Improved gait recognition by gait dynamics normalization
Potential sources for gait biometrics can be seen to derive from two aspects: gait shape and gait dynamics. We show that improved gait recognition can be achieved after normalization of dynamics and focusing on the shape information. We normalize for gait dynamics using a generic walking model, as c...
Saved in:
Published in | IEEE transactions on pattern analysis and machine intelligence Vol. 28; no. 6; pp. 863 - 876 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Los Alamitos, CA
IEEE
01.06.2006
IEEE Computer Society The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 0162-8828 1939-3539 |
DOI | 10.1109/TPAMI.2006.122 |
Cover
Abstract | Potential sources for gait biometrics can be seen to derive from two aspects: gait shape and gait dynamics. We show that improved gait recognition can be achieved after normalization of dynamics and focusing on the shape information. We normalize for gait dynamics using a generic walking model, as captured by a population hidden Markov model (pHMM) defined for a set of individuals. The states of this pHMM represent gait stances over one gait cycle and the observations are the silhouettes of the corresponding gait stances. For each sequence, we first use Viterbi decoding of the gait dynamics to arrive at one dynamics-normalized, averaged, gait cycle of fixed length. The distance between two sequences is the distance between the two corresponding dynamics-normalized gait cycles, which we quantify by the sum of the distances between the corresponding gait stances. Distances between two silhouettes from the same generic gait stance are computed in the linear discriminant analysis space so as to maximize the discrimination between persons, while minimizing the variations of the same subject under different conditions. The distance computation is constructed so that it is invariant to dilations and erosions of the silhouettes. This helps us handle variations in silhouette shape that can occur with changing imaging conditions. We present results on three different, publicly available, data sets. First, we consider the HumanID gait challenge data set, which is the largest gait benchmarking data set that is available (122 subjects), exercising five different factors, i.e., viewpoint, shoe, surface, carrying condition, and time. We significantly improve the performance across the hard experiments involving surface change and briefcase carrying conditions. Second, we also show improved performance on the UMD gait data set that exercises time variations for 55 subjects. Third, on the CMU Mobo data set, we show results for matching across different walking speeds. It is worth noting that there was no separate training for the UMD and CMU data sets. |
---|---|
AbstractList | Potential sources for gait biometrics can be seen to derive from two aspects: gait shape and gait dynamics. We show that improved gait recognition can be achieved after normalization of dynamics and focusing on the shape information. We normalize for gait dynamics using a generic walking model, as captured by a population Hidden Markov Model (pHMM) defined for a set of individuals. The states of this pHMM represent gait stances over one gait cycle and the observations are the silhouettes of the corresponding gait stances. For each sequence, we first use Viterbi decoding of the gait dynamics to arrive at one dynamics-normalized, averaged, gait cycle of fixed length. The distance between two sequences is the distance between the two corresponding dynamics-normalized gait cycles, which we quantify by the sum of the distances between the corresponding gait stances. Distances between two silhouettes from the same generic gait stance are computed in the linear discriminant analysis space so as to maximize the discrimination between persons, while minimizing the variations of the same subject under different conditions. The distance computation is constructed so that it is invariant to dilations and erosions of the silhouettes. This helps us handle variations in silhouette shape that can occur with changing imaging conditions. We present results on three different, publicly available, data sets. First, we consider the HumanlD Gait Challenge data set, which is the largest gait benchmarking data set that is available (122 subjects), exercising five different factors, i.e., viewpoint, shoe, surface, carrying condition, and time. We significantly improve the performance across the hard experiments involving surface change and briefcase carrying conditions. Second, we also show improved performance on the UMD gait data set that exercises time variations for 55 subjects. Third, on the CMU Mobo data set, we show results for matching across different walking speeds. It is worth noting that there was no separate training for the UMD and CMU data sets. Potential sources for gait biometrics can be seen to derive from two aspects: gait shape and gait dynamics. We show that improved gait recognition can be achieved after normalization of dynamics and focusing on the shape information. We normalize for gait dynamics using a generic walking model, as captured by a population hidden Markov model (pHMM) defined for a set of individuals. The states of this pHMM represent gait stances over one gait cycle and the observations are the silhouettes of the corresponding gait stances. For each sequence, we first use Viterbi decoding of the gait dynamics to arrive at one dynamics-normalized, averaged, gait cycle of fixed length. The distance between two sequences is the distance between the two corresponding dynamics-normalized gait cycles, which we quantify by the sum of the distances between the corresponding gait stances. Distances between two silhouettes from the same generic gait stance are computed in the linear discriminant analysis space so as to maximize the discrimination between persons, while minimizing the variations of the same subject under different conditions. The distance computation is constructed so that it is invariant to dilations and erosions of the silhouettes. This helps us handle variations in silhouette shape that can occur with changing imaging conditions. We present results on three different, publicly available, data sets. First, we consider the HumanID gait challenge data set, which is the largest gait benchmarking data set that is available (122 subjects), exercising five different factors, i.e., viewpoint, shoe, surface, carrying condition, and time. We significantly improve the performance across the hard experiments involving surface change and briefcase carrying conditions. Second, we also show improved performance on the UMD gait data set that exercises time variations for 55 subjects. Third, on the CMU Mobo data set, we show results for matching across different walking speeds. It is worth no- - ting that there was no separate training for the UMD and CMU data sets. Potential sources for gait biometrics can be seen to derive from two aspects: gait shape and gait dynamics. We show that improved gait recognition can be achieved after normalization of dynamics and focusing on the shape information. We normalize for gait dynamics using a generic walking model, as captured by a population hidden Markov model (pHMM) defined for a set of individuals. The states of this pHMM represent gait stances over one gait cycle and the observations are the silhouettes of the corresponding gait stances. For each sequence, we first use Viterbi decoding of the gait dynamics to arrive at one dynamics-normalized, averaged, gait cycle of fixed length. The distance between two sequences is the distance between the two corresponding dynamics-normalized gait cycles, which we quantify by the sum of the distances between the corresponding gait stances. Distances between two silhouettes from the same generic gait stance are computed in the linear discriminant analysis space so as to maximize the discrimination between persons, while minimizing the variations of the same subject under different conditions. The distance computation is constructed so that it is invariant to dilations and erosions of the silhouettes. This helps us handle variations in silhouette shape that can occur with changing imaging conditions. We present results on three different, publicly available, data sets. First, we consider the HumanID gait challenge data set, which is the largest gait benchmarking data set that is available (122 subjects), exercising five different factors, i.e., viewpoint, shoe, surface, carrying condition, and time. We significantly improve the performance across the hard experiments involving surface change and briefcase carrying conditions. Second, we also show improved performance on the UMD gait data set that exercises time variations for 55 subjects. Third, on the CMU Mobo data set, we show results for matching across different walking speeds. It is worth noting that there was no separate training for the UMD and CMU data sets. Potential sources for gait biometrics can be seen to derive from two aspects: gait shape and gait dynamics. We show that improved gait recognition can be achieved after normalization of dynamics and focusing on the shape information. We normalize for gait dynamics using a generic walking model, as captured by a population Hidden Markov Model (pHMM) defined for a set of individuals. The states of this pHMM represent gait stances over one gait cycle and the observations are the silhouettes of the corresponding gait stances. For each sequence, we first use Viterbi decoding of the gait dynamics to arrive at one dynamics-normalized, averaged, gait cycle of fixed length. The distance between two sequences is the distance between the two corresponding dynamics-normalized gait cycles, which we quantify by the sum of the distances between the corresponding gait stances. Distances between two silhouettes from the same generic gait stance are computed in the linear discriminant analysis space so as to maximize the discrimination between persons, while minimizing the variations of the same subject under different conditions. The distance computation is constructed so that it is invariant to dilations and erosions of the silhouettes. This helps us handle variations in silhouette shape that can occur with changing imaging conditions. We present results on three different, publicly available, data sets. First, we consider the HumanlD Gait Challenge data set, which is the largest gait benchmarking data set that is available (122 subjects), exercising five different factors, i.e., viewpoint, shoe, surface, carrying condition, and time. We significantly improve the performance across the hard experiments involving surface change and briefcase carrying conditions. Second, we also show improved performance on the UMD gait data set that exercises time variations for 55 subjects. Third, on the CMU Mobo data set, we show results for matching across different walking speeds. It is worth noting that there was no separate training for the UMD and CMU data sets.Potential sources for gait biometrics can be seen to derive from two aspects: gait shape and gait dynamics. We show that improved gait recognition can be achieved after normalization of dynamics and focusing on the shape information. We normalize for gait dynamics using a generic walking model, as captured by a population Hidden Markov Model (pHMM) defined for a set of individuals. The states of this pHMM represent gait stances over one gait cycle and the observations are the silhouettes of the corresponding gait stances. For each sequence, we first use Viterbi decoding of the gait dynamics to arrive at one dynamics-normalized, averaged, gait cycle of fixed length. The distance between two sequences is the distance between the two corresponding dynamics-normalized gait cycles, which we quantify by the sum of the distances between the corresponding gait stances. Distances between two silhouettes from the same generic gait stance are computed in the linear discriminant analysis space so as to maximize the discrimination between persons, while minimizing the variations of the same subject under different conditions. The distance computation is constructed so that it is invariant to dilations and erosions of the silhouettes. This helps us handle variations in silhouette shape that can occur with changing imaging conditions. We present results on three different, publicly available, data sets. First, we consider the HumanlD Gait Challenge data set, which is the largest gait benchmarking data set that is available (122 subjects), exercising five different factors, i.e., viewpoint, shoe, surface, carrying condition, and time. We significantly improve the performance across the hard experiments involving surface change and briefcase carrying conditions. Second, we also show improved performance on the UMD gait data set that exercises time variations for 55 subjects. Third, on the CMU Mobo data set, we show results for matching across different walking speeds. It is worth noting that there was no separate training for the UMD and CMU data sets. [...] we consider the HumanID gait challenge data set, which is the largest gait benchmarking data set that is available (122 subjects), exercising five different factors, i.e., viewpoint, shoe, surface, carrying condition, and time. |
Author | Zongyi Liu Sarkar, S. |
Author_xml | – sequence: 1 surname: Zongyi Liu fullname: Zongyi Liu organization: Dept. of Comput. Sci. & Eng., Univ. of South Florida, Tampa, FL, USA – sequence: 2 givenname: S. surname: Sarkar fullname: Sarkar, S. organization: Dept. of Comput. Sci. & Eng., Univ. of South Florida, Tampa, FL, USA |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17748008$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/16724582$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkctrFEEQxhuJmM3q1Ysgi6CeZu334xiCj4WIHuK56emuDh1memL3rLD-9fZm1wcB9VRQ9fuKqu87Qyd5yoDQU4LXhGDz5urz-cfNmmIs14TSB2hBDDMdE8ycoAUmknZaU32Kzmq9wZhwgdkjdEqkolxoukB6M96W6RuE1bVL86qAn65zmtOUV_3u0Au77Mbk6ypPZXRD-u7248foYXRDhSfHukRf3r29uvjQXX56v7k4v-w8Z2zuOI8SIKo-9FpCdAGUAgZE0ADSiT5oBt5RFoWBgIFoEQVWBiIBzFjAbIleH_a2M79uoc52TNXDMLgM07ZabSSlXBHWyFf_JKVufmhh_gtSjbnmmDTwxT3wZtqW3N61WgrFmGlGL9HzI7TtRwj2tqTRlZ396XEDXh4BV70bYnHZp_qbU4prjHXj-IHzZaq1QLQ-zXdez8WlwRJs95Hbu8jtPnLbIm-y9T3Zr81_Ezw7CBIA_HEu5UxQ9gOyJ7SC |
CODEN | ITPIDJ |
CitedBy_id | crossref_primary_10_1109_TIFS_2011_2175921 crossref_primary_10_1049_el_20080089 crossref_primary_10_1016_j_knosys_2020_106273 crossref_primary_10_1080_15536548_2015_1046286 crossref_primary_10_1142_S0218001413500171 crossref_primary_10_1109_TCYB_2017_2705799 crossref_primary_10_1109_TCDS_2017_2658674 crossref_primary_10_3390_electronics13163137 crossref_primary_10_1109_TIP_2021_3055936 crossref_primary_10_1016_j_neucom_2017_10_049 crossref_primary_10_1016_j_patcog_2014_06_010 crossref_primary_10_1109_TCSVT_2022_3227385 crossref_primary_10_1049_iet_bmt_2016_0113 crossref_primary_10_1198_016214507000001229 crossref_primary_10_2197_ipsjtcva_4_53 crossref_primary_10_1109_TIP_2011_2180914 crossref_primary_10_1109_TIFS_2013_2287605 crossref_primary_10_1016_j_neucom_2009_09_017 crossref_primary_10_1016_j_neucom_2015_11_111 crossref_primary_10_1007_s11042_019_7712_3 crossref_primary_10_1145_2523819 crossref_primary_10_1016_j_patrec_2010_05_027 crossref_primary_10_1155_2008_629102 crossref_primary_10_1109_JIOT_2023_3242417 crossref_primary_10_1016_j_patcog_2015_08_011 crossref_primary_10_1109_TIP_2007_891157 crossref_primary_10_1049_iet_cvi_2011_0234 crossref_primary_10_1016_j_robot_2015_09_017 crossref_primary_10_1049_iet_ipr_2014_0773 crossref_primary_10_1016_j_cmpb_2018_03_019 crossref_primary_10_1109_TIFS_2012_2204253 crossref_primary_10_1109_TIM_2022_3214271 crossref_primary_10_1109_TPAMI_2011_260 crossref_primary_10_1016_j_patcog_2016_05_030 crossref_primary_10_1109_TIFS_2007_902030 crossref_primary_10_1587_transinf_2020ZDP7503 crossref_primary_10_1007_s00138_008_0144_0 crossref_primary_10_1016_j_sigpro_2010_01_024 crossref_primary_10_1007_s11042_023_15079_5 crossref_primary_10_1109_TCSVT_2013_2242640 crossref_primary_10_1016_j_patcog_2014_01_016 crossref_primary_10_1109_TIP_2009_2017143 crossref_primary_10_1109_TSMCB_2011_2182048 crossref_primary_10_1145_3381754 crossref_primary_10_1016_j_patrec_2024_06_031 crossref_primary_10_1007_s11042_017_5469_0 crossref_primary_10_1049_iet_bmt_2011_0004 crossref_primary_10_1109_TIP_2013_2266578 crossref_primary_10_1155_2014_484320 crossref_primary_10_1109_TIFS_2013_2252342 crossref_primary_10_1109_TCSVT_2012_2186744 crossref_primary_10_1016_j_patcog_2010_10_021 crossref_primary_10_1109_TCYB_2017_2682280 crossref_primary_10_1109_TPAMI_2021_3092833 crossref_primary_10_1109_TIFS_2009_2025858 crossref_primary_10_9746_jcmsi_6_331 crossref_primary_10_1016_j_patcog_2017_04_015 crossref_primary_10_1007_s11042_019_08400_8 crossref_primary_10_1007_s11042_019_07945_y crossref_primary_10_1007_s11042_023_15775_2 crossref_primary_10_1007_s11042_018_6045_y crossref_primary_10_1109_TCSVT_2008_2005594 crossref_primary_10_1016_j_patrec_2009_06_008 crossref_primary_10_1016_j_pnsc_2008_04_011 crossref_primary_10_1109_TPAMI_2021_3057879 crossref_primary_10_1587_transinf_E95_D_668 crossref_primary_10_1109_TMC_2014_2365185 crossref_primary_10_1109_TPAMI_2014_2366766 crossref_primary_10_1109_TSMCB_2012_2197823 crossref_primary_10_1016_j_cviu_2015_11_016 crossref_primary_10_1109_TCSVT_2012_2186731 crossref_primary_10_1109_TIFS_2018_2870594 crossref_primary_10_1109_TPAMI_2016_2533388 crossref_primary_10_1007_s11760_008_0089_9 crossref_primary_10_1016_j_robot_2015_03_001 crossref_primary_10_1016_j_imavis_2014_10_004 crossref_primary_10_1109_TITB_2009_2022913 crossref_primary_10_1145_3571743 crossref_primary_10_1016_j_cviu_2013_08_003 crossref_primary_10_1016_j_jvcir_2021_103052 crossref_primary_10_1016_j_patcog_2012_02_032 crossref_primary_10_1109_TMM_2019_2942479 crossref_primary_10_1145_3534607 crossref_primary_10_1049_iet_bmt_2018_5063 crossref_primary_10_1109_TCSVT_2009_2035852 crossref_primary_10_1016_j_neucom_2012_06_022 crossref_primary_10_1016_j_patcog_2014_09_022 crossref_primary_10_1016_j_patcog_2009_05_006 crossref_primary_10_1016_S0969_4765_11_70170_9 crossref_primary_10_1016_j_patcog_2010_03_011 crossref_primary_10_1109_TIFS_2007_902040 crossref_primary_10_1016_j_patrec_2019_04_010 crossref_primary_10_1109_LRA_2019_2895266 crossref_primary_10_1109_TIP_2013_2294552 crossref_primary_10_7717_peerj_cs_2158 crossref_primary_10_1016_j_artmed_2022_102314 crossref_primary_10_1109_TITB_2009_2035050 crossref_primary_10_1016_j_patrec_2011_04_014 crossref_primary_10_1109_TIP_2011_2160956 crossref_primary_10_1109_TPAMI_2017_2726061 crossref_primary_10_1109_TSP_2014_2306174 crossref_primary_10_1109_ACCESS_2021_3056880 crossref_primary_10_1080_01691864_2014_996604 crossref_primary_10_1145_3230633 crossref_primary_10_1016_j_sigpro_2009_01_015 crossref_primary_10_1109_TSMCA_2008_2007977 crossref_primary_10_1109_TIFS_2014_2336379 crossref_primary_10_1016_j_jvcir_2013_02_002 crossref_primary_10_1109_TIFS_2015_2445315 crossref_primary_10_1016_j_patcog_2018_03_030 crossref_primary_10_1016_j_cviu_2014_05_004 crossref_primary_10_1109_TMC_2018_2828816 crossref_primary_10_1049_el_2010_2738 crossref_primary_10_1002_adfm_202303562 crossref_primary_10_1049_iet_bmt_2016_0136 crossref_primary_10_1145_3488715 crossref_primary_10_1016_j_cose_2019_05_011 crossref_primary_10_1109_ACCESS_2016_2614720 crossref_primary_10_1109_TMC_2019_2897933 crossref_primary_10_1016_j_neucom_2016_05_077 crossref_primary_10_1016_j_neucom_2019_01_091 crossref_primary_10_1108_02602281311294342 crossref_primary_10_1109_TSMCB_2012_2199310 crossref_primary_10_1016_j_cviu_2018_01_007 crossref_primary_10_1039_D4TA08135H crossref_primary_10_1260_2047_4970_4_2_209 crossref_primary_10_1016_j_cosrev_2021_100432 crossref_primary_10_1016_j_patcog_2009_12_020 crossref_primary_10_1109_TIP_2007_906769 crossref_primary_10_1007_s11263_010_0362_6 crossref_primary_10_1198_016214507000001238 crossref_primary_10_1016_j_patrec_2016_05_009 crossref_primary_10_1049_iet_cvi_2010_0166 crossref_primary_10_1049_iet_bmt_2020_0103 crossref_primary_10_1016_j_jvcir_2013_02_006 crossref_primary_10_1155_2013_206251 crossref_primary_10_1186_1687_6180_2014_15 |
Cites_doi | 10.1109/34.879790 10.1109/AFGR.2004.1301502 10.1109/AFGR.2002.1004148 10.1007/3-540-44887-X_67 10.1109/TPAMI.2003.1251144 10.1109/TSMCB.2004.842251 10.1109/ICPR.2004.1333741 10.1109/AFGR.2004.1301521 10.1007/3-540-45344-X_44 10.1007/978-1-4612-1694-0_15 10.1109/AFGR.2002.1004181 10.1109/34.598228 10.1007/3-540-44887-X_85 10.3758/BF03337021 10.1117/12.543107 10.1016/j.cviu.2004.04.004 10.1007/3-540-47967-8_44 10.1109/CVPR.2004.1315252 10.1109/AFGR.2004.1301522 10.1109/cvpr.2004.1315244 10.1109/MNRAO.1994.346253 10.1109/TIP.2004.832865 10.1007/3-540-44887-X_83 10.1007/3-540-44887-X_82 10.1109/AFGR.2004.1301504 10.1109/ICCV.2003.1238411 10.1109/TPAMI.2005.246 10.1109/TPAMI.2005.39 |
ContentType | Journal Article |
Copyright | 2006 INIST-CNRS Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2006 |
Copyright_xml | – notice: 2006 INIST-CNRS – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2006 |
DBID | 97E RIA RIE AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 F28 FR3 |
DOI | 10.1109/TPAMI.2006.122 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic ANTE: Abstracts in New Technology & Engineering Engineering Research Database |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic Engineering Research Database ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | MEDLINE Technology Research Database MEDLINE - Academic Computer and Information Systems Abstracts Technology Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science Applied Sciences |
EISSN | 1939-3539 |
EndPage | 876 |
ExternalDocumentID | 2343239311 16724582 17748008 10_1109_TPAMI_2006_122 1624352 |
Genre | orig-research Evaluation Studies Research Support, U.S. Gov't, Non-P.H.S Journal Article |
GroupedDBID | --- -DZ -~X .DC 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E 9M8 AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT ADRHT AENEX AETEA AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P FA8 HZ~ H~9 IBMZZ ICLAB IEDLZ IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNI RNS RXW RZB TAE TN5 UHB VH1 XJT ~02 AAYXX CITATION IQODW RIG AAYOK CGR CUY CVF ECM EIF NPM PKN RIC Z5M 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 F28 FR3 |
ID | FETCH-LOGICAL-c433t-44f6eef7bdb86efade77e3e152de6a5bd83eca23f59ed0e185f5079ef1e033d03 |
IEDL.DBID | RIE |
ISSN | 0162-8828 |
IngestDate | Sun Sep 28 02:12:07 EDT 2025 Wed Oct 01 14:12:20 EDT 2025 Sun Sep 28 09:09:54 EDT 2025 Mon Jun 30 05:58:00 EDT 2025 Wed Feb 19 01:52:42 EST 2025 Mon Jul 21 09:14:47 EDT 2025 Wed Oct 01 06:41:10 EDT 2025 Thu Apr 24 22:51:59 EDT 2025 Tue Aug 26 16:40:12 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Biometrics Discriminant analysis Gait Imaging Form defect Hidden Markov model LDA population HMM Pattern analysis Viterbi decoding Gait recognition gait shape |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c433t-44f6eef7bdb86efade77e3e152de6a5bd83eca23f59ed0e185f5079ef1e033d03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 ObjectType-Undefined-1 ObjectType-Feature-3 |
PMID | 16724582 |
PQID | 865733935 |
PQPubID | 23500 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_68016859 proquest_journals_865733935 pubmed_primary_16724582 crossref_primary_10_1109_TPAMI_2006_122 proquest_miscellaneous_896224713 proquest_miscellaneous_28048401 ieee_primary_1624352 pascalfrancis_primary_17748008 crossref_citationtrail_10_1109_TPAMI_2006_122 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2006-06-01 |
PublicationDateYYYYMMDD | 2006-06-01 |
PublicationDate_xml | – month: 06 year: 2006 text: 2006-06-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Los Alamitos, CA |
PublicationPlace_xml | – name: Los Alamitos, CA – name: United States – name: New York |
PublicationTitle | IEEE transactions on pattern analysis and machine intelligence |
PublicationTitleAbbrev | TPAMI |
PublicationTitleAlternate | IEEE Trans Pattern Anal Mach Intell |
PublicationYear | 2006 |
Publisher | IEEE IEEE Computer Society The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: IEEE Computer Society – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref31 ref11 ref10 ref32 ref2 ref1 ref17 Gross (ref5) 2001 ref16 ref19 ref18 ref24 ref23 Rabiner (ref27) 1993 ref25 ref20 ref22 ref21 ref28 ref29 ref8 ref7 Sunderesan (ref26); 2 ref9 ref4 ref3 ref6 Lee (ref30) 2003 |
References_xml | – ident: ref25 doi: 10.1109/34.879790 – ident: ref7 doi: 10.1109/AFGR.2004.1301502 – ident: ref20 doi: 10.1109/AFGR.2002.1004148 – ident: ref12 doi: 10.1007/3-540-44887-X_67 – ident: ref11 doi: 10.1109/TPAMI.2003.1251144 – volume-title: Fundamentals of Speech Recognition year: 1993 ident: ref27 – ident: ref9 doi: 10.1109/TSMCB.2004.842251 – ident: ref22 doi: 10.1109/ICPR.2004.1333741 – ident: ref4 doi: 10.1109/AFGR.2004.1301521 – ident: ref16 doi: 10.1007/3-540-45344-X_44 – volume: 2 start-page: 93 volume-title: Proc. IEEE Int’l Conf. Image Processing ident: ref26 article-title: A Hidden Markov Model Based Framework for Recognition of Humans from Gait Sequences – ident: ref28 doi: 10.1007/978-1-4612-1694-0_15 – ident: ref14 doi: 10.1109/AFGR.2002.1004181 – ident: ref29 doi: 10.1109/34.598228 – ident: ref15 doi: 10.1007/3-540-44887-X_85 – ident: ref1 doi: 10.3758/BF03337021 – ident: ref10 doi: 10.1117/12.543107 – ident: ref3 doi: 10.1016/j.cviu.2004.04.004 – ident: ref23 doi: 10.1007/3-540-47967-8_44 – ident: ref18 doi: 10.1109/CVPR.2004.1315252 – year: 2001 ident: ref5 article-title: The CMU Motion of Body (MoBo) Database – ident: ref21 doi: 10.1109/AFGR.2004.1301522 – volume-title: Massachusetts Inst. of Technology year: 2003 ident: ref30 article-title: Gait Analysis for Classification – ident: ref32 doi: 10.1109/cvpr.2004.1315244 – ident: ref2 doi: 10.1109/MNRAO.1994.346253 – ident: ref6 doi: 10.1109/TIP.2004.832865 – ident: ref17 doi: 10.1007/3-540-44887-X_83 – ident: ref31 doi: 10.1007/3-540-44887-X_82 – ident: ref24 doi: 10.1109/AFGR.2004.1301504 – ident: ref13 doi: 10.1109/ICCV.2003.1238411 – ident: ref19 doi: 10.1109/TPAMI.2005.246 – ident: ref8 doi: 10.1109/TPAMI.2005.39 |
SSID | ssj0014503 |
Score | 2.3744533 |
Snippet | Potential sources for gait biometrics can be seen to derive from two aspects: gait shape and gait dynamics. We show that improved gait recognition can be... [...] we consider the HumanID gait challenge data set, which is the largest gait benchmarking data set that is available (122 subjects), exercising five... |
SourceID | proquest pubmed pascalfrancis crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 863 |
SubjectTerms | Algorithms Applied sciences Artificial Intelligence Biometrics Biometry - methods Cluster Analysis Computation Computer displays Computer science; control theory; systems Computer Simulation Computer vision Decoding Diagnosis, Computer-Assisted - methods Discriminant analysis Dynamics Exact sciences and technology Footwear Gait Gait - physiology Gait recognition gait shape Hidden Markov models Image Enhancement - methods Image Interpretation, Computer-Assisted - methods Information Storage and Retrieval - methods LDA Legged locomotion Linear discriminant analysis Markov Chains Mathematical models Models, Biological Models, Statistical Pattern Recognition, Automated - methods Pattern recognition. Digital image processing. Computational geometry Performance enhancement Photography - methods population HMM Reproducibility of Results Sensitivity and Specificity Shape Studies Viterbi algorithm Walking |
Title | Improved gait recognition by gait dynamics normalization |
URI | https://ieeexplore.ieee.org/document/1624352 https://www.ncbi.nlm.nih.gov/pubmed/16724582 https://www.proquest.com/docview/865733935 https://www.proquest.com/docview/28048401 https://www.proquest.com/docview/68016859 https://www.proquest.com/docview/896224713 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1939-3539 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014503 issn: 0162-8828 databaseCode: RIE dateStart: 19790101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VnuBAXzzSQskBiQvZJrHjx7FCVAVpEYdW6i3yY4IQVRax2QP99R3b2bRFrNRbFM_B9ng8nz3j-QDeV7X0VnNRaOZNwTvLCo2-KcLpQjmtrYsR3fk3cX7Jv141V1vwcXoLg4gx-Qxn4TPG8v3CrcJV2UklavLutOE-kVKnt1pTxIA3kQWZEAxZOB0jxgKNValPLr6fzr-kuENVR_oaIesQL3rgiyK5SkiNNEuanS7RWmzGndH_nO3AfN3zlHbya7Ya7Mzd_FPU8bFD24XnIxDNT9PK2YMt7PdhZ03ykI82vw_P7lUsPACVLiHQ5z_MzyGf0o8WfW7_pn8-cdwv8z7A4evxnecLuDz7fPHpvBjJFwrHGRsKzjuB2EnrrRLYGY9SIkNy9x6FaaxXDJ2pWdeQbkskt98RtNTYVVgy5kv2Erb7RY-vIWfWuUqb2giB3PPGdpJ5wZ0QzjChbAbFWg2tGyuTB4KM6zaeUErdRg0GxkzRkgYz-DDJ_041OTZKHoSpvpNKs5zB8QMt37UTGCYErTI4Wqu9HW162SoRakdq1mTwbmolYwwRFtPjYrVsa0UbIp1YN0sIQgRCNTqDfIOE0oJglaxYBq_SgrvX_bRuD_8_rCN4mi6Iwh3RG9ge_qzwLUGmwR5HW7kFfQUR9A |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB1V5QAcKLRAQ6HNAYkL2Sax49jHClFtoVtx2Eq9Rf6YVIgqi7rZA_x6xnY2bRErcYviOdgej-eNx54H8L4oa2cUF5liTme8NSxT6KrMRxfSKmVsyOjOLsT0kn-5qq624OP4FgYRw-UznPjPkMt3C7vyR2XHhSjJu9OG-6iiqKKOr7XGnAGvAg8yYRiycQokhhKNRa6O599OZmcx81CUgcBG1KXPGD3wRoFexV-O1EuanzYSW2xGnsEDne7AbN33ePHkx2TVm4n9_VdZx_8d3HN4NkDR9CSunRewhd0u7KxpHtLB6nfh6b2ahXsg4zEEuvRaf-_T8QLSokvNr_jPRZb7Zdp5QHwzvPR8CZenn-efptlAv5BZzlifcd4KxLY2zkiBrXZY18iQHL5DoSvjJEOrS9ZWpN0cyfG3BC4VtgXmjLmcvYLtbtHhPqTMWFsoXWohkDtembZmTnArhNVMSJNAtlZDY4fa5J4i46YJMUqumqBBz5kpGtJgAh9G-Z-xKsdGyT0_1XdScZYTOHyg5bt2gsOEoWUCB2u1N4NVLxspfPVIxaoEjsZWMkefY9EdLlbLppS0JVLMullCECYQslIJpBskpBIErOqCJfA6Lrh73Y_r9s2_h3UEj6fz2Xlzfnbx9QCexOMif2L0Frb72xW-IwDVm8NgN38A_M0VRQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+gait+recognition+by+gait+dynamics+normalization&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Zongyi+Liu&rft.au=Sarkar%2C+S.&rft.date=2006-06-01&rft.issn=0162-8828&rft.volume=28&rft.issue=6&rft.spage=863&rft.epage=876&rft_id=info:doi/10.1109%2FTPAMI.2006.122&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TPAMI_2006_122 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon |