Reusing Remote Sensing-Based Validation Data: Comparing Direct and Indirect Approaches for Afforestation Monitoring
Afforestation is one of the most effective processes for removing carbon dioxide from the atmosphere and combating global warming. Landsat data and machine learning approaches can be used to map afforestation (i) indirectly, by constructing two maps of the same area over different periods and then p...
Saved in:
Published in | Remote sensing (Basel, Switzerland) Vol. 15; no. 6; p. 1638 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.03.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 2072-4292 2072-4292 |
DOI | 10.3390/rs15061638 |
Cover
Abstract | Afforestation is one of the most effective processes for removing carbon dioxide from the atmosphere and combating global warming. Landsat data and machine learning approaches can be used to map afforestation (i) indirectly, by constructing two maps of the same area over different periods and then predicting changes, or (ii) directly, by constructing a single map and analyzing observations of change in both the response and remotely sensed variables. Of crucial importance, no comprehensive comparisons of direct and indirect approaches for afforestation monitoring are known to have been conducted to date. Afforestation maps estimated through the analysis of remotely sensed data may serve as intermediate products for guiding the selection of samples and the production of statistics. In this and similar studies, a huge effort is dedicated to collecting validation data. In turn, those validation datasets have varying sampling intensities in different areas, which complicates their use for assessing the accuracies of new maps. As a result, the work done to collect data is often not sufficiently exploited, with some validation datasets being used just once. In this study, we addressed two main aims. First, we implemented a methodology to reuse validation data acquired via stratified sampling with strata constructed from remote sensing maps. Second, we used this method for acquiring data for comparing map accuracy estimates and the precision of estimates for direct and indirect approaches for country-wide mapping of afforestation that occurred in Italy between 1985 and 2019. To facilitate these comparisons, we used Landsat imagery, random forest classification, and Google Earth Engine. The herein-presented method produced different accuracy estimates with 95% confidence interval and for different map classes. Afforestation accuracies ranged between 53 ± 5.9% for the indirect map class inside the buffer—defined as a stratum within 120 m of the forest/non-forest mask boundaries—and 26 ± 3.4% for the direct map outside the buffer. The accuracy in non-afforestation map classes was much greater, ranging from 87 ± 1.9% for the indirect map inside the buffer to 99 ± 1.3% for the direct map outside the buffer. Additionally, overall accuracies (with 95% CI) were estimated with large precision for both direct and indirect maps (87 ± 1.3% and 89 ± 1.6%, respectively), confirming (i) the effectiveness of the method we introduced for reusing samples and (ii) the relevance of remotely sensed data and machine learning for monitoring afforestation. |
---|---|
AbstractList | Afforestation is one of the most effective processes for removing carbon dioxide from the atmosphere and combating global warming. Landsat data and machine learning approaches can be used to map afforestation (i) indirectly, by constructing two maps of the same area over different periods and then predicting changes, or (ii) directly, by constructing a single map and analyzing observations of change in both the response and remotely sensed variables. Of crucial importance, no comprehensive comparisons of direct and indirect approaches for afforestation monitoring are known to have been conducted to date. Afforestation maps estimated through the analysis of remotely sensed data may serve as intermediate products for guiding the selection of samples and the production of statistics. In this and similar studies, a huge effort is dedicated to collecting validation data. In turn, those validation datasets have varying sampling intensities in different areas, which complicates their use for assessing the accuracies of new maps. As a result, the work done to collect data is often not sufficiently exploited, with some validation datasets being used just once. In this study, we addressed two main aims. First, we implemented a methodology to reuse validation data acquired via stratified sampling with strata constructed from remote sensing maps. Second, we used this method for acquiring data for comparing map accuracy estimates and the precision of estimates for direct and indirect approaches for country-wide mapping of afforestation that occurred in Italy between 1985 and 2019. To facilitate these comparisons, we used Landsat imagery, random forest classification, and Google Earth Engine. The herein-presented method produced different accuracy estimates with 95% confidence interval and for different map classes. Afforestation accuracies ranged between 53 ± 5.9% for the indirect map class inside the buffer—defined as a stratum within 120 m of the forest/non-forest mask boundaries—and 26 ± 3.4% for the direct map outside the buffer. The accuracy in non-afforestation map classes was much greater, ranging from 87 ± 1.9% for the indirect map inside the buffer to 99 ± 1.3% for the direct map outside the buffer. Additionally, overall accuracies (with 95% CI) were estimated with large precision for both direct and indirect maps (87 ± 1.3% and 89 ± 1.6%, respectively), confirming (i) the effectiveness of the method we introduced for reusing samples and (ii) the relevance of remotely sensed data and machine learning for monitoring afforestation. |
Audience | Academic |
Author | Scarascia Mugnozza, Giuseppe Chirici, Gherardo D’Amico, Giovanni Cavalli, Alice Maesano, Mauro Francini, Saverio McRoberts, Ronald E. Munafò, Michele |
Author_xml | – sequence: 1 givenname: Saverio orcidid: 0000-0001-6991-0289 surname: Francini fullname: Francini, Saverio – sequence: 2 givenname: Alice orcidid: 0000-0002-5460-1245 surname: Cavalli fullname: Cavalli, Alice – sequence: 3 givenname: Giovanni orcidid: 0000-0002-2341-3268 surname: D’Amico fullname: D’Amico, Giovanni – sequence: 4 givenname: Ronald E. surname: McRoberts fullname: McRoberts, Ronald E. – sequence: 5 givenname: Mauro orcidid: 0000-0002-4325-951X surname: Maesano fullname: Maesano, Mauro – sequence: 6 givenname: Michele orcidid: 0000-0002-3415-6105 surname: Munafò fullname: Munafò, Michele – sequence: 7 givenname: Giuseppe orcidid: 0000-0003-0357-4360 surname: Scarascia Mugnozza fullname: Scarascia Mugnozza, Giuseppe – sequence: 8 givenname: Gherardo orcidid: 0000-0002-0669-5726 surname: Chirici fullname: Chirici, Gherardo |
BookMark | eNptUlFvFCEQ3piaWGtf_AWb-GJMtoUFlsW386r2kpomrfpK5mA4uezCCXsP_ntZV2PTFBKGmXzfN8wwL6uTEANW1WtKLhhT5DJlKkhHO9Y_q05bItuGt6o9eXB_UZ3nvCdlMUYV4adVvsNj9mFX3-EYJ6zvMcxu8wEy2vo7DN7C5GOor2CC9_U6jgdIM_7KJzRTDcHWm2AXZ3U4pAjmB-baxVSvXDkxT4vAlxj8FGfuq-q5gyHj-V97Vn379PHr-rq5uf28Wa9uGsMZmxoBzskOTLd1_dYisYowSRjKlpXXC2VROgPQKcaItMoht1RwioT2nHS2Z2fVZtG1Efb6kPwI6ZeO4PWfQEw7DWnyZkANfAtOlUycU94aAZ3hjvbIpOo59KZovV20SoU_j6UoPfpscBggYDxmzQgnXIieiwJ98wi6j8cUSqW6lYrK0nw5oy4W1A5Kfh9cnBKYsi2O3pSPdb7EV1IQQRlpVSGQhWBSzDmh08YvrS1EP2hK9DwF-v8UFMq7R5R_TXgC_Bs4uLN5 |
CitedBy_id | crossref_primary_10_1080_22797254_2024_2334717 crossref_primary_10_1016_j_compag_2023_107925 crossref_primary_10_1016_j_ecolind_2023_111498 crossref_primary_10_3390_s24123947 crossref_primary_10_1016_j_jag_2024_103935 crossref_primary_10_1016_j_isprsjprs_2023_06_002 crossref_primary_10_1016_j_rse_2023_113852 crossref_primary_10_1038_s44284_024_00049_1 crossref_primary_10_36023_ujrs_2024_11_4_273 crossref_primary_10_1016_j_envsoft_2024_106268 |
Cites_doi | 10.3390/rs15040923 10.1016/j.rse.2019.02.015 10.1016/j.scitotenv.2021.149346 10.1016/j.dib.2022.108445 10.3390/s22052015 10.1080/01426397.2018.1495183 10.1016/j.rse.2017.03.035 10.14214/sf.10247 10.3390/rs12203331 10.1016/j.rse.2017.06.031 10.1016/j.rse.2017.08.030 10.1016/j.rse.2011.02.025 10.1016/j.rse.2015.06.027 10.1080/22797254.2020.1806734 10.1016/j.rse.2013.12.015 10.1016/j.rse.2012.01.010 10.1080/17538947.2012.713190 10.3832/ifor3648-014 10.3390/rs13051038 10.1007/s10260-012-0220-5 10.1109/JSTARS.2012.2228167 10.1016/j.rse.2014.02.015 10.1093/bib/bbr016 10.1038/s41558-022-01343-3 10.1023/A:1010933404324 10.1109/LGRS.2005.858485 10.1080/01621459.1966.10480879 10.1016/S0034-4257(99)00090-5 10.3390/rs11050490 10.1016/j.rse.2015.09.004 10.1016/j.ecolind.2018.04.010 10.1016/j.dib.2022.108297 10.3390/rs12081253 10.1016/S0034-4257(98)00010-8 10.1016/j.rse.2015.02.018 10.1080/07038992.2014.945827 10.1016/j.rse.2022.113276 10.1016/j.rse.2014.11.005 10.3390/rs10040635 10.1016/j.rse.2012.10.031 10.1038/513030a 10.1007/978-94-017-8663-8 10.3832/ifor1239-007 10.1016/j.isprsjprs.2016.01.011 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7S9 L.6 DOA |
DOI | 10.3390/rs15061638 |
DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Earth, Atmospheric & Aquatic Science Database (NC LIVE) ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | CrossRef Publicly Available Content Database AGRICOLA |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 2072-4292 |
ExternalDocumentID | oai_doaj_org_article_a4baf96bf44142c5a6c4f18e37984a8c A750513029 10_3390_rs15061638 |
GeographicLocations | Italy |
GeographicLocations_xml | – name: Italy |
GroupedDBID | 29P 2WC 2XV 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PROAC PTHSS TR2 TUS PMFND 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7S9 L.6 PUEGO |
ID | FETCH-LOGICAL-c433t-5aff76ac6bf8bde0d903703e72333159de7fcaa693307d9fe4d1541e018406d83 |
IEDL.DBID | DOA |
ISSN | 2072-4292 |
IngestDate | Wed Aug 27 01:26:20 EDT 2025 Fri Sep 05 13:55:55 EDT 2025 Fri Jul 25 09:32:41 EDT 2025 Tue Jun 10 21:01:25 EDT 2025 Tue Jul 01 03:11:03 EDT 2025 Thu Apr 24 22:57:24 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c433t-5aff76ac6bf8bde0d903703e72333159de7fcaa693307d9fe4d1541e018406d83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-0669-5726 0000-0001-6991-0289 0000-0002-5460-1245 0000-0002-4325-951X 0000-0002-3415-6105 0000-0003-0357-4360 0000-0002-2341-3268 |
OpenAccessLink | https://doaj.org/article/a4baf96bf44142c5a6c4f18e37984a8c |
PQID | 2791700375 |
PQPubID | 2032338 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_a4baf96bf44142c5a6c4f18e37984a8c proquest_miscellaneous_3040455845 proquest_journals_2791700375 gale_infotracacademiconefile_A750513029 crossref_citationtrail_10_3390_rs15061638 crossref_primary_10_3390_rs15061638 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-03-01 |
PublicationDateYYYYMMDD | 2023-03-01 |
PublicationDate_xml | – month: 03 year: 2023 text: 2023-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Remote sensing (Basel, Switzerland) |
PublicationYear | 2023 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Francini (ref_30) 2022; 106 Olofsson (ref_47) 2014; 148 Gorelick (ref_3) 2017; 202 ref_13 Minacapilli (ref_20) 2021; 799 McRoberts (ref_15) 2015; 164 ref_11 Stehman (ref_32) 1998; 64 ref_51 Nabuurs (ref_6) 2022; 12 Stehman (ref_29) 2000; 72 Knight (ref_45) 1966; 61 Breiman (ref_10) 2001; 45 Nicodemus (ref_50) 2011; 12 ref_24 ref_23 Gregoire (ref_16) 2013; 22 Yin (ref_21) 2018; 204 Skowronski (ref_18) 2014; 151 White (ref_44) 2011; 115 ref_26 Wagner (ref_48) 2015; 168 Hermosilla (ref_14) 2022; 282 Zhang (ref_43) 2002; 2 White (ref_34) 2014; 40 Griffiths (ref_35) 2013; 6 Townshend (ref_25) 2012; 5 Roy (ref_41) 2006; 3 Parisi (ref_46) 2022; 43 Belgiu (ref_12) 2016; 114 ref_36 Francini (ref_5) 2022; 42 Hermosilla (ref_38) 2015; 158 Francini (ref_31) 2021; 18 Fuller (ref_17) 2003; 4 Wulder (ref_9) 2012; 122 Qiu (ref_19) 2018; 91 Wulder (ref_8) 2019; 225 Vangi (ref_33) 2021; 14 White (ref_37) 2017; 194 Haller (ref_22) 2018; 43 Wulder (ref_4) 2014; 513 Marcelli (ref_49) 2020; 54 Hermosilla (ref_39) 2015; 170 ref_40 ref_1 Gobakken (ref_53) 2020; 54 ref_2 Fattorini (ref_28) 2014; 8 Bajocco (ref_42) 2019; 74 Francini (ref_52) 2020; 53 Olofsson (ref_27) 2013; 129 ref_7 |
References_xml | – ident: ref_23 doi: 10.3390/rs15040923 – volume: 18 start-page: 27 year: 2021 ident: ref_31 article-title: Remote sensing and automatic procedures: Useful tools to monitor forest harvesting publication-title: For.—Riv. Selvic. Ecol. For. – ident: ref_51 – volume: 54 start-page: 10272 year: 2020 ident: ref_53 article-title: Reuse of field data in ALS-assisted forest inventory publication-title: Silva Fenn. – volume: 225 start-page: 127 year: 2019 ident: ref_8 article-title: Current status of Landsat program, science, and applications publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.02.015 – volume: 799 start-page: 149346 year: 2021 ident: ref_20 article-title: Characterization of the main land processes occurring in Europe (2000–2018) through a MODIS NDVI seasonal parameter-based procedure publication-title: Sci. Total. Environ. doi: 10.1016/j.scitotenv.2021.149346 – volume: 43 start-page: 108445 year: 2022 ident: ref_46 article-title: An open and georeferenced dataset of forest structural attributes and microhabitats in central and southern Apennines (Italy) publication-title: Data Brief doi: 10.1016/j.dib.2022.108445 – volume: 2 start-page: 1063 year: 2002 ident: ref_43 article-title: MODIS tasseled cap transformation and its utility publication-title: Int. Geosci. Remote Sens. Symp. – ident: ref_1 – ident: ref_36 doi: 10.3390/s22052015 – volume: 4 start-page: 243 year: 2003 ident: ref_17 article-title: The characterisation and measurement of land cover change through remote sensing: Problems in operational applications? publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 43 start-page: 1068 year: 2018 ident: ref_22 article-title: Among rewilding mountains: Grassland conservation and abandoned settlements in the Northern Apennines publication-title: Landsc. Res. doi: 10.1080/01426397.2018.1495183 – volume: 194 start-page: 303 year: 2017 ident: ref_37 article-title: A nationwide annual characterization of 25 years of forest disturbance and recovery for Canada using Landsat time series publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.03.035 – volume: 54 start-page: 10247 year: 2020 ident: ref_49 article-title: Large-scale two-phase estimation of wood production by poplar plantations exploiting Sentinel-2 data as auxiliary information publication-title: Silva Fenn. doi: 10.14214/sf.10247 – ident: ref_11 doi: 10.3390/rs12203331 – volume: 202 start-page: 18 year: 2017 ident: ref_3 article-title: Google Earth Engine: Planetary-scale geospatial analysis for everyone publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.06.031 – volume: 204 start-page: 918 year: 2018 ident: ref_21 article-title: Land use and land cover change in Inner Mongolia—Understanding the effects of China’s re-vegetation programs publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.08.030 – volume: 115 start-page: 1665 year: 2011 ident: ref_44 article-title: Characterizing the state and processes of change in a dynamic forest environment using hierarchical spatio-temporal segmentation publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2011.02.025 – volume: 168 start-page: 126 year: 2015 ident: ref_48 article-title: Optimizing sample size allocation to strata for estimating area and map accuracy publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2015.06.027 – volume: 53 start-page: 233 year: 2020 ident: ref_52 article-title: Near-real time forest change detection using PlanetScope imagery publication-title: Eur. J. Remote Sens. doi: 10.1080/22797254.2020.1806734 – volume: 151 start-page: 166 year: 2014 ident: ref_18 article-title: Airborne laser scanner-assisted estimation of aboveground biomass change in a temperate oak–pine forest publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2013.12.015 – volume: 122 start-page: 2 year: 2012 ident: ref_9 article-title: Opening the archive: How free data has enabled the science and monitoring promise of Landsat publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2012.01.010 – volume: 5 start-page: 373 year: 2012 ident: ref_25 article-title: Global characterization and monitoring of forest cover using Landsat data: Opportunities and challenges publication-title: Int. J. Digit. Earth doi: 10.1080/17538947.2012.713190 – volume: 106 start-page: 102663 year: 2022 ident: ref_30 article-title: An open science and open data approach for the statistically robust estimation of forest disturbance areas publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 14 start-page: 144 year: 2021 ident: ref_33 article-title: Are we ready for a National Forest Information System? State of the art of forest maps and airborne laser scanning data availability in Italy publication-title: iForest—Biogeosci. For. doi: 10.3832/ifor3648-014 – ident: ref_13 doi: 10.3390/rs13051038 – volume: 22 start-page: 113 year: 2013 ident: ref_16 article-title: Detection of biomass change in a Norwegian mountain forest area using small footprint airborne laser scanner data publication-title: Stat. Methods Appl. doi: 10.1007/s10260-012-0220-5 – volume: 6 start-page: 2088 year: 2013 ident: ref_35 article-title: Erratum: A Pixel-Based Landsat Compositing Algorithm for Large Area Land Cover Mapping publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2012.2228167 – volume: 148 start-page: 42 year: 2014 ident: ref_47 article-title: Good practices for estimating area and assessing accuracy of land change publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2014.02.015 – volume: 12 start-page: 369 year: 2011 ident: ref_50 article-title: Letter to the Editor: On the stability and ranking of predictors from random forest variable importance measures publication-title: Brief. Bioinform. doi: 10.1093/bib/bbr016 – volume: 12 start-page: 415 year: 2022 ident: ref_6 article-title: Glasgow forest declaration needs new modes of data ownership publication-title: Nat. Clim. Change doi: 10.1038/s41558-022-01343-3 – volume: 45 start-page: 5 year: 2001 ident: ref_10 article-title: Random forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – volume: 3 start-page: 112 year: 2006 ident: ref_41 article-title: Remote Sensing of Fire Severity: Assessing the Performance of the Normalized Burn Ratio publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2005.858485 – volume: 61 start-page: 436 year: 1966 ident: ref_45 article-title: A Computer Method for Calculating Kendall’s Tau with Ungrouped Data publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1966.10480879 – volume: 72 start-page: 35 year: 2000 ident: ref_29 article-title: Practical Implications of Design-Based Sampling Inference for Thematic Map Accuracy Assessment publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(99)00090-5 – ident: ref_24 doi: 10.3390/rs11050490 – volume: 170 start-page: 121 year: 2015 ident: ref_39 article-title: Regional detection, characterization, and attribution of annual forest change from 1984 to 2012 using Landsat-derived time-series metrics publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2015.09.004 – volume: 91 start-page: 490 year: 2018 ident: ref_19 article-title: Automatic mapping afforestation, cropland reclamation and variations in cropping intensity in central east China during 2001–2016 publication-title: Ecol. Indic. doi: 10.1016/j.ecolind.2018.04.010 – volume: 42 start-page: 108297 year: 2022 ident: ref_5 article-title: A Sentinel-2 derived dataset of forest disturbances occurred in Italy between 2017 and 2020 publication-title: Data Brief doi: 10.1016/j.dib.2022.108297 – ident: ref_7 doi: 10.3390/rs12081253 – volume: 64 start-page: 331 year: 1998 ident: ref_32 article-title: Design and Analysis for Thematic Map Accuracy Assessment—An Application of Satellite Imagery publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(98)00010-8 – volume: 164 start-page: 36 year: 2015 ident: ref_15 article-title: Indirect and direct estimation of forest biomass change using forest inventory and airborne laser scanning data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2015.02.018 – ident: ref_2 – volume: 40 start-page: 192 year: 2014 ident: ref_34 article-title: Pixel-Based Image Compositing for Large-Area Dense Time Series Applications and Science publication-title: Can. J. Remote Sens. doi: 10.1080/07038992.2014.945827 – volume: 282 start-page: 113276 year: 2022 ident: ref_14 article-title: Mapping the presence and distribution of tree species in Canada’s forested ecosystems publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2022.113276 – volume: 158 start-page: 220 year: 2015 ident: ref_38 article-title: An integrated Landsat time series protocol for change detection and generation of annual gap-free surface reflectance composites publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2014.11.005 – ident: ref_40 doi: 10.3390/rs10040635 – volume: 129 start-page: 122 year: 2013 ident: ref_27 article-title: Making better use of accuracy data in land change studies: Estimating accuracy and area and quantifying uncertainty using stratified estimation publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2012.10.031 – volume: 74 start-page: 314 year: 2019 ident: ref_42 article-title: Remotely-sensed phenology of Italian forests: Going beyond the species publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 513 start-page: 30 year: 2014 ident: ref_4 article-title: Satellites: Make Earth observations open access publication-title: Nature doi: 10.1038/513030a – ident: ref_26 doi: 10.1007/978-94-017-8663-8 – volume: 8 start-page: 6 year: 2014 ident: ref_28 article-title: Design-based methodological advances to support national forest inventories: A review of recent proposals publication-title: iForest—Biogeosci. For. doi: 10.3832/ifor1239-007 – volume: 114 start-page: 24 year: 2016 ident: ref_12 article-title: Random forest in remote sensing: A review of applications and future directions publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2016.01.011 |
SSID | ssj0000331904 |
Score | 2.3836706 |
Snippet | Afforestation is one of the most effective processes for removing carbon dioxide from the atmosphere and combating global warming. Landsat data and machine... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 1638 |
SubjectTerms | Accuracy Afforestation Artificial intelligence Buffers Carbon dioxide Carbon dioxide removal Classification Climate change Cloud computing Comparative analysis confidence interval Confidence intervals Data acquisition Data collection Datasets Distribution Environmental aspects Estimates Global warming google earth engine Identification and classification Image classification Internet Italy Landsat Landsat satellites Learning algorithms Machine learning Methods Monitoring random forests Remote sensing Reuse Sampling Satellite imagery Statistical analysis Variables |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagHOCCeIpAQUYgIQ5Rs_Er5oK2haUgwaFQ1Jvl2OPtAWXLZnvg3zMTe7dCAi45JE5kjz0znx_5PsZeIoKNDUhdR6vaWvbW1n0TRW2NbRVo3aZJM_LzF318Kj-dqbOy4DaWY5XbmDgF6rgKtEZ-0BpLVHLCqLcXP2tSjaLd1SKhcZ3dmGGmoXHeLT7s1lgagQOskZmVVODs_mA9EqMeYZA_8tBE1_-voDxlmsUddrtARD7PfXqXXYPhHrtZ1MrPf91n4wnQcfUlPwE0NPCvdAh9WNaHmJEi_47IOgsl8Xd-49_woyw1iOVzfON-iPzjkJMZnxdScRg54lc-T3iFMW_Q8-zx9O4Ddrp4_-3ouC7iCXWQQmxq5VMy2gfdp66P0ESLtmsEmFagVZSNYFLwXtOChok2gYyIpmbQ0JRPx048ZHvDaoBHjIuulR6BjE1KSKNNHxAlCGObFiyIzlfs9daULhRmcRK4-OFwhkFmd1dmr9iLXdmLzKfx11KH1CO7EsSBPd1YrZeuuJTzsvfJYvsQ0ck2KK-DTLMOsGad9F2o2CvqT0eeitUJvvxwgI0izis3R7CkaN_WVmx_2-WuuPDorgZcxZ7vHqPz0Y6KH2B1OTqBIVAqxHDq8f8_8YTdIp36fHhtn-1t1pfwFNHMpn82DdnfD3TzUQ priority: 102 providerName: ProQuest |
Title | Reusing Remote Sensing-Based Validation Data: Comparing Direct and Indirect Approaches for Afforestation Monitoring |
URI | https://www.proquest.com/docview/2791700375 https://www.proquest.com/docview/3040455845 https://doaj.org/article/a4baf96bf44142c5a6c4f18e37984a8c |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagHOCCeIrQsjICCXGImsavmFu27VIQrdCWot4sxx6XA0qrZnvg3zMTp0uRQFy4JFLiSM54Ht_Ek28Ye40INlYgdRmtqkvZWVt2VRSlNbZWoHWdxp6Rh0f64ER-PFWnN1p9UU1YpgfOgtv2svPJ6i5h3JZ1UF4HmXYaEMY20jeBvG9lqxvJ1OiDBapWJTMfqcC8fvtyIC49Qh-_RaCRqP9v7niMMYsH7P4EDnmbJ_WQ3YL-Ebs79Sn_9uMxG5ZAhepnfAkoYuDHVH7en5VzjEWRf0VMnVsk8T2_8u_4bm4yiOOzZ-O-j_xDn8MYbyc6cRg4IlfeJjzCkLfmebZ1evYJO1nsf9k9KKe2CWWQQqxK5VMy2geUWdNFqKKtBNo1mFqgVJSNYFLwXtOnDBNtAhkRR-1ARcmejo14yjb68x6eMS6aWnqEMDYpIY02XUB8gJKvarAgGl-wt9eidGHiFKfWFt8d5hYkdvdL7AV7tR57kZk0_jhqTiuyHkHs1-MF1Ak36YT7l04U7A2tpyMbxekEP_1qgC9FbFeuRZikaMfWFmzresndZLyDq40l1kJhVMFerm-j2dFeiu_h_GpwAp2fVIje1PP_MeNNdo_62Ofiti22sbq8gheIdlbdjN1uFu9n7E67d_jpGM_z_aPPy9mo7j8BrngAgA |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOZQL4ikCBYwAIQ5RU78SIyG0bVl26eNQWtSb6_ixPVTZstkK9U_xG5mJs1shAbdeckicke2xZz7b4_kIeQMI1hdBqNxryXJRa53Xhee5LjWTQSkWO87I_QM1OhZfT-TJCvm1uAuDYZULm9gZaj91uEe-wUqNqeR4KT9d_MiRNQpPVxcUGmlY7Iarn7Bkaz-Od0C_bxkbfj7aHuU9q0DuBOfzXNoYS2WdqmNV-1B4DUILHkrGOQfn7kMZnbUKV_ql1zEIDzBjMxS4FlK-4iD3FrkNsiqcRdXwy3JPpwABuhApCyrnutiYtZjBDzHPH36vowf4lxPoPNvwHrnbQ1I6SGPoPlkJzQOy1rOjn109JO1hwPD4CT0MoNhAv2HQezPJt8ADevodkHwiZqI7dm4_0O1EbQjlkz2ltvF03CTnSQd9EvPQUsDLdBDhGdoUEECThcF_H5HjG-nWx2S1mTbhCaG8YsICcNJRclGqsnaASnipCxZ04JXNyPtFVxrXZzJHQo1zAysa7HZz3e0Zeb0se5Hyd_y11BZqZFkCc253L6aziemnsLGitlFD-wBBCuakVU7EzSpAzSphK5eRd6hPg5YBquNsf8EBGoU5tswAwJnEc2KdkfWFyk1vMlpzPcAz8mr5GSY7nuDYJkwvW8PB5AoJmFE-_b-Il2RtdLS_Z_bGB7vPyB0GyCwFzq2T1fnsMjwHJDWvX3TDl5LTm54vvwGMsjAY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkYAL4ikCBYwAIQ7Rpn7EMRJC2y5Ll0KFCq16M44f20OVLZutUP8av46ZOLsVEnDrJYfEcewZe-azPZmPkBeAYH0RRJl7LVkuaq3zuvA810ozGcqSxY4z8vNeuXMgPh7JozXya_kvDIZVLm1iZ6j9zOEe-YApjankuJKD2IdFfBmN353-yJFBCk9al3QaaYjshvOfsHxr305GoOuXjI3ff9veyXuGgdwJzhe5tDGq0rqyjlXtQ-E1fKDgQTHOOTh6H1R01pa46ldexyA8QI7NUOC6qPQVh3qvkKuKK43hhNX4w2p_p4AKdCFSRlTOdTGYt5jND_HPHz6wowr4l0PovNz4FrnZw1M6TOPpNlkLzR1yvWdKPz6_S9r9gKHyU7ofQMmBfsUA-Gaab4E39PQQUH0iaaIju7Bv6HaiOYTyybZS23g6aZIjpcM-oXloKWBnOoxwDW0KDqDJ2uC798jBpYj1PllvZk14QCivmLAAonSUXKhS1Q4QCoi7YEEHXtmMvF6K0rg-qzmSa5wYWN2g2M2F2DPyfFX2NOXy-GupLdTIqgTm3-5uzOZT009nY0Vto4b-AZoUzElbOhE3qwAtq4StXEZeoT4NWglojrP9zw7QKcy3ZYYA1CSeGeuMbCxVbnrz0ZqLwZ6RZ6vHMPHxNMc2YXbWGg7mV0jAj_Lh_6t4Sq7BTDGfJnu7j8gNBiAtxdBtkPXF_Cw8BlC1qJ90o5eS75c9XX4DknY0TQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reusing+Remote+Sensing-Based+Validation+Data%3A+Comparing+Direct+and+Indirect+Approaches+for+Afforestation+Monitoring&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Francini%2C+Saverio&rft.au=Cavalli%2C+Alice&rft.au=D%E2%80%99Amico%2C+Giovanni&rft.au=McRoberts%2C+Ronald+E.&rft.date=2023-03-01&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=15&rft.issue=6&rft.spage=1638&rft_id=info:doi/10.3390%2Frs15061638&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_rs15061638 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |