Deep Neural Network-Based Flood Monitoring System Fusing RGB and LWIR Cameras for Embedded IoT Edge Devices

Floods are among the most common disasters, causing loss of life and enormous damage to private property and public infrastructure. Monitoring systems that detect and predict floods help respond quickly in the pre-disaster phase to prevent and mitigate flood risk and damages. Thus, this paper presen...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing (Basel, Switzerland) Vol. 16; no. 13; p. 2358
Main Authors Lee, Youn Joo, Hwang, Jun Young, Park, Jiwon, Jung, Ho Gi, Suhr, Jae Kyu
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.07.2024
Subjects
Online AccessGet full text
ISSN2072-4292
2072-4292
DOI10.3390/rs16132358

Cover

Abstract Floods are among the most common disasters, causing loss of life and enormous damage to private property and public infrastructure. Monitoring systems that detect and predict floods help respond quickly in the pre-disaster phase to prevent and mitigate flood risk and damages. Thus, this paper presents a deep neural network (DNN)-based real-time flood monitoring system for embedded Internet of Things (IoT) edge devices. The proposed system fuses long-wave infrared (LWIR) and RGB cameras to overcome a critical drawback of conventional RGB camera-based systems: severe performance deterioration at night. This system recognizes areas occupied by water using a DNN-based semantic segmentation network, whose input is a combination of RGB and LWIR images. Flood warning levels are predicted based on the water occupancy ratio calculated by the water segmentation result. The warning information is delivered to authorized personnel via a mobile message service. For real-time edge computing, the heavy semantic segmentation network is simplified by removing unimportant channels while maintaining performance by utilizing the network slimming technique. Experiments were conducted based on the dataset acquired from the sensor module with RGB and LWIR cameras installed in a flood-prone area. The results revealed that the proposed system successfully conducts water segmentation and correctly sends flood warning messages in both daytime and nighttime. Furthermore, all of the algorithms in this system were embedded on an embedded IoT edge device with a Qualcomm QCS610 System on Chip (SoC) and operated in real time.
AbstractList Floods are among the most common disasters, causing loss of life and enormous damage to private property and public infrastructure. Monitoring systems that detect and predict floods help respond quickly in the pre-disaster phase to prevent and mitigate flood risk and damages. Thus, this paper presents a deep neural network (DNN)-based real-time flood monitoring system for embedded Internet of Things (IoT) edge devices. The proposed system fuses long-wave infrared (LWIR) and RGB cameras to overcome a critical drawback of conventional RGB camera-based systems: severe performance deterioration at night. This system recognizes areas occupied by water using a DNN-based semantic segmentation network, whose input is a combination of RGB and LWIR images. Flood warning levels are predicted based on the water occupancy ratio calculated by the water segmentation result. The warning information is delivered to authorized personnel via a mobile message service. For real-time edge computing, the heavy semantic segmentation network is simplified by removing unimportant channels while maintaining performance by utilizing the network slimming technique. Experiments were conducted based on the dataset acquired from the sensor module with RGB and LWIR cameras installed in a flood-prone area. The results revealed that the proposed system successfully conducts water segmentation and correctly sends flood warning messages in both daytime and nighttime. Furthermore, all of the algorithms in this system were embedded on an embedded IoT edge device with a Qualcomm QCS610 System on Chip (SoC) and operated in real time.
Audience Academic
Author Jung, Ho Gi
Hwang, Jun Young
Lee, Youn Joo
Park, Jiwon
Suhr, Jae Kyu
Author_xml – sequence: 1
  givenname: Youn Joo
  orcidid: 0000-0002-7606-4356
  surname: Lee
  fullname: Lee, Youn Joo
– sequence: 2
  givenname: Jun Young
  surname: Hwang
  fullname: Hwang, Jun Young
– sequence: 3
  givenname: Jiwon
  surname: Park
  fullname: Park, Jiwon
– sequence: 4
  givenname: Ho Gi
  orcidid: 0000-0002-4169-4358
  surname: Jung
  fullname: Jung, Ho Gi
– sequence: 5
  givenname: Jae Kyu
  orcidid: 0000-0003-4844-851X
  surname: Suhr
  fullname: Suhr, Jae Kyu
BookMark eNptUdFqFDEUHaSCtfbFLwj4IsLUTJJJZh7b7W5dWBVqxcdwJ7lZsp2ZrMlMpX9v1hWVYkK4N5dzzuVwXhYnYxixKF5X9ILzlr6PqZIVZ7xunhWnjCpWCtayk3_6F8V5SjuaD-dVS8VpcX-NuCefcI7Q5zL9CPG-vIKElqz6ECz5GEY_hejHLfnymCYcyGpOh9_tzRWB0ZLNt_UtWcCAERJxIZLl0KG1WWAd7sjSbpFc44M3mF4Vzx30Cc9_17Pi62p5t_hQbj7frBeXm9IIzqdSQMu5U60zLcNsByUy6YRVUNeHqUVghnEmsVaS1Y1UrDFAnRROoOsYPyvWR10bYKf30Q8QH3UAr38NQtxqiJM3PepKOMkoiM5SLlTXdfkpVOCYqi2gyFpvj1r7GL7PmCY9-GSw72HEMCfNq5pLUYn2AH3zBLoLcxyzU82parMilU1GXRxRW8j7_ejCFMHka3HwJgfqfJ5fNrTigkveZsK7I8HEkFJE98dRRfUhd_039wymT8DGTzD5MOYtvv8f5SclT66t
CitedBy_id crossref_primary_10_3390_app14209283
Cites_doi 10.1109/JSEN.2022.3223671
10.1002/rob.22075
10.1109/TPAMI.2017.2699184
10.5194/isprs-archives-XLIII-B2-2020-1189-2020
10.3390/app11209691
10.5194/hess-23-4621-2019
10.1109/ICT-ROBOT.2018.8549916
10.1007/978-3-030-01234-2_49
10.1109/ICCV.2017.298
10.1109/TENCON50793.2020.9293865
10.3390/rs14010223
10.3390/electronics12234795
10.1016/j.comcom.2019.11.022
10.1109/PerComWorkshops51409.2021.9430985
10.1109/IC3INA60834.2023.10285752
10.1017/CBO9780511811685
10.1109/BigData.2017.8258373
10.1016/j.ijdrr.2020.101642
10.1109/BigData50022.2020.9377916
10.3390/s21227506
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7S9
L.6
DOA
DOI 10.3390/rs16132358
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest SciTech Premium Collection‎ Natural Science Collection Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
CrossRef

Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_14f620a4bd0347bbb7bb7e7af275dae4
A801343639
10_3390_rs16132358
GeographicLocations South Korea
GeographicLocations_xml – name: South Korea
GroupedDBID 29P
2WC
2XV
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PROAC
PTHSS
TR2
TUS
PMFND
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7S9
L.6
PUEGO
ID FETCH-LOGICAL-c433t-4a933f79fc92e323e6e26f4d7a5579fcdea2c2326e5762586728ca0f64f4efb23
IEDL.DBID BENPR
ISSN 2072-4292
IngestDate Wed Aug 27 01:30:05 EDT 2025
Fri Sep 05 09:54:25 EDT 2025
Fri Jul 25 11:40:26 EDT 2025
Tue Jun 10 20:58:58 EDT 2025
Tue Jul 01 01:33:38 EDT 2025
Thu Apr 24 22:52:29 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 13
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c433t-4a933f79fc92e323e6e26f4d7a5579fcdea2c2326e5762586728ca0f64f4efb23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4169-4358
0000-0002-7606-4356
0000-0003-4844-851X
OpenAccessLink https://www.proquest.com/docview/3079275068?pq-origsite=%requestingapplication%&accountid=15518
PQID 3079275068
PQPubID 2032338
ParticipantIDs doaj_primary_oai_doaj_org_article_14f620a4bd0347bbb7bb7e7af275dae4
proquest_miscellaneous_3153641494
proquest_journals_3079275068
gale_infotracacademiconefile_A801343639
crossref_primary_10_3390_rs16132358
crossref_citationtrail_10_3390_rs16132358
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-07-01
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Chen (ref_22) 2018; 40
Prakash (ref_5) 2023; 23
Anbarasan (ref_4) 2020; 150
ref_14
ref_11
ref_10
ref_30
ref_19
ref_18
ref_17
ref_16
Khan (ref_1) 2020; 47
Akiyama (ref_12) 2020; XLIII-B2-2020
ref_25
ref_24
ref_23
ref_21
ref_20
Khan (ref_2) 2022; 39
ref_3
ref_29
ref_28
ref_27
ref_26
ref_9
Vitry (ref_13) 2019; 23
ref_8
ref_7
ref_6
Vandaele (ref_15) 2021; 12544
References_xml – ident: ref_28
– ident: ref_30
– ident: ref_3
– ident: ref_26
– volume: 23
  start-page: 787
  year: 2023
  ident: ref_5
  article-title: FLOODWALL: A Real-Time Flash Flood Monitoring and Frecasting System Using IoT
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2022.3223671
– volume: 39
  start-page: 905
  year: 2022
  ident: ref_2
  article-title: Emerging UAV technology for disaster detection, mitigation, response, and preparedness
  publication-title: J. Field Robot.
  doi: 10.1002/rob.22075
– volume: 40
  start-page: 834
  year: 2018
  ident: ref_22
  article-title: DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2017.2699184
– volume: XLIII-B2-2020
  start-page: 1189
  year: 2020
  ident: ref_12
  article-title: Deep Learning Applied to Water Segmentation
  publication-title: Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.
  doi: 10.5194/isprs-archives-XLIII-B2-2020-1189-2020
– ident: ref_16
  doi: 10.3390/app11209691
– volume: 23
  start-page: 4621
  year: 2019
  ident: ref_13
  article-title: Scalable flood level trend monitoring with surveillance cameras using a deep convolutional neural network
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-23-4621-2019
– ident: ref_23
– ident: ref_21
– ident: ref_11
  doi: 10.1109/ICT-ROBOT.2018.8549916
– ident: ref_20
  doi: 10.1007/978-3-030-01234-2_49
– ident: ref_24
  doi: 10.1109/ICCV.2017.298
– ident: ref_14
  doi: 10.1109/TENCON50793.2020.9293865
– ident: ref_7
  doi: 10.3390/rs14010223
– ident: ref_25
– ident: ref_29
– volume: 12544
  start-page: 232
  year: 2021
  ident: ref_15
  article-title: Automated Water Segmentation and River Level Detection on Camera Images Using Transfer Learning
  publication-title: Pattern Recognit.
– ident: ref_27
– ident: ref_18
  doi: 10.3390/electronics12234795
– volume: 150
  start-page: 150
  year: 2020
  ident: ref_4
  article-title: Detection of flood disaster system on IoT, big data and convolutional deep neural network
  publication-title: Comput. Commun.
  doi: 10.1016/j.comcom.2019.11.022
– ident: ref_9
  doi: 10.1109/PerComWorkshops51409.2021.9430985
– ident: ref_8
  doi: 10.1109/IC3INA60834.2023.10285752
– ident: ref_19
  doi: 10.1017/CBO9780511811685
– ident: ref_10
  doi: 10.1109/BigData.2017.8258373
– volume: 47
  start-page: 101642
  year: 2020
  ident: ref_1
  article-title: Multi-hazard disaster studies: Monitoring, detection, recovery, and management, based on emerging technologies and optimal techniques
  publication-title: Int. J. Disaster Risk Reduct.
  doi: 10.1016/j.ijdrr.2020.101642
– ident: ref_6
  doi: 10.1109/BigData50022.2020.9377916
– ident: ref_17
  doi: 10.3390/s21227506
SSID ssj0000331904
Score 2.3922603
Snippet Floods are among the most common disasters, causing loss of life and enormous damage to private property and public infrastructure. Monitoring systems that...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 2358
SubjectTerms Algorithms
Artificial intelligence
Artificial neural networks
Cameras
Damage detection
Damage prevention
data collection
Edge computing
Environmental risk
Flood damage
Flood forecasting
flood monitoring
Flood predictions
Floods
human resources
Image acquisition
Image processing
Image segmentation
Information processing
Infrared cameras
Infrared imaging
infrastructure
Internet
Internet of Things
Messages
Methods
Monitoring
multimodal sensor
network slimming
Neural networks
Performance degradation
Photography
Property damage
Real time
risk
Rivers
Semantic segmentation
Sensors
surveillance camera
System on chip
Warning
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NTxQxFG8MF70YRY2rSGo0MR4mzPZze2RhVzDKgUDk1vTjFRJwlrDLwf_e96bDionGi4e5dF4mndf32b7-HmPvx5IOx5RsTFKxQeunm-iKaazKyoKYhHqL_-uROThVn8_02b1WX1QTVuGBK-N2xqoY0QYVM37SxhjxsWBDEVbnAD0SaOvae8lUb4MlilarKh6pxLx-52aJsY2ki6G_eaAeqP9v5rj3MfMn7PEQHPLdOqmn7AF0m-zh0Kf84sczdrkPcM0JUAPJjmoFdzNFR5T5nCrQeVVR2qvjFYucz6my_Zwff5ry0GX-5dvhMd8LtBW15Biw8tn3CGh8Mj9cnPBZPge-D731eM5O57OTvYNmaJfQJCXlqlHBSVmsK8kJwD8FA8IUlW3QmkYzBJEwgDKAOYbQE2PFJIW2GFUUlCjkC7bRLTp4yXibinbjSUwuYTwlIJQiW4AydjqjwuoR-3jHQp8GLHFqaXHlMacgdvtf7B6xd2va64qg8UeqKa3EmoJQr_sBlAU_yIL_lyyM2AdaR0-6idNJYbhigD9FKFd-F90xyiUGZSO2dbfUflDapUdz5wju3uBs3q5fo7rRGUroYHGLNOghjMK0Ur36HzN-zR4JjJJq_e8W21jd3MIbjHJWcbsX6J_Dx_ko
  priority: 102
  providerName: Directory of Open Access Journals
Title Deep Neural Network-Based Flood Monitoring System Fusing RGB and LWIR Cameras for Embedded IoT Edge Devices
URI https://www.proquest.com/docview/3079275068
https://www.proquest.com/docview/3153641494
https://doaj.org/article/14f620a4bd0347bbb7bb7e7af275dae4
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Nb9MwFH_a2gNcEJ-ibFRGICEO0dLYcZIDQu3abkNbhcomdosc-7mTYGlpuwP_Pe_loxMScMjFeYpi-337-fcA3g0kH44pGWirioC0XxwUmddBopxKMEpNfYv_YqZPr9Tn6_h6D2btXRguq2x1YqWo3dJyjvyIeDFjLHKdflr9DLhrFJ-uti00TNNawX2sIMb2oUsqOQ470B1NZl_mu6xLKInlQlXjlEqK94_WG_J5JF8Y_cMyVQD-_1LTle2ZPoZHjdMohvUuP4E9LJ_Cg6Z_-c2vZ_B9jLgSDLRBZLO6sjsYkYFyYsqV6aIWXc7hiRqjXEy54n0h5icjYUonzr-dzcWx4RTVRpAjKya3BZJScuJseSkmboFijJVWeQ5X08nl8WnQtFEIrJJyGyiTSemTzNssQpopaoy0Vy4xccyjDk1kybHSSLFHFKc6iVJrQq-VV-iLSL6ATrks8SWI0Po4G6SFzSz5WREa72WI6AdZ7EiQ4x58aJcwtw3GOLe6-JFTrMHLnd8vdw_e7mhXNbLGX6lGvBM7CkbDrgaW60XeCBeFL15HoVGFI7ZLiqKgJ8HEeGIYZ1D14D3vY84yS79jTXP1gCbF6Ff5kMw08Ss5az04bLc6b4R5k9-zXg_e7F6TGPLZiilxeUc0ZDm0onBTvfr_Jw7gYUR-UV3xewid7foOX5Nfsy36sJ9OT_rQHY4vzr_2G9btV1mC343z-ZQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NbxMxELWq9FAuCCiIQAFXgBCHVTe215s9VKhpEhKaRihKRW-L1x4HCdgNSSrUP8dvY2Y_UiEBtx5y2YxWiT2eeTOeecPYq46kyzElA21VFqD1i4Is8TqIlVMxiK6puvjPp3p0oT5cRpc77FfTC0NllY1NLA21KyzlyI9QFxPiItfdd8sfAU2NotvVZoSGqUcruOOSYqxu7DiD658Ywq2Px33c79dCDAfz01FQTxkIrJJyEyiDMb2PE28TAVJI0CC0Vy42UURPHRhhEXdoQGguoq6ORdea0GvlFfiMiA_QBewqSqC02G5vMP0422Z5QokqHqqKF1XKJDxarRFjSWpQ_cMTlgMD_uUWSl83vMfu1iCVn1RadZ_tQP6A7dXz0r9c77OvfYAlJ2IPFJtWleRBDx2i40OqhOeVqaCcIa840fmQKuwXfPa-x03u-OTTeMZPDaXE1hyBMx98zwCNoOPjYs4HbgG8D6UVe8gubmVBH7FWXuTwmPHQ-ijpdDObWMR1Aoz3MgTwnSRyaDiiNnvbLGFqa05zGq3xLcXYhpY7vVnuNnu5lV1WTB5_lerRTmwliH27fFCsFml9mDFc8lqERmUO1TzOsgw_McTGo4I6A6rN3tA-pmQj8OdYU7c64J8itq30BGEBng8Eh2120Gx1WhuPdXqj6m12uP0ajz3d5ZgciiuUQU-lFYa36sn_X_GC7Y3m55N0Mp6ePWV3BGKyqtr4gLU2qyt4hphqkz2vFZezz7d9Vn4DxTEzGQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5VRQIuiKcwFFgECHGw4uyu1_YBoaaJ29ASoaoVvZn17myQADskqVD_Gr-OGT9SIQG3HnJxRlayO_PNN7vzYOzlUNLlmJKhtqoMEf3isMy8DhPlVAIiNW0V_4eZPjhV78_isy32q6-FobTKHhMboHa1pTPyAepiRr3IdTrwXVrEx3H-bvEjpAlSdNPaj9NoVeQQLn5i-LZ6Ox3jXr8SIp-c7B2E3YSB0Cop16EyGM_7JPM2EyCFBA1Ce-USE8f01IERFjmHBqTlIk51IlJrIq-VV-BLanqA8H8tkWgnVKWe72_OdyKJyh2ptiOqlFk0WK6QXUkqTf3DBzajAv7lEBovl99mtzp6yndbfbrDtqC6y250k9K_XNxjX8cAC04tPVBs1uaQhyN0hY7nlAPPW5Cg00LedkPnOeXWz_nx_oibyvGjT9NjvmfoMGzFkTLzyfcSEP4cn9YnfOLmwMfQ4Nd9dnoly_mAbVd1BQ8Zj6yPs2Fa2swioxNgvJcRgB9msUPIiAP2pl_CwnbdzGmoxrcCoxpa7uJyuQP2YiO7aHt4_FVqRDuxkaC-282DejkvOjPGQMlrERlVOlTwpCxL_CSQGI-q6QyogL2mfSwIHfDnWNMVOeCfoj5bxS4SArQMpIUB2-m3uuhgY1VcKnnAnm--RoOnWxxTQX2OMuijtMLAVj36_yuesetoIcXRdHb4mN0USMbaNOMdtr1ensMTJFPr8mmjtZx9vmoz-Q1mwTC1
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Neural+Network-Based+Flood+Monitoring+System+Fusing+RGB+and+LWIR+Cameras+for+Embedded+IoT+Edge+Devices&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Lee%2C+Youn+Joo&rft.au=Jun+Young+Hwang&rft.au=Park%2C+Jiwon&rft.au=Jung%2C+Ho+Gi&rft.date=2024-07-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=16&rft.issue=13&rft.spage=2358&rft_id=info:doi/10.3390%2Frs16132358&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon