Deep Neural Network-Based Flood Monitoring System Fusing RGB and LWIR Cameras for Embedded IoT Edge Devices
Floods are among the most common disasters, causing loss of life and enormous damage to private property and public infrastructure. Monitoring systems that detect and predict floods help respond quickly in the pre-disaster phase to prevent and mitigate flood risk and damages. Thus, this paper presen...
Saved in:
Published in | Remote sensing (Basel, Switzerland) Vol. 16; no. 13; p. 2358 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.07.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 2072-4292 2072-4292 |
DOI | 10.3390/rs16132358 |
Cover
Abstract | Floods are among the most common disasters, causing loss of life and enormous damage to private property and public infrastructure. Monitoring systems that detect and predict floods help respond quickly in the pre-disaster phase to prevent and mitigate flood risk and damages. Thus, this paper presents a deep neural network (DNN)-based real-time flood monitoring system for embedded Internet of Things (IoT) edge devices. The proposed system fuses long-wave infrared (LWIR) and RGB cameras to overcome a critical drawback of conventional RGB camera-based systems: severe performance deterioration at night. This system recognizes areas occupied by water using a DNN-based semantic segmentation network, whose input is a combination of RGB and LWIR images. Flood warning levels are predicted based on the water occupancy ratio calculated by the water segmentation result. The warning information is delivered to authorized personnel via a mobile message service. For real-time edge computing, the heavy semantic segmentation network is simplified by removing unimportant channels while maintaining performance by utilizing the network slimming technique. Experiments were conducted based on the dataset acquired from the sensor module with RGB and LWIR cameras installed in a flood-prone area. The results revealed that the proposed system successfully conducts water segmentation and correctly sends flood warning messages in both daytime and nighttime. Furthermore, all of the algorithms in this system were embedded on an embedded IoT edge device with a Qualcomm QCS610 System on Chip (SoC) and operated in real time. |
---|---|
AbstractList | Floods are among the most common disasters, causing loss of life and enormous damage to private property and public infrastructure. Monitoring systems that detect and predict floods help respond quickly in the pre-disaster phase to prevent and mitigate flood risk and damages. Thus, this paper presents a deep neural network (DNN)-based real-time flood monitoring system for embedded Internet of Things (IoT) edge devices. The proposed system fuses long-wave infrared (LWIR) and RGB cameras to overcome a critical drawback of conventional RGB camera-based systems: severe performance deterioration at night. This system recognizes areas occupied by water using a DNN-based semantic segmentation network, whose input is a combination of RGB and LWIR images. Flood warning levels are predicted based on the water occupancy ratio calculated by the water segmentation result. The warning information is delivered to authorized personnel via a mobile message service. For real-time edge computing, the heavy semantic segmentation network is simplified by removing unimportant channels while maintaining performance by utilizing the network slimming technique. Experiments were conducted based on the dataset acquired from the sensor module with RGB and LWIR cameras installed in a flood-prone area. The results revealed that the proposed system successfully conducts water segmentation and correctly sends flood warning messages in both daytime and nighttime. Furthermore, all of the algorithms in this system were embedded on an embedded IoT edge device with a Qualcomm QCS610 System on Chip (SoC) and operated in real time. |
Audience | Academic |
Author | Jung, Ho Gi Hwang, Jun Young Lee, Youn Joo Park, Jiwon Suhr, Jae Kyu |
Author_xml | – sequence: 1 givenname: Youn Joo orcidid: 0000-0002-7606-4356 surname: Lee fullname: Lee, Youn Joo – sequence: 2 givenname: Jun Young surname: Hwang fullname: Hwang, Jun Young – sequence: 3 givenname: Jiwon surname: Park fullname: Park, Jiwon – sequence: 4 givenname: Ho Gi orcidid: 0000-0002-4169-4358 surname: Jung fullname: Jung, Ho Gi – sequence: 5 givenname: Jae Kyu orcidid: 0000-0003-4844-851X surname: Suhr fullname: Suhr, Jae Kyu |
BookMark | eNptUdFqFDEUHaSCtfbFLwj4IsLUTJJJZh7b7W5dWBVqxcdwJ7lZsp2ZrMlMpX9v1hWVYkK4N5dzzuVwXhYnYxixKF5X9ILzlr6PqZIVZ7xunhWnjCpWCtayk3_6F8V5SjuaD-dVS8VpcX-NuCefcI7Q5zL9CPG-vIKElqz6ECz5GEY_hejHLfnymCYcyGpOh9_tzRWB0ZLNt_UtWcCAERJxIZLl0KG1WWAd7sjSbpFc44M3mF4Vzx30Cc9_17Pi62p5t_hQbj7frBeXm9IIzqdSQMu5U60zLcNsByUy6YRVUNeHqUVghnEmsVaS1Y1UrDFAnRROoOsYPyvWR10bYKf30Q8QH3UAr38NQtxqiJM3PepKOMkoiM5SLlTXdfkpVOCYqi2gyFpvj1r7GL7PmCY9-GSw72HEMCfNq5pLUYn2AH3zBLoLcxyzU82parMilU1GXRxRW8j7_ejCFMHka3HwJgfqfJ5fNrTigkveZsK7I8HEkFJE98dRRfUhd_039wymT8DGTzD5MOYtvv8f5SclT66t |
CitedBy_id | crossref_primary_10_3390_app14209283 |
Cites_doi | 10.1109/JSEN.2022.3223671 10.1002/rob.22075 10.1109/TPAMI.2017.2699184 10.5194/isprs-archives-XLIII-B2-2020-1189-2020 10.3390/app11209691 10.5194/hess-23-4621-2019 10.1109/ICT-ROBOT.2018.8549916 10.1007/978-3-030-01234-2_49 10.1109/ICCV.2017.298 10.1109/TENCON50793.2020.9293865 10.3390/rs14010223 10.3390/electronics12234795 10.1016/j.comcom.2019.11.022 10.1109/PerComWorkshops51409.2021.9430985 10.1109/IC3INA60834.2023.10285752 10.1017/CBO9780511811685 10.1109/BigData.2017.8258373 10.1016/j.ijdrr.2020.101642 10.1109/BigData50022.2020.9377916 10.3390/s21227506 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7S9 L.6 DOA |
DOI | 10.3390/rs16132358 |
DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials - QC ProQuest Central Technology Collection Natural Science Collection ProQuest SciTech Premium Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database Proquest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering collection AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 2072-4292 |
ExternalDocumentID | oai_doaj_org_article_14f620a4bd0347bbb7bb7e7af275dae4 A801343639 10_3390_rs16132358 |
GeographicLocations | South Korea |
GeographicLocations_xml | – name: South Korea |
GroupedDBID | 29P 2WC 2XV 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PROAC PTHSS TR2 TUS PMFND 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7S9 L.6 PUEGO |
ID | FETCH-LOGICAL-c433t-4a933f79fc92e323e6e26f4d7a5579fcdea2c2326e5762586728ca0f64f4efb23 |
IEDL.DBID | BENPR |
ISSN | 2072-4292 |
IngestDate | Wed Aug 27 01:30:05 EDT 2025 Fri Sep 05 09:54:25 EDT 2025 Fri Jul 25 11:40:26 EDT 2025 Tue Jun 10 20:58:58 EDT 2025 Tue Jul 01 01:33:38 EDT 2025 Thu Apr 24 22:52:29 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 13 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c433t-4a933f79fc92e323e6e26f4d7a5579fcdea2c2326e5762586728ca0f64f4efb23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-4169-4358 0000-0002-7606-4356 0000-0003-4844-851X |
OpenAccessLink | https://www.proquest.com/docview/3079275068?pq-origsite=%requestingapplication%&accountid=15518 |
PQID | 3079275068 |
PQPubID | 2032338 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_14f620a4bd0347bbb7bb7e7af275dae4 proquest_miscellaneous_3153641494 proquest_journals_3079275068 gale_infotracacademiconefile_A801343639 crossref_primary_10_3390_rs16132358 crossref_citationtrail_10_3390_rs16132358 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-07-01 |
PublicationDateYYYYMMDD | 2024-07-01 |
PublicationDate_xml | – month: 07 year: 2024 text: 2024-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Remote sensing (Basel, Switzerland) |
PublicationYear | 2024 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Chen (ref_22) 2018; 40 Prakash (ref_5) 2023; 23 Anbarasan (ref_4) 2020; 150 ref_14 ref_11 ref_10 ref_30 ref_19 ref_18 ref_17 ref_16 Khan (ref_1) 2020; 47 Akiyama (ref_12) 2020; XLIII-B2-2020 ref_25 ref_24 ref_23 ref_21 ref_20 Khan (ref_2) 2022; 39 ref_3 ref_29 ref_28 ref_27 ref_26 ref_9 Vitry (ref_13) 2019; 23 ref_8 ref_7 ref_6 Vandaele (ref_15) 2021; 12544 |
References_xml | – ident: ref_28 – ident: ref_30 – ident: ref_3 – ident: ref_26 – volume: 23 start-page: 787 year: 2023 ident: ref_5 article-title: FLOODWALL: A Real-Time Flash Flood Monitoring and Frecasting System Using IoT publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2022.3223671 – volume: 39 start-page: 905 year: 2022 ident: ref_2 article-title: Emerging UAV technology for disaster detection, mitigation, response, and preparedness publication-title: J. Field Robot. doi: 10.1002/rob.22075 – volume: 40 start-page: 834 year: 2018 ident: ref_22 article-title: DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2017.2699184 – volume: XLIII-B2-2020 start-page: 1189 year: 2020 ident: ref_12 article-title: Deep Learning Applied to Water Segmentation publication-title: Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. doi: 10.5194/isprs-archives-XLIII-B2-2020-1189-2020 – ident: ref_16 doi: 10.3390/app11209691 – volume: 23 start-page: 4621 year: 2019 ident: ref_13 article-title: Scalable flood level trend monitoring with surveillance cameras using a deep convolutional neural network publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-23-4621-2019 – ident: ref_23 – ident: ref_21 – ident: ref_11 doi: 10.1109/ICT-ROBOT.2018.8549916 – ident: ref_20 doi: 10.1007/978-3-030-01234-2_49 – ident: ref_24 doi: 10.1109/ICCV.2017.298 – ident: ref_14 doi: 10.1109/TENCON50793.2020.9293865 – ident: ref_7 doi: 10.3390/rs14010223 – ident: ref_25 – ident: ref_29 – volume: 12544 start-page: 232 year: 2021 ident: ref_15 article-title: Automated Water Segmentation and River Level Detection on Camera Images Using Transfer Learning publication-title: Pattern Recognit. – ident: ref_27 – ident: ref_18 doi: 10.3390/electronics12234795 – volume: 150 start-page: 150 year: 2020 ident: ref_4 article-title: Detection of flood disaster system on IoT, big data and convolutional deep neural network publication-title: Comput. Commun. doi: 10.1016/j.comcom.2019.11.022 – ident: ref_9 doi: 10.1109/PerComWorkshops51409.2021.9430985 – ident: ref_8 doi: 10.1109/IC3INA60834.2023.10285752 – ident: ref_19 doi: 10.1017/CBO9780511811685 – ident: ref_10 doi: 10.1109/BigData.2017.8258373 – volume: 47 start-page: 101642 year: 2020 ident: ref_1 article-title: Multi-hazard disaster studies: Monitoring, detection, recovery, and management, based on emerging technologies and optimal techniques publication-title: Int. J. Disaster Risk Reduct. doi: 10.1016/j.ijdrr.2020.101642 – ident: ref_6 doi: 10.1109/BigData50022.2020.9377916 – ident: ref_17 doi: 10.3390/s21227506 |
SSID | ssj0000331904 |
Score | 2.3922603 |
Snippet | Floods are among the most common disasters, causing loss of life and enormous damage to private property and public infrastructure. Monitoring systems that... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 2358 |
SubjectTerms | Algorithms Artificial intelligence Artificial neural networks Cameras Damage detection Damage prevention data collection Edge computing Environmental risk Flood damage Flood forecasting flood monitoring Flood predictions Floods human resources Image acquisition Image processing Image segmentation Information processing Infrared cameras Infrared imaging infrastructure Internet Internet of Things Messages Methods Monitoring multimodal sensor network slimming Neural networks Performance degradation Photography Property damage Real time risk Rivers Semantic segmentation Sensors surveillance camera System on chip Warning |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NTxQxFG8MF70YRY2rSGo0MR4mzPZze2RhVzDKgUDk1vTjFRJwlrDLwf_e96bDionGi4e5dF4mndf32b7-HmPvx5IOx5RsTFKxQeunm-iKaazKyoKYhHqL_-uROThVn8_02b1WX1QTVuGBK-N2xqoY0QYVM37SxhjxsWBDEVbnAD0SaOvae8lUb4MlilarKh6pxLx-52aJsY2ki6G_eaAeqP9v5rj3MfMn7PEQHPLdOqmn7AF0m-zh0Kf84sczdrkPcM0JUAPJjmoFdzNFR5T5nCrQeVVR2qvjFYucz6my_Zwff5ry0GX-5dvhMd8LtBW15Biw8tn3CGh8Mj9cnPBZPge-D731eM5O57OTvYNmaJfQJCXlqlHBSVmsK8kJwD8FA8IUlW3QmkYzBJEwgDKAOYbQE2PFJIW2GFUUlCjkC7bRLTp4yXibinbjSUwuYTwlIJQiW4AydjqjwuoR-3jHQp8GLHFqaXHlMacgdvtf7B6xd2va64qg8UeqKa3EmoJQr_sBlAU_yIL_lyyM2AdaR0-6idNJYbhigD9FKFd-F90xyiUGZSO2dbfUflDapUdz5wju3uBs3q5fo7rRGUroYHGLNOghjMK0Ur36HzN-zR4JjJJq_e8W21jd3MIbjHJWcbsX6J_Dx_ko priority: 102 providerName: Directory of Open Access Journals |
Title | Deep Neural Network-Based Flood Monitoring System Fusing RGB and LWIR Cameras for Embedded IoT Edge Devices |
URI | https://www.proquest.com/docview/3079275068 https://www.proquest.com/docview/3153641494 https://doaj.org/article/14f620a4bd0347bbb7bb7e7af275dae4 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Nb9MwFH_a2gNcEJ-ibFRGICEO0dLYcZIDQu3abkNbhcomdosc-7mTYGlpuwP_Pe_loxMScMjFeYpi-337-fcA3g0kH44pGWirioC0XxwUmddBopxKMEpNfYv_YqZPr9Tn6_h6D2btXRguq2x1YqWo3dJyjvyIeDFjLHKdflr9DLhrFJ-uti00TNNawX2sIMb2oUsqOQ470B1NZl_mu6xLKInlQlXjlEqK94_WG_J5JF8Y_cMyVQD-_1LTle2ZPoZHjdMohvUuP4E9LJ_Cg6Z_-c2vZ_B9jLgSDLRBZLO6sjsYkYFyYsqV6aIWXc7hiRqjXEy54n0h5icjYUonzr-dzcWx4RTVRpAjKya3BZJScuJseSkmboFijJVWeQ5X08nl8WnQtFEIrJJyGyiTSemTzNssQpopaoy0Vy4xccyjDk1kybHSSLFHFKc6iVJrQq-VV-iLSL6ATrks8SWI0Po4G6SFzSz5WREa72WI6AdZ7EiQ4x58aJcwtw3GOLe6-JFTrMHLnd8vdw_e7mhXNbLGX6lGvBM7CkbDrgaW60XeCBeFL15HoVGFI7ZLiqKgJ8HEeGIYZ1D14D3vY84yS79jTXP1gCbF6Ff5kMw08Ss5az04bLc6b4R5k9-zXg_e7F6TGPLZiilxeUc0ZDm0onBTvfr_Jw7gYUR-UV3xewid7foOX5Nfsy36sJ9OT_rQHY4vzr_2G9btV1mC343z-ZQ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NbxMxELWq9FAuCCiIQAFXgBCHVTe215s9VKhpEhKaRihKRW-L1x4HCdgNSSrUP8dvY2Y_UiEBtx5y2YxWiT2eeTOeecPYq46kyzElA21VFqD1i4Is8TqIlVMxiK6puvjPp3p0oT5cRpc77FfTC0NllY1NLA21KyzlyI9QFxPiItfdd8sfAU2NotvVZoSGqUcruOOSYqxu7DiD658Ywq2Px33c79dCDAfz01FQTxkIrJJyEyiDMb2PE28TAVJI0CC0Vy42UURPHRhhEXdoQGguoq6ORdea0GvlFfiMiA_QBewqSqC02G5vMP0422Z5QokqHqqKF1XKJDxarRFjSWpQ_cMTlgMD_uUWSl83vMfu1iCVn1RadZ_tQP6A7dXz0r9c77OvfYAlJ2IPFJtWleRBDx2i40OqhOeVqaCcIa840fmQKuwXfPa-x03u-OTTeMZPDaXE1hyBMx98zwCNoOPjYs4HbgG8D6UVe8gubmVBH7FWXuTwmPHQ-ijpdDObWMR1Aoz3MgTwnSRyaDiiNnvbLGFqa05zGq3xLcXYhpY7vVnuNnu5lV1WTB5_lerRTmwliH27fFCsFml9mDFc8lqERmUO1TzOsgw_McTGo4I6A6rN3tA-pmQj8OdYU7c64J8itq30BGEBng8Eh2120Gx1WhuPdXqj6m12uP0ajz3d5ZgciiuUQU-lFYa36sn_X_GC7Y3m55N0Mp6ePWV3BGKyqtr4gLU2qyt4hphqkz2vFZezz7d9Vn4DxTEzGQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5VRQIuiKcwFFgECHGw4uyu1_YBoaaJ29ASoaoVvZn17myQADskqVD_Gr-OGT9SIQG3HnJxRlayO_PNN7vzYOzlUNLlmJKhtqoMEf3isMy8DhPlVAIiNW0V_4eZPjhV78_isy32q6-FobTKHhMboHa1pTPyAepiRr3IdTrwXVrEx3H-bvEjpAlSdNPaj9NoVeQQLn5i-LZ6Ox3jXr8SIp-c7B2E3YSB0Cop16EyGM_7JPM2EyCFBA1Ce-USE8f01IERFjmHBqTlIk51IlJrIq-VV-BLanqA8H8tkWgnVKWe72_OdyKJyh2ptiOqlFk0WK6QXUkqTf3DBzajAv7lEBovl99mtzp6yndbfbrDtqC6y250k9K_XNxjX8cAC04tPVBs1uaQhyN0hY7nlAPPW5Cg00LedkPnOeXWz_nx_oibyvGjT9NjvmfoMGzFkTLzyfcSEP4cn9YnfOLmwMfQ4Nd9dnoly_mAbVd1BQ8Zj6yPs2Fa2swioxNgvJcRgB9msUPIiAP2pl_CwnbdzGmoxrcCoxpa7uJyuQP2YiO7aHt4_FVqRDuxkaC-282DejkvOjPGQMlrERlVOlTwpCxL_CSQGI-q6QyogL2mfSwIHfDnWNMVOeCfoj5bxS4SArQMpIUB2-m3uuhgY1VcKnnAnm--RoOnWxxTQX2OMuijtMLAVj36_yuesetoIcXRdHb4mN0USMbaNOMdtr1ensMTJFPr8mmjtZx9vmoz-Q1mwTC1 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Neural+Network-Based+Flood+Monitoring+System+Fusing+RGB+and+LWIR+Cameras+for+Embedded+IoT+Edge+Devices&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Lee%2C+Youn+Joo&rft.au=Jun+Young+Hwang&rft.au=Park%2C+Jiwon&rft.au=Jung%2C+Ho+Gi&rft.date=2024-07-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=16&rft.issue=13&rft.spage=2358&rft_id=info:doi/10.3390%2Frs16132358&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |