A momentum-based diffeomorphic demons framework for deformable MR-CT image registration

Neuro-navigated procedures require a high degree of geometric accuracy but are subject to geometric error from complex deformation in the deep brain-e.g. regions about the ventricles due to egress of cerebrospinal fluid (CSF) upon neuroendoscopic approach or placement of a ventricular shunt. We repo...

Full description

Saved in:
Bibliographic Details
Published inPhysics in medicine & biology Vol. 63; no. 21; p. 215006
Main Authors Han, R, De Silva, T, Ketcha, M, Uneri, A, Siewerdsen, J H
Format Journal Article
LanguageEnglish
Published England IOP Publishing 24.10.2018
Subjects
Online AccessGet full text
ISSN0031-9155
1361-6560
1361-6560
DOI10.1088/1361-6560/aae66c

Cover

Abstract Neuro-navigated procedures require a high degree of geometric accuracy but are subject to geometric error from complex deformation in the deep brain-e.g. regions about the ventricles due to egress of cerebrospinal fluid (CSF) upon neuroendoscopic approach or placement of a ventricular shunt. We report a multi-modality, diffeomorphic, deformable registration method using momentum-based acceleration of the Demons algorithm to solve the transformation relating preoperative MRI and intraoperative CT as a basis for high-precision guidance. The registration method (pMI-Demons) extends the mono-modality, diffeomorphic form of the Demons algorithm to multi-modality registration using pointwise mutual information (pMI) as a similarity metric. The method incorporates a preprocessing step to nonlinearly stretch CT image values and incorporates a momentum-based approach to accelerate convergence. Registration performance was evaluated in phantom and patient images: first, the sensitivity of performance to algorithm parameter selection (including update and displacement field smoothing, histogram stretch, and the momentum term) was analyzed in a phantom study over a range of simulated deformations; and second, the algorithm was applied to registration of MR and CT images for four patients undergoing minimally invasive neurosurgery. Performance was compared to two previously reported methods (free-form deformation using mutual information (MI-FFD) and symmetric normalization using mutual information (MI-SyN)) in terms of target registration error (TRE), Jacobian determinant (J), and runtime. The phantom study identified optimal or nominal settings of algorithm parameters for translation to clinical studies. In the phantom study, the pMI-Demons method achieved comparable registration accuracy to the reference methods and strongly reduced outliers in TRE (p 0.001 in Kolmogorov-Smirnov test). Similarly, in the clinical study: median TRE  =  1.54 mm (0.83-1.66 mm interquartile range, IQR) for pMI-Demons compared to 1.40 mm (1.02-1.67 mm IQR) for MI-FFD and 1.64 mm (0.90-1.92 mm IQR) for MI-SyN. The pMI-Demons and MI-SyN methods yielded diffeomorphic transformations (J  >  0) that preserved topology, whereas MI-FFD yielded unrealistic (J  <  0) deformations subject to tissue folding and tearing. Momentum-based acceleration gave a ~35% speedup of the pMI-Demons method, providing registration runtime of 10.5 min (reduced to 2.2 min on GPU), compared to 15.5 min for MI-FFD and 34.7 min for MI-SyN. The pMI-Demons method achieved registration accuracy comparable to MI-FFD and MI-SyN, maintained diffeomorphic transformation similar to MI-SyN, and accelerated runtime in a manner that facilitates translation to image-guided neurosurgery.
AbstractList Neuro-navigated procedures require a high degree of geometric accuracy but are subject to geometric error from complex deformation in the deep brain-e.g. regions about the ventricles due to egress of cerebrospinal fluid (CSF) upon neuroendoscopic approach or placement of a ventricular shunt. We report a multi-modality, diffeomorphic, deformable registration method using momentum-based acceleration of the Demons algorithm to solve the transformation relating preoperative MRI and intraoperative CT as a basis for high-precision guidance. The registration method (pMI-Demons) extends the mono-modality, diffeomorphic form of the Demons algorithm to multi-modality registration using pointwise mutual information (pMI) as a similarity metric. The method incorporates a preprocessing step to nonlinearly stretch CT image values and incorporates a momentum-based approach to accelerate convergence. Registration performance was evaluated in phantom and patient images: first, the sensitivity of performance to algorithm parameter selection (including update and displacement field smoothing, histogram stretch, and the momentum term) was analyzed in a phantom study over a range of simulated deformations; and second, the algorithm was applied to registration of MR and CT images for four patients undergoing minimally invasive neurosurgery. Performance was compared to two previously reported methods (free-form deformation using mutual information (MI-FFD) and symmetric normalization using mutual information (MI-SyN)) in terms of target registration error (TRE), Jacobian determinant (J), and runtime. The phantom study identified optimal or nominal settings of algorithm parameters for translation to clinical studies. In the phantom study, the pMI-Demons method achieved comparable registration accuracy to the reference methods and strongly reduced outliers in TRE (p [Formula: see text] 0.001 in Kolmogorov-Smirnov test). Similarly, in the clinical study: median TRE  =  1.54 mm (0.83-1.66 mm interquartile range, IQR) for pMI-Demons compared to 1.40 mm (1.02-1.67 mm IQR) for MI-FFD and 1.64 mm (0.90-1.92 mm IQR) for MI-SyN. The pMI-Demons and MI-SyN methods yielded diffeomorphic transformations (J  >  0) that preserved topology, whereas MI-FFD yielded unrealistic (J  <  0) deformations subject to tissue folding and tearing. Momentum-based acceleration gave a ~35% speedup of the pMI-Demons method, providing registration runtime of 10.5 min (reduced to 2.2 min on GPU), compared to 15.5 min for MI-FFD and 34.7 min for MI-SyN. The pMI-Demons method achieved registration accuracy comparable to MI-FFD and MI-SyN, maintained diffeomorphic transformation similar to MI-SyN, and accelerated runtime in a manner that facilitates translation to image-guided neurosurgery.
Neuro-navigated procedures require a high degree of geometric accuracy but are subject to geometric error from complex deformation in the deep brain-e.g. regions about the ventricles due to egress of cerebrospinal fluid (CSF) upon neuroendoscopic approach or placement of a ventricular shunt. We report a multi-modality, diffeomorphic, deformable registration method using momentum-based acceleration of the Demons algorithm to solve the transformation relating preoperative MRI and intraoperative CT as a basis for high-precision guidance. The registration method (pMI-Demons) extends the mono-modality, diffeomorphic form of the Demons algorithm to multi-modality registration using pointwise mutual information (pMI) as a similarity metric. The method incorporates a preprocessing step to nonlinearly stretch CT image values and incorporates a momentum-based approach to accelerate convergence. Registration performance was evaluated in phantom and patient images: first, the sensitivity of performance to algorithm parameter selection (including update and displacement field smoothing, histogram stretch, and the momentum term) was analyzed in a phantom study over a range of simulated deformations; and second, the algorithm was applied to registration of MR and CT images for four patients undergoing minimally invasive neurosurgery. Performance was compared to two previously reported methods (free-form deformation using mutual information (MI-FFD) and symmetric normalization using mutual information (MI-SyN)) in terms of target registration error (TRE), Jacobian determinant (J), and runtime. The phantom study identified optimal or nominal settings of algorithm parameters for translation to clinical studies. In the phantom study, the pMI-Demons method achieved comparable registration accuracy to the reference methods and strongly reduced outliers in TRE (p 0.001 in Kolmogorov-Smirnov test). Similarly, in the clinical study: median TRE  =  1.54 mm (0.83-1.66 mm interquartile range, IQR) for pMI-Demons compared to 1.40 mm (1.02-1.67 mm IQR) for MI-FFD and 1.64 mm (0.90-1.92 mm IQR) for MI-SyN. The pMI-Demons and MI-SyN methods yielded diffeomorphic transformations (J  >  0) that preserved topology, whereas MI-FFD yielded unrealistic (J  <  0) deformations subject to tissue folding and tearing. Momentum-based acceleration gave a ~35% speedup of the pMI-Demons method, providing registration runtime of 10.5 min (reduced to 2.2 min on GPU), compared to 15.5 min for MI-FFD and 34.7 min for MI-SyN. The pMI-Demons method achieved registration accuracy comparable to MI-FFD and MI-SyN, maintained diffeomorphic transformation similar to MI-SyN, and accelerated runtime in a manner that facilitates translation to image-guided neurosurgery.
Neuro-navigated procedures require a high degree of geometric accuracy but are subject to geometric error from complex deformation in the deep brain-e.g. regions about the ventricles due to egress of cerebrospinal fluid (CSF) upon neuroendoscopic approach or placement of a ventricular shunt. We report a multi-modality, diffeomorphic, deformable registration method using momentum-based acceleration of the Demons algorithm to solve the transformation relating preoperative MRI and intraoperative CT as a basis for high-precision guidance. The registration method (pMI-Demons) extends the mono-modality, diffeomorphic form of the Demons algorithm to multi-modality registration using pointwise mutual information (pMI) as a similarity metric. The method incorporates a preprocessing step to nonlinearly stretch CT image values and incorporates a momentum-based approach to accelerate convergence. Registration performance was evaluated in phantom and patient images: first, the sensitivity of performance to algorithm parameter selection (including update and displacement field smoothing, histogram stretch, and the momentum term) was analyzed in a phantom study over a range of simulated deformations; and second, the algorithm was applied to registration of MR and CT images for four patients undergoing minimally invasive neurosurgery. Performance was compared to two previously reported methods (free-form deformation using mutual information (MI-FFD) and symmetric normalization using mutual information (MI-SyN)) in terms of target registration error (TRE), Jacobian determinant (J), and runtime. The phantom study identified optimal or nominal settings of algorithm parameters for translation to clinical studies. In the phantom study, the pMI-Demons method achieved comparable registration accuracy to the reference methods and strongly reduced outliers in TRE (p [Formula: see text] 0.001 in Kolmogorov-Smirnov test). Similarly, in the clinical study: median TRE  =  1.54 mm (0.83-1.66 mm interquartile range, IQR) for pMI-Demons compared to 1.40 mm (1.02-1.67 mm IQR) for MI-FFD and 1.64 mm (0.90-1.92 mm IQR) for MI-SyN. The pMI-Demons and MI-SyN methods yielded diffeomorphic transformations (J  >  0) that preserved topology, whereas MI-FFD yielded unrealistic (J  <  0) deformations subject to tissue folding and tearing. Momentum-based acceleration gave a ~35% speedup of the pMI-Demons method, providing registration runtime of 10.5 min (reduced to 2.2 min on GPU), compared to 15.5 min for MI-FFD and 34.7 min for MI-SyN. The pMI-Demons method achieved registration accuracy comparable to MI-FFD and MI-SyN, maintained diffeomorphic transformation similar to MI-SyN, and accelerated runtime in a manner that facilitates translation to image-guided neurosurgery.Neuro-navigated procedures require a high degree of geometric accuracy but are subject to geometric error from complex deformation in the deep brain-e.g. regions about the ventricles due to egress of cerebrospinal fluid (CSF) upon neuroendoscopic approach or placement of a ventricular shunt. We report a multi-modality, diffeomorphic, deformable registration method using momentum-based acceleration of the Demons algorithm to solve the transformation relating preoperative MRI and intraoperative CT as a basis for high-precision guidance. The registration method (pMI-Demons) extends the mono-modality, diffeomorphic form of the Demons algorithm to multi-modality registration using pointwise mutual information (pMI) as a similarity metric. The method incorporates a preprocessing step to nonlinearly stretch CT image values and incorporates a momentum-based approach to accelerate convergence. Registration performance was evaluated in phantom and patient images: first, the sensitivity of performance to algorithm parameter selection (including update and displacement field smoothing, histogram stretch, and the momentum term) was analyzed in a phantom study over a range of simulated deformations; and second, the algorithm was applied to registration of MR and CT images for four patients undergoing minimally invasive neurosurgery. Performance was compared to two previously reported methods (free-form deformation using mutual information (MI-FFD) and symmetric normalization using mutual information (MI-SyN)) in terms of target registration error (TRE), Jacobian determinant (J), and runtime. The phantom study identified optimal or nominal settings of algorithm parameters for translation to clinical studies. In the phantom study, the pMI-Demons method achieved comparable registration accuracy to the reference methods and strongly reduced outliers in TRE (p [Formula: see text] 0.001 in Kolmogorov-Smirnov test). Similarly, in the clinical study: median TRE  =  1.54 mm (0.83-1.66 mm interquartile range, IQR) for pMI-Demons compared to 1.40 mm (1.02-1.67 mm IQR) for MI-FFD and 1.64 mm (0.90-1.92 mm IQR) for MI-SyN. The pMI-Demons and MI-SyN methods yielded diffeomorphic transformations (J  >  0) that preserved topology, whereas MI-FFD yielded unrealistic (J  <  0) deformations subject to tissue folding and tearing. Momentum-based acceleration gave a ~35% speedup of the pMI-Demons method, providing registration runtime of 10.5 min (reduced to 2.2 min on GPU), compared to 15.5 min for MI-FFD and 34.7 min for MI-SyN. The pMI-Demons method achieved registration accuracy comparable to MI-FFD and MI-SyN, maintained diffeomorphic transformation similar to MI-SyN, and accelerated runtime in a manner that facilitates translation to image-guided neurosurgery.
Author Siewerdsen, J H
De Silva, T
Ketcha, M
Uneri, A
Han, R
AuthorAffiliation 1 Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
2 Neurological Surgery, The Johns Hopkins Hospital, Baltimore, MD, USA
AuthorAffiliation_xml – name: 1 Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
– name: 2 Neurological Surgery, The Johns Hopkins Hospital, Baltimore, MD, USA
Author_xml – sequence: 1
  givenname: R
  surname: Han
  fullname: Han, R
  organization: Johns Hopkins University Biomedical Engineering, Baltimore, MD, United States of America
– sequence: 2
  givenname: T
  surname: De Silva
  fullname: De Silva, T
  organization: Johns Hopkins University Biomedical Engineering, Baltimore, MD, United States of America
– sequence: 3
  givenname: M
  surname: Ketcha
  fullname: Ketcha, M
  organization: Johns Hopkins University Biomedical Engineering, Baltimore, MD, United States of America
– sequence: 4
  givenname: A
  orcidid: 0000-0003-3419-1805
  surname: Uneri
  fullname: Uneri, A
  organization: Johns Hopkins University Biomedical Engineering, Baltimore, MD, United States of America
– sequence: 5
  givenname: J H
  surname: Siewerdsen
  fullname: Siewerdsen, J H
  email: jeff.siewerdsen@jhu.edu
  organization: Author to whom any correspondence should be addressed
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30353886$$D View this record in MEDLINE/PubMed
BookMark eNp9UcFO3DAQtSqqsrvtnRPKkQPp2nHsxBek1QpoJVCliqpHy7EniyGOFzsB8fd42e2qRaKXGWn83pvxe1N00PseEDoi-CvBdT0nlJOcM47nSgHn-gOa7EcHaIIxJbkgjB2iaYx3GBNSF-UndEgxZbSu-QT9XmTOO-iH0eWNimAyY9sWvPNhfWt1ZsD5PmZtUA6efLjPWh_SMFWnmg6y65_58iazTq0gC7CycQhqsL7_jD62qovwZddn6NfF-c3yW3714_L7cnGV65LSIS8KxjhtKlJXBBqMGRWiYIWoAGtDS2N4KTSrqBFQAfDWlLThIExBoRWGYTpDZ1vd9dg4MDr9JKhOrkM6KTxLr6z896W3t3LlH6VIRrGaJoGTnUDwDyPEQTobNXSd6sGPURakYJQwTjbQ47937Zf8cTMB8Bagg48xQLuHECw3gclNOnKTjtwGlij8DUXb4dXBdK3t_kc83RKtX8s7P4Y-2fw-_AWNSal3
CODEN PHMBA7
CitedBy_id crossref_primary_10_1049_ipr2_12254
crossref_primary_10_1016_j_media_2021_102292
crossref_primary_10_1088_1361_6560_ac72ef
crossref_primary_10_1016_j_cmpb_2024_108372
crossref_primary_10_3390_electronics12030738
Cites_doi 10.1016/j.medengphy.2008.01.005
10.1118/1.4747270
10.1007/s11263-010-0405-z
10.1007/978-3-540-85990-1_108
10.1016/S0031-3203(98)00091-0
10.1109/TMI.2003.815867
10.1016/j.media.2011.10.006
10.1088/0031-9155/61/20/7377
10.1117/12.878189
10.1109/TMI.2002.1009381
10.1117/12.843962
10.1109/42.796284
10.3233/978-1-60750-929-5-586
10.3171/2014.3.JNS121312
10.1117/12.811588
10.1016/S0893-6080(98)00116-6
10.1002/ana.22089
10.1227/NEU.0000000000000544
10.1016/j.wneu.2013.12.006
10.1007/978-3-540-73273-0_41
10.1109/TMI.2005.857217
10.1109/42.585766
10.1146/annurev.bioeng.4.092101.125733
10.1109/TMI.2016.2576360
10.1016/S1077-3142(03)00116-4
10.1117/12.844541
10.1006/gmod.2000.0531
10.1007/978-3-540-75759-7_39
10.1371/journal.pone.0166112
10.1007/978-3-642-10331-5_102
10.1109/ISBI.2010.5490333
10.1093/biomet/66.3.605
10.1007/978-3-540-85988-8_90
10.1006/cviu.1995.1004
10.3171/2011.1.FOCUS10326
10.1016/j.media.2007.06.004
10.1016/j.neuroimage.2010.09.025
10.1007/978-3-319-46726-9_5
10.1016/j.media.2012.05.008
10.1016/S1361-8415(98)80022-4
10.1007/3-540-45468-3_69
10.3171/ped.2007.106.1.29
10.1109/TIP.2005.863114
10.3109/10929089809148142
10.1007/11866763_86
10.1109/TMI.2010.2067451
10.1109/TMI.2013.2265603
10.1586/erd.12.42
ContentType Journal Article
Copyright 2018 Institute of Physics and Engineering in Medicine
Copyright_xml – notice: 2018 Institute of Physics and Engineering in Medicine
DBID AAYXX
CITATION
NPM
7X8
5PM
DOI 10.1088/1361-6560/aae66c
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
Physics
DocumentTitleAlternate A momentum-based diffeomorphic demons framework for deformable MR-CT image registration
EISSN 1361-6560
EndPage 215006
ExternalDocumentID PMC9136583
30353886
10_1088_1361_6560_aae66c
pmbaae66c
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIH
  grantid: R01-EB-017226
– fundername: NIBIB NIH HHS
  grantid: R01 EB017226
GroupedDBID ---
-DZ
-~X
123
1JI
4.4
5B3
5RE
5VS
5ZH
7.M
7.Q
AAGCD
AAJIO
AAJKP
AALHV
AATNI
ABCXL
ABHWH
ABJNI
ABLJU
ABQJV
ABVAM
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CBCFC
CEBXE
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EJD
EMSAF
EPQRW
EQZZN
F5P
HAK
IHE
IJHAN
IOP
IZVLO
KOT
LAP
M45
N5L
N9A
NT-
NT.
P2P
PJBAE
R4D
RIN
RNS
RO9
ROL
RPA
SY9
TN5
UCJ
W28
XPP
AAYXX
ADEQX
CITATION
NPM
7X8
AEINN
5PM
ID FETCH-LOGICAL-c433t-225563b71871eb00539925297e0cd34dd649c573d9e7ee6fd43b6e9d23ef9d503
IEDL.DBID IOP
ISSN 0031-9155
1361-6560
IngestDate Thu Aug 21 14:16:36 EDT 2025
Thu Sep 04 22:11:07 EDT 2025
Wed Feb 19 02:36:42 EST 2025
Tue Jul 01 00:25:21 EDT 2025
Thu Apr 24 23:06:01 EDT 2025
Wed Aug 21 03:40:32 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 21
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c433t-225563b71871eb00539925297e0cd34dd649c573d9e7ee6fd43b6e9d23ef9d503
Notes Institute of Physics and Engineering in Medicine
PMB-107441.R1
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-3419-1805
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/9136583
PMID 30353886
PQID 2125315613
PQPubID 23479
PageCount 18
ParticipantIDs proquest_miscellaneous_2125315613
crossref_primary_10_1088_1361_6560_aae66c
crossref_citationtrail_10_1088_1361_6560_aae66c
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9136583
iop_journals_10_1088_1361_6560_aae66c
pubmed_primary_30353886
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-10-24
PublicationDateYYYYMMDD 2018-10-24
PublicationDate_xml – month: 10
  year: 2018
  text: 2018-10-24
  day: 24
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Physics in medicine & biology
PublicationTitleAbbrev PMB
PublicationTitleAlternate Phys. Med. Biol
PublicationYear 2018
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References 44
45
46
47
48
49
Nesterov Y (26) 1983; 27
50
51
10
12
13
14
15
16
18
19
Denis de Senneville B (11) 2016; 61
1
2
3
4
5
6
7
8
9
20
21
22
23
24
Kingma D P (17) 2014
25
27
28
29
30
31
32
33
34
35
37
38
39
Ruder S (36) 2016
40
41
42
43
References_xml – ident: 10
  doi: 10.1016/j.medengphy.2008.01.005
– ident: 27
  doi: 10.1118/1.4747270
– ident: 20
  doi: 10.1007/s11263-010-0405-z
– ident: 28
  doi: 10.1007/978-3-540-85990-1_108
– ident: 45
  doi: 10.1016/S0031-3203(98)00091-0
– ident: 32
  doi: 10.1109/TMI.2003.815867
– ident: 9
  doi: 10.1016/j.media.2011.10.006
– volume: 61
  start-page: 7377
  issn: 0031-9155
  year: 2016
  ident: 11
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/61/20/7377
– ident: 23
  doi: 10.1117/12.878189
– ident: 16
  doi: 10.1109/TMI.2002.1009381
– ident: 25
  doi: 10.1117/12.843962
– ident: 38
  doi: 10.1109/42.796284
– ident: 50
  doi: 10.3233/978-1-60750-929-5-586
– ident: 15
  doi: 10.3171/2014.3.JNS121312
– ident: 24
  doi: 10.1117/12.811588
– ident: 33
  doi: 10.1016/S0893-6080(98)00116-6
– year: 2014
  ident: 17
  publication-title: 3rd Int. Conf. on Learning Representations
– ident: 18
  doi: 10.1002/ana.22089
– ident: 29
  doi: 10.1227/NEU.0000000000000544
– ident: 44
  doi: 10.1016/j.wneu.2013.12.006
– ident: 47
  doi: 10.1007/978-3-540-73273-0_41
– ident: 6
  doi: 10.1109/TMI.2005.857217
– ident: 8
  doi: 10.1109/42.585766
– ident: 22
  doi: 10.1146/annurev.bioeng.4.092101.125733
– ident: 34
  doi: 10.1109/TMI.2016.2576360
– ident: 35
  doi: 10.1016/S1077-3142(03)00116-4
– ident: 4
  doi: 10.1117/12.844541
– ident: 5
  doi: 10.1006/gmod.2000.0531
– ident: 48
  doi: 10.1007/978-3-540-75759-7_39
– ident: 12
  doi: 10.1371/journal.pone.0166112
– ident: 13
  doi: 10.1007/978-3-642-10331-5_102
– ident: 19
  doi: 10.1109/ISBI.2010.5490333
– ident: 41
  doi: 10.1093/biomet/66.3.605
– year: 2016
  ident: 36
– ident: 49
  doi: 10.1007/978-3-540-85988-8_90
– ident: 7
  doi: 10.1006/cviu.1995.1004
– ident: 30
  doi: 10.3171/2011.1.FOCUS10326
– ident: 1
  doi: 10.1016/j.media.2007.06.004
– ident: 2
  doi: 10.1016/j.neuroimage.2010.09.025
– ident: 39
  doi: 10.1007/978-3-319-46726-9_5
– ident: 14
  doi: 10.1016/j.media.2012.05.008
– volume: 27
  start-page: 372
  issn: 0197-6788
  year: 1983
  ident: 26
  publication-title: Sov. Math. Dokl.
– ident: 46
  doi: 10.1016/S1361-8415(98)80022-4
– ident: 40
  doi: 10.1007/3-540-45468-3_69
– ident: 43
  doi: 10.3171/ped.2007.106.1.29
– ident: 51
  doi: 10.1109/TIP.2005.863114
– ident: 21
  doi: 10.3109/10929089809148142
– ident: 37
  doi: 10.1007/11866763_86
– ident: 3
  doi: 10.1109/TMI.2010.2067451
– ident: 42
  doi: 10.1109/TMI.2013.2265603
– ident: 31
  doi: 10.1586/erd.12.42
SSID ssj0011824
Score 2.3208697
Snippet Neuro-navigated procedures require a high degree of geometric accuracy but are subject to geometric error from complex deformation in the deep brain-e.g....
SourceID pubmedcentral
proquest
pubmed
crossref
iop
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 215006
SubjectTerms deformable registration
image registration
neurosurgery navigation
Title A momentum-based diffeomorphic demons framework for deformable MR-CT image registration
URI https://iopscience.iop.org/article/10.1088/1361-6560/aae66c
https://www.ncbi.nlm.nih.gov/pubmed/30353886
https://www.proquest.com/docview/2125315613
https://pubmed.ncbi.nlm.nih.gov/PMC9136583
Volume 63
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB7yoKWXNknbdNOmqNAeetA-LFm26CmEhhDYppSE5lAw1sN0SdYOXe-h_fWZsWzTDSGEnGzksWRJI81nZvQNwMfcIWLTUvHCyJxLYQSleRE8Sq3JnU29V3Q4efpNHZ_Lk4v4Yg2-9Gdhqut26x_ibSAKDkPYBsSlo4lQE06cMaM890rZddgUlEmJTu-dfu9dCAicAwWzmHAiQW99lHfVsGKT1rHdu-Dm7ajJ_8zQ0Qv41XUgRJ9cDpe1Gdp_t7gdH9nDLXjewlN2EES3Yc2XO_AkJKz8uwNPp60rHgub2FG7eAk_D9iceBzq5ZyTUXSsybpSzSucw5llzqOqL1jRhYExxMlY2KBlc-XZ9Ac_PGOzOe5sjPJEdEy-r-D86OvZ4TFv8zVwK4WoeUR0ZsKgtUsmvlneWkdxpBM_tk5I55TUNk6E0z5BHSgcqoby2kXCF9rFY_EaNsqq9G-AKWO8NIh2IrzGKdYm87HxXlhdFIWVAxh1M5bZlsyccmpcZY1TPU0zGsOMxjALYziAz_0b14HI4x7ZTzg1WbuaF_fIfejUJMNVSa6WvPTVcpEhIMDNjX7OBrAb1KZvFUEDWplUDSBZUahegBi_V5-Us98N87emoMRU7D3w-97CM8R3DX1vJN_BRv1n6fcRQ9XmfbNWbgCVfxXZ
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RIiouFMprKQUjwYGD9xE7TnysSlctsKVCregtjR8RK7rJis0e4NczfmTFVlWFxCmR49ixPeP5ohl_A_C2NIjYJBe0UryknCnm0rwwmuRalUbn1gp3OHlyIo7O-ceL9CLmOfVnYZp53Pr7eBuIgsMUxoC4fDBiYkQdZ8ygLK0QejA31QbcTVmaOc08_nK6ciMgeA40zGxEHRF69FPe1MqaXdrAvm-CnNcjJ_8yReNtuOwGESJQfvSXrerr39f4Hf9jlA_hQYSpZD9UfwR3bL0D90Liyl87sDWJLnks9DGkevEYvu2TmeNzaJcz6oyjIT77SjNrcC2nmhiLIr8gVRcORhAvY6FHzerKkslXenBGpjPc4YjLF9Ex-j6B8_Hh2cERjXkbqOaMtTRxtGZModXLRtaruZRJmsjMDrVh3BjBpU4zZqTNUBYqgyIirDQJs5U06ZA9hc26qe1zIEIpyxWingSvaY6t8XKorGVaVlWleQ8G3aoVOpKau9waV4V3rud54eaxcPNYhHnswfvVG_NA6HFL3Xe4PEXU6sUt9d50olKgdjqXS1nbZrkoEBjgJud-0nrwLIjOqlcED2htctGDbE2oVhUc8_f6k3r63TOASxecmLMX__h9r2Hr9MO4-Hx88mkX7iPk84y-CX8Jm-3Ppd1DWNWqV151_gC1cBtD
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+momentum-based+diffeomorphic+demons+framework+for+deformable+MR-CT+image+registration&rft.jtitle=Physics+in+medicine+%26+biology&rft.au=Han%2C+R&rft.au=De+Silva%2C+T&rft.au=Ketcha%2C+M&rft.au=Uneri%2C+A&rft.date=2018-10-24&rft.eissn=1361-6560&rft.volume=63&rft.issue=21&rft.spage=215006&rft_id=info:doi/10.1088%2F1361-6560%2Faae66c&rft_id=info%3Apmid%2F30353886&rft.externalDocID=30353886
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-9155&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-9155&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-9155&client=summon