703 year: 2017 ident: bb0265 article-title: Continuous Manufacturing of Pharmaceuticals – volume: 528 start-page: 334 year: 2017 end-page: 344 ident: bb0260 article-title: RTD modeling of a continuous dry granulation process for process control and materials diversion publication-title: Int. J. Pharm. – reference: Boukouvala, F., Niotis,V., Ramachandran, R. Muzzio, F.J., Ierapetritou, M.G., An integrated approach for dynamic flowsheet modeling and sensitivity analysis of a continuous tablet manufacturing process – volume: 552 start-page: 288 year: 2018 end-page: 300 ident: bb0240 article-title: Detailed modeling and process design of an advanced continuous powder mixer publication-title: Int. J. Pharm. – volume: 529 start-page: 329 year: 2017 end-page: 346 ident: bb0220 article-title: Development of a continuous direct compression platform for low-dose drug products publication-title: Int. J. Pharm. – year: 2010 ident: bb0280 article-title: Comparing Distributions – start-page: 144 year: 2014 end-page: 149 ident: bb0025 article-title: Challenges and Opportunities in Pharmaceutical Manufacturing Modeling and Optimization publication-title: Computer Aided Chemical Engineering – year: 2008 ident: bb0090 publication-title: Perry's Chemical Engineering Handbook – volume: 151 start-page: 274 year: 2018 end-page: 283 ident: bb0315 article-title: Development and validation of an in-line NIR spectroscopic method for continuous blend potency determination in the feed frame of a tablet press publication-title: J. Pharm. Biomed. Anal. – volume: 106 start-page: 930 year: 2017 end-page: 943 ident: bb0040 article-title: Control strategies for drug product continuous direct compression-state of control, product collection strategies, and startup/shutdown operations for the production of clinical trial materials and commercial products publication-title: J. Pharm. Sci. – volume: 168 start-page: 1 year: 2006 end-page: 9 ident: bb0255 article-title: Fluid bed gas RTD: effect of fines and internals publication-title: Powder Technol. – volume: 66 start-page: 417 year: 2011 end-page: 425 ident: bb0195 article-title: Characterizing continuous powder mixing using residence time distribution publication-title: Chem. Eng. Sci. – year: 2013 ident: bb0285 article-title: Integrated simulation and optimization of continuous pharmaceutical manufacturing publication-title: Chemical and Biochemical Engineering – year: 1999 ident: bb0105 article-title: Chemical Reaction Engineering – volume: 246 start-page: 63 year: 2013 end-page: 72 ident: bb0205 article-title: Effects of powder flow properties and shear environment on the performance of continuous mixing of pharmaceutical powders publication-title: Powder Technol. – volume: 64 start-page: 511 year: 2018 end-page: 525 ident: bb0135 article-title: A flowsheet model for the development of a continuous process for pharmaceutical tablets: An industrial perspective publication-title: AIChE J. – volume: 550 start-page: 347 year: 2018 end-page: 358 ident: bb0165 article-title: Material tracking in a continuous direct capsule-filling process via residence time distribution measurements publication-title: Int. J. Pharm. – volume: 8 start-page: 11 year: 2013 end-page: 27 ident: bb0060 article-title: Computer-aided flowsheet simulation of a pharmaceutical tablet manufacturing process incorporating wet granulation publication-title: J. Pharm. Innov. – year: 2004 ident: bb0095 article-title: Handbook of Industrial Mixing : Science and Practice – year: 2011 ident: bb0110 article-title: Chemical Reactor Analysis and Design – volume: 534 start-page: 159 issue: 1 year: 2017 ident: 10.1016/j.powtec.2018.12.051_bb0145 article-title: Development and implementation of an advanced model predictive control system into continuous pharmaceutical tablet compaction process publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2017.10.003 – volume: 515 start-page: 390 issue: 1 year: 2016 ident: 10.1016/j.powtec.2018.12.051_bb0020 article-title: Advancing pharmaceutical quality: an overview of science and research in the U.S. FDA's Office of Pharmaceutical Quality publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2016.10.038 – volume: 8 start-page: 99 issue: 2 year: 2013 ident: 10.1016/j.powtec.2018.12.051_bb0130 article-title: Improving continuous powder blending performance using projection to latent structures regression publication-title: J. Pharm. Innov. doi: 10.1007/s12247-013-9152-3 – year: 2004 ident: 10.1016/j.powtec.2018.12.051_bb0095 – volume: 528 start-page: 334 issue: 1 year: 2017 ident: 10.1016/j.powtec.2018.12.051_bb0260 article-title: RTD modeling of a continuous dry granulation process for process control and materials diversion publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2017.06.001 – year: 2018 ident: 10.1016/j.powtec.2018.12.051_bb0035 – year: 1999 ident: 10.1016/j.powtec.2018.12.051_bb0105 – volume: 64 start-page: 2672 issue: 11 year: 2009 ident: 10.1016/j.powtec.2018.12.051_bb0175 article-title: Simulation of a continuous granular mixer: effect of operating conditions on flow and mixing publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2009.02.011 – volume: 552 start-page: 288 issue: 1 year: 2018 ident: 10.1016/j.powtec.2018.12.051_bb0240 article-title: Detailed modeling and process design of an advanced continuous powder mixer publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2018.09.032 – volume: 83 start-page: 730 issue: A6 year: 2005 ident: 10.1016/j.powtec.2018.12.051_bb0185 article-title: Continuous processing in the pharmaceutical industry - changing the mind set publication-title: Chem. Eng. Res. Design doi: 10.1205/cherd.04359 – start-page: 144 year: 2014 ident: 10.1016/j.powtec.2018.12.051_bb0025 article-title: Challenges and Opportunities in Pharmaceutical Manufacturing Modeling and Optimization doi: 10.1016/B978-0-444-63433-7.50015-8 – start-page: 33 year: 2017 ident: 10.1016/j.powtec.2018.12.051_bb0075 article-title: Process simulation and control for continuous pharmaceutical manufacturing of solid drug products publication-title: Contin. Manuf. Pharma. – year: 2008 ident: 10.1016/j.powtec.2018.12.051_bb0275 article-title: Applied multiway data analysis doi: 10.1002/9780470238004.app1 – year: 2008 ident: 10.1016/j.powtec.2018.12.051_bb0090 – volume: 65 start-page: 5757 issue: 21 year: 2010 ident: 10.1016/j.powtec.2018.12.051_bb0055 article-title: A model-based systems approach to pharmaceutical product-process design and analysis publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2010.05.003 – volume: 64 start-page: 511 year: 2018 ident: 10.1016/j.powtec.2018.12.051_bb0135 article-title: A flowsheet model for the development of a continuous process for pharmaceutical tablets: An industrial perspective publication-title: AIChE J. doi: 10.1002/aic.15967 – volume: 13 start-page: 155 issue: 2 year: 2018 ident: 10.1016/j.powtec.2018.12.051_bb0160 article-title: A Training on: continuous manufacturing (Direct compaction) of solid dose pharmaceutical products publication-title: J. Pharm. Innov. doi: 10.1007/s12247-018-9313-5 – volume: 550 start-page: 347 issue: 1 year: 2018 ident: 10.1016/j.powtec.2018.12.051_bb0165 article-title: Material tracking in a continuous direct capsule-filling process via residence time distribution measurements publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2018.08.056 – volume: 315 start-page: 332 year: 2017 ident: 10.1016/j.powtec.2018.12.051_bb0320 article-title: A dimensionless analysis of residence time distributions for continuous powder mixing – volume: 42 start-page: 15 year: 2012 ident: 10.1016/j.powtec.2018.12.051_bb0045 article-title: A perspective on PSE in pharmaceutical process development and innovation publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2012.02.022 – volume: 10 start-page: 665 year: 2001 ident: 10.1016/j.powtec.2018.12.051_bb0100 article-title: Investigation of Flow Regimes in Continuous Mixer Tubes publication-title: Handbook Powder Technol. doi: 10.1016/S0167-3785(01)80068-3 – year: 1968 ident: 10.1016/j.powtec.2018.12.051_bb0190 – start-page: 85 year: 2015 ident: 10.1016/j.powtec.2018.12.051_bb0070 article-title: Modeling and optimization of continuous pharmaceutical manufacturing processes doi: 10.1016/B978-0-444-63578-5.50011-6 – volume: 10 start-page: 191 issue: 3 year: 2015 ident: 10.1016/j.powtec.2018.12.051_bb0005 article-title: Modernizing pharmaceutical manufacturing: from batch to continuous production publication-title: J. Pharm. Innov. doi: 10.1007/s12247-015-9215-8 – volume: 107 start-page: 77 year: 2017 ident: 10.1016/j.powtec.2018.12.051_bb0210 article-title: Process analysis and optimization of continuous pharmaceutical manufacturing using flowsheet models publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2017.02.030 – volume: 65 start-page: 5685 year: 2010 ident: 10.1016/j.powtec.2018.12.051_bb0310 article-title: Investigation of the effect of impeller rotation rate, powder flowrate, and cohesion on powder flow behavior in a continuous blender using PEPT publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2010.06.036 – volume: 2 start-page: 1 issue: 1 year: 1953 ident: 10.1016/j.powtec.2018.12.051_bb0085 article-title: Continuous flow systems: distribution of residence times publication-title: Chem. Eng. Sci. doi: 10.1016/0009-2509(53)80001-1 – volume: 39 issue: 4 year: 2015 ident: 10.1016/j.powtec.2018.12.051_bb0030 article-title: Flowsheet models modernize pharmaceutical manufacturing design and risk assessment publication-title: Pharm. Technol. – volume: 519 start-page: 390 issue: 1 year: 2017 ident: 10.1016/j.powtec.2018.12.051_bb0215 article-title: Continuous direct compression as manufacturing platform for sustained release tablets publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2017.01.010 – volume: 66 start-page: 417 issue: 3 year: 2011 ident: 10.1016/j.powtec.2018.12.051_bb0195 article-title: Characterizing continuous powder mixing using residence time distribution publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2010.10.045 – volume: 106 start-page: 930 issue: 4 year: 2017 ident: 10.1016/j.powtec.2018.12.051_bb0040 article-title: Control strategies for drug product continuous direct compression-state of control, product collection strategies, and startup/shutdown operations for the production of clinical trial materials and commercial products publication-title: J. Pharm. Sci. doi: 10.1016/j.xphs.2016.12.014 – year: 2013 ident: 10.1016/j.powtec.2018.12.051_bb0285 article-title: Integrated simulation and optimization of continuous pharmaceutical manufacturing – volume: 52 start-page: 12359 issue: 47 year: 2013 ident: 10.1016/j.powtec.2018.12.051_bb0015 article-title: End-to-end continuous manufacturing of pharmaceuticals: integrated synthesis, purification, and final dosage formation publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201305429 – volume: 168 start-page: 1 issue: 1 year: 2006 ident: 10.1016/j.powtec.2018.12.051_bb0255 article-title: Fluid bed gas RTD: effect of fines and internals publication-title: Powder Technol. doi: 10.1016/j.powtec.2006.06.010 – volume: 331 start-page: 276 year: 2018 ident: 10.1016/j.powtec.2018.12.051_bb0235 article-title: Investigations on the residence time distribution of a three-chamber feed frame with special focus on its geometric and parametric setups publication-title: Powder Technol. doi: 10.1016/j.powtec.2018.03.019 – year: 1977 ident: 10.1016/j.powtec.2018.12.051_bb0115 – volume: 246 start-page: 63 year: 2013 ident: 10.1016/j.powtec.2018.12.051_bb0205 article-title: Effects of powder flow properties and shear environment on the performance of continuous mixing of pharmaceutical powders publication-title: Powder Technol. doi: 10.1016/j.powtec.2013.05.002 – start-page: 405 year: 2017 ident: 10.1016/j.powtec.2018.12.051_bb0155 article-title: Design of an integrated continuous manufacturing system publication-title: Contin. Manuf. Pharma. – volume: 18 start-page: 402 issue: 3 year: 2014 ident: 10.1016/j.powtec.2018.12.051_bb0010 article-title: Development of a multi-step synthesis and workup sequence for an integrated, continuous manufacturing process of a pharmaceutical publication-title: Org. Process Res. Dev. doi: 10.1021/op400294z – volume: 228 start-page: 416 year: 2012 ident: 10.1016/j.powtec.2018.12.051_bb0245 article-title: A review of the residence time distribution (RTD) applications in solid unit operations publication-title: Powder Technol. doi: 10.1016/j.powtec.2012.05.060 – volume: 62 start-page: 1846 issue: 6 year: 2016 ident: 10.1016/j.powtec.2018.12.051_bb0065 article-title: Perspectives on the continuous manufacturing of powder-based pharmaceutical processes publication-title: AICHE J. doi: 10.1002/aic.15210 – volume: 61 start-page: 720 year: 2006 ident: 10.1016/j.powtec.2018.12.051_bb0180 article-title: A review on the continuous blending of powders publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2005.06.016 – ident: 10.1016/j.powtec.2018.12.051_bb0290 – year: 2013 ident: 10.1016/j.powtec.2018.12.051_bb0120 – start-page: 1 year: 2018 ident: 10.1016/j.powtec.2018.12.051_bb0230 article-title: Modeling and simulation of continuous powder blending applied to a continuous direct compression process publication-title: Pharm. Dev. Technol. – volume: 529 start-page: 329 issue: 1–2 year: 2017 ident: 10.1016/j.powtec.2018.12.051_bb0220 article-title: Development of a continuous direct compression platform for low-dose drug products publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2017.07.003 – volume: 1 start-page: 293 issue: 2 year: 2014 ident: 10.1016/j.powtec.2018.12.051_bb0270 article-title: Challenges of big data ANALYSIS publication-title: Nat. Sci. Rev. doi: 10.1093/nsr/nwt032 – volume: 42 start-page: 30 issue: 0 year: 2012 ident: 10.1016/j.powtec.2018.12.051_bb0050 article-title: An integrated approach for dynamic flowsheet modeling and sensitivity analysis of a continuous tablet manufacturing process publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2012.02.015 – volume: 58 start-page: 69 issue: 1 year: 2012 ident: 10.1016/j.powtec.2018.12.051_bb0200 article-title: Periodic section modeling of convective continuous powder mixing processes publication-title: AICHE J. doi: 10.1002/aic.12563 – year: 2010 ident: 10.1016/j.powtec.2018.12.051_bb0280 – volume: 543 start-page: 60 issue: 1 year: 2018 ident: 10.1016/j.powtec.2018.12.051_bb0225 article-title: Control of three different continuous pharmaceutical manufacturing processes: use of soft sensors publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2018.03.027 – year: 2016 ident: 10.1016/j.powtec.2018.12.051_bb0250 – volume: Vol. 7703 year: 2017 ident: 10.1016/j.powtec.2018.12.051_bb0265 – volume: 15 start-page: 377 issue: 4 year: 2000 ident: 10.1016/j.powtec.2018.12.051_bb0300 article-title: Sensitivity analysis as an ingredient of modeling publication-title: Stat. Sci. doi: 10.1214/ss/1009213004 – volume: 8 start-page: 11 issue: 1 year: 2013 ident: 10.1016/j.powtec.2018.12.051_bb0060 article-title: Computer-aided flowsheet simulation of a pharmaceutical tablet manufacturing process incorporating wet granulation publication-title: J. Pharm. Innov. doi: 10.1007/s12247-012-9143-9 – volume: 11 start-page: 64 issue: 1 year: 2016 ident: 10.1016/j.powtec.2018.12.051_bb0125 article-title: Using residence time distributions (rtds) to address the traceability of raw materials in continuous pharmaceutical manufacturing publication-title: J. Pharm. Innov. doi: 10.1007/s12247-015-9238-1 – volume: 296 start-page: 290 issue: 3–4 year: 2011 ident: 10.1016/j.powtec.2018.12.051_bb0170 article-title: Computational approaches for studying the granular dynamics of continuous blending processes, 1 – dem based methods publication-title: Macromol. Mater. Eng. doi: 10.1002/mame.201000389 – volume: 52 start-page: 1 issue: 1 year: 1996 ident: 10.1016/j.powtec.2018.12.051_bb0295 article-title: Importance measures in global sensitivity analysis of nonlinear models publication-title: Reliabil. Eng. Sys. Saf. doi: 10.1016/0951-8320(96)00002-6 – year: 2011 ident: 10.1016/j.powtec.2018.12.051_bb0110 – volume: 342 start-page: 744 year: 2019 ident: 10.1016/j.powtec.2018.12.051_bb0080 article-title: Effect of tracer material properties on the residence time distribution (RTD) of continuous powder blending operations. Part I of II: Experimental evaluation publication-title: Powder Technol. doi: 10.1016/j.powtec.2018.10.040 – volume: 151 start-page: 274 year: 2018 ident: 10.1016/j.powtec.2018.12.051_bb0315 article-title: Development and validation of an in-line NIR spectroscopic method for continuous blend potency determination in the feed frame of a tablet press publication-title: J. Pharm. Biomed. Anal. doi: 10.1016/j.jpba.2018.01.032 – year: 2003 ident: 10.1016/j.powtec.2018.12.051_bb0140 – year: 2018 ident: 10.1016/j.powtec.2018.12.051_bb0150 article-title: Residence Time Distribution (RTD)-Based Control System for Continuous Pharmaceutical Manufacturing Process publication-title: J. Pharm. Innov. doi: 10.1007/s12247-018-9356-7 – volume: 42 start-page: 796 issue: 5 year: 2016 ident: 10.1016/j.powtec.2018.12.051_bb0305 article-title: Statistical comparison of dissolution profiles publication-title: Drug Dev. Ind. Pharm. doi: 10.3109/03639045.2015.1078349 |
SSID | ssj0006310 |
Score | 2.456789 |
Snippet | Residence time distribution (RTD) modeling can aid the understanding and characterization of macro-mixing in continuous powder processing unit operations by... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 525 |
SubjectTerms | Axial dispersion Continuous manufacturing Convolution Experimental data Material properties Mathematical models Mixing Modeling Multivariate analysis Parameters Powder Powder blending powders process design Regression analysis Residence time distribution tanks Tanks-in-series Variance analysis |
Title | Effect of material properties on the residence time distribution (RTD) characterization of powder blending unit operations. Part II of II: Application of models |
URI | https://dx.doi.org/10.1016/j.powtec.2018.12.051 https://www.proquest.com/docview/2215516324 https://www.proquest.com/docview/2221005376 |
Volume | 344 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhvTSH0EdCtk2XKfSQHNysLEv29rZsG9YtDaEksDchyxIkBHvZ7NJbfkt-amdkeZMUSqDgi-3xSxrNfLJmvmHsU5UpY3jFE-VxuGVFLZOwK43IXMZdUXFKcP55pmaX2fe5nG-xaZ8LQ2GV0fZ3Nj1Y63jkJLbmyeLqinJ8BWJ3YpxCiFIUc8pgz3LS9c93D2EeSvBIzYiTLpTu0-dCjNei_b1yRGTIi_BTUPJ_uae_DHXwPqev2G6EjTDp3uw123LNG7bziEzwLbvviIih9YAoNCgWLOhX-5I4U6FtALEe4Oy6KyMKVFUeauLNjSWv4OjXxddjsBsK5y5Dk26IX1C7JVToosjXwRoNAdCtYygQnGObQVmSbFl-gcnDsnh4Hyq3c7vHLk-_XUxnSay_kNhMiFWS12PvRSVk5ZX1xkiEAiNpfDoStHzrc2sRLxk5MqnyYzyBW1FIL2vuTI4Df59tN23jDhgIWXtr0BNaBGAIYYySXimUqW3u6yobMNE3u7aRnJxqZNzoPgrtWnedpamzNE81dtaAJZurFh05xzPyed-j-omSafQfz1x52CuAjoP8VqdpWGZESDpgHzencXjSmotpXLsmGZxTB86cd__98PfsJe6NKVacy0O2vVqu3QeEQqtqGHR9yF5Myh-zsz95nAuz |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYoHNoeqtKH2ELLVOqBHlLWcexke0MUtKGAULVIe7Mcx5ZAKFktu-qtv4Wf2hnHWdpKFRJSLoknLz9mPtsz3zD2qcqUMbziifI43LKilkk4lUZkLuOuqDgFOJ-dq_FldjKV0zV22MfCkFtl1P2dTg_aOl7Zj7W5P7u6ohhfgdidGKcQohTF9AnbyKTIiUD_y697Pw8leORmxFkXivfxc8HJa9b-XDhiMuRFWBWU_H_26R9NHczP8Uv2IuJGOOg-bZOtueYVe_4Hm-BrdtcxEUPrAWFo6Fkwo7X2OZGmQtsAgj3A6XWXRxQorTzURJwbc17B3o_Jt89gVxzOXYgmPRD_oHZzqNBGkbGDJWoCoEdHXyC4wEqDsiTZsvwKB_f74uF7KN_O7Rt2eXw0ORwnMQFDYjMhFklej7wXlZCVV9YbIxELDKXx6VDQ_q3PrUXAZOTQpMqPsACPopBe1tyZHEf-W7betI3bYiBk7a1BU2gRgSGGMUp6pVCmtrmvq2zARF_t2kZ2ckqScaN7N7Rr3TWWpsbSPNXYWAOWrO6adewcD8jnfYvqv3qZRgPywJ07fQfQcZTf6jQN-4yISQfs46oYxydtupjGtUuSwUl1IM159-iX77Kn48nZqT4tz79vs2dYMiLHcS532PpivnTvERctqg-h3_8Gg58NRQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+material+properties+on+the+residence+time+distribution+%28RTD%29+characterization+of+powder+blending+unit+operations.+Part+II+of+II%3A+Application+of+models&rft.jtitle=Powder+technology&rft.au=Escotet-Espinoza%2C+M.+Sebastian&rft.au=Moghtadernejad%2C+Sara&rft.au=Oka%2C+Sarang&rft.au=Wang%2C+Zilong&rft.date=2019-02-15&rft.pub=Elsevier+B.V&rft.issn=0032-5910&rft.eissn=1873-328X&rft.volume=344&rft.spage=525&rft.epage=544&rft_id=info:doi/10.1016%2Fj.powtec.2018.12.051&rft.externalDocID=S003259101831088X |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-5910&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-5910&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-5910&client=summon |