Reusing Remote Sensing-Based Validation Data: Comparing Direct and Indirect Approaches for Afforestation Monitoring

Afforestation is one of the most effective processes for removing carbon dioxide from the atmosphere and combating global warming. Landsat data and machine learning approaches can be used to map afforestation (i) indirectly, by constructing two maps of the same area over different periods and then p...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing (Basel, Switzerland) Vol. 15; no. 6; p. 1638
Main Authors Francini, Saverio, Cavalli, Alice, D’Amico, Giovanni, McRoberts, Ronald E., Maesano, Mauro, Munafò, Michele, Scarascia Mugnozza, Giuseppe, Chirici, Gherardo
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.03.2023
Subjects
Online AccessGet full text
ISSN2072-4292
2072-4292
DOI10.3390/rs15061638

Cover

Abstract Afforestation is one of the most effective processes for removing carbon dioxide from the atmosphere and combating global warming. Landsat data and machine learning approaches can be used to map afforestation (i) indirectly, by constructing two maps of the same area over different periods and then predicting changes, or (ii) directly, by constructing a single map and analyzing observations of change in both the response and remotely sensed variables. Of crucial importance, no comprehensive comparisons of direct and indirect approaches for afforestation monitoring are known to have been conducted to date. Afforestation maps estimated through the analysis of remotely sensed data may serve as intermediate products for guiding the selection of samples and the production of statistics. In this and similar studies, a huge effort is dedicated to collecting validation data. In turn, those validation datasets have varying sampling intensities in different areas, which complicates their use for assessing the accuracies of new maps. As a result, the work done to collect data is often not sufficiently exploited, with some validation datasets being used just once. In this study, we addressed two main aims. First, we implemented a methodology to reuse validation data acquired via stratified sampling with strata constructed from remote sensing maps. Second, we used this method for acquiring data for comparing map accuracy estimates and the precision of estimates for direct and indirect approaches for country-wide mapping of afforestation that occurred in Italy between 1985 and 2019. To facilitate these comparisons, we used Landsat imagery, random forest classification, and Google Earth Engine. The herein-presented method produced different accuracy estimates with 95% confidence interval and for different map classes. Afforestation accuracies ranged between 53 ± 5.9% for the indirect map class inside the buffer—defined as a stratum within 120 m of the forest/non-forest mask boundaries—and 26 ± 3.4% for the direct map outside the buffer. The accuracy in non-afforestation map classes was much greater, ranging from 87 ± 1.9% for the indirect map inside the buffer to 99 ± 1.3% for the direct map outside the buffer. Additionally, overall accuracies (with 95% CI) were estimated with large precision for both direct and indirect maps (87 ± 1.3% and 89 ± 1.6%, respectively), confirming (i) the effectiveness of the method we introduced for reusing samples and (ii) the relevance of remotely sensed data and machine learning for monitoring afforestation.
AbstractList Afforestation is one of the most effective processes for removing carbon dioxide from the atmosphere and combating global warming. Landsat data and machine learning approaches can be used to map afforestation (i) indirectly, by constructing two maps of the same area over different periods and then predicting changes, or (ii) directly, by constructing a single map and analyzing observations of change in both the response and remotely sensed variables. Of crucial importance, no comprehensive comparisons of direct and indirect approaches for afforestation monitoring are known to have been conducted to date. Afforestation maps estimated through the analysis of remotely sensed data may serve as intermediate products for guiding the selection of samples and the production of statistics. In this and similar studies, a huge effort is dedicated to collecting validation data. In turn, those validation datasets have varying sampling intensities in different areas, which complicates their use for assessing the accuracies of new maps. As a result, the work done to collect data is often not sufficiently exploited, with some validation datasets being used just once. In this study, we addressed two main aims. First, we implemented a methodology to reuse validation data acquired via stratified sampling with strata constructed from remote sensing maps. Second, we used this method for acquiring data for comparing map accuracy estimates and the precision of estimates for direct and indirect approaches for country-wide mapping of afforestation that occurred in Italy between 1985 and 2019. To facilitate these comparisons, we used Landsat imagery, random forest classification, and Google Earth Engine. The herein-presented method produced different accuracy estimates with 95% confidence interval and for different map classes. Afforestation accuracies ranged between 53 ± 5.9% for the indirect map class inside the buffer—defined as a stratum within 120 m of the forest/non-forest mask boundaries—and 26 ± 3.4% for the direct map outside the buffer. The accuracy in non-afforestation map classes was much greater, ranging from 87 ± 1.9% for the indirect map inside the buffer to 99 ± 1.3% for the direct map outside the buffer. Additionally, overall accuracies (with 95% CI) were estimated with large precision for both direct and indirect maps (87 ± 1.3% and 89 ± 1.6%, respectively), confirming (i) the effectiveness of the method we introduced for reusing samples and (ii) the relevance of remotely sensed data and machine learning for monitoring afforestation.
Audience Academic
Author Scarascia Mugnozza, Giuseppe
Chirici, Gherardo
D’Amico, Giovanni
Cavalli, Alice
Maesano, Mauro
Francini, Saverio
McRoberts, Ronald E.
Munafò, Michele
Author_xml – sequence: 1
  givenname: Saverio
  orcidid: 0000-0001-6991-0289
  surname: Francini
  fullname: Francini, Saverio
– sequence: 2
  givenname: Alice
  orcidid: 0000-0002-5460-1245
  surname: Cavalli
  fullname: Cavalli, Alice
– sequence: 3
  givenname: Giovanni
  orcidid: 0000-0002-2341-3268
  surname: D’Amico
  fullname: D’Amico, Giovanni
– sequence: 4
  givenname: Ronald E.
  surname: McRoberts
  fullname: McRoberts, Ronald E.
– sequence: 5
  givenname: Mauro
  orcidid: 0000-0002-4325-951X
  surname: Maesano
  fullname: Maesano, Mauro
– sequence: 6
  givenname: Michele
  orcidid: 0000-0002-3415-6105
  surname: Munafò
  fullname: Munafò, Michele
– sequence: 7
  givenname: Giuseppe
  orcidid: 0000-0003-0357-4360
  surname: Scarascia Mugnozza
  fullname: Scarascia Mugnozza, Giuseppe
– sequence: 8
  givenname: Gherardo
  orcidid: 0000-0002-0669-5726
  surname: Chirici
  fullname: Chirici, Gherardo
BookMark eNptUlFvFCEQ3piaWGtf_AWb-GJMtoUFlsW386r2kpomrfpK5mA4uezCCXsP_ntZV2PTFBKGmXzfN8wwL6uTEANW1WtKLhhT5DJlKkhHO9Y_q05bItuGt6o9eXB_UZ3nvCdlMUYV4adVvsNj9mFX3-EYJ6zvMcxu8wEy2vo7DN7C5GOor2CC9_U6jgdIM_7KJzRTDcHWm2AXZ3U4pAjmB-baxVSvXDkxT4vAlxj8FGfuq-q5gyHj-V97Vn379PHr-rq5uf28Wa9uGsMZmxoBzskOTLd1_dYisYowSRjKlpXXC2VROgPQKcaItMoht1RwioT2nHS2Z2fVZtG1Efb6kPwI6ZeO4PWfQEw7DWnyZkANfAtOlUycU94aAZ3hjvbIpOo59KZovV20SoU_j6UoPfpscBggYDxmzQgnXIieiwJ98wi6j8cUSqW6lYrK0nw5oy4W1A5Kfh9cnBKYsi2O3pSPdb7EV1IQQRlpVSGQhWBSzDmh08YvrS1EP2hK9DwF-v8UFMq7R5R_TXgC_Bs4uLN5
CitedBy_id crossref_primary_10_1080_22797254_2024_2334717
crossref_primary_10_1016_j_compag_2023_107925
crossref_primary_10_1016_j_ecolind_2023_111498
crossref_primary_10_3390_s24123947
crossref_primary_10_1016_j_jag_2024_103935
crossref_primary_10_1016_j_isprsjprs_2023_06_002
crossref_primary_10_1016_j_rse_2023_113852
crossref_primary_10_1038_s44284_024_00049_1
crossref_primary_10_36023_ujrs_2024_11_4_273
crossref_primary_10_1016_j_envsoft_2024_106268
Cites_doi 10.3390/rs15040923
10.1016/j.rse.2019.02.015
10.1016/j.scitotenv.2021.149346
10.1016/j.dib.2022.108445
10.3390/s22052015
10.1080/01426397.2018.1495183
10.1016/j.rse.2017.03.035
10.14214/sf.10247
10.3390/rs12203331
10.1016/j.rse.2017.06.031
10.1016/j.rse.2017.08.030
10.1016/j.rse.2011.02.025
10.1016/j.rse.2015.06.027
10.1080/22797254.2020.1806734
10.1016/j.rse.2013.12.015
10.1016/j.rse.2012.01.010
10.1080/17538947.2012.713190
10.3832/ifor3648-014
10.3390/rs13051038
10.1007/s10260-012-0220-5
10.1109/JSTARS.2012.2228167
10.1016/j.rse.2014.02.015
10.1093/bib/bbr016
10.1038/s41558-022-01343-3
10.1023/A:1010933404324
10.1109/LGRS.2005.858485
10.1080/01621459.1966.10480879
10.1016/S0034-4257(99)00090-5
10.3390/rs11050490
10.1016/j.rse.2015.09.004
10.1016/j.ecolind.2018.04.010
10.1016/j.dib.2022.108297
10.3390/rs12081253
10.1016/S0034-4257(98)00010-8
10.1016/j.rse.2015.02.018
10.1080/07038992.2014.945827
10.1016/j.rse.2022.113276
10.1016/j.rse.2014.11.005
10.3390/rs10040635
10.1016/j.rse.2012.10.031
10.1038/513030a
10.1007/978-94-017-8663-8
10.3832/ifor1239-007
10.1016/j.isprsjprs.2016.01.011
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7S9
L.6
DOA
DOI 10.3390/rs15061638
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Earth, Atmospheric & Aquatic Science Database (NC LIVE)
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef

Publicly Available Content Database

AGRICOLA
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_a4baf96bf44142c5a6c4f18e37984a8c
A750513029
10_3390_rs15061638
GeographicLocations Italy
GeographicLocations_xml – name: Italy
GroupedDBID 29P
2WC
2XV
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PROAC
PTHSS
TR2
TUS
PMFND
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7S9
L.6
PUEGO
ID FETCH-LOGICAL-c433t-5aff76ac6bf8bde0d903703e72333159de7fcaa693307d9fe4d1541e018406d83
IEDL.DBID DOA
ISSN 2072-4292
IngestDate Wed Aug 27 01:26:20 EDT 2025
Fri Sep 05 13:55:55 EDT 2025
Fri Jul 25 09:32:41 EDT 2025
Tue Jun 10 21:01:25 EDT 2025
Tue Jul 01 03:11:03 EDT 2025
Thu Apr 24 22:57:24 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c433t-5aff76ac6bf8bde0d903703e72333159de7fcaa693307d9fe4d1541e018406d83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0669-5726
0000-0001-6991-0289
0000-0002-5460-1245
0000-0002-4325-951X
0000-0002-3415-6105
0000-0003-0357-4360
0000-0002-2341-3268
OpenAccessLink https://doaj.org/article/a4baf96bf44142c5a6c4f18e37984a8c
PQID 2791700375
PQPubID 2032338
ParticipantIDs doaj_primary_oai_doaj_org_article_a4baf96bf44142c5a6c4f18e37984a8c
proquest_miscellaneous_3040455845
proquest_journals_2791700375
gale_infotracacademiconefile_A750513029
crossref_citationtrail_10_3390_rs15061638
crossref_primary_10_3390_rs15061638
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-03-01
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Francini (ref_30) 2022; 106
Olofsson (ref_47) 2014; 148
Gorelick (ref_3) 2017; 202
ref_13
Minacapilli (ref_20) 2021; 799
McRoberts (ref_15) 2015; 164
ref_11
Stehman (ref_32) 1998; 64
ref_51
Nabuurs (ref_6) 2022; 12
Stehman (ref_29) 2000; 72
Knight (ref_45) 1966; 61
Breiman (ref_10) 2001; 45
Nicodemus (ref_50) 2011; 12
ref_24
ref_23
Gregoire (ref_16) 2013; 22
Yin (ref_21) 2018; 204
Skowronski (ref_18) 2014; 151
White (ref_44) 2011; 115
ref_26
Wagner (ref_48) 2015; 168
Hermosilla (ref_14) 2022; 282
Zhang (ref_43) 2002; 2
White (ref_34) 2014; 40
Griffiths (ref_35) 2013; 6
Townshend (ref_25) 2012; 5
Roy (ref_41) 2006; 3
Parisi (ref_46) 2022; 43
Belgiu (ref_12) 2016; 114
ref_36
Francini (ref_5) 2022; 42
Hermosilla (ref_38) 2015; 158
Francini (ref_31) 2021; 18
Fuller (ref_17) 2003; 4
Wulder (ref_9) 2012; 122
Qiu (ref_19) 2018; 91
Wulder (ref_8) 2019; 225
Vangi (ref_33) 2021; 14
White (ref_37) 2017; 194
Haller (ref_22) 2018; 43
Wulder (ref_4) 2014; 513
Marcelli (ref_49) 2020; 54
Hermosilla (ref_39) 2015; 170
ref_40
ref_1
Gobakken (ref_53) 2020; 54
ref_2
Fattorini (ref_28) 2014; 8
Bajocco (ref_42) 2019; 74
Francini (ref_52) 2020; 53
Olofsson (ref_27) 2013; 129
ref_7
References_xml – ident: ref_23
  doi: 10.3390/rs15040923
– volume: 18
  start-page: 27
  year: 2021
  ident: ref_31
  article-title: Remote sensing and automatic procedures: Useful tools to monitor forest harvesting
  publication-title: For.—Riv. Selvic. Ecol. For.
– ident: ref_51
– volume: 54
  start-page: 10272
  year: 2020
  ident: ref_53
  article-title: Reuse of field data in ALS-assisted forest inventory
  publication-title: Silva Fenn.
– volume: 225
  start-page: 127
  year: 2019
  ident: ref_8
  article-title: Current status of Landsat program, science, and applications
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.02.015
– volume: 799
  start-page: 149346
  year: 2021
  ident: ref_20
  article-title: Characterization of the main land processes occurring in Europe (2000–2018) through a MODIS NDVI seasonal parameter-based procedure
  publication-title: Sci. Total. Environ.
  doi: 10.1016/j.scitotenv.2021.149346
– volume: 43
  start-page: 108445
  year: 2022
  ident: ref_46
  article-title: An open and georeferenced dataset of forest structural attributes and microhabitats in central and southern Apennines (Italy)
  publication-title: Data Brief
  doi: 10.1016/j.dib.2022.108445
– volume: 2
  start-page: 1063
  year: 2002
  ident: ref_43
  article-title: MODIS tasseled cap transformation and its utility
  publication-title: Int. Geosci. Remote Sens. Symp.
– ident: ref_1
– ident: ref_36
  doi: 10.3390/s22052015
– volume: 4
  start-page: 243
  year: 2003
  ident: ref_17
  article-title: The characterisation and measurement of land cover change through remote sensing: Problems in operational applications?
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 43
  start-page: 1068
  year: 2018
  ident: ref_22
  article-title: Among rewilding mountains: Grassland conservation and abandoned settlements in the Northern Apennines
  publication-title: Landsc. Res.
  doi: 10.1080/01426397.2018.1495183
– volume: 194
  start-page: 303
  year: 2017
  ident: ref_37
  article-title: A nationwide annual characterization of 25 years of forest disturbance and recovery for Canada using Landsat time series
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.03.035
– volume: 54
  start-page: 10247
  year: 2020
  ident: ref_49
  article-title: Large-scale two-phase estimation of wood production by poplar plantations exploiting Sentinel-2 data as auxiliary information
  publication-title: Silva Fenn.
  doi: 10.14214/sf.10247
– ident: ref_11
  doi: 10.3390/rs12203331
– volume: 202
  start-page: 18
  year: 2017
  ident: ref_3
  article-title: Google Earth Engine: Planetary-scale geospatial analysis for everyone
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.06.031
– volume: 204
  start-page: 918
  year: 2018
  ident: ref_21
  article-title: Land use and land cover change in Inner Mongolia—Understanding the effects of China’s re-vegetation programs
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.08.030
– volume: 115
  start-page: 1665
  year: 2011
  ident: ref_44
  article-title: Characterizing the state and processes of change in a dynamic forest environment using hierarchical spatio-temporal segmentation
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2011.02.025
– volume: 168
  start-page: 126
  year: 2015
  ident: ref_48
  article-title: Optimizing sample size allocation to strata for estimating area and map accuracy
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2015.06.027
– volume: 53
  start-page: 233
  year: 2020
  ident: ref_52
  article-title: Near-real time forest change detection using PlanetScope imagery
  publication-title: Eur. J. Remote Sens.
  doi: 10.1080/22797254.2020.1806734
– volume: 151
  start-page: 166
  year: 2014
  ident: ref_18
  article-title: Airborne laser scanner-assisted estimation of aboveground biomass change in a temperate oak–pine forest
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2013.12.015
– volume: 122
  start-page: 2
  year: 2012
  ident: ref_9
  article-title: Opening the archive: How free data has enabled the science and monitoring promise of Landsat
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2012.01.010
– volume: 5
  start-page: 373
  year: 2012
  ident: ref_25
  article-title: Global characterization and monitoring of forest cover using Landsat data: Opportunities and challenges
  publication-title: Int. J. Digit. Earth
  doi: 10.1080/17538947.2012.713190
– volume: 106
  start-page: 102663
  year: 2022
  ident: ref_30
  article-title: An open science and open data approach for the statistically robust estimation of forest disturbance areas
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 14
  start-page: 144
  year: 2021
  ident: ref_33
  article-title: Are we ready for a National Forest Information System? State of the art of forest maps and airborne laser scanning data availability in Italy
  publication-title: iForest—Biogeosci. For.
  doi: 10.3832/ifor3648-014
– ident: ref_13
  doi: 10.3390/rs13051038
– volume: 22
  start-page: 113
  year: 2013
  ident: ref_16
  article-title: Detection of biomass change in a Norwegian mountain forest area using small footprint airborne laser scanner data
  publication-title: Stat. Methods Appl.
  doi: 10.1007/s10260-012-0220-5
– volume: 6
  start-page: 2088
  year: 2013
  ident: ref_35
  article-title: Erratum: A Pixel-Based Landsat Compositing Algorithm for Large Area Land Cover Mapping
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2012.2228167
– volume: 148
  start-page: 42
  year: 2014
  ident: ref_47
  article-title: Good practices for estimating area and assessing accuracy of land change
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2014.02.015
– volume: 12
  start-page: 369
  year: 2011
  ident: ref_50
  article-title: Letter to the Editor: On the stability and ranking of predictors from random forest variable importance measures
  publication-title: Brief. Bioinform.
  doi: 10.1093/bib/bbr016
– volume: 12
  start-page: 415
  year: 2022
  ident: ref_6
  article-title: Glasgow forest declaration needs new modes of data ownership
  publication-title: Nat. Clim. Change
  doi: 10.1038/s41558-022-01343-3
– volume: 45
  start-page: 5
  year: 2001
  ident: ref_10
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 3
  start-page: 112
  year: 2006
  ident: ref_41
  article-title: Remote Sensing of Fire Severity: Assessing the Performance of the Normalized Burn Ratio
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2005.858485
– volume: 61
  start-page: 436
  year: 1966
  ident: ref_45
  article-title: A Computer Method for Calculating Kendall’s Tau with Ungrouped Data
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1966.10480879
– volume: 72
  start-page: 35
  year: 2000
  ident: ref_29
  article-title: Practical Implications of Design-Based Sampling Inference for Thematic Map Accuracy Assessment
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(99)00090-5
– ident: ref_24
  doi: 10.3390/rs11050490
– volume: 170
  start-page: 121
  year: 2015
  ident: ref_39
  article-title: Regional detection, characterization, and attribution of annual forest change from 1984 to 2012 using Landsat-derived time-series metrics
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2015.09.004
– volume: 91
  start-page: 490
  year: 2018
  ident: ref_19
  article-title: Automatic mapping afforestation, cropland reclamation and variations in cropping intensity in central east China during 2001–2016
  publication-title: Ecol. Indic.
  doi: 10.1016/j.ecolind.2018.04.010
– volume: 42
  start-page: 108297
  year: 2022
  ident: ref_5
  article-title: A Sentinel-2 derived dataset of forest disturbances occurred in Italy between 2017 and 2020
  publication-title: Data Brief
  doi: 10.1016/j.dib.2022.108297
– ident: ref_7
  doi: 10.3390/rs12081253
– volume: 64
  start-page: 331
  year: 1998
  ident: ref_32
  article-title: Design and Analysis for Thematic Map Accuracy Assessment—An Application of Satellite Imagery
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(98)00010-8
– volume: 164
  start-page: 36
  year: 2015
  ident: ref_15
  article-title: Indirect and direct estimation of forest biomass change using forest inventory and airborne laser scanning data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2015.02.018
– ident: ref_2
– volume: 40
  start-page: 192
  year: 2014
  ident: ref_34
  article-title: Pixel-Based Image Compositing for Large-Area Dense Time Series Applications and Science
  publication-title: Can. J. Remote Sens.
  doi: 10.1080/07038992.2014.945827
– volume: 282
  start-page: 113276
  year: 2022
  ident: ref_14
  article-title: Mapping the presence and distribution of tree species in Canada’s forested ecosystems
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2022.113276
– volume: 158
  start-page: 220
  year: 2015
  ident: ref_38
  article-title: An integrated Landsat time series protocol for change detection and generation of annual gap-free surface reflectance composites
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2014.11.005
– ident: ref_40
  doi: 10.3390/rs10040635
– volume: 129
  start-page: 122
  year: 2013
  ident: ref_27
  article-title: Making better use of accuracy data in land change studies: Estimating accuracy and area and quantifying uncertainty using stratified estimation
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2012.10.031
– volume: 74
  start-page: 314
  year: 2019
  ident: ref_42
  article-title: Remotely-sensed phenology of Italian forests: Going beyond the species
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 513
  start-page: 30
  year: 2014
  ident: ref_4
  article-title: Satellites: Make Earth observations open access
  publication-title: Nature
  doi: 10.1038/513030a
– ident: ref_26
  doi: 10.1007/978-94-017-8663-8
– volume: 8
  start-page: 6
  year: 2014
  ident: ref_28
  article-title: Design-based methodological advances to support national forest inventories: A review of recent proposals
  publication-title: iForest—Biogeosci. For.
  doi: 10.3832/ifor1239-007
– volume: 114
  start-page: 24
  year: 2016
  ident: ref_12
  article-title: Random forest in remote sensing: A review of applications and future directions
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2016.01.011
SSID ssj0000331904
Score 2.3836706
Snippet Afforestation is one of the most effective processes for removing carbon dioxide from the atmosphere and combating global warming. Landsat data and machine...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 1638
SubjectTerms Accuracy
Afforestation
Artificial intelligence
Buffers
Carbon dioxide
Carbon dioxide removal
Classification
Climate change
Cloud computing
Comparative analysis
confidence interval
Confidence intervals
Data acquisition
Data collection
Datasets
Distribution
Environmental aspects
Estimates
Global warming
google earth engine
Identification and classification
Image classification
Internet
Italy
Landsat
Landsat satellites
Learning algorithms
Machine learning
Methods
Monitoring
random forests
Remote sensing
Reuse
Sampling
Satellite imagery
Statistical analysis
Variables
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagHOCCeIpAQUYgIQ5Rs_Er5oK2haUgwaFQ1Jvl2OPtAWXLZnvg3zMTe7dCAi45JE5kjz0znx_5PsZeIoKNDUhdR6vaWvbW1n0TRW2NbRVo3aZJM_LzF318Kj-dqbOy4DaWY5XbmDgF6rgKtEZ-0BpLVHLCqLcXP2tSjaLd1SKhcZ3dmGGmoXHeLT7s1lgagQOskZmVVODs_mA9EqMeYZA_8tBE1_-voDxlmsUddrtARD7PfXqXXYPhHrtZ1MrPf91n4wnQcfUlPwE0NPCvdAh9WNaHmJEi_47IOgsl8Xd-49_woyw1iOVzfON-iPzjkJMZnxdScRg54lc-T3iFMW_Q8-zx9O4Ddrp4_-3ouC7iCXWQQmxq5VMy2gfdp66P0ESLtmsEmFagVZSNYFLwXtOChok2gYyIpmbQ0JRPx048ZHvDaoBHjIuulR6BjE1KSKNNHxAlCGObFiyIzlfs9daULhRmcRK4-OFwhkFmd1dmr9iLXdmLzKfx11KH1CO7EsSBPd1YrZeuuJTzsvfJYvsQ0ck2KK-DTLMOsGad9F2o2CvqT0eeitUJvvxwgI0izis3R7CkaN_WVmx_2-WuuPDorgZcxZ7vHqPz0Y6KH2B1OTqBIVAqxHDq8f8_8YTdIp36fHhtn-1t1pfwFNHMpn82DdnfD3TzUQ
  priority: 102
  providerName: ProQuest
Title Reusing Remote Sensing-Based Validation Data: Comparing Direct and Indirect Approaches for Afforestation Monitoring
URI https://www.proquest.com/docview/2791700375
https://www.proquest.com/docview/3040455845
https://doaj.org/article/a4baf96bf44142c5a6c4f18e37984a8c
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagHOCCeIrQsjICCXGImsavmFu27VIQrdCWot4sxx6XA0qrZnvg3zMTp0uRQFy4JFLiSM54Ht_Ek28Ye40INlYgdRmtqkvZWVt2VRSlNbZWoHWdxp6Rh0f64ER-PFWnN1p9UU1YpgfOgtv2svPJ6i5h3JZ1UF4HmXYaEMY20jeBvG9lqxvJ1OiDBapWJTMfqcC8fvtyIC49Qh-_RaCRqP9v7niMMYsH7P4EDnmbJ_WQ3YL-Ebs79Sn_9uMxG5ZAhepnfAkoYuDHVH7en5VzjEWRf0VMnVsk8T2_8u_4bm4yiOOzZ-O-j_xDn8MYbyc6cRg4IlfeJjzCkLfmebZ1evYJO1nsf9k9KKe2CWWQQqxK5VMy2geUWdNFqKKtBNo1mFqgVJSNYFLwXtOnDBNtAhkRR-1ARcmejo14yjb68x6eMS6aWnqEMDYpIY02XUB8gJKvarAgGl-wt9eidGHiFKfWFt8d5hYkdvdL7AV7tR57kZk0_jhqTiuyHkHs1-MF1Ak36YT7l04U7A2tpyMbxekEP_1qgC9FbFeuRZikaMfWFmzresndZLyDq40l1kJhVMFerm-j2dFeiu_h_GpwAp2fVIje1PP_MeNNdo_62Ofiti22sbq8gheIdlbdjN1uFu9n7E67d_jpGM_z_aPPy9mo7j8BrngAgA
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOZQL4ikCBYwAIQ5RU78SIyG0bVl26eNQWtSb6_ixPVTZstkK9U_xG5mJs1shAbdeckicke2xZz7b4_kIeQMI1hdBqNxryXJRa53Xhee5LjWTQSkWO87I_QM1OhZfT-TJCvm1uAuDYZULm9gZaj91uEe-wUqNqeR4KT9d_MiRNQpPVxcUGmlY7Iarn7Bkaz-Od0C_bxkbfj7aHuU9q0DuBOfzXNoYS2WdqmNV-1B4DUILHkrGOQfn7kMZnbUKV_ql1zEIDzBjMxS4FlK-4iD3FrkNsiqcRdXwy3JPpwABuhApCyrnutiYtZjBDzHPH36vowf4lxPoPNvwHrnbQ1I6SGPoPlkJzQOy1rOjn109JO1hwPD4CT0MoNhAv2HQezPJt8ADevodkHwiZqI7dm4_0O1EbQjlkz2ltvF03CTnSQd9EvPQUsDLdBDhGdoUEECThcF_H5HjG-nWx2S1mTbhCaG8YsICcNJRclGqsnaASnipCxZ04JXNyPtFVxrXZzJHQo1zAysa7HZz3e0Zeb0se5Hyd_y11BZqZFkCc253L6aziemnsLGitlFD-wBBCuakVU7EzSpAzSphK5eRd6hPg5YBquNsf8EBGoU5tswAwJnEc2KdkfWFyk1vMlpzPcAz8mr5GSY7nuDYJkwvW8PB5AoJmFE-_b-Il2RtdLS_Z_bGB7vPyB0GyCwFzq2T1fnsMjwHJDWvX3TDl5LTm54vvwGMsjAY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkYAL4ikCBYwAIQ7Rpn7EMRJC2y5Ll0KFCq16M44f20OVLZutUP8av46ZOLsVEnDrJYfEcewZe-azPZmPkBeAYH0RRJl7LVkuaq3zuvA810ozGcqSxY4z8vNeuXMgPh7JozXya_kvDIZVLm1iZ6j9zOEe-YApjankuJKD2IdFfBmN353-yJFBCk9al3QaaYjshvOfsHxr305GoOuXjI3ff9veyXuGgdwJzhe5tDGq0rqyjlXtQ-E1fKDgQTHOOTh6H1R01pa46ldexyA8QI7NUOC6qPQVh3qvkKuKK43hhNX4w2p_p4AKdCFSRlTOdTGYt5jND_HPHz6wowr4l0PovNz4FrnZw1M6TOPpNlkLzR1yvWdKPz6_S9r9gKHyU7ofQMmBfsUA-Gaab4E39PQQUH0iaaIju7Bv6HaiOYTyybZS23g6aZIjpcM-oXloKWBnOoxwDW0KDqDJ2uC798jBpYj1PllvZk14QCivmLAAonSUXKhS1Q4QCoi7YEEHXtmMvF6K0rg-qzmSa5wYWN2g2M2F2DPyfFX2NOXy-GupLdTIqgTm3-5uzOZT009nY0Vto4b-AZoUzElbOhE3qwAtq4StXEZeoT4NWglojrP9zw7QKcy3ZYYA1CSeGeuMbCxVbnrz0ZqLwZ6RZ6vHMPHxNMc2YXbWGg7mV0jAj_Lh_6t4Sq7BTDGfJnu7j8gNBiAtxdBtkPXF_Cw8BlC1qJ90o5eS75c9XX4DknY0TQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reusing+Remote+Sensing-Based+Validation+Data%3A+Comparing+Direct+and+Indirect+Approaches+for+Afforestation+Monitoring&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Francini%2C+Saverio&rft.au=Cavalli%2C+Alice&rft.au=D%E2%80%99Amico%2C+Giovanni&rft.au=McRoberts%2C+Ronald+E.&rft.date=2023-03-01&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=15&rft.issue=6&rft.spage=1638&rft_id=info:doi/10.3390%2Frs15061638&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_rs15061638
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon