Constant-space reasoning in dynamic Bayesian networks

Dynamic Bayesian networks (DBNs) have been receiving increased attention as a tool for modeling complex stochastic processes, especially that they generalize the popular Hidden Markov Models (HMMs) and Kalman filters. Since DBNs are only a subclass of standard Bayesian networks, the structure-based...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of approximate reasoning Vol. 26; no. 3; pp. 161 - 178
Main Author Darwiche, Adnan
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.04.2001
Subjects
Online AccessGet full text
ISSN0888-613X
1873-4731
DOI10.1016/S0888-613X(00)00067-0

Cover

Abstract Dynamic Bayesian networks (DBNs) have been receiving increased attention as a tool for modeling complex stochastic processes, especially that they generalize the popular Hidden Markov Models (HMMs) and Kalman filters. Since DBNs are only a subclass of standard Bayesian networks, the structure-based algorithms developed for Bayesian networks can be immediately applied to reasoning with DBNs. Such structure-based algorithms, which are variations on elimination algorithms, take O(N exp(w)) time and space to compute the likelihood of an event, where N is the number of nodes in the network and w is the width of a corresponding elimination order. DBNs, however, pose two specific computational challenges that require DBN-specific solutions. First, DBNs are typically heavily connected, therefore, admitting only elimination orders of high width. Second, even if one can find an elimination order of a reasonable width, one cannot afford the space complexity of O(N exp(w)) since N=nT in this case, where n is the number of variables per time slice and T is the number of time slices in the DBN. For many applications, T is very large, making the space complexity of O(nT exp(w)) unrealistic. Therefore, one of the key challenges of DBNs is to develop efficient algorithms which space complexity is independent of the time span T, leading to what is known as constant-space algorithms. We study one of the main algorithms for achieving this constant-space complexity in this paper, which is based on “slice-by-slice” elimination orders, and then suggest improvements on it based on new classes of elimination orders. We identify two topological parameters for DBNs and use them to prove a number of tight bounds on the time complexity of algorithms that we study. We also observe (experimentally) that the newly identified elimination orders tend to be better than ones based on general purpose elimination heuristics, such as min-fill. This suggests that constant-space algorithms, such as the ones we study here, should be used on DBNs even when space is not a concern.
AbstractList Dynamic Bayesian networks (DBNs) have been receiving increased attention as a tool for modeling complex stochastic processes, especially that they generalize the popular Hidden Markov Models (HMMs) and Kalman filters. Since DBNs are only a subclass of standard Bayesian networks, the structure-based algorithms developed for Bayesian networks can be immediately applied to reasoning with DBNs. Such structure-based algorithms, which are variations on elimination algorithms, take O(N exp(w)) time and space to compute the likelihood of an event, where N is the number of nodes in the network and w is the width of a corresponding elimination order. DBNs, however, pose two specific computational challenges that require DBN-specific solutions. First, DBNs are typically heavily connected, therefore, admitting only elimination orders of high width. Second, even if one can find an elimination order of a reasonable width, one cannot afford the space complexity of O(N exp(w)) since N = nT in this case, where n is the number of variables per time slice and T is the number of time slices in the DBN. For many applications, T is very large, making the space complexity of O(nT exp(w)) unrealistic. Therefore, one of the key challenges of DBNs is to develop efficient algorithms which space complexity is independent of the time span T, leading to what is known as constant-space algorithms. We study one of the main algorithms for achieving this constant-space complexity in this paper, which is based on "slice-by-slice" elimination orders, and then suggest improvements on it based on new classes of elimination orders. We identify two topological parameters for DBNs and use them to prove a number of tight bounds on the time complexity of algorithms that we study. We also observe (experimentally) that the newly identified elimination orders tend to be better than ones based on general purpose elimination heuristics, such as min-fill. This suggests that constant-space algorithms, such as the ones we study here, should be used on DBNs even when space is not a concern. copyright 2001 Elsevier Science Inc.
Dynamic Bayesian networks (DBNs) have been receiving increased attention as a tool for modeling complex stochastic processes, especially that they generalize the popular Hidden Markov Models (HMMs) and Kalman filters. Since DBNs are only a subclass of standard Bayesian networks, the structure-based algorithms developed for Bayesian networks can be immediately applied to reasoning with DBNs. Such structure-based algorithms, which are variations on elimination algorithms, take O(N exp(w)) time and space to compute the likelihood of an event, where N is the number of nodes in the network and w is the width of a corresponding elimination order. DBNs, however, pose two specific computational challenges that require DBN-specific solutions. First, DBNs are typically heavily connected, therefore, admitting only elimination orders of high width. Second, even if one can find an elimination order of a reasonable width, one cannot afford the space complexity of O(N exp(w)) since N=nT in this case, where n is the number of variables per time slice and T is the number of time slices in the DBN. For many applications, T is very large, making the space complexity of O(nT exp(w)) unrealistic. Therefore, one of the key challenges of DBNs is to develop efficient algorithms which space complexity is independent of the time span T, leading to what is known as constant-space algorithms. We study one of the main algorithms for achieving this constant-space complexity in this paper, which is based on “slice-by-slice” elimination orders, and then suggest improvements on it based on new classes of elimination orders. We identify two topological parameters for DBNs and use them to prove a number of tight bounds on the time complexity of algorithms that we study. We also observe (experimentally) that the newly identified elimination orders tend to be better than ones based on general purpose elimination heuristics, such as min-fill. This suggests that constant-space algorithms, such as the ones we study here, should be used on DBNs even when space is not a concern.
Author Darwiche, Adnan
Author_xml – sequence: 1
  givenname: Adnan
  surname: Darwiche
  fullname: Darwiche, Adnan
  email: darwiche@cs.ucla.edu
  organization: Computer Science Department, University of California, Los Angeles, CA 90095, USA
BookMark eNqFkEtLAzEUhYNUsK3-BGFWoovRm8lkJsWFaPEFBRcquAt3Mnck2iY1SZX-e_sQF25c3c13zuF-A9Zz3hFjhxxOOfDq7BGUUnnFxcsxwAkAVHUOO6zPVS3ysha8x_q_yB4bxPi2gUrVZ3LsXUzoUh7naCgLhNE7614z67J26XBmTXaFS4oWXeYoffnwHvfZbofTSAc_d8ieb66fxnf55OH2fnw5yU0pRMolFFRzboRAWTWywJFsmgJVUyjDwUgxauuOOAcYSYlQlAqV4k3ZcSVMhyCG7GjbOw_-Y0Ex6ZmNhqZTdOQXURdVKSqhRitQbkETfIyBOj0PdoZhqTnotSS9kaTXBjSA3vyv1wPnf3LGJkzWuxTQTv9NX2zTtHLwaSnoaCw5Q60NZJJuvf2n4RtPGYJo
CitedBy_id crossref_primary_10_1109_ACCESS_2021_3105520
crossref_primary_10_1145_1404880_1404884
crossref_primary_10_1016_j_dss_2015_07_003
crossref_primary_10_4304_jcp_7_2_507_513
crossref_primary_10_1016_j_artint_2015_12_001
crossref_primary_10_1016_j_pnsc_2008_10_015
crossref_primary_10_1007_s11071_013_1155_6
crossref_primary_10_1016_j_envsoft_2023_105835
crossref_primary_10_3233_MGS_170260
crossref_primary_10_1016_j_ijar_2007_10_003
crossref_primary_10_1080_12460125_2012_759485
Cites_doi 10.1016/0169-2070(94)02003-8
10.1613/jair.305
10.2307/1426718
10.1016/S0888-613X(96)00069-2
ContentType Journal Article
Copyright 2001 Elsevier Science Inc.
Copyright_xml – notice: 2001 Elsevier Science Inc.
DBID 6I.
AAFTH
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/S0888-613X(00)00067-0
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-4731
EndPage 178
ExternalDocumentID 10_1016_S0888_613X_00_00067_0
S0888613X00000670
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
9JO
AAAKF
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABAOU
ABBOA
ABFNM
ABJNI
ABMAC
ABUCO
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNCT
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AEXQZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
GBLVA
GBOLZ
HAMUX
HVGLF
HZ~
IHE
IXB
J1W
JJJVA
KOM
LG9
LY1
M41
MHUIS
MO0
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSB
SSD
SST
SSV
SSW
SSZ
T5K
UHS
WUQ
XPP
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c433t-502e711c33a56b52a95bb2a8b28c10c539d7fe1100955a0248a881b4f183cfa03
IEDL.DBID AIKHN
ISSN 0888-613X
IngestDate Mon Sep 29 05:31:40 EDT 2025
Wed Oct 01 03:16:42 EDT 2025
Thu Apr 24 22:51:51 EDT 2025
Fri Feb 23 02:29:54 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Structure-based algorithms
Variable elimination
Space complexity
Elimination orders
Dynamic Bayesian networks
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
https://www.elsevier.com/tdm/userlicense/1.0
https://www.elsevier.com/open-access/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c433t-502e711c33a56b52a95bb2a8b28c10c539d7fe1100955a0248a881b4f183cfa03
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0888613X00000670
PQID 26436389
PQPubID 23500
PageCount 18
ParticipantIDs proquest_miscellaneous_26436389
crossref_primary_10_1016_S0888_613X_00_00067_0
crossref_citationtrail_10_1016_S0888_613X_00_00067_0
elsevier_sciencedirect_doi_10_1016_S0888_613X_00_00067_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2001-04-01
PublicationDateYYYYMMDD 2001-04-01
PublicationDate_xml – month: 04
  year: 2001
  text: 2001-04-01
  day: 01
PublicationDecade 2000
PublicationTitle International journal of approximate reasoning
PublicationYear 2001
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References J. Binder, K. Murphy, S. Russell, Space-efficient inference in dynamic probabilistic networks, in: Proceedings of the International Joint Conference on Artifical Intelligence (IJCAI), 1997
R. Dechter, Constraint networks, in: S. Shapiro (Ed.), Encyclopedia of Artificial Intelligence, Wiley, New York, 1992, pp. 276–285
Zhang, Poole (BIB11) 1996; 5
R. Dechter, Bucket elimination: A unifying framework for probabilistic inference, in: Proceedings of the 12th Conference on Uncertainty in Artificial Intelligence (UAI) 1996, pp. 211–219
Cannings, Thompson, Skolnick (BIB3) 1978; 10
J. Forbes, T. Huang, K. Kanazawa, S. Russell, The batmobile: Towards a Bayesian automated taxi, in: Proceedings of the International Joint Conference on Artifical Intelligence (IJCAI), 1995
Huang, Darwiche (BIB8) 1996; 15
Jensen (BIB9) 1996
U. Kjaerulff, A computational system for dynamic time-sliced Bayesian networks, Int. J. Forecasting, 1995
X. Boyen, D. Koller, Tractable inference for complex stochastic processes, in: Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence (UAI), 1998
R. Dechter, Mini-buckets: a general scheme for approximation in automated reasoning, in: Proceedings of the International Joint Conference on Artifical Intelligence (IJCAI), 1997, pp. 1297–1302
10.1016/S0888-613X(00)00067-0_BIB5
10.1016/S0888-613X(00)00067-0_BIB10
10.1016/S0888-613X(00)00067-0_BIB6
10.1016/S0888-613X(00)00067-0_BIB7
10.1016/S0888-613X(00)00067-0_BIB1
10.1016/S0888-613X(00)00067-0_BIB2
10.1016/S0888-613X(00)00067-0_BIB4
Jensen (10.1016/S0888-613X(00)00067-0_BIB9) 1996
Huang (10.1016/S0888-613X(00)00067-0_BIB8) 1996; 15
Cannings (10.1016/S0888-613X(00)00067-0_BIB3) 1978; 10
Zhang (10.1016/S0888-613X(00)00067-0_BIB11) 1996; 5
References_xml – year: 1996
  ident: BIB9
  publication-title: An Introduction to Bayesian Networks
– volume: 15
  start-page: 225
  year: 1996
  end-page: 263
  ident: BIB8
  article-title: Inference in belief networks: A procedural guide
  publication-title: Int. J. Approximate Reasoning
– volume: 5
  start-page: 301
  year: 1996
  end-page: 328
  ident: BIB11
  article-title: Exploiting causal independence in Bayesian network inference
  publication-title: J. Artificial Intelligence Res.
– reference: R. Dechter, Constraint networks, in: S. Shapiro (Ed.), Encyclopedia of Artificial Intelligence, Wiley, New York, 1992, pp. 276–285
– reference: U. Kjaerulff, A computational system for dynamic time-sliced Bayesian networks, Int. J. Forecasting, 1995
– reference: J. Forbes, T. Huang, K. Kanazawa, S. Russell, The batmobile: Towards a Bayesian automated taxi, in: Proceedings of the International Joint Conference on Artifical Intelligence (IJCAI), 1995
– reference: J. Binder, K. Murphy, S. Russell, Space-efficient inference in dynamic probabilistic networks, in: Proceedings of the International Joint Conference on Artifical Intelligence (IJCAI), 1997
– reference: R. Dechter, Mini-buckets: a general scheme for approximation in automated reasoning, in: Proceedings of the International Joint Conference on Artifical Intelligence (IJCAI), 1997, pp. 1297–1302
– reference: X. Boyen, D. Koller, Tractable inference for complex stochastic processes, in: Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence (UAI), 1998
– volume: 10
  start-page: 26
  year: 1978
  end-page: 61
  ident: BIB3
  article-title: Probability functions on complex pedigrees
  publication-title: Adv. Appl. Prob.
– reference: R. Dechter, Bucket elimination: A unifying framework for probabilistic inference, in: Proceedings of the 12th Conference on Uncertainty in Artificial Intelligence (UAI) 1996, pp. 211–219
– ident: 10.1016/S0888-613X(00)00067-0_BIB7
– ident: 10.1016/S0888-613X(00)00067-0_BIB10
  doi: 10.1016/0169-2070(94)02003-8
– volume: 5
  start-page: 301
  year: 1996
  ident: 10.1016/S0888-613X(00)00067-0_BIB11
  article-title: Exploiting causal independence in Bayesian network inference
  publication-title: J. Artificial Intelligence Res.
  doi: 10.1613/jair.305
– ident: 10.1016/S0888-613X(00)00067-0_BIB2
– volume: 10
  start-page: 26
  year: 1978
  ident: 10.1016/S0888-613X(00)00067-0_BIB3
  article-title: Probability functions on complex pedigrees
  publication-title: Adv. Appl. Prob.
  doi: 10.2307/1426718
– volume: 15
  start-page: 225
  issue: 3
  year: 1996
  ident: 10.1016/S0888-613X(00)00067-0_BIB8
  article-title: Inference in belief networks: A procedural guide
  publication-title: Int. J. Approximate Reasoning
  doi: 10.1016/S0888-613X(96)00069-2
– ident: 10.1016/S0888-613X(00)00067-0_BIB1
– year: 1996
  ident: 10.1016/S0888-613X(00)00067-0_BIB9
– ident: 10.1016/S0888-613X(00)00067-0_BIB6
– ident: 10.1016/S0888-613X(00)00067-0_BIB4
– ident: 10.1016/S0888-613X(00)00067-0_BIB5
SSID ssj0006748
Score 1.7012824
Snippet Dynamic Bayesian networks (DBNs) have been receiving increased attention as a tool for modeling complex stochastic processes, especially that they generalize...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 161
SubjectTerms Dynamic Bayesian networks
Elimination orders
Space complexity
Structure-based algorithms
Variable elimination
Title Constant-space reasoning in dynamic Bayesian networks
URI https://dx.doi.org/10.1016/S0888-613X(00)00067-0
https://www.proquest.com/docview/26436389
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier Free Content
  customDbUrl:
  eissn: 1873-4731
  dateEnd: 20211105
  omitProxy: true
  ssIdentifier: ssj0006748
  issn: 0888-613X
  databaseCode: IXB
  dateStart: 19870101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1873-4731
  dateEnd: 20211105
  omitProxy: true
  ssIdentifier: ssj0006748
  issn: 0888-613X
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1873-4731
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006748
  issn: 0888-613X
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1873-4731
  dateEnd: 20211031
  omitProxy: true
  ssIdentifier: ssj0006748
  issn: 0888-613X
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-4731
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006748
  issn: 0888-613X
  databaseCode: AKRWK
  dateStart: 19870101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT8IwFG8QLl78NuIH7uBBD4V2baE7ApGARi5KslvTljYhMYMIHLz4t9uuG0QTQ-JxzV7TvPX93q_d-wDgDik-xZZhaBNNIG1zC6VWHcg6CTdUKUOJz3d-GbeHE_qUsrQC-mUujA-rLLA_YHqO1sVIq9BmazGbtV6dfXDnjFIUMNed22vO_3BeBbXu6Hk43gCy76cRyCSHXmCbyBMmyQfvEXrI34XoLxf1C6xzDzQ4AgcFdYy6YXXHoGKyE3BYtmWICis9BawfON8KOrTQJvJh5_mlazTLomnoQB_15Kfx-ZNRFuLAl2dgMnh86w9h0R0BakrICjIUmw7GmhDJ2orFMmFKxZKrmGuMNCPJtGONrwiXMCZ96TLJHUel1hmxthKRc1DN5pm5AJEhicZTd5LTCaU2wZJYRaRvVaW0ZRzXAS0VInRROtx3sHgX2xgxp0fh9SiQrzfq9ChQHTQ3YotQO2OXAC-1LX5sAuHwfZfobfl1hDMQ_9dDZma-XgrH-IinZZf_n_wK7IfQMx-wcw2qq4-1uXFcZKUaYK_5hRvFjnNPo7T3DWfc2Fc
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwELUqGGDhG1G-moEBBrd2bDfOCBVVgbYLrdTNsl1bqoTSiqYDC78dO06oQEKVWC3bii6-d8_JuzsAbpDiU2wZhjbVBNI2t1BqlUCWpNxQpQwlPt95MGz3xvR5wiY10KlyYbysssT-gOkFWpcjrdKarcVs1np1_sFdMJqggLnu3r5NWZz4G1jzc63z8N00ApXk0E9fp_GELYrBW4TuirkQ_RWgfkF1EX-6B2CvJI7RfXi2Q1Az2RHYr5oyRKWPHgPWCYwvhw4rtIm86Lz45BrNsmga-s9HD_LD-OzJKAsq8OUJGHcfR50eLHsjQE0JySFDsUkw1oRI1lYslilTKpZcxVxjpBlJp4k1vh5cypj0hcskdwyVWufC2kpETsFWNs_MGYgMSTWeunucTim1KZbEKiJ9oyqlLeO4DmhlEKHLwuG-f8WbWCvEnB2Ft6NAvtqos6NAddD8XrYIlTM2LeCVtcWPIyAcum9a2qjejnDu4f95yMzMV0vh-B7xpOz8_5s3wE5vNOiL_tPw5QLsBhGal-5cgq38fWWuHCvJ1XVx6r4AE87YGw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Constant-space+reasoning+in+dynamic+Bayesian+networks&rft.jtitle=International+journal+of+approximate+reasoning&rft.au=Darwiche%2C+Adnan&rft.date=2001-04-01&rft.pub=Elsevier+Inc&rft.issn=0888-613X&rft.eissn=1873-4731&rft.volume=26&rft.issue=3&rft.spage=161&rft.epage=178&rft_id=info:doi/10.1016%2FS0888-613X%2800%2900067-0&rft.externalDocID=S0888613X00000670
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0888-613X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0888-613X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0888-613X&client=summon